551
|
Visser R, Shimokawa O, Harada N, Kinoshita A, Ohta T, Niikawa N, Matsumoto N. Identification of a 3.0-kb major recombination hotspot in patients with Sotos syndrome who carry a common 1.9-Mb microdeletion. Am J Hum Genet 2005; 76:52-67. [PMID: 15580547 PMCID: PMC1196433 DOI: 10.1086/426950] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 10/20/2004] [Indexed: 11/03/2022] Open
Abstract
Sotos syndrome (SoS) is a congenital dysmorphic disorder characterized by overgrowth in childhood, distinctive craniofacial features, and mental retardation. Haploinsufficiency of the NSD1 gene owing to either intragenic mutations or microdeletions is known to be the major cause of SoS. The common approximately 2.2-Mb microdeletion encompasses the whole NSD1 gene and neighboring genes and is flanked by low-copy repeats (LCRs). Here, we report the identification of a 3.0-kb major recombination hotspot within these LCRs, in which we mapped deletion breakpoints in 78.7% (37/47) of patients with SoS who carry the common microdeletion. The deletion size was subsequently refined to 1.9 Mb. Sequencing of breakpoint fragments from all 37 patients revealed junctions between a segment of the proximal LCR (PLCR-B) and the corresponding region of the distal LCR (DLCR-2B). PLCR-B and DLCR-2B are the only directly oriented regions, whereas the remaining regions of the PLCR and DLCR are in inverted orientation. The PLCR, with a size of 394.0 kb, and the DLCR, with a size of of 429.8 kb, showed high overall homology (approximately 98.5%), with an increased sequence similarity (approximately 99.4%) within the 3.0-kb breakpoint cluster. Several recombination-associated motifs were identified in the hotspot and/or its vicinity. Interestingly, a 10-fold average increase of a translin motif, as compared with the normal distribution within the LCRs, was recognized. Furthermore, a heterozygous inversion of the interval between the LCRs was detected in all fathers of the children carrying a deletion in the paternally derived chromosome. The functional significance of these findings remains to be elucidated. Segmental duplications of the primate genome play a major role in chromosomal evolution. Evolutionary study showed that the duplication of the SoS LCRs occurred 23.3-47.6 million years ago, before the divergence of Old World monkeys.
Collapse
Affiliation(s)
- Remco Visser
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, International Consortium for Medical Care of Hibakusha and Radiation Life Science, The 21st Century Center of Excellence, Kyushu Medical Science Nagasaki Laboratory, and Division of Functional Genomics, Center for Frontier Life Sciences, Nagasaki University, Nagasaki, Japan; Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan; and The Research Institute of Personalized Health Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Japan
| | - Osamu Shimokawa
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, International Consortium for Medical Care of Hibakusha and Radiation Life Science, The 21st Century Center of Excellence, Kyushu Medical Science Nagasaki Laboratory, and Division of Functional Genomics, Center for Frontier Life Sciences, Nagasaki University, Nagasaki, Japan; Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan; and The Research Institute of Personalized Health Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Japan
| | - Naoki Harada
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, International Consortium for Medical Care of Hibakusha and Radiation Life Science, The 21st Century Center of Excellence, Kyushu Medical Science Nagasaki Laboratory, and Division of Functional Genomics, Center for Frontier Life Sciences, Nagasaki University, Nagasaki, Japan; Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan; and The Research Institute of Personalized Health Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Japan
| | - Akira Kinoshita
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, International Consortium for Medical Care of Hibakusha and Radiation Life Science, The 21st Century Center of Excellence, Kyushu Medical Science Nagasaki Laboratory, and Division of Functional Genomics, Center for Frontier Life Sciences, Nagasaki University, Nagasaki, Japan; Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan; and The Research Institute of Personalized Health Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Japan
| | - Tohru Ohta
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, International Consortium for Medical Care of Hibakusha and Radiation Life Science, The 21st Century Center of Excellence, Kyushu Medical Science Nagasaki Laboratory, and Division of Functional Genomics, Center for Frontier Life Sciences, Nagasaki University, Nagasaki, Japan; Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan; and The Research Institute of Personalized Health Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Japan
| | - Norio Niikawa
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, International Consortium for Medical Care of Hibakusha and Radiation Life Science, The 21st Century Center of Excellence, Kyushu Medical Science Nagasaki Laboratory, and Division of Functional Genomics, Center for Frontier Life Sciences, Nagasaki University, Nagasaki, Japan; Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan; and The Research Institute of Personalized Health Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, International Consortium for Medical Care of Hibakusha and Radiation Life Science, The 21st Century Center of Excellence, Kyushu Medical Science Nagasaki Laboratory, and Division of Functional Genomics, Center for Frontier Life Sciences, Nagasaki University, Nagasaki, Japan; Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan; and The Research Institute of Personalized Health Sciences, Health Sciences University of Hokkaido, Ishikari-tobetsu, Japan
| |
Collapse
|
552
|
Grati FR, Lalatta F, Turolla L, Cavallari U, Gentilin B, Rossella F, Cetin I, Antonazzo P, Bellotti M, Dulcetti F, Baldo D, Tenconi R, Simoni G, Miozzo M. Three cases with de novo 6q imbalance and variable prenatal phenotype. Am J Med Genet A 2005; 136:254-8. [PMID: 15957159 DOI: 10.1002/ajmg.a.30837] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We describe two families in which three fetuses had a de novo 6q imbalance and abnormal phenotypes. We determined the boundaries and the parental origin of the chromosomal alterations by segregation analysis using a panel of short tandem repeats (STRs) located on 6q. Cases 1 and 2 (family A) were two sibs with 6q imbalance involving different regions. Case 1 was a female fetus with arthrogryposis, who had a complex rearrangement resulting in two deleted regions (6q22 and 6q25.1-q25.2) and a duplication of 6q23-q25.1. This latter imbalance was reported previously and is associated with joint contractures and short neck, also present in this fetus. The sib (case 2) had intrauterine growth restriction (IUGR) and agenesis of the ductus venosus. This male died shortly after birth; postnatal karyotype and molecular investigations showed a 6q21 de novo deletion. Case 3 (family B) had a prenatally detected deletion of 6q14-q16. Autopsy of the fetus documented minor facial anomalies and contractures of the limbs. All rearrangements were de novo and of paternal origin. Our data and the consistent number of cases of de novo 6q alterations previously reported suggest that chromosome arm 6q could be prone to rearrangements resulting in heterogeneous phenotypes. In family A, chromosome 6q imbalances involving different chromosomal regions were present in two consecutive pregnancies. In such cases counseling should suggest the impossibility of excluding recurrence of a chromosomal imbalance, and should discuss the option of early prenatal diagnosis in subsequent pregnancies.
Collapse
Affiliation(s)
- Francesca R Grati
- Dipartimento di Medicina, Chirurgia ed Odontoiatria, Genetica Medica, Università degli Studi di Milano, Milano, Italia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
553
|
Ammerlaan ACJ, de Bustos C, Ararou A, Buckley PG, Mantripragada KK, Verstegen MJ, Hulsebos TJM, Dumanski JP. Localization of a putative low-penetrance ependymoma susceptibility locus to 22q11 using a chromosome 22 tiling-path genomic microarray. Genes Chromosomes Cancer 2005; 43:329-38. [PMID: 15880457 DOI: 10.1002/gcc.20207] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ependymomas frequently display allelic loss of chromosome 22 in the absence of mutations in the known tumor-suppressor genes on chromosome 22, suggesting the role of an alternative predisposing gene or genes from this chromosome. In an effort to localize these genes, 37 ependymomas derived from 33 patients were analyzed for the presence of copy number changes by use of a high-resolution chromosome 22 genomic microarray. Eighteen ependymomas (49%) displayed an array-CGH profile consistent with monosomy of chromosome 22. However, in 10 of these tumors, the fluorescence ratios for 22q clones scored as deleted were different from those at the single gene copy level. This suggests either analysis of mixed populations of tumor and normal stromal cells or analysis of mixed tumor cell populations with different genetic profiles. Four ependymomas derived from two patients showed overlapping interstitial deletions of 2.2 Mb and approximately 510 kb. Further analyses revealed that these deletions were present in the constitutional DNA of these two patients as well as in some of their unaffected relatives. Detailed microsatellite analysis of these families refined the commonly deleted segment to a region of 320 kb between markers RH13801 and D22S419. Our results provide additional evidence for the involvement of genes on chromosome 22 in the development of ependymoma and suggest the presence of a low-penetrance ependymoma susceptibility locus at 22q11.
Collapse
Affiliation(s)
- Anneke C J Ammerlaan
- Department of Neurogenetics, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
554
|
Tonk VS, Wilson GN, Yatsenko SA, Stankiewicz P, Lupski JR, Schutt RC, Northup JK, Velagaleti GVN. Molecular cytogenetic characterization of a familial der(1)del(1)(p36.33)dup(1)(p36.33p36.22) with variable phenotype. Am J Med Genet A 2005; 139A:136-40. [PMID: 16278888 DOI: 10.1002/ajmg.a.30958] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chromosome deletions involving 1p36 are the most common known terminal rearrangements occurring at a frequency of approximately 1 in 5,000 live births. In contrast, duplications of the same region have been reported rarely. We describe a familial rearrangement der(1)del(1)(p36.33)dup(1)(p36.33p36.22) identified in a mother, daughter, and son. These individuals help define a syndrome with variable mental disability, attention deficit-hyperactivity disorder, and a distinctive facial appearance with wide palpebral fissures, broad nasal root, macrostomia, ear malformations, and prominent incisors. Based on our results we suggest that the complex rearrangement seen in our family could be the result of the breakage-fusion-bridge (BFB) cycles model of formation.
