551
|
Fujita H, Sakamoto N, Ishimatsu Y, Kakugawa T, Hara S, Hara A, Amenomori M, Ishimoto H, Nagata T, Mukae H, Kohno S. Effects of Doxycycline on Production of Growth Factors and Matrix Metalloproteinases in Pulmonary Fibrosis. Respiration 2011; 81:420-30. [DOI: 10.1159/000324080] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Accepted: 01/05/2011] [Indexed: 01/20/2023] Open
|
552
|
Abstract
Pulmonary remodeling is characterized by the permanent and progressive loss of the normal alveolar architecture, especially the loss of alveolar epithelial and endothelial cells, persistent proliferation of activated fibroblasts, or myofibroblasts, and alteration of extracellular matrix. Hepatocyte growth factor (HGF) is a pleiotropic factor, which induces cellular motility, survival, proliferation, and morphogenesis, depending upon the cell type. In the adult, HGF has been demonstrated to play a critical role in tissue repair, including in the lung. Administration of HGF protein or ectopic expression of HGF has been demonstrated in animal models of pulmonary fibrosis to induce normal tissue repair and to prevent fibrotic remodeling. HGF-induced inhibition of fibrotic remodeling may occur via multiple direct and indirect mechanisms including the induction of cell survival and proliferation of pulmonary epithelial and endothelial cells, and the reduction of myofibroblast accumulation.
Collapse
|
553
|
Eisenberg JL, Safi A, Wei X, Espinosa HD, Budinger GS, Takawira D, Hopkinson SB, Jones JC. Substrate stiffness regulates extracellular matrix deposition by alveolar epithelial cells. ACTA ACUST UNITED AC 2011. [PMID: 23204878 DOI: 10.2147/rrb.s13178] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIM: The aim of the study was to address whether a stiff substrate, a model for pulmonary fibrosis, is responsible for inducing changes in the phenotype of alveolar epithelial cells (AEC) in the lung, including their deposition and organization of extracellular matrix (ECM) proteins. METHODS: Freshly isolated lung AEC from male Sprague Dawley rats were seeded onto polyacrylamide gel substrates of varying stiffness and analyzed for expression and organization of adhesion, cytoskeletal, differentiation, and ECM components by Western immunoblotting and confocal immunofluorescence microscopy. RESULTS: We observed that substrate stiffness influences cell morphology and the organization of focal adhesions and the actin cytoskeleton. Surprisingly, however, we found that substrate stiffness has no influence on the differentiation of type II into type I AEC, nor does increased substrate stiffness lead to an epithelial-mesenchymal transition. In contrast, our data indicate that substrate stiffness regulates the expression of the α3 laminin subunit by AEC and the organization of both fibronectin and laminin in their ECM. CONCLUSIONS: An increase in substrate stiffness leads to enhanced laminin and fibronectin assembly into fibrils, which likely contributes to the disease phenotype in the fibrotic lung.
Collapse
Affiliation(s)
- Jessica L Eisenberg
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA ; Division of Pulmonary Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
554
|
Königshoff M. Lung Cancer in Pulmonary Fibrosis: Tales of Epithelial Cell Plasticity. Respiration 2011; 81:353-8. [DOI: 10.1159/000326299] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
555
|
Minagawa S, Araya J, Numata T, Nojiri S, Hara H, Yumino Y, Kawaishi M, Odaka M, Morikawa T, Nishimura SL, Nakayama K, Kuwano K. Accelerated epithelial cell senescence in IPF and the inhibitory role of SIRT6 in TGF-β-induced senescence of human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2010; 300:L391-401. [PMID: 21224216 DOI: 10.1152/ajplung.00097.2010] [Citation(s) in RCA: 249] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Reepithelialization of remodeled air spaces with bronchial epithelial cells is a prominent pathological finding in idiopathic pulmonary fibrosis (IPF) and is implicated in IPF pathogenesis. Recent studies suggest that epithelial senescence is a risk factor for development of IPF, indicating such reepithelialization may be influenced by the acceleration of cellular senescence. Among the sirtuin (SIRT) family, SIRT6, a class III histone deacetylase, has been demonstrated to antagonize senescence. We evaluated the senescence of bronchiolization in association with SIRT6 expression in IPF lung. Senescence-associated β-galactosidase staining and immunohistochemical detection of p21 were performed to evaluate cellular senescence. As a model for transforming growth factor (TGF)-β-induced senescence of abnormal reepithelialization, we used primary human bronchial epithelial cells (HBEC). The changes of SIRT6, p21, and interleukin (IL)-1β expression levels in HBEC, as well as type I collagen expression levels in fibroblasts, were evaluated. In IPF lung samples, an increase in markers of senescence and SIRT6 expression was found in the bronchial epithelial cells lining cystically remodeled air spaces. We found that TGF-β induced senescence in primary HBEC by increasing p21 expression, and, whereas TGF-β also induced SIRT6, it was not sufficient to inhibit cellular senescence. However, overexpression of SIRT6 efficiently inhibited TGF-β-induced senescence via proteasomal degradation of p21. TGF-β-induced senescent HBEC secreted increased amounts of IL-1β, which was sufficient to induce myofibroblast differentiation in fibroblasts. These findings suggest that accelerated epithelial senescence plays a role in IPF pathogenesis through perpetuating abnormal epithelial-mesenchymal interactions, which can be antagonized by SIRT6.
Collapse
Affiliation(s)
- Shunsuke Minagawa
- Division of Respiratory Diseases, Dept. of Internal Medicine, Jikei Univ. School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
556
|
Zhong Q, Zhou B, Ann DK, Minoo P, Liu Y, Banfalvi A, Krishnaveni MS, Dubourd M, Demaio L, Willis BC, Kim KJ, duBois RM, Crandall ED, Beers MF, Borok Z. Role of endoplasmic reticulum stress in epithelial-mesenchymal transition of alveolar epithelial cells: effects of misfolded surfactant protein. Am J Respir Cell Mol Biol 2010; 45:498-509. [PMID: 21169555 DOI: 10.1165/rcmb.2010-0347oc] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Endoplasmic reticulum (ER) stress has been implicated in alveolar epithelial type II (AT2) cell apoptosis in idiopathic pulmonary fibrosis. We hypothesized that ER stress (either chemically induced or due to accumulation of misfolded proteins) is also associated with epithelial-mesenchymal transition (EMT) in alveolar epithelial cells (AECs). ER stress inducers, thapsigargin (TG) or tunicamycin (TN), increased expression of ER chaperone, Grp78, and spliced X-box binding protein 1, decreased epithelial markers, E-cadherin and zonula occludens-1 (ZO-1), increased the myofibroblast marker, α-smooth muscle actin (α-SMA), and induced fibroblast-like morphology in both primary AECs and the AT2 cell line, RLE-6TN, consistent with EMT. Overexpression of the surfactant protein (SP)-C BRICHOS mutant SP-C(ΔExon4) in A549 cells increased Grp78 and α-SMA and disrupted ZO-1 distribution, and, in primary AECs, SP-C(ΔExon4) induced fibroblastic-like morphology, decreased ZO-1 and E-cadherin and increased α-SMA, mechanistically linking ER stress associated with mutant SP to fibrosis through EMT. Whereas EMT was evident at lower concentrations of TG or TN, higher concentrations caused apoptosis. The Src inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4]pyramidine) (PP2), abrogated EMT associated with TN or TG in primary AECs, whereas overexpression of SP-C(ΔExon4) increased Src phosphorylation, suggesting a common mechanism. Furthermore, increased Grp78 immunoreactivity was observed in AT2 cells of mice after bleomycin injury, supporting a role for ER stress in epithelial abnormalities in fibrosis in vivo. These results demonstrate that ER stress induces EMT in AECs, at least in part through Src-dependent pathways, suggesting a novel role for ER stress in fibroblast accumulation in pulmonary fibrosis.
Collapse
Affiliation(s)
- Qian Zhong
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
557
|
Brown AC, Rowe JA, Barker TH. Guiding epithelial cell phenotypes with engineered integrin-specific recombinant fibronectin fragments. Tissue Eng Part A 2010; 17:139-50. [PMID: 20695776 DOI: 10.1089/ten.tea.2010.0199] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The extracellular matrix (ECM) provides important cues for directing cell phenotype. Cells interact with underlying ECM through cell-surface receptors known as integrins, which bind to specific sequences on their ligands. During tissue development, repair, and regeneration of epithelial tissues, cells must interact with an interstitial fibronectin (Fn)-rich matrix, which has been shown to direct a more migratory/repair phenotype, presumably through interaction with Fn's cell binding domain comprised of both synergy Pro-His-Ser-Arg-Asn (PHSRN) and Arg-Gly-Asp (RGD) sequences. We hypothesized that the Fn synergy site is critical to the regulation of epithelial cell phenotype by directing integrin specificity. Epithelial cells were cultured on Fn fragments displaying stabilized synergy and RGD (FnIII9'10), or RGD alone (FnIII10) and cell phenotype analyzed by cytoskeleton changes, epithelial cell-cell contacts, changes in gene expression of epithelial and mesenchymal markers, and wound healing assay. Data indicate that epithelial cells engage RGD only with αv integrins and display a significant shift toward a mesenchymal phenotype due, in part, to enhanced transforming growth factor-β activation and/or signaling compared with cells on the synergy containing FnIII9'10. These studies demonstrate the importance of synergy in regulating epithelial cell phenotype relevant to tissue engineering as well as the utility of engineered integrin-specific ECM fragments in guiding cell phenotype.
Collapse
Affiliation(s)
- Ashley C Brown
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332-0535, USA
| | | | | |
Collapse
|
558
|
Panganiban RAM, Day RM. Hepatocyte growth factor in lung repair and pulmonary fibrosis. Int J Radiat Biol 2010; 89:656-67. [PMID: 21131996 DOI: 10.3109/09553002.2012.711502] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pulmonary remodeling is characterized by the permanent and progressive loss of the normal alveolar architecture, especially the loss of alveolar epithelial and endothelial cells, persistent proliferation of activated fibroblasts, or myofibroblasts, and alteration of extracellular matrix. Hepatocyte growth factor (HGF) is a pleiotropic factor, which induces cellular motility, survival, proliferation, and morphogenesis, depending upon the cell type. In the adult, HGF has been demonstrated to play a critical role in tissue repair, including in the lung. Administration of HGF protein or ectopic expression of HGF has been demonstrated in animal models of pulmonary fibrosis to induce normal tissue repair and to prevent fibrotic remodeling. HGF-induced inhibition of fibrotic remodeling may occur via multiple direct and indirect mechanisms including the induction of cell survival and proliferation of pulmonary epithelial and endothelial cells, and the reduction of myofibroblast accumulation.