Collapse
Affiliation(s)
- Vijay S Tonk
- Department of Pediatrics, Texas Tech University, Lubbock, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
555
|
Yatsenko SA, Treadwell-Deering D, Krull K, Lewis RA, Glaze D, Stankiewicz P, Lupski JR, Potocki L. Trisomy 17p10-p12 due to mosaic supernumerary marker chromosome: Delineation of molecular breakpoints and clinical phenotype, and comparison to other proximal 17p segmental duplications. Am J Med Genet A 2005; 138A:175-80. [PMID: 16152635 DOI: 10.1002/ajmg.a.30948] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The unstable, gene-rich chromosome region 17p11.2-p12 is associated with various structural aberrations including supernumerary marker chromosomes (SMCs). In some cases, SMC(17)s utilize the same substrates for recombination as the common recurrent 17p11.2 and 17p12 rearrangements. We report on a 9-year-old girl with a de novo mosaic SMC(17). The der(17) encompasses genetic material from 17p10-p11.2 and is present in 97% of peripheral blood lymphocytes and in 79% of buccal cells. The patient has few features similar to individuals with duplication 17p11.2 including mental retardation, language impairment, and sleep disturbances but has normal growth, and no structural abnormalities of the heart, kidneys, or brain. She has no substantial behavioral abnormalities or dysmorphic features. Molecular analyses determined that the der(17) contains RAI1 but not PMP22. We found one chromosome breakpoint within the centromere and the second breakpoint within the distal Smith-Magenis syndrome low-copy repeat (distal SMS-REP). Recently we characterized the breakpoints of three other marker chromosomes originating from the proximal short arm of chromosome 17. In all four cases, one breakpoint maps within the centromere and in three cases the second breakpoint maps within a low-copy repeat. We thus propose that genome architecture may play a significant role in the formation of marker chromosomes. We present the cytogenetic, molecular, and clinical data of this patient and compare our results with those of patients with dup(17)(p11.2p11.2) syndrome and other patients with SMC(17).
Collapse
Affiliation(s)
- Svetlana A Yatsenko
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
556
|
Inoue K. PLP1-related inherited dysmyelinating disorders: Pelizaeus-Merzbacher disease and spastic paraplegia type 2. Neurogenetics 2004; 6:1-16. [PMID: 15627202 DOI: 10.1007/s10048-004-0207-y] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Accepted: 11/17/2004] [Indexed: 10/26/2022]
Abstract
Pelizaeus-Merzbacher disease (PMD) and its allelic disorder, spastic paraplegia type 2 (SPG2), are among the best-characterized dysmyelinating leukodystrophies of the central nervous system (CNS). Both PMD and SPG2 are caused by mutations in the proteolipid protein 1 (PLP1) gene, which encodes a major component of CNS myelin proteins. Distinct types of mutations, including point mutations and genomic duplications and deletions, have been identified as causes of PMD/SPG2 that act through different molecular mechanisms. Studies of various PLP1 mutants in humans and animal models have shed light on the genomic, molecular, and cellular pathogeneses of PMD/SPG2. Recent discoveries include complex mutational mechanisms and associated disease phenotypes, novel cellular pathways that lead to the degeneration of oligodendrocytes, and genomic architectural features that result in unique chromosomal rearrangements. Here, I review the previous and current knowledge of the molecular pathogenesis of PMD/SPG2 and delineate future directions for PMD/SPG2 studies.
Collapse
Affiliation(s)
- Ken Inoue
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan.
| |
Collapse
|
557
|
Abstract
Early studies of human Alu retrotransposons focused on their origin, evolution and biological properties, but current focus is shifting toward the effect of Alu elements on evolution of the human genome. Recent analyses indicate that numerous factors have affected the chromosomal distribution of Alu elements over time, including male-driven insertions, deletions and rapid CpG mutations after their retrotransposition. Unequal crossing over between Alu elements can lead to local mutations or to large segmental duplications responsible for genetic diseases and long-term evolutionary changes. Alu elements can also affect human (primate) evolution by introducing alternative splice sites in existing genes. Studying the Alu family in a human genomic context is likely to have general significance for our understanding of the evolutionary impact of other repetitive elements in diverse eukaryotic genomes.
Collapse
Affiliation(s)
- Jerzy Jurka
- Genetic Information Research Institute, 1925 Landings Drive, Mountain View, CA 94043, USA.
| |
Collapse
|
558
|
Finishing the euchromatic sequence of the human genome. Nature 2004; 431:931-45. [PMID: 15496913 DOI: 10.1038/nature03001] [Citation(s) in RCA: 2861] [Impact Index Per Article: 136.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Accepted: 09/07/2004] [Indexed: 12/13/2022]
Abstract
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers approximately 99% of the euchromatic genome and is accurate to an error rate of approximately 1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human genome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead.
Collapse
|
559
|
Abstract
With the completion of the human genome sequence and the advent of technologies to study functional aspects of genomes, molecular comparisons between humans and other primates have gained momentum. The comparison of the human genome to the genomes of species closely related to humans allows the identification of genomic features that set primates apart from other mammals and of features that set certain primates notably humans apart from other primates. In this article, we review recent progress in these areas with an emphasis on how comparative approaches may be used to identify functionally relevant features unique to the human genome.
Collapse
Affiliation(s)
- Wolfgang Enard
- Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
| | | |
Collapse
|
560
|
Abstract
As recently as 20 years ago, there was relatively little information about the number and distribution of recombinational events in human meiosis, and we knew virtually nothing about factors affecting patterns of recombination. However, the generation of a variety of linkage-based genetic mapping tools and, more recently, cytological approaches that enable us to directly visualize the recombinational process in meiocytes, have led to an increased understanding of human meiosis. In this review, we discuss the different approaches used to study meiotic recombination in humans, our understanding of factors that affect the number and location of recombinational events, and clinical consequences of variation in the recombinational process.
Collapse
Affiliation(s)
- Audrey Lynn
- Department of Genetics and Center for Human Genetics, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio 44106, USA.
| | | | | |
Collapse
|
561
|
Leslie M. The goldilocks genes. Our chromosomes can get sloppy and delete or pick up genes. Researchers are starting to probe how these DNA miscues affect health and longevity. SCIENCE OF AGING KNOWLEDGE ENVIRONMENT : SAGE KE 2004; 2004:ns8. [PMID: 15509874 DOI: 10.1126/sageke.2004.43.ns8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
562
|
Shaw CJ, Lupski JR. Non-recurrent 17p11.2 deletions are generated by homologous and non-homologous mechanisms. Hum Genet 2004; 116:1-7. [PMID: 15526218 DOI: 10.1007/s00439-004-1204-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Accepted: 09/21/2004] [Indexed: 10/26/2022]
Abstract
Several recurrent common chromosomal deletion and duplication breakpoints have been localized to large, highly homologous, low-copy repeats (LCRs). The mechanism responsible for these rearrangements, viz., non-allelic homologous recombination between LCR copies, has been well established. However, fewer studies have examined the mechanisms responsible for non-recurrent rearrangements with non-homologous breakpoint regions. Here, we have analyzed four uncommon deletions of 17p11.2, involving the Smith-Magenis syndrome region. Using somatic cell hybrid lines created from patient lymphoblasts, we have utilized a strategy based on the polymerase chain reaction to refine the deletion breakpoints and to obtain sequence data at the deletion junction. Our analyses have revealed that two of the four deletions are a product of Alu/Alu recombination, whereas the remaining two deletions result from a non-homologous end-joining mechanism. Of the breakpoints studied, three of eight are located in LCRs, and five of eight are within repetitive elements, including Alu and MER5B sequences. These findings suggest that higher-order genomic architecture, such as LCRs, and smaller repetitive sequences, such as Alu elements, can mediate chromosomal deletions via homologous and non-homologous mechanisms. These data further implicate homologous recombination as the predominant mechanism of deletion formation in this genomic interval.
Collapse
Affiliation(s)
- Christine J Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX 77030, USA
| | | |
Collapse
|
563
|
Gajecka M, Yu W, Ballif BC, Glotzbach CD, Bailey KA, Shaw CA, Kashork CD, Heilstedt HA, Ansel DA, Theisen A, Rice R, Rice DPC, Shaffer LG. Delineation of mechanisms and regions of dosage imbalance in complex rearrangements of 1p36 leads to a putative gene for regulation of cranial suture closure. Eur J Hum Genet 2004; 13:139-49. [PMID: 15483646 DOI: 10.1038/sj.ejhg.5201302] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Structural chromosome abnormalities have aided in gene identification for over three decades. Delineation of the deletion sizes and rearrangements allows for phenotype/genotype correlations and ultimately assists in gene identification. In this report, we have delineated the precise rearrangements in four subjects with deletions, duplications, and/or triplications of 1p36 and compared the regions of imbalance to two cases recently published. Fluorescence in situ hybridization (FISH) analysis revealed the size, order, and orientation of the duplicated/triplicated segments in each subject. We propose a premeiotic model for the formation of these complex rearrangements in the four newly ascertained subjects, whereby a deleted chromosome 1 undergoes a combination of multiple breakage-fusion-bridge (BFB) cycles and inversions to produce a chromosome arm with a complex rearrangement of deleted, duplicated and triplicated segments. In addition, comparing the six subjects' rearrangements revealed a region of overlap that when triplicated is associated with craniosynostosis and when deleted is associated with large, late-closing anterior fontanels. Within this region are the MMP23A and -B genes. We show MMP23 gene expression at the cranial sutures and we propose that haploinsufficiency results in large, late-closing anterior fontanels and overexpression results in craniosynostosis. These data emphasize the important role of cytogenetics in investigating and uncovering the etiologies of human genetic disease, particularly cytogenetic imbalances that reveal potentially dosage-sensitive genes.
Collapse
Affiliation(s)
- Marzena Gajecka
- Health Research and Education Center, Washington State University, Spokane, WA 99210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
564
|
Dehainault C, Laugé A, Caux-Moncoutier V, Pagès-Berhouet S, Doz F, Desjardins L, Couturier J, Gauthier-Villars M, Stoppa-Lyonnet D, Houdayer C. Multiplex PCR/liquid chromatography assay for detection of gene rearrangements: application to RB1 gene. Nucleic Acids Res 2004; 32:e139. [PMID: 15477586 PMCID: PMC524313 DOI: 10.1093/nar/gnh137] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Screening for large gene rearrangements is established as an important part of molecular medicine but is also challenging. A variety of robust methods can detect whole-gene deletions, but will fail to detect more subtle rearrangements that may involve a single exon. In this paper, we describe a new, versatile and robust method to assess exon copy number, called multiplex PCR/liquid chromatography assay (MP/LC). Multiple exons are amplified using unlabeled primers, then separated by ion-pair reversed-phase high-performance liquid chromatography (IP-RP-HPLC), and quantitated by fluorescent detection using a post-column intercalation dye. The relative peak intensities for each target directly reflect exon copy number. This novel technique was used to screen a panel of 121 unrelated retinoblastoma patients who were tested previously using a reference strategy. MP/LC correctly scored all deletions and demonstrated a previously undetected RB1 duplication, the first to be described. MP/LC appears to be an easy, versatile, and cost-effective method, which is particularly relevant to denaturing HPLC (DHPLC) users since it broadens the spectrum of available applications on a DHPLC system.
Collapse
Affiliation(s)
- C Dehainault
- Service de Génétique Oncologique, Pathologie Moléculaire des Cancers, Institut Curie, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
565
|
Stankiewicz P, Inoue K, Bi W, Walz K, Park SS, Kurotaki N, Shaw CJ, Fonseca P, Yan J, Lee JA, Khajavi M, Lupski JR. Genomic disorders: genome architecture results in susceptibility to DNA rearrangements causing common human traits. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 68:445-54. [PMID: 15338647 DOI: 10.1101/sqb.2003.68.445] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- P Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
566
|
Bailey JA, Eichler EE. Genome-wide detection and analysis of recent segmental duplications within mammalian organisms. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 68:115-24. [PMID: 15338609 DOI: 10.1101/sqb.2003.68.115] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- J A Bailey
- Department of Genetics, Center for Computational Genomics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
567
|
She X, Jiang Z, Clark RA, Liu G, Cheng Z, Tuzun E, Church DM, Sutton G, Halpern AL, Eichler EE. Shotgun sequence assembly and recent segmental duplications within the human genome. Nature 2004; 431:927-30. [PMID: 15496912 DOI: 10.1038/nature03062] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2004] [Accepted: 09/27/2004] [Indexed: 11/09/2022]
Abstract
Complex eukaryotic genomes are now being sequenced at an accelerated pace primarily using whole-genome shotgun (WGS) sequence assembly approaches. WGS assembly was initially criticized because of its perceived inability to resolve repeat structures within genomes. Here, we quantify the effect of WGS sequence assembly on large, highly similar repeats by comparison of the segmental duplication content of two different human genome assemblies. Our analysis shows that large (> 15 kilobases) and highly identical (> 97%) duplications are not adequately resolved by WGS assembly. This leads to significant reduction in genome length and the loss of genes embedded within duplications. Comparable analyses of mouse genome assemblies confirm that strict WGS sequence assembly will oversimplify our understanding of mammalian genome structure and evolution; a hybrid strategy using a targeted clone-by-clone approach to resolve duplications is proposed.
Collapse
Affiliation(s)
- Xinwei She
- Department of Genome Sciences, University of Washington School of Medicine, 1705 NE Pacific Street, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
568
|
Lupski JR. Hotspots of homologous recombination in the human genome: not all homologous sequences are equal. Genome Biol 2004; 5:242. [PMID: 15461806 PMCID: PMC545587 DOI: 10.1186/gb-2004-5-10-242] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies of homologous recombination hotspots show that they do not share common sequence motifs, but they do have other features in common. Homologous recombination between alleles or non-allelic paralogous sequences does not occur uniformly but is concentrated in 'hotspots' with high recombination rates. Recent studies of these hotspots show that they do not share common sequence motifs, but they do have other features in common.
Collapse
Affiliation(s)
- James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
569
|
Kehrer-Sawatzki H, Kluwe L, Sandig C, Kohn M, Wimmer K, Krammer U, Peyrl A, Jenne DE, Hansmann I, Mautner VF. High frequency of mosaicism among patients with neurofibromatosis type 1 (NF1) with microdeletions caused by somatic recombination of the JJAZ1 gene. Am J Hum Genet 2004; 75:410-23. [PMID: 15257518 PMCID: PMC1182020 DOI: 10.1086/423624] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Accepted: 06/21/2004] [Indexed: 11/03/2022] Open
Abstract
Detailed analyses of 20 patients with sporadic neurofibromatosis type 1 (NF1) microdeletions revealed an unexpected high frequency of somatic mosaicism (8/20 [40%]). This proportion of mosaic deletions is much higher than previously anticipated. Of these deletions, 16 were identified by a screen of unselected patients with NF1. None of the eight patients with mosaic deletions exhibited the mental retardation and facial dysmorphism usually associated with NF1 microdeletions. Our study demonstrates the importance of a general screening for NF1 deletions, regardless of a special phenotype, because of a high estimated number of otherwise undetected mosaic NF1 microdeletions. In patients with mosaicism, the proportion of cells with the deletion was 91%-100% in peripheral leukocytes but was much lower (51%-80%) in buccal smears or peripheral skin fibroblasts. Therefore, the analysis of other tissues than blood is recommended, to exclude mosaicism with normal cells in patients with NF1 microdeletions. Furthermore, our study reveals breakpoint heterogeneity. The classic 1.4-Mb deletion was found in 13 patients. These type I deletions encompass 14 genes and have breakpoints in the NF1 low-copy repeats. However, we identified a second major type of NF1 microdeletion, which spans 1.2 Mb and affects 13 genes. This type II deletion was found in 8 (38%) of 21 patients and is mediated by recombination between the JJAZ1 gene and its pseudogene. The JJAZ1 gene, which is completely deleted in patients with type I NF1 microdeletions and is disrupted in deletions of type II, is highly expressed in brain structures associated with learning and memory. Thus, its haploinsufficiency might contribute to mental impairment in patients with constitutional NF1 microdeletions. Conspicuously, seven of the eight mosaic deletions are of type II, whereas only one was a classic type I deletion. Therefore, the JJAZ1 gene is a preferred target of strand exchange during mitotic nonallelic homologous recombination. Although type I NF1 microdeletions occur by interchromosomal recombination during meiosis, our findings imply that type II deletions are mediated by intrachromosomal recombination during mitosis. Thus, NF1 microdeletions acquired during mitotic cell divisions differ from those occurring in meiosis and are caused by different mechanisms.
Collapse
|
570
|
van Dartel M, Hulsebos TJM. Amplification and overexpression of genes in 17p11.2∼p12 in osteosarcoma. ACTA ACUST UNITED AC 2004; 153:77-80. [PMID: 15325100 DOI: 10.1016/j.cancergencyto.2004.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Accepted: 03/16/2004] [Indexed: 12/11/2022]
Abstract
We summarize and briefly discuss recent findings with respect to the amplification and overexpression of candidate oncogenes in 17p11.2 ~p12 in high-grade osteosarcomas. Amplification of this region occurs in about 25% of cases. The amplification profiles are often complex and suggest the involvement of more than one oncogene. The 17p11.2 ~ p12 region harbors many low-copy repeats (LCRs). We propose LCR-mediated repeated duplication by mitotic nonallelic homologous recombination as mechanism for the generation of the amplifications in this region. Genes PMP22 and COPS3 and three expressed sequence tags from within 17p11.2 ~ p12 have been found to be frequently overexpressed and consistently overexpressed after amplification, which identifies them as candidate oncogenes in this region. Overexpression of COPS3 has been linked to TP53 protein degradation and, being equivalent to TP53 mutation, the induction of genomic instability, which frequently occurs in high-grade osteosarcoma. These findings may serve as a framework for future work aimed to identify the causative oncogenes in 17p11.2 ~p12, to clarify the mechanism of their amplification, and to determine their importance in osteosarcoma tumorigenesis.
Collapse
Affiliation(s)
- Maaike van Dartel
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
571
|
Hurles ME, Willey D, Matthews L, Hussain SS. Origins of chromosomal rearrangement hotspots in the human genome: evidence from the AZFa deletion hotspots. Genome Biol 2004; 5:R55. [PMID: 15287977 PMCID: PMC507880 DOI: 10.1186/gb-2004-5-8-r55] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 06/02/2004] [Accepted: 06/07/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The origins of the recombination hotspots that are a common feature of both allelic and non-allelic homologous recombination in the human genome are poorly understood. We have investigated, by comparative sequencing, the evolution of two hotspots of non-allelic homologous recombination on the Y chromosome that lie within paralogous sequences known to sponsor deletions resulting in male infertility. RESULTS These recombination hotspots are characterized by signatures of concerted evolution, which indicate that gene conversion between paralogs has been predominant in shaping their recent evolution. By contrast, the paralogous sequences that surround the hotspots exhibit little evidence of gene conversion. A second feature of these rearrangement hotspots is the extreme interspecific sequence divergence (around 2.5%) that places them among the most divergent orthologous sequences between humans and chimpanzees. CONCLUSIONS Several hominid-specific gene conversion events have rendered these hotspots better substrates for chromosomal rearrangements in humans than in chimpanzees or gorillas. Monte Carlo simulations of sequence evolution suggest that extreme sequence divergence is a direct consequence of gene conversion between paralogs. We propose that the coincidence of signatures of concerted evolution and recurrent breakpoints of chromosomal rearrangement (mapped at the sequence level) may enable the identification of putative rearrangement hotspots from analysis of comparative sequences from great apes.
Collapse
Affiliation(s)
- Matthew E Hurles
- Molecular Genetics Laboratory, McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge, CB2 3ER, UK
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - David Willey
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Lucy Matthews
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Syed Sufyan Hussain
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
572
|
Parisi MA, Bennett CL, Eckert ML, Dobyns WB, Gleeson JG, Shaw DWW, McDonald R, Eddy A, Chance PF, Glass IA. The NPHP1 gene deletion associated with juvenile nephronophthisis is present in a subset of individuals with Joubert syndrome. Am J Hum Genet 2004; 75:82-91. [PMID: 15138899 PMCID: PMC1182011 DOI: 10.1086/421846] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 04/09/2004] [Indexed: 01/14/2023] Open
Abstract
Joubert syndrome (JS) is an autosomal recessive multisystem disease characterized by cerebellar vermis hypoplasia with prominent superior cerebellar peduncles (the "molar tooth sign" [MTS] on axial magnetic resonance imaging), mental retardation, hypotonia, irregular breathing pattern, and eye-movement abnormalities. Some individuals with JS have retinal dystrophy and/or progressive renal failure characterized by nephronophthisis (NPHP). Thus far, no mutations in the known NPHP genes, particularly the homozygous deletion of NPHP1 at 2q13, have been identified in subjects with JS. A cohort of 25 subjects with JS and either renal and/or retinal complications and 2 subjects with only juvenile NPHP were screened for mutations in the NPHP1 gene by standard methods. Two siblings affected with a mild form of JS were found to have a homozygous deletion of the NPHP1 gene identical, by mapping, to that in subjects with NPHP alone. A control subject with NPHP and with a homozygous NPHP1 deletion was also identified, retrospectively, as having a mild MTS and borderline intelligence. The NPHP1 deletion represents the first molecular defect associated with JS in a subset of mildly affected subjects. Cerebellar malformations consistent with the MTS may be relatively common in patients with juvenile NPHP without classic symptoms of JS.