Collapse
Affiliation(s)
- Ronald Allan M Panganiban
- Department of Pharmacology, Uniformed Services University of Health Sciences, Bethesda, MD 20852, USA
| | | |
Collapse
|
559
|
Li M, Krishnaveni MS, Li C, Zhou B, Xing Y, Banfalvi A, Li A, Lombardi V, Akbari O, Borok Z, Minoo P. Epithelium-specific deletion of TGF-β receptor type II protects mice from bleomycin-induced pulmonary fibrosis. J Clin Invest 2010; 121:277-87. [PMID: 21135509 DOI: 10.1172/jci42090] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 10/13/2010] [Indexed: 01/10/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic fibroproliferative pulmonary disorder for which there are currently no treatments. Although the etiology of IPF is unknown, dysregulated TGF-β signaling has been implicated in its pathogenesis. Recent studies also suggest a central role for abnormal epithelial repair. In this study, we sought to elucidate the function of epithelial TGF-β signaling via TGF-β receptor II (TβRII) and its contribution to fibrosis by generating mice in which TβRII was specifically inactivated in mouse lung epithelium. These mice, which are referred to herein as TβRIINkx2.1-cre mice, were used to determine the impact of TβRII inactivation on (a) embryonic lung morphogenesis in vivo; and (b) the epithelial cell response to TGF-β signaling in vitro and in a bleomycin-induced, TGF-β-mediated mouse model of pulmonary fibrosis. Although postnatally viable with no discernible abnormalities in lung morphogenesis and epithelial cell differentiation, TβRIINkx2.1-cre mice developed emphysema, suggesting a requirement for epithelial TβRII in alveolar homeostasis. Absence of TβRII increased phosphorylation of Smad2 and decreased, but did not entirely block, phosphorylation of Smad3 in response to endogenous/physiologic TGF-β. However, TβRIINkx2.1-cre mice exhibited increased survival and resistance to bleomycin-induced pulmonary fibrosis. To our knowledge, these findings are the first to demonstrate a specific role for TGF-β signaling in the lung epithelium in the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Min Li
- Division of Neonatology, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
560
|
A role for epidermal growth factor receptor in idiopathic pulmonary fibrosis onset. Mol Biol Rep 2010; 38:4613-7. [DOI: 10.1007/s11033-010-0594-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 11/20/2010] [Indexed: 10/18/2022]
|
561
|
Nandedkar SD, Weihrauch D, Xu H, Shi Y, Feroah T, Hutchins W, Rickaby DA, Duzgunes N, Hillery CA, Konduri KS, Pritchard KA. D-4F, an apoA-1 mimetic, decreases airway hyperresponsiveness, inflammation, and oxidative stress in a murine model of asthma. J Lipid Res 2010; 52:499-508. [PMID: 21131532 DOI: 10.1194/jlr.m012724] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Asthma is characterized by oxidative stress and inflammation of the airways. Although proinflammatory lipids are involved in asthma, therapies targeting them remain lacking. Ac-DWFKAFYDKVAEKFKEAFNH(2) (4F) is an apolipoprotein (apo)A-I mimetic that has been shown to preferentially bind oxidized lipids and improve HDL function. The objective of the present study was to determine the effects of 4F on oxidative stress, inflammation, and airway resistance in an established murine model of asthma. We show here that ovalbumin (OVA)-sensitization increased airway hyperresponsiveness, eosinophil recruitment, and collagen deposition in lungs of C57BL/6J mice by a mechanism that could be reduced by 4F. OVA sensitization induced marked increases in transforming growth factor (TGF)β-1, fibroblast specific protein (FSP)-1, anti-T15 autoantibody staining, and modest increases in 4-hydroxynonenal (4-HNE) Michael's adducts in lungs of OVA-sensitized mice. 4F decreased TGFβ-1, FSP-1, anti-T15 autoantibody, and 4-HNE adducts in the lungs of the OVA-sensitized mice. Eosinophil peroxidase (EPO) activity in bronchial alveolar lavage fluid (BALF), peripheral eosinophil counts, total IgE, and proinflammatory HDL (p-HDL) were all increased in OVA-sensitized mice. 4F decreased BALF EPO activity, eosinophil counts, total IgE, and p-HDL in these mice. These data indicate that 4F reduces pulmonary inflammation and airway resistance in an experimental murine model of asthma by decreasing oxidative stress.
Collapse
Affiliation(s)
- S D Nandedkar
- Department of Pediatric Surgery, Medical College of Wisconsin, Children's Research Institute, Zablocki Veterans Administration Medical Center, Milwaukee, WI, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
562
|
Shamri R, Xenakis JJ, Spencer LA. Eosinophils in innate immunity: an evolving story. Cell Tissue Res 2010; 343:57-83. [PMID: 21042920 DOI: 10.1007/s00441-010-1049-6] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 09/01/2010] [Indexed: 12/27/2022]
Abstract
Eosinophils are innate immune leukocytes found in relatively low numbers within the blood. Terminal effector functions of eosinophils, deriving from their capacity to release their content of tissue-destructive cationic proteins, have historically been considered primary effector mechanisms against specific parasites, and are likewise implicated in tissue damage accompanying allergic responses such as asthma. However, the past decade has seen dramatic advancements in the field of eosinophil immunobiology, revealing eosinophils to also be key participants in many other facets of innate immunity, from bridging innate and adaptive immune responses to orchestrating tissue remodeling events. Here, we review the multifaceted functions of eosinophils in innate immunity that are currently known, and discuss new avenues in this evolving story.
Collapse
Affiliation(s)
- Revital Shamri
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
563
|
Wei J, Ghosh AK, Sargent JL, Komura K, Wu M, Huang QQ, Jain M, Whitfield ML, Feghali-Bostwick C, Varga J. PPARγ downregulation by TGFß in fibroblast and impaired expression and function in systemic sclerosis: a novel mechanism for progressive fibrogenesis. PLoS One 2010; 5:e13778. [PMID: 21072170 PMCID: PMC2970611 DOI: 10.1371/journal.pone.0013778] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 10/07/2010] [Indexed: 12/19/2022] Open
Abstract
The nuclear orphan receptor peroxisome proliferator-activated receptor-gamma (PPAR-γ) is expressed in multiple cell types in addition to adipocytes. Upon its activation by natural ligands such as fatty acids and eicosanoids, or by synthetic agonists such as rosiglitazone, PPAR-γ regulates adipogenesis, glucose uptake and inflammatory responses. Recent studies establish a novel role for PPAR-γ signaling as an endogenous mechanism for regulating transforming growth factor-ß (TGF-ß)-dependent fibrogenesis. Here, we sought to characterize PPAR-γ function in the prototypic fibrosing disorder systemic sclerosis (SSc), and delineate the factors governing PPAR-γ expression. We report that PPAR-γ levels were markedly diminished in skin and lung biopsies from patients with SSc, and in fibroblasts explanted from the lesional skin. In normal fibroblasts, treatment with TGF-ß resulted in a time- and dose-dependent down-regulation of PPAR-γ expression. Inhibition occurred at the transcriptional level and was mediated via canonical Smad signal transduction. Genome-wide expression profiling of SSc skin biopsies revealed a marked attenuation of PPAR-γ levels and transcriptional activity in a subset of patients with diffuse cutaneous SSc, which was correlated with the presence of a "TGF-ß responsive gene signature" in these biopsies. Together, these results demonstrate that the expression and function of PPAR-γ are impaired in SSc, and reveal the existence of a reciprocal inhibitory cross-talk between TGF-ß activation and PPAR-γ signaling in the context of fibrogenesis. In light of the potent anti-fibrotic effects attributed to PPAR-γ, these observations lead us to propose that excessive TGF-ß activity in SSc accounts for impaired PPAR-γ function, which in turn contributes to unchecked fibroblast activation and progressive fibrosis.
Collapse
Affiliation(s)
- Jun Wei
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Asish K. Ghosh
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Jennifer L. Sargent
- Department of Genetics, Dartmouth Medical College, Hanover, New Hampshire, United States of America
| | - Kazuhiro Komura
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Minghua Wu
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Qi-Quan Huang
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Manu Jain
- Division of Respiratory and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Michael L. Whitfield
- Department of Genetics, Dartmouth Medical College, Hanover, New Hampshire, United States of America
| | - Carol Feghali-Bostwick
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - John Varga
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
564
|
Coward WR, Saini G, Jenkins G. The pathogenesis of idiopathic pulmonary fibrosis. Ther Adv Respir Dis 2010; 4:367-88. [PMID: 20952439 DOI: 10.1177/1753465810379801] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease with an appalling prognosis. The failure of anti-inflammatory therapies coupled with the observation that deranged epithelium overlies proliferative myofibroblasts to form the fibroblastic focus has lead to the emerging concept that IPF is a disease of deregulated epithelial-mesenchymal crosstalk. IPF is triggered by an as yet unidentified alveolar injury that leads to activation of transforming growth factor-β (TGF-β) and alveolar basement membrane disruption. In the presence of persisting injurious pathways, or disrupted repair pathways, activated TGF-β can lead to enhanced epithelial apoptosis and epithelial-to-mesenchymal transition (EMT) as well as fibroblast, and fibrocyte, transformation into myofibroblasts which are resistant to apoptosis. The resulting deposition of excess disrupted matrix by these myofibroblasts leads to the development of IPF.
Collapse
Affiliation(s)
- William R Coward
- Nottingham Respiratory Biomedical Research Unit, Clinical Sciences Building, Nottingham City Campus, Nottingham, UK
| | | | | |
Collapse
|
565
|
Castriotta RJ, Eldadah BA, Foster WM, Halter JB, Hazzard WR, Kiley JP, King TE, Horne FM, Nayfield SG, Reynolds HY, Schmader KE, Toews GB, High KP. Workshop on idiopathic pulmonary fibrosis in older adults. Chest 2010; 138:693-703. [PMID: 20822991 DOI: 10.1378/chest.09-3006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), a heterogeneous disease with respect to clinical presentation and rates of progression, disproportionately affects older adults. The diagnosis of IPF is descriptive, based on clinical, radiologic, and histopathologic examination, and definitive diagnosis is hampered by poor interobserver agreement and lack of a consensus definition. There are no effective treatments. Cellular, molecular, genetic, and environmental risk factors have been identified for IPF, but the initiating event and the characteristics of preclinical stages are not known. IPF is predominantly a disease of older adults, and the processes underlying normal aging might significantly influence the development of IPF. Yet, the biology of aging and the principles of medical care for this population have been typically ignored in basic, translational, or clinical IPF research. In August 2009, the Association of Specialty Professors, in collaboration with the American College of Chest Physicians, the American Geriatrics Society, the National Institute on Aging, and the National Heart, Lung, and Blood Institute, held a workshop, summarized herein, to review what is known, to identify research gaps at the interface of aging and IPF, and to suggest priority areas for future research. Efforts to answer the questions identified will require the integration of geriatrics, gerontology, and pulmonary research, but these efforts have great potential to improve care for patients with IPF.
Collapse
|
566
|
Fischer SN, Johnson JK, Baran CP, Newland CA, Marsh CB, Lannutti JJ. Organ-derived coatings on electrospun nanofibers as ex vivo microenvironments. Biomaterials 2010; 32:538-46. [PMID: 20875916 DOI: 10.1016/j.biomaterials.2010.08.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 08/30/2010] [Indexed: 01/16/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by irreversible scarring. Collagen deposition, myofibroblast expansion, and the development of fibroblastic foci are the hallmark pathological events. The origin and mechanism of recruitment of myofibroblasts, the key cell contributing to these events, is unknown. We hypothesize that the fibrotic lung microenvironment causes differentiation of arriving bone marrow-derived cells into myofibroblasts. Therefore, a method of isolating the effects of fibrotic microenvironment components on various cell types was developed. Electrospun nanofibers were coated with lung extracts from fibrotic or non-fibrotic mice and used to determine effects on bone marrow cells from naïve mice. Varying moduli nanofibers were also employed to determine matrix stiffness effects on these cells. At structured time points, bone marrow cell morphology was recorded and changes in fibrotic gene expression determined by real-time PCR. Cells plated on extracts isolated from fibrotic murine lungs secreted larger amounts of extracellular matrix, adopted a fibroblastic morphology, and exhibited increased myofibroblast gene expression after 8 and 14 days; cells plated on extracts from non-fibrotic lungs did not. Similar results were observed when the nanofiber modulus was increased. This ex vivo system appears to recapitulate the three-dimensional fibrotic lung microenvironment.
Collapse
Affiliation(s)
- Sara N Fischer
- The Integrated Biomedical Science Graduate Program, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
567
|
Westergren-Thorsson G, Larsen K, Nihlberg K, Andersson-Sjöland A, Hallgren O, Marko-Varga G, Bjermer L. Pathological airway remodelling in inflammation. CLINICAL RESPIRATORY JOURNAL 2010; 4 Suppl 1:1-8. [PMID: 20500603 DOI: 10.1111/j.1752-699x.2010.00190.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Airway remodelling refers to a wide pattern of pathophysiological mechanisms involving smooth muscle cell hyperplasia, increase of activated fibroblasts and myofibroblasts with deposition of extracellular matrix. In asthma, it includes alterations of the epithelial cell layer with goblet cell hyperplasia, thickening of basement membranes, peri-bronchial and peri-bronchoalveolar fibrosis. Moreover, airway remodelling occurs not only in asthma but also in several pulmonary disorders such as chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis and systemic sclerosis. Asthma treatment with inhaled corticosteroids does not fully prevent airway remodelling and thus have restricted influence on the natural course of the disease. OBJECTIVES This review highlights the role of different fibroblast phenotypes and potential origins of these cells in airway remodelling. RESULTS During inflammatory conditions, such as asthma, fibroblasts can differentiate into an active, more contractile phenotype termed myofibroblast, with expression of stress fibres and alpha-smooth muscle actin. The origin of myofibroblasts has lately been debated, and three sources have been identified: recruitment and differentiation of resident tissue fibroblasts; fibrocytes - circulating progenitor cells; and epithelial-mesenchymal transition. CONCLUSION It is clear that airway mesenchymal cells, including fibroblasts/myofibroblasts, are more dynamic in terms of differentiation and origin than has previously been recognised. Considering that these cells are key players in the remodelling process, it is of utmost importance to characterise specific markers for the various fibroblast phenotypes and to explore factors that drive the differentiation to develop future diagnostic and therapeutic tools for asthma patients.
Collapse
|
568
|
Buckley ST, Medina C, Ehrhardt C. Differential susceptibility to epithelial-mesenchymal transition (EMT) of alveolar, bronchial and intestinal epithelial cells in vitro and the effect of angiotensin II receptor inhibition. Cell Tissue Res 2010; 342:39-51. [PMID: 20848133 DOI: 10.1007/s00441-010-1029-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 07/23/2010] [Indexed: 01/14/2023]
Abstract
The generation of myofibroblasts via epithelial-mesenchymal transition (EMT), a process through which epithelial cells lose their polarity and become motile mesenchymal cells, is a proposed contributory factor in fibrosis of a number of organs. Currently, it remains unclear to what extent epithelia of the upper airways and large intestine are susceptible to this process. Herein, we investigated the ability of model cell lines of alveolar (A549), bronchial (Calu-3) and colonic (Caco-2) epithelial cells to undergo EMT when challenged with transforming growth factor-β1 (TGF-β1) and other pro-inflammatory cytokines. Western blot and immunofluorescence microscopy demonstrated that A549 cells readily underwent EMT, as evidenced by a spindle-like morphology, increase in the mesenchymal marker, vimentin, and down-regulation of E-cadherin, an epithelial marker. In contrast, neither Calu-3 nor Caco-2 cells exhibited morphological changes nor alterations in marker expression associated with EMT. Moreover, whilst stimulation of A549 cells enhanced migration and reduced their proliferative capacity, no such effect was observed in epithelial cell lines of the bronchus or colon. In addition, concomitant treatment of A549 cells with telmisartan, an angiotensin II receptor antagonist with antifibrotic properties, was found to reduce cytokine-induced collagen I production and cell migration, although expression levels of vimentin and E-cadherin remained unaltered. Mechanistically, telmisartan failed to inhibit phosphorylation of Smad2/3. Together, these results, using representative in vitro models of the alveolus, bronchus and colon, tentatively suggest that epithelial cell plasticity and susceptibility to EMT may differ depending on its tissue origin. Furthermore, our investigations point to the beneficial effect of telmisartan in partial abrogation of alveolar EMT.
Collapse
Affiliation(s)
- Stephen T Buckley
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin 2, Ireland
| | | | | |
Collapse
|
569
|
Sueblinvong V, Weiss DJ. Stem cells and cell therapy approaches in lung biology and diseases. Transl Res 2010; 156:188-205. [PMID: 20801416 PMCID: PMC4201367 DOI: 10.1016/j.trsl.2010.06.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/14/2010] [Accepted: 06/16/2010] [Indexed: 12/19/2022]
Abstract
Cell-based therapies with embryonic or adult stem cells, including induced pluripotent stem cells, have emerged as potential novel approaches for several devastating and otherwise incurable lung diseases, including emphysema, pulmonary fibrosis, pulmonary hypertension, and the acute respiratory distress syndrome. Although initial studies suggested engraftment of exogenously administered stem cells in lung, this is now generally felt to be a rare occurrence of uncertain physiologic significance. However, more recent studies have demonstrated paracrine effects of administered cells, including stimulation of angiogenesis and modulation of local inflammatory and immune responses in mouse lung disease models. Based on these studies and on safety and initial efficacy data from trials of adult stem cells in other diseases, groundbreaking clinical trials of cell-based therapy have been initiated for pulmonary hypertension and for chronic obstructive pulmonary disease. In parallel, the identity and role of endogenous lung progenitor cells in development and in repair from injury and potential contribution as lung cancer stem cells continue to be elucidated. Most recently, novel bioengineering approaches have been applied to develop functional lung tissue ex vivo. Advances in each of these areas will be described in this review with particular reference to animal models.
Collapse
Key Words
- aec, alveolar epithelial cell
- ali, acute lung injury
- ards, acute respiratory distress syndrome
- basc, bronchioalveolar stem cell
- ccsp, clara cell secretory protein
- cf, cystic fibrosis
- cftr, cystic fibrosis transmembrane conductance regulator
- clp, cecal ligation and puncture
- copd, chronic obstructive pulmonary disease
- enos, endothelial nitric oxide synthetase
- epc, endothelial progenitor cell
- esc, embryonic stem cell
- fev1, forced expiratory volume in 1 second
- fvc, forced vital capacity
- gfp, green fluorescent protein
- hsc, hematopoietic stem cell
- ipf, idiopathic pulmonary fibrosis
- kgf, keratinocyte growth factor
- lps, lipopolysaccharide
- mct, monocrotaline
- mhc, major histocompatibility complex
- msc, mesenchymal stromal (stem) cell
- ph, pulmonary hypertension
- pro-spc, pro-surfactant protein c
- sca-1, stem cell antigen-1
Collapse
Affiliation(s)
- Viranuj Sueblinvong
- Division of Pulmonary, Critical Care and Allergy, Department of Medicine, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
570
|
Nataraj D, Ernst A, Kalluri R. Idiopathic pulmonary fibrosis is associated with endothelial to mesenchymal transition. Am J Respir Cell Mol Biol 2010; 43:129-30. [PMID: 20651063 DOI: 10.1165/rcmb.2010-0044ed] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
571
|
Swaney JS, Chapman C, Correa LD, Stebbins KJ, Bundey RA, Prodanovich PC, Fagan P, Baccei CS, Santini AM, Hutchinson JH, Seiders TJ, Parr TA, Prasit P, Evans JF, Lorrain DS. A novel, orally active LPA(1) receptor antagonist inhibits lung fibrosis in the mouse bleomycin model. Br J Pharmacol 2010; 160:1699-713. [PMID: 20649573 PMCID: PMC2936842 DOI: 10.1111/j.1476-5381.2010.00828.x] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/10/2010] [Accepted: 03/16/2010] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE The aim of this study was to assess the potential of an antagonist selective for the lysophosphatidic acid receptor, LPA(1), in treating lung fibrosis We evaluated the in vitro and in vivo pharmacological properties of the high affinity, selective, oral LPA(1)-antagonist (4'-{4-[(R)-1-(2-chloro-phenyl)-ethoxycarbonylamino]-3-methyl-isoxazol-5-yl}-biphenyl-4-yl)-acetic acid (AM966). EXPERIMENTAL APPROACH The potency and selectivity of AM966 for LPA(1) receptors was determined in vitro by calcium flux and cell chemotaxis assays using recombinant and native cell cultures. The in vivo efficacy of AM966 to reduce tissue injury, vascular leakage, inflammation and fibrosis was assessed at several time points in the mouse bleomycin model. KEY RESULTS AM966 was a potent antagonist of LPA(1) receptors, with selectivity for this receptor over the other LPA receptors. In vitro, AM966 inhibited LPA-stimulated intracellular calcium release (IC(50)= 17 nM) from Chinese hamster ovary cells stably expressing human LPA(1) receptors and inhibited LPA-induced chemotaxis (IC(50)= 181 nM) of human IMR-90 lung fibroblasts expressing LPA(1) receptors. AM966 demonstrated a good pharmacokinetic profile following oral dosing in mice. In the mouse, AM966 reduced lung injury, vascular leakage, inflammation and fibrosis at multiple time points following intratracheal bleomycin instillation. AM966 also decreased lactate dehydrogenase activity and tissue inhibitor of metalloproteinase-1, transforming growth factor beta1, hyaluronan and matrix metalloproteinase-7, in bronchoalveolar lavage fluid. CONCLUSIONS AND IMPLICATIONS These findings demonstrate that AM966 is a potent, selective, orally bioavailable LPA(1) receptor antagonist that may be beneficial in treating lung injury and fibrosis, as well as other diseases that are characterized by pathological inflammation, oedema and fibrosis.