Collapse
Affiliation(s)
- Melissa A Parisi
- Division of Genetics and Developmental Medicine, Department of Pediatrics, University of Washington, Seattle, 98195, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
573
|
Shaw CJ, Withers MA, Lupski JR. Uncommon deletions of the Smith-Magenis syndrome region can be recurrent when alternate low-copy repeats act as homologous recombination substrates. Am J Hum Genet 2004; 75:75-81. [PMID: 15148657 PMCID: PMC1182010 DOI: 10.1086/422016] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Accepted: 04/07/2004] [Indexed: 11/03/2022] Open
Abstract
Several homologous recombination "hotspots," or sites of positional preference for strand exchanges, associated with recurrent deletions and duplications have been reported within large low-copy repeats (LCRs). Recently, such a hotspot was identified in patients with the Smith-Magenis syndrome (SMS) common deletion of approximately 4 Mb or a reciprocal duplication within the KER gene cluster of the SMS-REP LCRs, in which 50% of analyzed strand exchanges resulting in deletion and 23% of those resulting in duplication occurred. Here, we report an additional recombination hotspot within LCR17pA and LCR17pD, which serve as alternative substrates for nonallelic homologous recombination that results in large (approximately 5 Mb) deletions of 17p11.2, which include the SMS region. Using polymerase-chain-reaction mapping of somatic cell hybrid lines, we refined the breakpoints of six deletions within these LCRs. Sequence analysis of the recombinant junctions revealed that all six strand exchanges occurred within a 524-bp interval, and four of them occurred within an AluSq/x element. This interval represents only 0.5% of the 124-kb stretch of 98.6% sequence identity between LCR17pA and LCR17pD. A search for potentially stimulating sequence motifs revealed short AT-rich segments flanking the recombination hotspot. Our findings indicate that alternative LCRs can mediate rearrangements, resulting in haploinsufficiency of the SMS critical region, and reimplicate homologous recombination as a major mechanism for genomic disorders.
Collapse
Affiliation(s)
- Christine J. Shaw
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston
| | - Marjorie A. Withers
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston
| | - James R. Lupski
- Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston
| |
Collapse
|
574
|
Makrinou E, Fox M, Wolfe J, Cameron J, Taylor K, Edwards YH. DNM1DN: a new class of paralogous genomic segments (duplicons) with highly conserved copies on chromosomes Y and 15. Ann Hum Genet 2004; 68:85-92. [PMID: 15008788 DOI: 10.1046/j.1529-8817.2003.00076.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Screening a testis cDNA selection library for Y-linked genes yielded 79 cDNAs. Of these, 9 matched the 3' region of the dynamin 1 gene (DNM1) on chromosome 9q34 with >90% identity. Fluoresence in situ hybridisation and PCR amplification were used to localise a large number of DNM1-like sequences to human chromosomes 15 and Y. PCR amplification of overlapping Y-linked YACs allowed a more accurate mapping of the Y-linked DNM1-like cDNAs to a euchromatic locus in close proximity to heterochromatin at Yq11.23. A search of the genome database identified 64 highly homologous copies of the DNM1 fragment. Most of these copies were localised to chromosomes 15 and Y, but others mapped to chromosomes 5, 8, 10, 12, 19 and 22. These sequences exhibit all the major features of a duplicon and have been designated DNM1DN (DNM1 duplicon). Evolutionary studies using fluorescence in situ hybridisation indicate that transposition of the DNM1DN sequence to chromosome 15 took place earlier in primate evolution than the transposition to the Y chromosome. The translocation to the Y took place at a time following the divergence of a common ancestor from gorilla, approximately 4-7 million years ago.
Collapse
MESH Headings
- Animals
- Chromosome Mapping
- Chromosomes, Human, Pair 15
- Chromosomes, Human, Y
- Chromosomes, Mammalian
- Conserved Sequence
- DNA, Complementary
- Dynamin I/genetics
- Evolution, Molecular
- Gene Library
- Genes, Duplicate
- Genome, Human
- Gorilla gorilla/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Male
- Multigene Family
- Pan troglodytes/genetics
- Phylogeny
- Polymerase Chain Reaction
- Testis
- Y Chromosome
Collapse
Affiliation(s)
- E Makrinou
- MRC Human Biochemical Genetics Unit, University College London, Wolfson House, London NW1 2HE, UK.
| | | | | | | | | | | |
Collapse
|
575
|
Shaw CJ, Shaw CA, Yu W, Stankiewicz P, White LD, Beaudet AL, Lupski JR. Comparative genomic hybridisation using a proximal 17p BAC/PAC array detects rearrangements responsible for four genomic disorders. J Med Genet 2004; 41:113-9. [PMID: 14757858 PMCID: PMC1735660 DOI: 10.1136/jmg.2003.012831] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Proximal chromosome 17p is a region rich in low copy repeats (LCRs) and prone to chromosomal rearrangements. Four genomic disorders map within the interval 17p11-p12: Charcot-Marie-Tooth disease type 1A, hereditary neuropathy with liability to pressure palsies, Smith-Magenis syndrome, and dup(17)(p11.2p11.2) syndrome. While 80-90% or more of the rearrangements resulting in each disorder are recurrent, several non-recurrent deletions or duplications of varying sizes within proximal 17p also have been characterised using fluorescence in situ hybridisation (FISH). METHODS A BAC/PAC array based comparative genomic hybridisation (array-CGH) method was tested for its ability to detect these genomic dosage differences and map breakpoints in 25 patients with recurrent and non-recurrent rearrangements. RESULTS Array-CGH detected the dosage imbalances resulting from either deletion or duplication in all the samples examined. The array-CGH approach, in combination with a dependent statistical inference method, mapped 45/46 (97.8%) of the analysed breakpoints to within one overlapping BAC/PAC clone, compared with determinations done independently by FISH. Several clones within the array that contained large LCRs did not have an adverse effect on the interpretation of the array-CGH data. CONCLUSIONS Array-CGH is an accurate and sensitive method for detecting genomic dosage differences and identifying rearrangement breakpoints, even in LCR-rich regions of the genome.
Collapse
MESH Headings
- Centromere/genetics
- Chromosome Breakage/genetics
- Chromosome Deletion
- Chromosome Mapping/methods
- Chromosome Mapping/statistics & numerical data
- Chromosomes, Artificial, Bacterial/genetics
- Chromosomes, Artificial, P1 Bacteriophage/genetics
- Chromosomes, Human, Pair 17/genetics
- DNA/genetics
- Electrophoresis, Gel, Pulsed-Field/standards
- Female
- Gene Duplication
- Genetic Diseases, Inborn/genetics
- Humans
- In Situ Hybridization, Fluorescence/standards
- Male
- Mutation/genetics
- Nucleic Acid Hybridization
- Oligonucleotide Array Sequence Analysis/methods
- Oligonucleotide Array Sequence Analysis/statistics & numerical data
Collapse
Affiliation(s)
- C J Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
576
|
Babcock M, Pavlicek A, Spiteri E, Kashork CD, Ioshikhes I, Shaffer LG, Jurka J, Morrow BE. Shuffling of genes within low-copy repeats on 22q11 (LCR22) by Alu-mediated recombination events during evolution. Genome Res 2004; 13:2519-32. [PMID: 14656960 PMCID: PMC403794 DOI: 10.1101/gr.1549503] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Low-copy repeats, or segmental duplications, are highly dynamic regions in the genome. The low-copy repeats on chromosome 22q11.2 (LCR22) are a complex mosaic of genes and pseudogenes formed by duplication processes; they mediate chromosome rearrangements associated with velo-cardio-facial syndrome/DiGeorge syndrome, der(22) syndrome, and cat-eye syndrome. The ability to trace the substrates and products of recombination events provides a unique opportunity to identify the mechanisms responsible for shaping LCR22s. We examined the genomic sequence of known LCR22 genes and their duplicated derivatives. We found Alu (SINE) elements at the breakpoints in the substrates and at the junctions in the truncated products of recombination for USP18, GGT, and GGTLA, consistent with Alu-mediated unequal crossing-over events. In addition, we were able to trace a likely interchromosomal Alu-mediated fusion between IGSF3 on 1p13.1 and GGT on 22q11.2. Breakpoints occurred inside Alu elements as well as in the 5' or 3' ends of them. A possible stimulus for the 5' or 3' terminal rearrangements may be the high sequence similarities between different Alu elements, combined with a potential recombinogenic role of retrotransposon target-site duplications flanking the Alu element, containing potentially kinkable DNA sites. Such sites may represent focal points for recombination. Thus, genome shuffling by Alu-mediated rearrangements has contributed to genome architecture during primate evolution.
Collapse
Affiliation(s)
- Melanie Babcock
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
577
|
Abeysinghe SS, Stenson PD, Krawczak M, Cooper DN. Gross rearrangement breakpoint database (GRaBD?). Hum Mutat 2004; 23:219-21. [PMID: 14974079 DOI: 10.1002/humu.20006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Translocations and gross gene deletions are an important cause of both cancer and inherited disease. Such DNA rearrangements are nonrandomly distributed in the human genome as a consequence of selection for growth advantage and/or the inherent potential of some DNA sequences to be particularly susceptible to breakage and recombination. The Gross Rearrangement Breakpoint Database (GRaBD; http://www.uwcm.ac.uk/uwcm/mg/grabd/) was established primarily for the analysis of the sequence context of translocation and deletion breakpoints in a search for characteristics that might have rendered these sequences prone to rearrangement. GRaBD, which contains 397 germline and somatic DNA breakpoint junction sequences derived from 219 different rearrangements underlying human inherited disease and cancer, is the only comprehensive collection of gross gene rearrangement breakpoint junctions currently available.