Collapse
Affiliation(s)
- J S Swaney
- Amira Pharmaceuticals, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
572
|
Inhibition of Wnt/beta-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc Natl Acad Sci U S A 2010; 107:14309-14. [PMID: 20660310 DOI: 10.1073/pnas.1001520107] [Citation(s) in RCA: 385] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF)/usual interstitial pneumonia is a ravaging condition of progressive lung scarring and destruction. Anti-inflammatory therapies including corticosteroids have limited efficacy in this ultimately fatal disorder. An important unmet need is to identify new agents that interact with key molecular pathways involved in the pathogenesis of pulmonary fibrosis to prevent progression or reverse fibrosis in these patients. Because aberrant activation of the Wnt/beta-catenin signaling cascade occurs in lungs of patients with IPF, we have targeted this pathway for intervention in pulmonary fibrosis using ICG-001, a small molecule that specifically inhibits T-cell factor/beta-catenin transcription in a cyclic AMP response-element binding protein binding protein (CBP)-dependent fashion. ICG-001 selectively blocks the beta-catenin/CBP interaction without interfering with the beta-catenin/p300 interaction. We report here that ICG-001 (5 mg/kg per day) significantly inhibits beta-catenin signaling and attenuates bleomycin-induced lung fibrosis in mice, while concurrently preserving the epithelium. Administration of ICG-001 concurrent with bleomycin prevents fibrosis, and late administration is able to reverse established fibrosis and significantly improve survival. Because no effective treatment for IPF exists, selective inhibition of Wnt/beta-catenin-dependent transcription suggests a potential unique therapeutic approach for pulmonary fibrosis.
Collapse
|
573
|
Hardie WD, Hagood JS, Dave V, Perl AKT, Whitsett JA, Korfhagen TR, Glasser S. Signaling pathways in the epithelial origins of pulmonary fibrosis. Cell Cycle 2010; 9:2769-76. [PMID: 20676040 DOI: 10.4161/cc.9.14.12268] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pulmonary fibrosis complicates a number of disease processes and leads to substantial morbidity and mortality. Idiopathic pulmonary fibrosis (IPF) is perhaps the most pernicious and enigmatic form of the greater problem of lung fibrogenesis with a median survival of three years from diagnosis in affected patients. In this review, we will focus on the pathology of IPF as a model of pulmonary fibrotic processes, review possible cellular mechanisms, review current treatment approaches and review two transgenic mouse models of lung fibrosis to provide insight into processes that cause lung fibrosis. We will also summarize the potential utility of signaling pathway inhibitors as a future treatment in pulmonary fibrosis. Finally, we will present data demonstrating a minimal contribution of epithelial-mesenchymal transition in the development of fibrotic lesions in the transforming growth factor-alpha transgenic model of lung fibrosis.
Collapse
Affiliation(s)
- William D Hardie
- Department of Pediatrics, Pulmonary Medicine, University of California, San Diego, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
574
|
Velden JLJVD, Alcorn JF, Guala AS, Badura ECHL, Janssen-Heininger YMW. c-Jun N-terminal kinase 1 promotes transforming growth factor-β1-induced epithelial-to-mesenchymal transition via control of linker phosphorylation and transcriptional activity of Smad3. Am J Respir Cell Mol Biol 2010; 44:571-81. [PMID: 20581097 DOI: 10.1165/rcmb.2009-0282oc] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Transforming growth factor (TGF)-β1 is a key mediator of lung remodeling and fibrosis. Epithelial cells are both a source of and can respond to TGF-β1 with epithelial-to-mesenchymal transition (EMT). We recently determined that TGF-β1-induced EMT in lung epithelial cells requires the presence of c-Jun N-terminal kinase (JNK) 1. Because TGF-β1 signals via Smad complexes, the goal of the present study was to determine the impact of JNK1 on phosphorylation of Smad3 and Smad3-dependent transcriptional responses in lung epithelial cells. Evaluation of JNK1-deficient lung epithelial cells demonstrated that TGF-β1-induced terminal phosphorylation of Smad3 was similar, whereas phosphorylation of mitogen-activated protein kinase sites in the linker regions of Smad3 was diminished, in JNK1-deficient cells compared with wild-type cells. In comparison to wild-type Smad3, expression of a mutant Smad3 in which linker mitogen-activated protein kinase sites were ablated caused a marked attenuation in JNK1 or TGF-β1-induced Smad-binding element transcriptional activity, and expression of plasminogen activator inhibitor-1, fibronectin-1, high-mobility group A2, CArG box-binding factor-A, and fibroblast-specific protein-1, genes critical in the process of EMT. JNK1 enhanced the interaction between Smad3 and Smad4, which depended on linker phosphorylation of Smad3. Conversely, Smad3 with phosphomimetic mutations in the linker domain further enhanced EMT-related genes and proteins, even in the absence of JNK1. Finally, we demonstrated a TGF-β1-induced interaction between Smad3 and JNK1. Collectively, these results demonstrate that Smad3 phosphorylation in the linker region and Smad transcriptional activity are directly or indirectly controlled by JNK1, and provide a putative mechanism whereby JNK1 promotes TGF-β1-induced EMT.
Collapse
Affiliation(s)
- Jos L J van der Velden
- Department of Pathology, Health Sciences Research Facility, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
575
|
Klingsberg RC, Mutsaers SE, Lasky JA. Current clinical trials for the treatment of idiopathic pulmonary fibrosis. Respirology 2010; 15:19-31. [PMID: 20199632 DOI: 10.1111/j.1440-1843.2009.01672.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most pulmonary consultants are called upon to discuss IPF management with their patients. The gravity of IPF treatment discussion is immense in view of the data that 3- and 5-year mortality rates are approximately 50% and 80%, respectively. Although IPF occurs in older patients with comorbid diseases, most patients with IPF die as a direct consequence of their lung fibrosis. Here, the results of recently completed IPF trials and the rationale for ongoing studies are succinctly reviewed. There are a number of novel agents in clinical trials that are in the earlier stages of development, and there is new evidence supporting palliative therapies, which may help in managing symptoms of IPF, such as cough, without necessarily altering the course of the disease. The information provided herein should facilitate informed physician-patient dialogue.
Collapse
Affiliation(s)
- Ross C Klingsberg
- Section of Pulmonary Diseases, Tulane University School of Medical, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
576
|
Cannito S, Novo E, di Bonzo LV, Busletta C, Colombatto S, Parola M. Epithelial-mesenchymal transition: from molecular mechanisms, redox regulation to implications in human health and disease. Antioxid Redox Signal 2010; 12:1383-430. [PMID: 19903090 DOI: 10.1089/ars.2009.2737] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelial to mesenchymal transition (EMT) is a fundamental process, paradigmatic of the concept of cell plasticity, that leads epithelial cells to lose their polarization and specialized junctional structures, to undergo cytoskeleton reorganization, and to acquire morphological and functional features of mesenchymal-like cells. Although EMT has been originally described in embryonic development, where cell migration and tissue remodeling have a primary role in regulating morphogenesis in multicellular organisms, recent literature has provided evidence suggesting that the EMT process is a more general biological process that is also involved in several pathophysiological conditions, including cancer progression and organ fibrosis. This review offers first a comprehensive introduction to describe major relevant features of EMT, followed by sections dedicated on those signaling mechanisms that are known to regulate or affect the process, including the recently proposed role for oxidative stress and reactive oxygen species (ROS). Current literature data involving EMT in both physiological conditions (i.e., embryogenesis) and major human diseases are then critically analyzed, with a special final focus on the emerging role of hypoxia as a relevant independent condition able to trigger EMT.
Collapse
Affiliation(s)
- Stefania Cannito
- Department of Experimental Medicine and Oncology and Interuniversity Center for Hepatic Pathophysiology, University of Turin, Turin, Italy
| | | | | | | | | | | |
Collapse
|
577
|
Lee J, Moon HJ, Lee JM, Joo CK. Smad3 regulates Rho signaling via NET1 in the transforming growth factor-beta-induced epithelial-mesenchymal transition of human retinal pigment epithelial cells. J Biol Chem 2010; 285:26618-27. [PMID: 20547485 DOI: 10.1074/jbc.m109.073155] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously demonstrated that RhoA-dependent signaling regulates transforming growth factor-beta1 (TGF-beta1)-induced cytoskeletal reorganization in the human retinal pigment epithelial cell line ARPE-19. Smad pathways have also been shown to mediate TGF-beta1 activity. Here, we examined what regulates Rho GTPase activity and tested whether Smad signaling cross-talks with Rho pathways during TGF-beta1-induced actin rearrangement. Using small interfering RNAs, we found that NET1, the guanine nucleotide exchange factor of RhoA, is critical for TGF-beta1-induced cytoskeletal reorganization, N-cadherin expression, and RhoA activation. In ARPE-19 cells lacking NET1, TGF-beta1-induced stress fibers and N-cadherin expression were not observed. Interestingly, in dominant-negative Smad3-expressing or constitutively active Smad7 cells, TGF-beta1 failed to induce NET1 mRNA and protein expression. Consistent with these results, both dominant-negative Smad3 and constitutively active Smad7 blocked the cytoplasmic localization of NET1 and inhibited interactions between NET1 and RhoA. Finally, we found that NET1 is a direct gene target of TGF-beta1 via Smad3. Taken together, our results demonstrate that Smad3 regulates RhoA activation and cytoskeletal reorganization by controlling NET1 in TGF-beta1-induced ARPE-19 cells. These data define a new role for Smad3 as a modulator of RhoA activation in the regulation of TGF-beta1-induced epithelial-mesenchymal transitions.
Collapse
Affiliation(s)
- Jungeun Lee
- Laboratory of Ophthalmology and Visual Science, Catholic Research Institutes of Medical Sciences, Korean Eye Tissue and Gene Bank Related to Blindness, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | | | | | | |
Collapse
|
578
|
Fanjul M, Gmyr V, Sengenès C, Ratovo G, Dufresne M, Lefebvre B, Kerr-Conte J, Hollande E. Evidence for epithelial-mesenchymal transition in adult human pancreatic exocrine cells. J Histochem Cytochem 2010; 58:807-23. [PMID: 20530463 DOI: 10.1369/jhc.2010.955807] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It has been shown that adult pancreatic ductal cells can dedifferentiate and act as pancreatic progenitors. Dedifferentiation of epithelial cells is often associated with the epithelial-mesenchymal transition (EMT). In this study, we investigated the occurrence of EMT in adult human exocrine pancreatic cells both in vitro and in vivo. Cells of exocrine fraction isolated from the pancreas of brain-dead donors were first cultured in suspension for eight days. This led to the formation of spheroids, composed of a principal population of cells with duct-like phenotype. When cultivated in tissue culture-treated flasks, spheroid cells exhibited a proliferative capacity and coexpressed epithelial (cytokeratin7 and cytokeratin19) and mesenchymal (vimentin and alpha-smooth muscle actin) markers as well as marker of progenitor pancreatic cells (pancreatic duodenal homeobox factor-1) and surface markers of mesenchymal stem cells. The switch from E-cadherin to N-cadherin associated with Snail1 expression suggested that these cells underwent EMT. In addition, we showed coexpression of epithelial and mesenchymal markers in ductal cells of one normal adult pancreas and three type 2 diabetic pancreases. Some of the vimentin-positive cells were found to coexpress glucagon or amylase. These results point to the occurrence of EMT, which may take place on dedifferentiation of ductal cells during the regeneration or renewal of human pancreatic tissues.
Collapse
Affiliation(s)
- Marjorie Fanjul
- Institut National de la Santé et de la Recherche Médicale U858, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
579
|
Jiang D, Liang J, Campanella GS, Guo R, Yu S, Xie T, Liu N, Jung Y, Homer R, Meltzer EB, Li Y, Tager AM, Goetinck PF, Luster AD, Noble PW. Inhibition of pulmonary fibrosis in mice by CXCL10 requires glycosaminoglycan binding and syndecan-4. J Clin Invest 2010; 120:2049-57. [PMID: 20484822 PMCID: PMC2877927 DOI: 10.1172/jci38644] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 03/24/2010] [Indexed: 12/16/2022] Open
Abstract
Pulmonary fibrosis is a progressive, dysregulated response to injury culminating in compromised lung function due to excess extracellular matrix production. The heparan sulfate proteoglycan syndecan-4 is important in mediating fibroblast-matrix interactions, but its role in pulmonary fibrosis has not been explored. To investigate this issue, we used intratracheal instillation of bleomycin as a model of acute lung injury and fibrosis. We found that bleomycin treatment increased syndecan-4 expression. Moreover, we observed a marked decrease in neutrophil recruitment and an increase in both myofibroblast recruitment and interstitial fibrosis in bleomycin-treated syndecan-4-null (Sdc4-/-) mice. Subsequently, we identified a direct interaction between CXCL10, an antifibrotic chemokine, and syndecan-4 that inhibited primary lung fibroblast migration during fibrosis; mutation of the heparin-binding domain, but not the CXCR3 domain, of CXCL10 diminished this effect. Similarly, migration of fibroblasts from patients with pulmonary fibrosis was inhibited in the presence of CXCL10 protein defective in CXCR3 binding. Furthermore, administration of recombinant CXCL10 protein inhibited fibrosis in WT mice, but not in Sdc4-/- mice. Collectively, these data suggest that the direct interaction of syndecan-4 and CXCL10 in the lung interstitial compartment serves to inhibit fibroblast recruitment and subsequent fibrosis. Thus, administration of CXCL10 protein defective in CXCR3 binding may represent a novel therapy for pulmonary fibrosis.
Collapse
Affiliation(s)
- Dianhua Jiang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.
Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Beijing University of Chinese Medicine, Beijing, China.
Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Jiurong Liang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.
Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Beijing University of Chinese Medicine, Beijing, China.
Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Gabriele S. Campanella
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.
Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Beijing University of Chinese Medicine, Beijing, China.
Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Rishu Guo
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.
Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Beijing University of Chinese Medicine, Beijing, China.
Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Shuang Yu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.
Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Beijing University of Chinese Medicine, Beijing, China.
Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Ting Xie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.
Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Beijing University of Chinese Medicine, Beijing, China.
Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Ningshan Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.
Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Beijing University of Chinese Medicine, Beijing, China.
Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Yoosun Jung
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.
Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Beijing University of Chinese Medicine, Beijing, China.
Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Robert Homer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.
Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Beijing University of Chinese Medicine, Beijing, China.
Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Eric B. Meltzer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.
Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Beijing University of Chinese Medicine, Beijing, China.
Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Yuejuan Li
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.
Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Beijing University of Chinese Medicine, Beijing, China.
Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Andrew M. Tager
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.
Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Beijing University of Chinese Medicine, Beijing, China.
Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Paul F. Goetinck
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.
Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Beijing University of Chinese Medicine, Beijing, China.
Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Andrew D. Luster
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.
Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Beijing University of Chinese Medicine, Beijing, China.
Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Paul W. Noble
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.
Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Beijing University of Chinese Medicine, Beijing, China.
Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA.
Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
580
|
Godde NJ, Galea RC, Elsum IA, Humbert PO. Cell polarity in motion: redefining mammary tissue organization through EMT and cell polarity transitions. J Mammary Gland Biol Neoplasia 2010; 15:149-68. [PMID: 20461450 DOI: 10.1007/s10911-010-9180-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 04/27/2010] [Indexed: 02/04/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT) and its reversion via mesenchymal to epithelial transition (MET), represent a stepwise cycle of epithelial plasticity that allows for normal tissue remodelling and diversification during development. In particular, epithelial-mesenchymal plasticity is central to many aspects of mammary development and has been proposed to be a key process in breast cancer progression. Such epithelial-mesenchymal plasticity requires complex cellular reprogramming to orchestrate a change in cell shape to an alternate morphology more conducive to migration. During this process, epithelial characteristics, including apical-basal polarity and specialised cell-cell junctions are lost and mesenchymal properties, such as a front-rear polarity associated with weak cell-cell contacts, increased motility, resistance to apoptosis and invasiveness are gained. The ability of epithelial cells to undergo transitions through cell polarity states is a central feature of epithelial-mesenchymal plasticity. These cell polarity states comprise a set of distinct asymmetric distributions of cellular constituents that are fashioned to allow specialized cellular functions, such as the regulated homeostasis of molecules across epithelial barriers, cell migration or cell diversification via asymmetric cell divisions. Each polarity state is engineered using a molecular toolbox that is highly conserved between organisms and cell types which can direct the initiation, establishment and continued maintenance of each asymmetry. Here we discuss how EMT pathways target cell polarity mediators, and how this EMT-dependent change in polarity states impact on the various stages of breast cancer. Emerging evidence places cell polarity at the interface of proliferation and morphology control and as such the changing dynamics within polarity networks play a critical role in normal mammary gland development and breast cancer progression.
Collapse
Affiliation(s)
- Nathan J Godde
- Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Center, East Melbourne, VIC 3002, Australia
| | | | | | | |
Collapse
|
581
|
Yamauchi Y, Kohyama T, Takizawa H, Kamitani S, Desaki M, Takami K, Kawasaki S, Kato J, Nagase T. Tumor necrosis factor-alpha enhances both epithelial-mesenchymal transition and cell contraction induced in A549 human alveolar epithelial cells by transforming growth factor-beta1. Exp Lung Res 2010; 36:12-24. [PMID: 20128678 DOI: 10.3109/01902140903042589] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recently, epithelial-mesenchymal transition (EMT) has been reported to contribute to tissue fibrosis through enhanced transforming growth factor (TGF)-beta1 signaling. Tumor necrosis factor (TNF)-alpha has also been implicated in tissue fibrosis. Therefore, the authors investigated whether TNF-alpha affected TGF-beta1-induced EMT. Cultured alveolar epithelial cells (A549 cells) were stimulated with TGF-beta1 (5 ng/mL), with/without TNF-alpha (10 ng/mL). TGF-beta1 induced EMT of A549 cells, with loss of E-cadherin and acquisition of vimentin. Combination of TNF-alpha with TGF-beta1 enhanced EMT, causing morphological changes, while quantitative polymerase chain reaction (PCR) showed suppression of E-cadherin mRNA and expression of vimentin mRNA. In addition, the gel contraction method revealed that cells that had undergone EMT acquired cell contractility, which is a feature of mesenchymal cells. Stimulation with TGF-beta1 induced cell contraction, as did TNF-alpha. Moreover, costimulation with TGF-beta1 and TNF-alpha enhanced the cell contraction. Although IFN-gamma suppressed spontaneous cell contraction, it did not suppress cell contraction, which was induced by TGF-beta1. In conclusion, TNF-alpha enhances not only EMT but also cell contraction induced by TGF-beta1. EMT might contribute to tissue fibrosis through induction of cell contraction.
Collapse
Affiliation(s)
- Yasuhiro Yamauchi
- Department of Respiratory Medicine, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
582
|
Zander DS, Popper HH, Jagirdar J, Haque AK, Cagle PT, Barrios R. Epithelial Repair and Regeneration. MOLECULAR PATHOLOGY OF LUNG DISEASES 2010; 1. [PMCID: PMC7147447 DOI: 10.1007/978-0-387-72430-0_45] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Contact with the environment positions the respiratory epithelium at risk for acute and chronic injury from infectious pathogens, noxious agents, and inflammatory processes. Thus, to protect gas transfer within the lung the epithelium is programmed for routine maintenance and repair. Programs for repair are directed by epithelial, mesenchymal, and inflammatory signals that collectively constitute highly regulated networks. Principal components of the repair network are developmental morphogens, integrin and growth factor signaling molecules, and transcription factors. The epithelium responds to these signals with a remarkable plasticity and is bulwarked by a population of lung progenitor cells to ensure maintenance and repair for fluid balance and host defense functions.
Collapse
Affiliation(s)
- Dani S. Zander
- grid.240473.60000000405439901Department of Pathology, Penn State Milton S. Hershey Medical Center, Hershey, PA USA
| | - Helmut H. Popper
- grid.11598.340000000089882476Institute of Pathology, Laboratories for Molecular Cytogenetics, Medical University of Graz, Graz, Austria
| | - Jaishree Jagirdar
- grid.267309.90000000106295880Department of Pathology, University of Texas Health Science Center, San Antonio, TX USA
| | - Abida K. Haque
- grid.5386.8000000041936877XWeill Medical College of Cornell University, New York, NY ,grid.415073.4Department of Pathology, San Jacinto Methodist Hospital, Baytown, TX USA
| | - Philip T. Cagle
- grid.5386.8000000041936877XPathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY ,grid.63368.380000000404450041The Methodist Hospital, Houston, TX USA
| | - Roberto Barrios
- grid.5386.8000000041936877XPathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY ,grid.63368.380000000404450041The Methodist Hospital, Houston, TX USA
| |
Collapse
|
583
|
Ramos C, Becerril C, Montaño M, García-De-Alba C, Ramírez R, Checa M, Pardo A, Selman M. FGF-1 reverts epithelial-mesenchymal transition induced by TGF-{beta}1 through MAPK/ERK kinase pathway. Am J Physiol Lung Cell Mol Physiol 2010; 299:L222-31. [PMID: 20495078 DOI: 10.1152/ajplung.00070.2010] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal lung disease characterized by the expansion of the fibroblast/myofibroblast population and aberrant remodeling. However, the origin of mesenchymal cells in this disorder is still under debate. Recent evidence indicates that epithelial-mesenchymal transition (EMT) induced primarily by TGF-beta1 plays an important role; however, studies regarding the opposite process, mesenchymal-epithelial transition, are scanty. We have previously shown that fibroblast growth factor-1 (FGF-1) inhibits several profibrogenic effects of TGF-beta1. In this study, we examined the effects of FGF-1 on TGF-beta1-induced EMT. A549 and RLE-6TN (human and rat) alveolar epithelial-like cell lines were stimulated with TGF-beta1 for 72 h, and then, in the presence of TGF-beta1, were cultured with FGF-1 plus heparin for an additional 48 h. After TGF-beta1 treatment, epithelial cells acquired a spindle-like mesenchymal phenotype with a substantial reduction of E-cadherin and cytokeratins and concurrent induction of alpha-smooth muscle actin measured by real-time PCR, Western blotting, and immunocytochemistry. FGF-1 plus heparin reversed these morphological changes and returned the epithelial and mesenchymal markers to control levels. Signaling pathways analyzed by selective pharmacological inhibitors showed that TGF-beta1 induces EMT through Smad pathway, while reversion by FGF-1 occurs through MAPK/ERK kinase pathway, resulting in ERK-1 phosphorylation and Smad2 dephosphorylation. These findings indicate that TGF-beta1-induced EMT is reversed by FGF-1 and suggest therapeutic approaches to target this process in IPF.