Collapse
Affiliation(s)
- Shaun S Abeysinghe
- Institute of Medical Genetics, University of Wales College of Medicine, Cardiff, United Kingdom.
| | | | | | | |
Collapse
|
578
|
Ekong R, Jeremiah S, Judah D, Lehmann O, Mirzayans F, Hung YC, Walter MA, Bhattacharya S, Gant TW, Povey S, Wolfe J. Chromosomal anomalies on 6p25 in iris hypoplasia and Axenfeld-Rieger syndrome patients defined on a purpose-built genomic microarray. Hum Mutat 2004; 24:76-85. [PMID: 15221791 DOI: 10.1002/humu.20059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In many inherited diseases, the same phenotype can be produced both by single-base changes and by large deletions, or in some cases by duplications. Routine high-throughput sequencing can now detect small mutations relatively easily in a diagnostic setting, but deletions and duplications in the 50-500-kb region remain a more difficult problem. We have explored the application of array-CGH to the detection of such changes on a set of 20 samples consisting of patients with eye diseases associated with changes on chromosome 6p25 together with unaffected individuals, as well as two samples from tuberous sclerosis 2 (TSC2)-affected patients. We developed a microarray consisting of degenerate oligonucleotide primer (DOP)-PCR products from 260 human genomic clones, including BACs, PACs, and cosmids. In a masked study, chromosome changes in patients with iris hypoplasia (duplication) and Axenfeld-Rieger syndrome (deletion) were unequivocally distinguished from controls. Of the 20 6p25 samples analyzed, 19 were analyzed correctly (10 duplication cases, two deletions, and seven normals), while one individual failed to give a result because of poor hybridization. The extent of the duplication or deletion estimated was similar to that obtained by independent and much more time-consuming FISH experiments. On the other hand, deletions in the two TSC2-affected samples, previously mapped by DNA molecular combing, were not detected on the array, possibly due to the repeat content of that region. Excluding the 16p13 cosmids, consistent results were obtained from all other cosmid clones; the potential for producing affordable disease-specific diagnostic microarray as an adjunct to diagnosis is discussed.
Collapse
|
579
|
Walz K, Fonseca P, Lupski JR. Animal models for human contiguous gene syndromes and other genomic disorders. Genet Mol Biol 2004. [DOI: 10.1590/s1415-47572004000300001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | - James R. Lupski
- Baylor College of Medicine, USA; Baylor College of Medicine, USA; Texas Children's Hospital, USA
| |
Collapse
|
580
|
Barbouti A, Stankiewicz P, Nusbaum C, Cuomo C, Cook A, Höglund M, Johansson B, Hagemeijer A, Park SS, Mitelman F, Lupski JR, Fioretos T. The breakpoint region of the most common isochromosome, i(17q), in human neoplasia is characterized by a complex genomic architecture with large, palindromic, low-copy repeats. Am J Hum Genet 2004; 74:1-10. [PMID: 14666446 PMCID: PMC1181896 DOI: 10.1086/380648] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Accepted: 10/07/2003] [Indexed: 11/03/2022] Open
Abstract
Although a great deal of information has accumulated regarding the mechanisms underlying constitutional DNA rearrangements associated with inherited disorders, virtually nothing is known about the molecular processes involved in acquired neoplasia-associated chromosomal rearrangements. Isochromosome 17q, or "i(17q)," is one of the most common structural abnormalities observed in human neoplasms. We previously identified a breakpoint cluster region for i(17q) formation in 17p11.2 and hypothesized that genome architectural features could be responsible for this clustering. To address this hypothesis, we precisely mapped the i(17q) breakpoints in 11 patients with different hematologic malignancies and determined the genomic structure of the involved region. Our results reveal a complex genomic architecture in the i(17q) breakpoint cluster region, characterized by large ( approximately 38-49-kb), palindromic, low-copy repeats, strongly suggesting that somatic rearrangements are not random events but rather reflect susceptibilities due to the genomic structure.
Collapse
MESH Headings
- Blast Crisis/genetics
- Chromosome Aberrations
- Chromosomes, Human, Pair 17/genetics
- Genome, Human
- Humans
- Isochromosomes/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Molecular Sequence Data
- Neoplasms/genetics
- Repetitive Sequences, Nucleic Acid
Collapse
Affiliation(s)
- Aikaterini Barbouti
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston; Whitehead Institute for Biomedical Research/Massachusetts Institute of Technology, Center for Genome Research, Cambridge, MA; and Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Pawel Stankiewicz
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston; Whitehead Institute for Biomedical Research/Massachusetts Institute of Technology, Center for Genome Research, Cambridge, MA; and Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Chad Nusbaum
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston; Whitehead Institute for Biomedical Research/Massachusetts Institute of Technology, Center for Genome Research, Cambridge, MA; and Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Christina Cuomo
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston; Whitehead Institute for Biomedical Research/Massachusetts Institute of Technology, Center for Genome Research, Cambridge, MA; and Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - April Cook
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston; Whitehead Institute for Biomedical Research/Massachusetts Institute of Technology, Center for Genome Research, Cambridge, MA; and Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Mattias Höglund
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston; Whitehead Institute for Biomedical Research/Massachusetts Institute of Technology, Center for Genome Research, Cambridge, MA; and Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Bertil Johansson
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston; Whitehead Institute for Biomedical Research/Massachusetts Institute of Technology, Center for Genome Research, Cambridge, MA; and Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Anne Hagemeijer
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston; Whitehead Institute for Biomedical Research/Massachusetts Institute of Technology, Center for Genome Research, Cambridge, MA; and Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Sung-Sup Park
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston; Whitehead Institute for Biomedical Research/Massachusetts Institute of Technology, Center for Genome Research, Cambridge, MA; and Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Felix Mitelman
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston; Whitehead Institute for Biomedical Research/Massachusetts Institute of Technology, Center for Genome Research, Cambridge, MA; and Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - James R. Lupski
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston; Whitehead Institute for Biomedical Research/Massachusetts Institute of Technology, Center for Genome Research, Cambridge, MA; and Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Thoas Fioretos
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden; Departments of Molecular and Human Genetics and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston; Whitehead Institute for Biomedical Research/Massachusetts Institute of Technology, Center for Genome Research, Cambridge, MA; and Department of Human Genetics, University of Leuven, Leuven, Belgium
| |
Collapse
|
581
|
Bi W, Park SS, Shaw CJ, Withers MA, Patel PI, Lupski JR. Reciprocal crossovers and a positional preference for strand exchange in recombination events resulting in deletion or duplication of chromosome 17p11.2. Am J Hum Genet 2003; 73:1302-15. [PMID: 14639526 PMCID: PMC1180396 DOI: 10.1086/379979] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Accepted: 09/16/2003] [Indexed: 01/15/2023] Open
Abstract
Smith-Magenis syndrome (SMS) is caused by an approximately 4-Mb heterozygous interstitial deletion on chromosome 17p11.2 in approximately 80%-90% of affected patients. Three large ( approximately 200 kb), complex, and highly homologous ( approximately 98%) low-copy repeats (LCRs) are located inside or flanking the SMS common deletion. These repeats, also known as "SMS-REPs," are termed "distal," "middle," and "proximal." The directly oriented distal and proximal copies act as substrates for nonallelic homologous recombination resulting in both the deletion associated with SMS and the reciprocal duplication: dup(17)(p11.2p11.2). Using restriction enzyme cis-morphism analyses and direct sequencing, we mapped the regions of strand exchange in 16 somatic-cell hybrids that harbor only the recombinant SMS-REP. Our studies showed that the sites of crossovers were distributed throughout the region of homology between the distal and proximal SMS-REPs. However, despite approximately 170 kb of high homology, 50% of the recombinant junctions occurred in a 12.0-kb region within the KER gene clusters. DNA sequencing of this hotspot (positional preference for strand exchange) in seven recombinant SMS-REPs narrowed the crossovers to an approximately 8-kb interval. Four of them occurred in a 1,655-bp region rich in polymorphic nucleotides that could potentially reflect frequent gene conversion. For further evaluation of the strand exchange frequency in patients with SMS, novel junction fragments from the recombinant SMS-REPs were identified. As predicted by the reciprocal-recombination model, junction fragments were also identified from this hotspot region in patients with dup(17)(p11.2p11.2), documenting reciprocity of the positional preference for strand exchange. Several potential cis-acting recombination-promoting sequences were identified within the hotspot. It is interesting that we found 2.1-kb AT-rich inverted repeats flanking the proximal and middle KER gene clusters but not the distal one. The role of any or all of these in stimulating double-strand breaks around this positional recombination hotspot remains to be explored.
Collapse
Affiliation(s)
- Weimin Bi
- Departments of Molecular and Human Genetics, Neurology, and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston
| | - Sung-Sup Park
- Departments of Molecular and Human Genetics, Neurology, and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston
| | - Christine J. Shaw
- Departments of Molecular and Human Genetics, Neurology, and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston
| | - Marjorie A. Withers
- Departments of Molecular and Human Genetics, Neurology, and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston
| | - Pragna I. Patel
- Departments of Molecular and Human Genetics, Neurology, and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston
| | - James R. Lupski
- Departments of Molecular and Human Genetics, Neurology, and Pediatrics, Baylor College of Medicine, and Texas Children’s Hospital, Houston
| |
Collapse
|
582
|
Abstract
PURPOSE OF REVIEW Sotos syndrome (SoS) (OMIM #117550) is a childhood overgrowth syndrome characterized by excessive growth, distinctive craniofacial features, developmental delay, and advanced bone age. Recently, haploinsufficiency of the NSD1 gene has been identified as the major cause of SoS, with intragenic mutations or submicroscopic microdeletions being found in about 60 to 75% of clinically diagnosed patients with SoS. RECENT FINDINGS Recent reports provided much information about the genetic background of SoS, the NSD gene family, and genotype-phenotype correlation. They also added new perspectives in the discussion about a possible association between SoS and neoplasia. SUMMARY This review focuses on recent genetic developments in SoS. Clinical features and associated anomalies are reviewed in relation to possible functional roles of NSD1. Genotype-phenotype correlation between patients with SoS harboring either intragenic mutations or microdeletions is discussed as well as their implication for possible revision of the diagnostic criteria of SoS. Furthermore, future prospects in genetic research of SoS are presented.
Collapse
Affiliation(s)
- Remco Visser
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | |
Collapse
|
583
|
Jackson M. Duplicate, decouple, disperse: the evolutionary transience of human centromeric regions. Curr Opin Genet Dev 2003; 13:629-35. [PMID: 14638326 DOI: 10.1016/j.gde.2003.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Human centromeric regions are enriched for segmental duplications, which elsewhere in the genome precipitate both genetic disease and gene formation. Molecular cytogenetic analyses of primate chromosomes have established that centromeres frequently move without altering the surrounding gene order. Recently, the positions of two ancestral centromeres have been mapped to regions of the human genome that are both rich in segmental duplications and are associated with duplication-based clinical phenotypes. This suggests a model for the evolution of euchromatic segmental duplication families involving the localised elevation of recombination rates within the duplication-rich heterochromatin of recently inactivated centromeres, and raises the possibility that the distribution of duplication/deletion syndromes within our genome has been heavily influenced by such events. The relaxation of the heterochromatin environment that must accompany centromere inactivation would also increase the transcriptional activity within previously pericentromeric DNA, increasing the likelihood of chimaeric gene creation through pericentromeric-directed duplication events.
Collapse
Affiliation(s)
- Michael Jackson
- The Institute Of Human Genetics, The International Centre For Life, University Of Newcastle Upon Tyne, Central Parkway, Newcastle Upon Tyne NE1 3BZ, UK.
| |
Collapse
|
584
|
Stein LD, Bao Z, Blasiar D, Blumenthal T, Brent MR, Chen N, Chinwalla A, Clarke L, Clee C, Coghlan A, Coulson A, D'Eustachio P, Fitch DHA, Fulton LA, Fulton RE, Griffiths-Jones S, Harris TW, Hillier LW, Kamath R, Kuwabara PE, Mardis ER, Marra MA, Miner TL, Minx P, Mullikin JC, Plumb RW, Rogers J, Schein JE, Sohrmann M, Spieth J, Stajich JE, Wei C, Willey D, Wilson RK, Durbin R, Waterston RH. The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biol 2003; 1:E45. [PMID: 14624247 PMCID: PMC261899 DOI: 10.1371/journal.pbio.0000045] [Citation(s) in RCA: 658] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Accepted: 09/04/2003] [Indexed: 11/19/2022] Open
Abstract
The soil nematodes Caenorhabditis briggsae and Caenorhabditis elegans diverged from a common ancestor roughly 100 million years ago and yet are almost indistinguishable by eye. They have the same chromosome number and genome sizes, and they occupy the same ecological niche. To explore the basis for this striking conservation of structure and function, we have sequenced the C. briggsae genome to a high-quality draft stage and compared it to the finished C. elegans sequence. We predict approximately 19,500 protein-coding genes in the C. briggsae genome, roughly the same as in C. elegans. Of these, 12,200 have clear C. elegans orthologs, a further 6,500 have one or more clearly detectable C. elegans homologs, and approximately 800 C. briggsae genes have no detectable matches in C. elegans. Almost all of the noncoding RNAs (ncRNAs) known are shared between the two species. The two genomes exhibit extensive colinearity, and the rate of divergence appears to be higher in the chromosomal arms than in the centers. Operons, a distinctive feature of C. elegans, are highly conserved in C. briggsae, with the arrangement of genes being preserved in 96% of cases. The difference in size between the C. briggsae (estimated at approximately 104 Mbp) and C. elegans (100.3 Mbp) genomes is almost entirely due to repetitive sequence, which accounts for 22.4% of the C. briggsae genome in contrast to 16.5% of the C. elegans genome. Few, if any, repeat families are shared, suggesting that most were acquired after the two species diverged or are undergoing rapid evolution. Coclustering the C. elegans and C. briggsae proteins reveals 2,169 protein families of two or more members. Most of these are shared between the two species, but some appear to be expanding or contracting, and there seem to be as many as several hundred novel C. briggsae gene families. The C. briggsae draft sequence will greatly improve the annotation of the C. elegans genome. Based on similarity to C. briggsae, we found strong evidence for 1,300 new C. elegans genes. In addition, comparisons of the two genomes will help to understand the evolutionary forces that mold nematode genomes. With the Caenorhabditis briggsae genome now in hand, C. elegans biologists have a powerful new research tool to refine their knowledge of gene function in C. elegans and to study the path of genome evolution
Collapse
MESH Headings
- Animals
- Biological Evolution
- Caenorhabditis/genetics
- Caenorhabditis elegans/genetics
- Chromosome Mapping
- Chromosomes, Artificial, Bacterial
- Cluster Analysis
- Codon
- Conserved Sequence
- Evolution, Molecular
- Exons
- Gene Library
- Genome
- Genomics/methods
- Interspersed Repetitive Sequences
- Introns
- MicroRNAs/genetics
- Models, Genetic
- Models, Statistical
- Molecular Sequence Data
- Multigene Family
- Open Reading Frames
- Physical Chromosome Mapping
- Plasmids/metabolism
- Protein Structure, Tertiary
- Proteins/chemistry
- RNA/chemistry
- RNA, Ribosomal/genetics
- RNA, Spliced Leader
- RNA, Transfer/genetics
- Sequence Analysis, DNA
- Species Specificity
Collapse
Affiliation(s)
- Lincoln D Stein
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA..
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
585
|
Ensenauer RE, Adeyinka A, Flynn HC, Michels VV, Lindor NM, Dawson DB, Thorland EC, Lorentz CP, Goldstein JL, McDonald MT, Smith WE, Simon-Fayard E, Alexander AA, Kulharya AS, Ketterling RP, Clark RD, Jalal SM. Microduplication 22q11.2, an emerging syndrome: clinical, cytogenetic, and molecular analysis of thirteen patients. Am J Hum Genet 2003; 73:1027-40. [PMID: 14526392 PMCID: PMC1180483 DOI: 10.1086/378818] [Citation(s) in RCA: 255] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Accepted: 07/29/2003] [Indexed: 11/03/2022] Open
Abstract
Chromosome 22, particularly band 22q11.2, is predisposed to rearrangements due to misalignments of low-copy repeats (LCRs). DiGeorge/velocardiofacial syndrome (DG/VCFS) is a common disorder resulting from microdeletion within the same band. Although both deletion and duplication are expected to occur in equal proportions as reciprocal events caused by LCR-mediated rearrangements, very few microduplications have been identified. We have identified 13 cases of microduplication 22q11.2, primarily by interphase fluorescence in situ hybridization (FISH). The size of the duplications, determined by FISH probes from bacterial artificial chromosomes and P(1) artificial chromosomes, range from 3-4 Mb to 6 Mb, and the exchange points seem to involve an LCR. Molecular analysis based on 15 short tandem repeats confirmed the size of the duplications and indicated that at least 1 of 15 loci has three alleles present. The patients' phenotypes ranged from mild to severe, sharing a tendency for velopharyngeal insufficiency with DG/VCFS but having other distinctive characteristics, as well. Although the present series of patients was ascertained because of some overlapping features with DG/VCF syndromes, the microduplication of 22q11.2 appears to be a new syndrome.
Collapse
Affiliation(s)
- Regina E. Ensenauer
- Department of Medical Genetics, and Cytogenetics Laboratory and Molecular Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; Department of Pediatrics, Duke University Medical Center, Durham, NC; Division of Genetics, Barbara Bush Children’s Hospital, Maine Medical Center, Portland, ME; Department of Pediatrics, Division of Neonatology, Loma Linda University Medical Center, and Division of Genetics, Loma Linda University Children’s Hospital, Loma Linda, CA; Desert Pediatrics, Inc., Palm Desert, CA; and Department of Pediatrics and Pathology, Medical College of Georgia, Augusta, GA
| | - Adewale Adeyinka
- Department of Medical Genetics, and Cytogenetics Laboratory and Molecular Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; Department of Pediatrics, Duke University Medical Center, Durham, NC; Division of Genetics, Barbara Bush Children’s Hospital, Maine Medical Center, Portland, ME; Department of Pediatrics, Division of Neonatology, Loma Linda University Medical Center, and Division of Genetics, Loma Linda University Children’s Hospital, Loma Linda, CA; Desert Pediatrics, Inc., Palm Desert, CA; and Department of Pediatrics and Pathology, Medical College of Georgia, Augusta, GA
| | - Heather C. Flynn
- Department of Medical Genetics, and Cytogenetics Laboratory and Molecular Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; Department of Pediatrics, Duke University Medical Center, Durham, NC; Division of Genetics, Barbara Bush Children’s Hospital, Maine Medical Center, Portland, ME; Department of Pediatrics, Division of Neonatology, Loma Linda University Medical Center, and Division of Genetics, Loma Linda University Children’s Hospital, Loma Linda, CA; Desert Pediatrics, Inc., Palm Desert, CA; and Department of Pediatrics and Pathology, Medical College of Georgia, Augusta, GA
| | - Virginia V. Michels
- Department of Medical Genetics, and Cytogenetics Laboratory and Molecular Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; Department of Pediatrics, Duke University Medical Center, Durham, NC; Division of Genetics, Barbara Bush Children’s Hospital, Maine Medical Center, Portland, ME; Department of Pediatrics, Division of Neonatology, Loma Linda University Medical Center, and Division of Genetics, Loma Linda University Children’s Hospital, Loma Linda, CA; Desert Pediatrics, Inc., Palm Desert, CA; and Department of Pediatrics and Pathology, Medical College of Georgia, Augusta, GA
| | - Noralane M. Lindor
- Department of Medical Genetics, and Cytogenetics Laboratory and Molecular Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; Department of Pediatrics, Duke University Medical Center, Durham, NC; Division of Genetics, Barbara Bush Children’s Hospital, Maine Medical Center, Portland, ME; Department of Pediatrics, Division of Neonatology, Loma Linda University Medical Center, and Division of Genetics, Loma Linda University Children’s Hospital, Loma Linda, CA; Desert Pediatrics, Inc., Palm Desert, CA; and Department of Pediatrics and Pathology, Medical College of Georgia, Augusta, GA
| | - D. Brian Dawson
- Department of Medical Genetics, and Cytogenetics Laboratory and Molecular Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; Department of Pediatrics, Duke University Medical Center, Durham, NC; Division of Genetics, Barbara Bush Children’s Hospital, Maine Medical Center, Portland, ME; Department of Pediatrics, Division of Neonatology, Loma Linda University Medical Center, and Division of Genetics, Loma Linda University Children’s Hospital, Loma Linda, CA; Desert Pediatrics, Inc., Palm Desert, CA; and Department of Pediatrics and Pathology, Medical College of Georgia, Augusta, GA
| | - Erik C. Thorland
- Department of Medical Genetics, and Cytogenetics Laboratory and Molecular Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; Department of Pediatrics, Duke University Medical Center, Durham, NC; Division of Genetics, Barbara Bush Children’s Hospital, Maine Medical Center, Portland, ME; Department of Pediatrics, Division of Neonatology, Loma Linda University Medical Center, and Division of Genetics, Loma Linda University Children’s Hospital, Loma Linda, CA; Desert Pediatrics, Inc., Palm Desert, CA; and Department of Pediatrics and Pathology, Medical College of Georgia, Augusta, GA
| | - Cindy Pham Lorentz