Collapse
Affiliation(s)
- Carlos Ramos
- Instituto Nacional de Enfermedades Respiratorias, Universidad Nacional Autónoma de México, México City, México
| | | | | | | | | | | | | | | |
Collapse
|
584
|
Caramaschi P, Dalla Gassa A, Ruzzenente O, Volpe A, Ravagnani V, Tinazzi I, Barausse G, Bambara LM, Biasi D. Very low levels of vitamin D in systemic sclerosis patients. Clin Rheumatol 2010; 29:1419-25. [PMID: 20454816 DOI: 10.1007/s10067-010-1478-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 04/22/2010] [Accepted: 04/27/2010] [Indexed: 12/22/2022]
Abstract
Vitamin D displays many extraosseous immunomodulatory effects. The aim of the study was to evaluate the level of vitamin D in patients with systemic sclerosis (SSc) and to analyze the associations between the concentration of the vitamin and clinical manifestations. In March-April 2009, 65 consecutive SSc patients underwent evaluation of vitamin D concentrations by the LIAISON immunoassay (normal 30-100 ng/ml). Serum levels between 10 and 30 ng/ml were classified as vitamin D insufficiency, while concentrations <10 ng/ml as vitamin D deficiency. None of the patients were receiving vitamin D supplementation at the time of or during the year prior to study entry. The mean level of vitamin D was 15.8 ± 9.1 ng/ml. Only three cases showed normal values; vitamin D insufficiency and deficiency were found in 43 and 19 cases, respectively. Patients with vitamin D deficiency showed longer disease duration (13.1 ± 6.8 versus 9.4 ± 5.5 years, P = 0.026), lower diffusing lung capacity for carbon monoxide (63.7 ± 12.4 versus 76.4 ± 20.2, P = 0.014), higher estimated pulmonary artery pressure (28.9 ± 9.9 versus 22.8 ± 10.4, P = 0.037) and higher values of ESR (40 ± 25 versus 23 ± 13 mm/h, P = 0.001) and of CRP (7 ± 7 and 4 ± 2 mg/l, P = 0.004) in comparison with patients with vitamin D insufficiency; moreover, late nailfold videocapillaroscopic pattern was more frequently found (52.6% versus 18.6%, P = 0.013). None of the patients showed evidence of overt mal-absorption. Low levels of vitamin D are very frequent in patients with SSc. Intestinal involvement is not likely the cause of vitamin D deficit; other factors such as skin hyperpigmentation and reduced sun exposition for psychological and social reasons may be implicated. Patients with vitamin D deficiency showed more severe disease in comparison with patients with vitamin D insufficiency, above all concerning lung involvement. Further trials are awaited to determine whether vitamin D could represent a modifiable factor able to interfere with SSc evolution.
Collapse
Affiliation(s)
- Paola Caramaschi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Verona, Verona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
585
|
Ruan W, Ying K. Abnormal expression of IGF-binding proteins, an initiating event in idiopathic pulmonary fibrosis? Pathol Res Pract 2010; 206:537-43. [PMID: 20452131 DOI: 10.1016/j.prp.2010.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/21/2010] [Accepted: 03/25/2010] [Indexed: 02/06/2023]
Abstract
For significant improvements to occur in the survival of patients with idiopathic pulmonary fibrosis (IPF), it is necessary to develop novel and more precisely targeted therapies. The selection of future appropriate regimens must critically depend on improved characterization of the molecules driving the pathogenesis of IPF. It is well defined that IPF is characterized by the expression of genes indicating an active tissue remodeling program, including extracellular matrix (ECM) and basement membrane components, as well as myofibroblast-associated and epithelial cell-related genes. A few recent advances are worth mentioning. Pulmonary research demonstrates abnormal expression of insulin-like growth factor (IGF) binding proteins (IGFBPs) in IPF, including human IPF bronchoalveolar lavage (BAL) cells and BAL fluids, human IPF fibroblasts, as well as fibrotic lung tissues of bleomycin-induced mice and IPF patients, analyzed by microarray, reverse transcription-polymerase chain reaction (RT-PCR), ribonuclease protection assay (RPA), Western blot, immunohistochemistry, or enzyme-linked immunosorbent assay (ELISA). Simultaneously, in vitro and in vivo studies indicate the involvement of IGFBPs in the initiation and development of the fibrosis process, including fibroblast activation and transdifferentiation to a myofibroblast phenotype, epithelial-mesenchymal transition (EMT), increased ECM production, and decreased ECM degradation, possibly contributing to the final lung fibrosis. These observations suggest that dysregulation of IGFBPs may be a key factor responsible for the initiation and perpetuation of IPF. Such efforts could lead to potential candidate molecules being exploited for therapeutic manipulation.
Collapse
Affiliation(s)
- Wenjing Ruan
- Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University, 3 East Qingchun Road, Hangzhou 310016, China
| | | |
Collapse
|
586
|
Abstract
The endothelin receptor-ligand system includes a family of polypeptides and G-protein-coupled receptors, which, in addition to their classic activity in the regulation of vascular tone (both directly and through the control of nitric oxide), were implicated in a wide variety of other key biological processes. In this regard, the endothelins are potent mitogens and motogens for mesenchymal cells, and can induce cell differentiation, increasing both the synthesis and deposition of extracellular matrix components and contractile ability. The endothelins are produced as inactive pre-pro-polypeptides, with gene transcription (as well as the proteolytic processing to mature active forms) under the influence of many factors, including cytokines, hypoxia, biomechanical and shear stress, pathogen products, and many growth factors. These complex regulatory events underlie the association and potential role of endothelins in a number of human diseases affecting many different target organs, including the vasculature (atherosclerosis and hypertension), kidney (renal crisis and chronic kidney disease), heart (coronary heart disease), and lungs (pulmonary fibrosis and pulmonary hypertension). This review focuses on the biochemistry of endothelin and the pathobiology of endothelin in lung fibrosis, with particular emphasis on idiopathic pulmonary fibrosis, and examines the antifibrotic potential of endothelin receptor antagonism.
Collapse
Affiliation(s)
- Carmen Fonseca
- Division of Medicine, Department of Inflammation, Centre for Rheumatology and Connective Tissue Diseases, Royal Free and University College Medical School, University College London, Rowland Hill Street, London, UK
| | | | | |
Collapse
|
587
|
Abstract
Recent years have seen a robust influx of exciting new observations regarding the mechanisms that regulate the initiation and progression of pulmonary fibrosis but the pathogenesis remains poorly understood. The search for an alternative hypothesis to unremitting, chronic inflammation as the primary explanation for the pathophysiology of idiopathic pulmonary fibrosis (IPF) derives, in part, from the lack of therapeutic efficacy of high-dose immunosuppressive therapy in patients with IPF. The inflammatory hypothesis of IPF has since been challenged by the epithelial injury hypothesis, in which fibrosis is believed to result from epithelial injury, activation, and/or apoptosis with abnormal wound healing. This hypothesis suggests that recurrent unknown injury to distal pulmonary parenchyma causes repeated epithelial injury and apoptosis. The resultant loss of alveolar epithelium exposes the underlying basement membrane to oxidative damage and degradation. Emerging concepts suggest that IPF is the result of epithelial-mesenchymal interaction. The initiation of this fibrotic response may depend upon genetic factors and environmental triggers; the role of Th1 or Th2 cell-derived cytokines may also be important. This process appears to be unique to usual interstitial pneumonia/IPF. It is clear that IPF is a heterogeneous disease with variations in pathology, high-resolution computed tomography findings, and patterns of progression. Idiopathic pulmonary fibrosis is a complex disorder, and no unifying hypothesis has been identified at present that explains all the abnormalities.
Collapse
|
588
|
Shin DH, Park HM, Jung KA, Choi HG, Kim JA, Kim DD, Kim SG, Kang KW, Ku SK, Kensler TW, Kwak MK. The NRF2-heme oxygenase-1 system modulates cyclosporin A-induced epithelial-mesenchymal transition and renal fibrosis. Free Radic Biol Med 2010; 48:1051-63. [PMID: 20096777 PMCID: PMC3586736 DOI: 10.1016/j.freeradbiomed.2010.01.021] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 01/12/2010] [Accepted: 01/14/2010] [Indexed: 02/06/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is an underlying mechanism of tissue fibrosis, generating myofibroblasts, which serve as the primary source of extracellular matrix production from tissue epithelial cells. Recently, EMT has been implicated in immunosuppressive cyclosporin A (CsA)-induced renal fibrosis. In this study, the potential role of NRF2, which is the master regulator of genes associated with the cellular antioxidant defense system, in CsA-induced EMT renal fibrosis has been investigated. Pretreatment of rat tubular epithelial NRK-52E cells with sulforaphane, an activator of NRF2, could prevent EMT gene changes such as the loss of E-cadherin and the increase in alpha-smooth muscle actin (alpha-SMA) expression. Conversely, genetic inhibition of NRF2 in these cells aggravated changes in CsA-induced EMT markers. These in vitro observations could be confirmed in vivo: CsA treatment resulted in severe renal damage and fibrosis with increased expression of alpha-SMA in NRF2-deficient mice compared to wild-type mice. NRF2-mediated amelioration of CsA-caused EMT changes could be accounted for in part by the regulation of heme oxygenase-1 (HO-1). CsA treatment increased HO-1 expression in an NRF2-dependent manner in NRK cells as well as in murine fibroblasts. Induction of HO-1 by CsA seems to be advantageous in that it counteracts EMT gene changes: specific increase in HO-1 expression caused by cobalt protoporphyrin prevented CsA-mediated alpha-SMA induction, whereas genetic inhibition of HO-1 by siRNA substantially enhanced alpha-SMA induction compared to control cells. Collectively, our results suggest that the NRF2-HO-1 system plays a protective role against CsA-induced renal fibrosis by modulating EMT gene changes.