- Department of Medical Genetics, and Cytogenetics Laboratory and Molecular Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; Department of Pediatrics, Duke University Medical Center, Durham, NC; Division of Genetics, Barbara Bush Children’s Hospital, Maine Medical Center, Portland, ME; Department of Pediatrics, Division of Neonatology, Loma Linda University Medical Center, and Division of Genetics, Loma Linda University Children’s Hospital, Loma Linda, CA; Desert Pediatrics, Inc., Palm Desert, CA; and Department of Pediatrics and Pathology, Medical College of Georgia, Augusta, GA
| | - Jennifer L. Goldstein
- Department of Medical Genetics, and Cytogenetics Laboratory and Molecular Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; Department of Pediatrics, Duke University Medical Center, Durham, NC; Division of Genetics, Barbara Bush Children’s Hospital, Maine Medical Center, Portland, ME; Department of Pediatrics, Division of Neonatology, Loma Linda University Medical Center, and Division of Genetics, Loma Linda University Children’s Hospital, Loma Linda, CA; Desert Pediatrics, Inc., Palm Desert, CA; and Department of Pediatrics and Pathology, Medical College of Georgia, Augusta, GA
| | - Marie T. McDonald
- Department of Medical Genetics, and Cytogenetics Laboratory and Molecular Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; Department of Pediatrics, Duke University Medical Center, Durham, NC; Division of Genetics, Barbara Bush Children’s Hospital, Maine Medical Center, Portland, ME; Department of Pediatrics, Division of Neonatology, Loma Linda University Medical Center, and Division of Genetics, Loma Linda University Children’s Hospital, Loma Linda, CA; Desert Pediatrics, Inc., Palm Desert, CA; and Department of Pediatrics and Pathology, Medical College of Georgia, Augusta, GA
| | - Wendy E. Smith
- Department of Medical Genetics, and Cytogenetics Laboratory and Molecular Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; Department of Pediatrics, Duke University Medical Center, Durham, NC; Division of Genetics, Barbara Bush Children’s Hospital, Maine Medical Center, Portland, ME; Department of Pediatrics, Division of Neonatology, Loma Linda University Medical Center, and Division of Genetics, Loma Linda University Children’s Hospital, Loma Linda, CA; Desert Pediatrics, Inc., Palm Desert, CA; and Department of Pediatrics and Pathology, Medical College of Georgia, Augusta, GA
| | - Elba Simon-Fayard
- Department of Medical Genetics, and Cytogenetics Laboratory and Molecular Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; Department of Pediatrics, Duke University Medical Center, Durham, NC; Division of Genetics, Barbara Bush Children’s Hospital, Maine Medical Center, Portland, ME; Department of Pediatrics, Division of Neonatology, Loma Linda University Medical Center, and Division of Genetics, Loma Linda University Children’s Hospital, Loma Linda, CA; Desert Pediatrics, Inc., Palm Desert, CA; and Department of Pediatrics and Pathology, Medical College of Georgia, Augusta, GA
| | - Alan A. Alexander
- Department of Medical Genetics, and Cytogenetics Laboratory and Molecular Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; Department of Pediatrics, Duke University Medical Center, Durham, NC; Division of Genetics, Barbara Bush Children’s Hospital, Maine Medical Center, Portland, ME; Department of Pediatrics, Division of Neonatology, Loma Linda University Medical Center, and Division of Genetics, Loma Linda University Children’s Hospital, Loma Linda, CA; Desert Pediatrics, Inc., Palm Desert, CA; and Department of Pediatrics and Pathology, Medical College of Georgia, Augusta, GA
| | - Anita S. Kulharya
- Department of Medical Genetics, and Cytogenetics Laboratory and Molecular Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; Department of Pediatrics, Duke University Medical Center, Durham, NC; Division of Genetics, Barbara Bush Children’s Hospital, Maine Medical Center, Portland, ME; Department of Pediatrics, Division of Neonatology, Loma Linda University Medical Center, and Division of Genetics, Loma Linda University Children’s Hospital, Loma Linda, CA; Desert Pediatrics, Inc., Palm Desert, CA; and Department of Pediatrics and Pathology, Medical College of Georgia, Augusta, GA
| | - Rhett P. Ketterling
- Department of Medical Genetics, and Cytogenetics Laboratory and Molecular Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; Department of Pediatrics, Duke University Medical Center, Durham, NC; Division of Genetics, Barbara Bush Children’s Hospital, Maine Medical Center, Portland, ME; Department of Pediatrics, Division of Neonatology, Loma Linda University Medical Center, and Division of Genetics, Loma Linda University Children’s Hospital, Loma Linda, CA; Desert Pediatrics, Inc., Palm Desert, CA; and Department of Pediatrics and Pathology, Medical College of Georgia, Augusta, GA
| | - Robin D. Clark
- Department of Medical Genetics, and Cytogenetics Laboratory and Molecular Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; Department of Pediatrics, Duke University Medical Center, Durham, NC; Division of Genetics, Barbara Bush Children’s Hospital, Maine Medical Center, Portland, ME; Department of Pediatrics, Division of Neonatology, Loma Linda University Medical Center, and Division of Genetics, Loma Linda University Children’s Hospital, Loma Linda, CA; Desert Pediatrics, Inc., Palm Desert, CA; and Department of Pediatrics and Pathology, Medical College of Georgia, Augusta, GA
| | - Syed M. Jalal
- Department of Medical Genetics, and Cytogenetics Laboratory and Molecular Genetics Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN; Department of Pediatrics, Duke University Medical Center, Durham, NC; Division of Genetics, Barbara Bush Children’s Hospital, Maine Medical Center, Portland, ME; Department of Pediatrics, Division of Neonatology, Loma Linda University Medical Center, and Division of Genetics, Loma Linda University Children’s Hospital, Loma Linda, CA; Desert Pediatrics, Inc., Palm Desert, CA; and Department of Pediatrics and Pathology, Medical College of Georgia, Augusta, GA
| |
Collapse
|
586
|
Abstract
Neurofibromatosis 1, an inherited disorder that affects 1/3500 individuals worldwide, predisposes to the development of benign and malignant peripheral nerve sheath tumors. The disorder results from inactivation of one of the NFI genes. The second NFI gene is typically inactivated in Schwann cells during tumor formation. This article reviews the different types of genetic alterations in NFI in both constitutional and tumor tissues and genetic alterations of other genes that may affect tumorigenesis. These studies have provided insight into the genetic basis of both the variable expression of the disorder and of benign and malignant peripheral nerve sheath tumorigenesis.
Collapse
Affiliation(s)
- Karen Stephens
- Departments of Medicine and Laboratory Medicine, University of Washington, 1959 NE Pacific St., Rm I-204, Box 357720, Seattle, WA 98195-7720, USA.
| |
Collapse
|
587
|
Dean M. Approaches to identify genes for complex human diseases: lessons from Mendelian disorders. Hum Mutat 2003; 22:261-74. [PMID: 12955713 DOI: 10.1002/humu.10259] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The focus of most molecular genetics research is the identification of genes involved in human disease. In the 20th century, genetics progressed from the rediscovery of Mendel's Laws to the identification of nearly every Mendelian genetic disease. At this pace, the genetic component of all complex human diseases could be identified by the end of the 21st century, and rational therapies could be developed. However, it is clear that no one approach will identify the genes for all diseases with a genetic component, because multiple mechanisms are involved in altering human phenotypes, including common alleles with small to moderate effects, rare alleles with moderate to large effects, complex gene-gene and gene-environment interactions, genomic alterations, and noninherited genetic effects. The knowledge gained from the study of Mendelian diseases may be applied to future research that combines linkage-based, association-based, and sequence-based approaches to detect most disease alleles. The technology to complete these studies is at hand and requires that modest improvements be applied on a wide scale. Improved analytical tools, phenotypic characterizations, and functional analyses will enable complete understanding of the genetic basis of complex diseases.
Collapse
Affiliation(s)
- Michael Dean
- Laboratory of Genomic Diversity, National Cancer Institute-Frederick, Frederick, Maryland 21702, USA.
| |
Collapse
|
588
|
Bailey JA, Liu G, Eichler EE. An Alu transposition model for the origin and expansion of human segmental duplications. Am J Hum Genet 2003; 73:823-34. [PMID: 14505274 PMCID: PMC1180605 DOI: 10.1086/378594] [Citation(s) in RCA: 299] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2003] [Accepted: 07/17/2003] [Indexed: 01/17/2023] Open
Abstract
Relative to genomes of other sequenced organisms, the human genome appears particularly enriched for large, highly homologous segmental duplications (> or =90% sequence identity and > or =10 kbp in length). The molecular basis for this enrichment is unknown. We sought to gain insight into the mechanism of origin, by systematically examining sequence features at the junctions of duplications. We analyzed 9,464 junctions within regions of high-quality finished sequence from a genomewide set of 2,366 duplication alignments. We observed a highly significant (P<.0001) enrichment of Alu short interspersed element (SINE) sequences near or within the junction. Twenty-seven percent of all segmental duplications terminated within an Alu repeat. The Alu junction enrichment was most pronounced for interspersed segmental duplications separated by > or =1 Mb of intervening sequence. Alu elements at the junctions showed higher levels of divergence, consistent with Alu-Alu-mediated recombination events. When we classified Alu elements into major subfamilies, younger elements (AluY and AluS) accounted for the enrichment, whereas the oldest primate family (AluJ) showed no enrichment. We propose that the primate-specific burst of Alu retroposition activity (which occurred 35-40 million years ago) sensitized the ancestral human genome for Alu-Alu-mediated recombination events, which, in turn, initiated the expansion of gene-rich segmental duplications and their subsequent role in nonallelic homologous recombination.