Collapse
Affiliation(s)
- Dong-ha Shin
- Yeungnam University, College of Pharmacy, Gyeongsan-si, Gyeongsangbuk-do 712-749, South Korea
| | - Hyun-Min Park
- Yeungnam University, College of Pharmacy, Gyeongsan-si, Gyeongsangbuk-do 712-749, South Korea
| | - Kyeong-Ah Jung
- Yeungnam University, College of Pharmacy, Gyeongsan-si, Gyeongsangbuk-do 712-749, South Korea
| | - Han-Gon Choi
- Yeungnam University, College of Pharmacy, Gyeongsan-si, Gyeongsangbuk-do 712-749, South Korea
| | - Jung-Ae Kim
- Yeungnam University, College of Pharmacy, Gyeongsan-si, Gyeongsangbuk-do 712-749, South Korea
| | - Dae-Duk Kim
- Seoul National University, College of Pharmacy, Seoul, South Korea
| | - Sang Geon Kim
- Seoul National University, College of Pharmacy, Seoul, South Korea
| | - Keon Wook Kang
- Chosun University, College of Pharmacy, Gwangju, South Korea
| | - Sae Kwang Ku
- Daegu Hanny University, College of Oriental Medicine, Daegu, South Korea
| | - Thomas W. Kensler
- Johns Hopkins University Bloomberg School of Public Health, Department of Environmental Health Sciences, Baltimore, MD, USA
| | - Mi-Kyoung Kwak
- Yeungnam University, College of Pharmacy, Gyeongsan-si, Gyeongsangbuk-do 712-749, South Korea
- Corresponding Author: M-K Kwak, Yeungnam University, College of Pharmacy, 214-1 Dae-dong, Gyeongsan-si, Gyeongsangbuk-do 712-749, South Korea. Tel: +82-53-810-2823, Fax: +82-53-810-4654,
| |
Collapse
|
589
|
Pandit KV, Corcoran D, Yousef H, Yarlagadda M, Tzouvelekis A, Gibson KF, Konishi K, Yousem SA, Singh M, Handley D, Richards T, Selman M, Watkins SC, Pardo A, Ben-Yehudah A, Bouros D, Eickelberg O, Ray P, Benos PV, Kaminski N. Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2010; 182:220-9. [PMID: 20395557 DOI: 10.1164/rccm.200911-1698oc] [Citation(s) in RCA: 411] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RATIONALE Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and usually lethal fibrotic lung disease characterized by profound changes in epithelial cell phenotype and fibroblast proliferation. OBJECTIVES To determine changes in expression and role of microRNAs in IPF. METHODS RNA from 10 control and 10 IPF tissues was hybridized on Agilent microRNA microarrays and results were confirmed by quantitative real-time polymerase chain reaction and in situ hybridization. SMAD3 binding to the let-7d promoter was confirmed by chromatin immunoprecipitation, electrophoretic mobility shift assay, luciferase assays, and reduced expression of let-7d in response to transforming growth factor-beta. HMGA2, a let-7d target, was localized by immunohistochemistry. In mice, let-7d was inhibited by intratracheal administration of a let-7d antagomir and its effects were determined by immunohistochemistry, immunofluorescence, quantitative real-time polymerase chain reaction, and morphometry. MEASUREMENTS AND MAIN RESULTS Eighteen microRNAs including let-7d were significantly decreased in IPF. Transforming growth factor-beta down-regulated let-7d expression, and SMAD3 binding to the let-7d promoter was demonstrated. Inhibition of let-7d caused increases in mesenchymal markers N-cadherin-2, vimentin, and alpha-smooth muscle actin (ACTA2) as well as HMGA2 in multiple epithelial cell lines. let-7d was significantly reduced in IPF lungs and the number of epithelial cells expressing let-7d correlated with pulmonary functions. HMGA2 was increased in alveolar epithelial cells of IPF lungs. let-7d inhibition in vivo caused alveolar septal thickening and increases in collagen, ACTA2, and S100A4 expression in SFTPC (pulmonary-associated surfactant protein C) expressing alveolar epithelial cells. CONCLUSIONS Our results indicate a role for microRNAs in IPF. The down-regulation of let-7d in IPF and the profibrotic effects of this down-regulation in vitro and in vivo suggest a key regulatory role for this microRNA in preventing lung fibrosis. Clinical trial registered with www.clinicaltrials.gov (NCT 00258544).
Collapse
Affiliation(s)
- Kusum V Pandit
- University of Pittsburgh Medical Center, NW 628 MUH, 3459 5th Avenue, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
590
|
Harada T, Nabeshima K, Hamasaki M, Uesugi N, Watanabe K, Iwasaki H. Epithelial-mesenchymal transition in human lungs with usual interstitial pneumonia: quantitative immunohistochemistry. Pathol Int 2010; 60:14-21. [PMID: 20055947 DOI: 10.1111/j.1440-1827.2009.02469.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fibroblastic foci, a major histological feature of usual interstitial pneumonia (UIP), play a critical role in the development of UIP. The mechanisms involved in the formation of these foci, however, including cellular origin, remain unclear. Recent in vitro and animal studies suggested epithelial-mesenchymal transition (EMT) of alveolar epithelial cells during pulmonary fibrogenesis. The aim of the present study was to investigate the presence of EMT in patients with UIP on quantitative immunohistochemistry using pathological tissue sections. The study subjects were 13 patients with UIP pattern among 52 patients with interstitial pneumonia who underwent lung biopsy. Alveolar epithelial cells overlying fibroblastic foci expressed epithelial markers less frequently and mesenchymal markers more frequently compared with those in non-diseased control lung tissues (n= 10). Moreover, double immunostaining showed that some epithelial cells stained for both epithelial and mesenchymal markers. Furthermore, significantly higher numbers of epithelial marker-positive fibroblastic cells were found in fibroblastic foci in UIP as well as in other non-UIP fibrosing diseases than in control lung tissues. The results showed that some epithelial cells overlying fibroblastic foci lose the epithelial phenotype and gain the mesenchymal phenotype, and that some fibroblastic cells in fibroblastic foci originate from epithelial cells. But this EMT may not be specific for UIP.
Collapse
Affiliation(s)
- Taishi Harada
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka 814-0180, Japan
| | | | | | | | | | | |
Collapse
|
591
|
Abstract
PURPOSE OF REVIEW The lung in systemic sclerosis (scleroderma) is susceptible to fibrosis and the ensuing respiratory insufficiency contributes to significant morbidity and mortality in this disease. The lack of effective therapies for pulmonary fibrosis has spurred a re-evaluation of pathobiological paradigms and therapeutic strategies in scleroderma-associated interstitial lung disease and in idiopathic pulmonary fibrosis. The purpose of this review is to examine emerging new therapeutic targets that modulate pro-fibrotic phenotypes of tissue-resident cells and the associated aberrant tissue remodeling responses in fibrotic disorders. RECENT FINDINGS Progressive forms of tissue fibrosis, including scleroderma, are characterized by an accumulation of activated mesenchymal cells and their secreted extracellular matrix proteins in association with dysrepair of epithelial and endothelial cells. Recent studies suggest that emergence of cellular phenotypes that perpetuate loss of cellular homeostasis is characteristic of many fibrosis-related clinical syndromes. SUMMARY Therapeutic strategies that modulate the fate/phenotype of reparative structural cells, including epithelial, endothelial, and mesenchymal cells, offer new opportunities for the development of more effective drugs for the treatment of fibrosis.
Collapse
|
592
|
|
593
|
Borthwick LA, McIlroy EI, Gorowiec MR, Brodlie M, Johnson GE, Ward C, Lordan JL, Corris PA, Kirby JA, Fisher AJ. Inflammation and epithelial to mesenchymal transition in lung transplant recipients: role in dysregulated epithelial wound repair. Am J Transplant 2010; 10:498-509. [PMID: 20055810 DOI: 10.1111/j.1600-6143.2009.02953.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Epithelial to mesenchymal transition (EMT) has been implicated in the pathogenesis of obliterative bronchiolitis (OB) after lung transplant. Although TNF-alpha accentuates TGF-beta1 driven EMT in primary human bronchial epithelial cells (PBECs), we hypothesized that other acute pro-inflammatory cytokines elevated in the airways of patients with OB may also accentuate EMT and contribute to dysregulated epithelial wound repair. PBECs from lung transplant recipients were stimulated with TGF-beta1+/-IL-1beta, IL-8, TNF-alpha or activated macrophages in co-culture and EMT assessed. The quality and rate of wound closure in a standardized model of lung epithelial injury was assessed in response to above stimuli. Co-treatment with TGF-beta1+TNF-alpha or IL-1beta significantly accentuates phenotypic and some functional features of EMT compared to TGF-beta1 alone. Co-treatment with TGF-beta1+TNF-alpha or IL-1beta accelerates epithelial wound closure however the quality of repair is highly dysregulated. Co-treatment with TGF-beta1+IL-8 has no significant effect on EMT or the speed or quality of wound healing. Activated macrophages dramatically accentuate TGF-beta1-driven EMT and cause dysregulated wound repair. Crosstalk between macrophage-derived acute inflammation in the airway and elevated TGF-beta1 may favor dysregulated airway epithelial repair and fibrosis in the lung allograft via EMT.
Collapse
Affiliation(s)
- L A Borthwick
- Applied Immunobiology and Transplantation Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
594
|
Tan X, Dagher H, Hutton CA, Bourke JE. Effects of PPAR gamma ligands on TGF-beta1-induced epithelial-mesenchymal transition in alveolar epithelial cells. Respir Res 2010; 11:21. [PMID: 20178607 PMCID: PMC2844370 DOI: 10.1186/1465-9921-11-21] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 02/23/2010] [Indexed: 02/07/2023] Open
Abstract
Background Transforming growth factor β1 (TGF-β1)-mediated epithelial mesenchymal transition (EMT) of alveolar epithelial cells (AEC) may contribute to lung fibrosis. Since PPARγ ligands have been shown to inhibit fibroblast activation by TGF-β1, we assessed the ability of the thiazolidinediones rosiglitazone (RGZ) and ciglitazone (CGZ) to regulate TGF-β1-mediated EMT of A549 cells, assessing changes in cell morphology, and expression of cell adhesion molecules E-cadherin (epithelial cell marker) and N-cadherin (mesenchymal cell marker), and collagen 1α1 (COL1A1), CTGF and MMP-2 mRNA. Methods Serum-deprived A549 cells (human AEC cell line) were pre-incubated with RGZ and CGZ (1 - 30 μM) in the absence or presence of the PPARγ antagonist GW9662 (10 μM) before TGFβ-1 (0.075-7.5 ng/ml) treatment for up to 72 hrs. Changes in E-cadherin, N-cadherin and phosphorylated Smad2 and Smad3 levels were analysed by Western blot, and changes in mRNA levels including COL1A1 assessed by RT-PCR. Results TGFβ-1 (2.5 ng/ml)-induced reductions in E-cadherin expression were associated with a loss of epithelial morphology and cell-cell contact. Concomitant increases in N-cadherin, MMP-2, CTGF and COL1A1 were evident in predominantly elongated fibroblast-like cells. Neither RGZ nor CGZ prevented TGFβ1-induced changes in cell morphology, and PPARγ-dependent inhibitory effects of both ligands on changes in E-cadherin were only evident at submaximal TGF-β1 (0.25 ng/ml). However, both RGZ and CGZ inhibited the marked elevation of N-cadherin and COL1A1 induced by TGF-β1 (2.5 ng/ml), with effects on COL1A1 prevented by GW9662. Phosphorylation of Smad2 and Smad3 by TGF-β1 was not inhibited by RGZ or CGZ. Conclusions RGZ and CGZ inhibited profibrotic changes in TGF-β1-stimulated A549 cells independently of inhibition of Smad phosphorylation. Their inhibitory effects on changes in collagen I and E-cadherin, but not N-cadherin or CTGF, appeared to be PPARγ-dependent. Further studies are required to unravel additional mechanisms of inhibition of TGF-β1 signalling by thiazolidinediones and their implications for the contribution of EMT to lung fibrosis.
Collapse
Affiliation(s)
- Xiahui Tan
- Department of Pharmacology, University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
595
|
KAARTEENAHO RIITTA, SORMUNEN RAIJA, PÄÄKKÖ PAAVO. Variable expression of tenascin-C, osteopontin and fibronectin in inflammatory myofibroblastic tumour of the lung. APMIS 2010; 118:91-100. [DOI: 10.1111/j.1600-0463.2009.02566.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
596
|
Zani BG, Indolfi L, Edelman ER. Tubular bridges for bronchial epithelial cell migration and communication. PLoS One 2010; 5:e8930. [PMID: 20126618 PMCID: PMC2812493 DOI: 10.1371/journal.pone.0008930] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 01/11/2010] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Biological processes from embryogenesis to tumorigenesis rely on the coordinated coalescence of cells and synchronized cell-to-cell communication. Intercellular signaling enables cell masses to communicate through endocrine pathways at a distance or by direct contact over shorter dimensions. Cellular bridges, the longest direct connections between cells, facilitate transfer of cellular signals and components over hundreds of microns in vitro and in vivo. METHODOLOGY/PRINCIPAL FINDINGS Using various cellular imaging techniques on human tissue cultures, we identified two types of tubular, bronchial epithelial (EP) connections, up to a millimeter in length, designated EP bridges. Structurally distinct from other cellular connections, the first type of EP bridge may mediate transport of cellular material between cells, while the second type of EP bridge is functionally distinct from all other cellular connections by mediating migration of epithelial cells between EP masses. Morphological and biochemical interactions with other cell types differentially regulated the nuclear factor-kappaB and cyclooxygenase inflammatory pathways, resulting in increased levels of inflammatory molecules that impeded EP bridge formation. Pharmacologic inhibition of these inflammatory pathways caused increased morphological and mobility changes stimulating the biogenesis of EP bridges, in part through the upregulation of reactive oxygen species pathways. CONCLUSIONS/SIGNIFICANCE EP bridge formation appears to be a normal response of EP physiology in vitro, which is differentially inhibited by inflammatory cellular pathways depending upon the morphological and biochemical interactions between EP cells and other cell types. These tubular EP conduits may represent an ultra long-range form of direct intercellular communication and a completely new mechanism of tissue-mediated cell migration.
Collapse
Affiliation(s)
- Brett G Zani
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
| | | | | |
Collapse
|
597
|
Abstract
The understanding of the pathogenesis of pulmonary fibrosis continues to evolve. The initial hypothetical model suggested chronic inflammation as the cause of pulmonary fibrosis, whereas a subsequent hypothesis posited epithelial injury and impaired wound repair as the etiology of fibrosis without preceding inflammation. Over the past decade, several concepts have led to refinement of these hypotheses. These include the following: (1) the importance of the integrity of the alveolar-capillary barrier basement membrane (BM) to conserving the architecture of the injured lung; (2) conversely, that the failure of reepithelialization and reendothelialization of this BM results in pathologic fibrosis; (3) transforming growth factor-beta is necessary but not sufficient to the pathologic fibrosis of the lungs; (4) the role of persistent antigens in the pathogenesis of usual interstitial pneumonia; and (5) the contribution of epithelial-to-mesenchymal transformation and bone marrow-derived progenitor cells in the pathogenesis of lung fibrosis. In this review, we will discuss these evolving conceptual mechanisms for the pathogenesis of pulmonary fibrosis relevant to idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Robert M Strieter
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Virginia School of Medicine, Charlottesville, VA.
| | - Borna Mehrad
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
598
|
Câmara J, Jarai G. Epithelial-mesenchymal transition in primary human bronchial epithelial cells is Smad-dependent and enhanced by fibronectin and TNF-alpha. FIBROGENESIS & TISSUE REPAIR 2010; 3:2. [PMID: 20051102 PMCID: PMC2821296 DOI: 10.1186/1755-1536-3-2] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 01/05/2010] [Indexed: 12/21/2022]
Abstract
Background Defective epithelial repair, excess fibroblasts and myofibroblasts, collagen overproduction and fibrosis occur in a number of respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis. Pathological conversion of epithelial cells into fibroblasts (epithelial-mesenchymal transition, EMT) has been proposed as a mechanism for the increased fibroblast numbers and has been demonstrated to occur in lung alveolar epithelial cells. Whether other airway cell types also have the capability to undergo EMT has been less explored so far. A better understanding of the full extent of EMT in airways, and the underlying mechanisms, can provide important insights into airway disease pathology and enable the development of new therapies. The main aim of this study was to test whether primary human bronchial epithelial cells are able to undergo EMT in vitro and to investigate the effect of various profibrotic factors in the process. Results Our data demonstrate that primary human bronchial epithelial cells (HBECs) are able to undergo EMT in response to transforming growth factor-beta 1 (TGF-β1), as revealed by typical morphological alterations and EMT marker progression at the RNA level by real-time quantitative polymerase chain reaction and, at the protein level, by western blot. By using pharmacological inhibitors we show that this is a Smad-dependent mechanism and is independent of extracellular signal-related kinase pathway activation. Additional cytokines and growth factors such as tumour necrosis factor-alpha (TNF-α), interleukin-1 beta (IL1β) and connective tissue growth factor (CTGF) were also tested, alone or in combination with TGF-β1. TNF-α markedly enhances the effect of TGF-β1 on EMT, whereas IL1β shows only a very weak effect and CTGF has no significant effect. We have also found that cell-matrix contact, in particular to fibronectin, an ECM component upregulated in fibrotic lesions, potentiates EMT in both human alveolar epithelial cells and HBECs. Furthermore, we also show that the collagen discoidin domain receptor 1 (DDR1), generally expressed in epithelial cells, is downregulated during the EMT of bronchial epithelium whereas DDR2 is unaffected. Our results also suggest that bone morphogenetic protein-4 is likely to have a context dependent effect during the EMT of HBECs, being able to induce the expression of EMT markers and, at the same time, to inhibit TGF-β induced epithelial transdifferentiation. Conclusions The results presented in this study provide additional insights into EMT, a potentially very important mechanism in fibrogenesis. We show that, in addition to alveolar epithelial type II cells, primary HBECs are also able to undergo EMT in vitro upon TGF-β1 stimulation via a primarily Smad 2/3 dependent mechanism. The effect of TGF-β1 is potentiated on fibronectin matrix and in the presence of TNF-α, representing a millieu reminiscent of fibrotic lesions. Our results can contribute to a better understanding of lung fibrosis and to the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Joana Câmara
- Novartis Institutes for BioMedical Research, Respiratory Disease Area, Wimblehurst Road, Horsham, RH12 5AB West Sussex, UK.
| | | |
Collapse
|
599
|
Raub CB, Mahon S, Narula N, Tromberg BJ, Brenner M, George SC. Linking optics and mechanics in an in vivo model of airway fibrosis and epithelial injury. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:015004. [PMID: 20210444 PMCID: PMC2844131 DOI: 10.1117/1.3322296] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 11/20/2009] [Accepted: 12/18/2009] [Indexed: 05/28/2023]
Abstract
Chronic mucosal and submucosal injury can lead to persistent inflammation and tissue remodeling. We hypothesized that microstructural and mechanical properties of the airway wall could be derived from multiphoton images. New Zealand White rabbits were intubated, and the tracheal epithelium gently denuded every other day for five days (three injuries). Three days following the last injury, the tracheas were excised for multiphoton imaging, mechanical compression testing, and histological analysis. Multiphoton imaging and histology confirm epithelial denudation, mucosal ulceration, subepithelial thickening, collagen deposition, immune cell infiltration, and a disrupted elastin network. Elastase removes the elastin network and relaxes the collagen network. Purified collagenase removes epithelium with subtle subepithelial changes. Young's modulus [(E) measured in kiloPascal] was significantly elevated for the scrape injured (9.0+/-3.2) trachea, and both collagenase (2.6+/-0.4) and elastase (0.8+/-0.3) treatment significantly reduced E relative to control (4.1+/-0.7). E correlates strongly with second harmonic generation (SHG) signal depth decay for enzyme-treated and control tracheas (R(2)=0.77), but not with scrape-injured tracheas. We conclude that E of subepithelial connective tissue increases on repeated epithelial wounding, due in part to changes in elastin and collagen microstructure and concentration. SHG depth decay is sensitive to changes in extracellular matrix content and correlates with bulk Young's modulus.
Collapse
Affiliation(s)
- Christopher B Raub
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California 92697-2730, USA
| | | | | | | | | | | |
Collapse
|
600
|
Liu RM, Gaston Pravia KA. Oxidative stress and glutathione in TGF-beta-mediated fibrogenesis. Free Radic Biol Med 2010; 48:1-15. [PMID: 19800967 PMCID: PMC2818240 DOI: 10.1016/j.freeradbiomed.2009.09.026] [Citation(s) in RCA: 349] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/24/2009] [Accepted: 09/26/2009] [Indexed: 12/16/2022]
Abstract
Transforming growth factor beta (TGF-beta) is the most potent and ubiquitous profibrogenic cytokine, and its expression is increased in almost all the fibrotic diseases and in experimental fibrosis models. TGF-beta increases reactive oxygen species production and decreases the concentration of glutathione (GSH), the most abundant intracellular free thiol and an important antioxidant, which mediates many of the fibrogenic effects of TGF-beta in various types of cells. A decreased GSH concentration is also observed in human fibrotic diseases and in experimental fibrosis models. Although the biological significance of GSH depletion in the development of fibrosis remains obscure, GSH and N-acetylcysteine, a precursor of GSH, have been used in clinics for the treatment of fibrotic diseases. This review summarizes recent findings in the field to address the potential mechanism whereby oxidative stress mediates fibrogenesis induced by TGF-beta and the potential therapeutic value of antioxidant treatment in fibrotic diseases.
Collapse
Affiliation(s)
- R-M Liu
- Department of Environmental Health Sciences, School of Public Health, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | |
Collapse
|