Collapse
Affiliation(s)
- Jeffrey A Bailey
- Department of Genetics, Center for Computational Genomics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, OH, 44106, USA
| | | | | |
Collapse
|
589
|
Kurotaki N, Harada N, Shimokawa O, Miyake N, Kawame H, Uetake K, Makita Y, Kondoh T, Ogata T, Hasegawa T, Nagai T, Ozaki T, Touyama M, Shenhav R, Ohashi H, Medne L, Shiihara T, Ohtsu S, Kato ZI, Okamoto N, Nishimoto J, Lev D, Miyoshi Y, Ishikiriyama S, Sonoda T, Sakazume S, Fukushima Y, Kurosawa K, Cheng JF, Yoshiura KI, Ohta T, Kishino T, Niikawa N, Matsumoto N. Fifty microdeletions among 112 cases of Sotos syndrome: Low copy repeats possibly mediate the common deletion. Hum Mutat 2003; 22:378-87. [PMID: 14517949 DOI: 10.1002/humu.10270] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Sotos syndrome (SoS) is an autosomal dominant overgrowth syndrome with characteristic craniofacial dysmorphic features and various degrees of mental retardation. We previously showed that haploinsufficiency of the NSD1 gene is the major cause of SoS, and submicroscopic deletions at 5q35, including NSD1, were found in about a half (20/42) of our patients examined. Since the first report, an additional 70 SoS cases consisting of 53 Japanese and 17 non-Japanese have been analyzed. We found 50 microdeletions (45%) and 16 point mutations (14%) among all the 112 cases. A large difference in the frequency of microdeletions between Japanese and non-Japanese patients was noted: 49 (52%) of the 95 Japanese patients and only one (6%) of the 17 non-Japanese had microdeletions. A sequence-based physical map was constructed to characterize the microdeletions. Most of the microdeletions were confirmed to be identical by FISH analysis. We identified highly homologous sequences, i.e., possible low copy repeats (LCRs), in regions flanking proximal and distal breakpoints of the common deletion, This suggests that LCRs may mediate the deletion. Such LCRs seem to be present in different populations. Thus the different frequency of microdeletions between Japanese and non-Japanese cases in our study may have been caused by patient-selection bias.
Collapse
Affiliation(s)
- Naohiro Kurotaki
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
590
|
Abstract
Olfactory receptor (OR) genes form the largest known multigene family in the human genome. To obtain some insight into their evolutionary history, we have identified the complete set of OR genes and their chromosomal locations from the latest human genome sequences. We detected 388 potentially functional genes that have intact ORFs and 414 apparent pseudogenes. The number and the fraction (48%) of functional genes are considerably larger than the ones previously reported. The human OR genes can clearly be divided into class I and class II genes, as was previously noted. Our phylogenetic analysis has shown that the class II OR genes can further be classified into 19 phylogenetic clades supported by high bootstrap values. We have also found that there are many tandem arrays of OR genes that are phylogenetically closely related. These genes appear to have been generated by tandem gene duplication. However, the relationships between genomic clusters and phylogenetic clades are very complicated. There are a substantial number of cases in which the genes in the same phylogenetic clade are located on different chromosomal regions. In addition, OR genes belonging to distantly related phylogenetic clades are sometimes located very closely in a chromosomal region and form a tight genomic cluster. These observations can be explained by the assumption that several chromosomal rearrangements have occurred at the regions of OR gene clusters and the OR genes contained in different genomic clusters are shuffled.
Collapse
Affiliation(s)
- Yoshihito Niimura
- Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, 328 Mueller Laboratory, University Park, PA 16802, USA
| | | |
Collapse
|
591
|
Chuzhanova N, Abeysinghe SS, Krawczak M, Cooper DN. Translocation and gross deletion breakpoints in human inherited disease and cancer II: Potential involvement of repetitive sequence elements in secondary structure formation between DNA ends. Hum Mutat 2003; 22:245-51. [PMID: 12938089 DOI: 10.1002/humu.10253] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Translocations and gross deletions are responsible for a significant proportion of both cancer and inherited disease. Although such gene rearrangements are nonuniformly distributed in the human genome, the underlying mutational mechanisms remain unclear. We have studied the potential involvement of various types of repetitive sequence elements in the formation of secondary structure intermediates between the single-stranded DNA ends that recombine during rearrangements. Complexity analysis was used to assess the potential of these ends to form secondary structures, the maximum decrease in complexity consequent to a gross rearrangement being used as an indicator of the type of repeat and the specific DNA ends involved. A total of 175 pairs of deletion/translocation breakpoint junction sequences available from the Gross Rearrangement Breakpoint Database [GRaBD; www.uwcm.ac.uk/uwcm/mg/grabd/grabd.html] were analyzed. Potential secondary structure was noted between the 5' flanking sequence of the first breakpoint and the 3' flanking sequence of the second breakpoint in 49% of rearrangements and between the 5' flanking sequence of the second breakpoint and the 3' flanking sequence of the first breakpoint in 36% of rearrangements. Inverted repeats, inversions of inverted repeats, and symmetric elements were found in association with gross rearrangements at approximately the same frequency. However, inverted repeats and inversions of inverted repeats accounted for the vast majority (83%) of deletions plus small insertions, symmetric elements for one-half of all antigen receptor-mediated translocations, while direct repeats appear only to be involved in mediating simple deletions. These findings extend our understanding of illegitimate recombination by highlighting the importance of secondary structure formation between single-stranded DNA ends at breakpoint junctions.
Collapse
|
592
|
Abeysinghe SS, Chuzhanova N, Krawczak M, Ball EV, Cooper DN. Translocation and gross deletion breakpoints in human inherited disease and cancer I: Nucleotide composition and recombination-associated motifs. Hum Mutat 2003; 22:229-44. [PMID: 12938088 DOI: 10.1002/humu.10254] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Translocations and gross deletions are important causes of both cancer and inherited disease. Such gene rearrangements are nonrandomly distributed in the human genome as a consequence of selection for growth advantage and/or the inherent potential of some DNA sequences to be frequently involved in breakage and recombination. Using the Gross Rearrangement Breakpoint Database [GRaBD; www.uwcm.ac.uk/uwcm/mg/grabd/grabd.html] (containing 397 germ-line and somatic DNA breakpoint junction sequences derived from 219 different rearrangements underlying human inherited disease and cancer), we have analyzed the sequence context of translocation and deletion breakpoints in a search for general characteristics that might have rendered these sequences prone to rearrangement. The oligonucleotide composition of breakpoint junctions and a set of reference sequences, matched for length and genomic location, were compared with respect to their nucleotide composition. Deletion breakpoints were found to be AT-rich whereas by comparison, translocation breakpoints were GC-rich. Alternating purine-pyrimidine sequences were found to be significantly over-represented in the vicinity of deletion breakpoints while polypyrimidine tracts were over-represented at translocation breakpoints. A number of recombination-associated motifs were found to be over-represented at translocation breakpoints (including DNA polymerase pause sites/frameshift hotspots, immunoglobulin heavy chain class switch sites, heptamer/nonamer V(D)J recombination signal sequences, translin binding sites, and the chi element) but, with the exception of the translin-binding site and immunoglobulin heavy chain class switch sites, none of these motifs were over-represented at deletion breakpoints. Alu sequences were found to span both breakpoints in seven cases of gross deletion that may thus be inferred to have arisen by homologous recombination. Our results are therefore consistent with a role for homologous unequal recombination in deletion mutagenesis and a role for nonhomologous recombination in the generation of translocations.
Collapse
Affiliation(s)
- Shaun S Abeysinghe
- Institute of Medical Genetics, University of Wales College of Medicine, Cardiff, UK
| | | | | | | | | |
Collapse
|
593
|
Abstract
Large-scale genome sequencing is providing a comprehensive view of the complex evolutionary forces that have shaped the structure of eukaryotic chromosomes. Comparative sequence analyses reveal patterns of apparently random rearrangement interspersed with regions of extraordinarily rapid, localized genome evolution. Numerous subtle rearrangements near centromeres, telomeres, duplications, and interspersed repeats suggest hotspots for eukaryotic chromosome evolution. This localized chromosomal instability may play a role in rapidly evolving lineage-specific gene families and in fostering large-scale changes in gene order. Computational algorithms that take into account these dynamic forces along with traditional models of chromosomal rearrangement show promise for reconstructing the natural history of eukaryotic chromosomes.
Collapse
Affiliation(s)
- Evan E Eichler
- Department of Genetics, Center for Human Genetics and Center for Computational Genomics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, OH 44106, USA.
| | | |
Collapse
|
594
|
Hillier LW, Fulton RS, Fulton LA, Graves TA, Pepin KH, Wagner-McPherson C, Layman D, Maas J, Jaeger S, Walker R, Wylie K, Sekhon M, Becker MC, O'Laughlin MD, Schaller ME, Fewell GA, Delehaunty KD, Miner TL, Nash WE, Cordes M, Du H, Sun H, Edwards J, Bradshaw-Cordum H, Ali J, Andrews S, Isak A, Vanbrunt A, Nguyen C, Du F, Lamar B, Courtney L, Kalicki J, Ozersky P, Bielicki L, Scott K, Holmes A, Harkins R, Harris A, Strong CM, Hou S, Tomlinson C, Dauphin-Kohlberg S, Kozlowicz-Reilly A, Leonard S, Rohlfing T, Rock SM, Tin-Wollam AM, Abbott A, Minx P, Maupin R, Strowmatt C, Latreille P, Miller N, Johnson D, Murray J, Woessner JP, Wendl MC, Yang SP, Schultz BR, Wallis JW, Spieth J, Bieri TA, Nelson JO, Berkowicz N, Wohldmann PE, Cook LL, Hickenbotham MT, Eldred J, Williams D, Bedell JA, Mardis ER, Clifton SW, Chissoe SL, Marra MA, Raymond C, Haugen E, Gillett W, Zhou Y, James R, Phelps K, Iadanoto S, Bubb K, Simms E, Levy R, Clendenning J, Kaul R, Kent WJ, Furey TS, Baertsch RA, Brent MR, Keibler E, Flicek P, Bork P, Suyama M, Bailey JA, Portnoy ME, Torrents D, Chinwalla AT, Gish WR, et alHillier LW, Fulton RS, Fulton LA, Graves TA, Pepin KH, Wagner-McPherson C, Layman D, Maas J, Jaeger S, Walker R, Wylie K, Sekhon M, Becker MC, O'Laughlin MD, Schaller ME, Fewell GA, Delehaunty KD, Miner TL, Nash WE, Cordes M, Du H, Sun H, Edwards J, Bradshaw-Cordum H, Ali J, Andrews S, Isak A, Vanbrunt A, Nguyen C, Du F, Lamar B, Courtney L, Kalicki J, Ozersky P, Bielicki L, Scott K, Holmes A, Harkins R, Harris A, Strong CM, Hou S, Tomlinson C, Dauphin-Kohlberg S, Kozlowicz-Reilly A, Leonard S, Rohlfing T, Rock SM, Tin-Wollam AM, Abbott A, Minx P, Maupin R, Strowmatt C, Latreille P, Miller N, Johnson D, Murray J, Woessner JP, Wendl MC, Yang SP, Schultz BR, Wallis JW, Spieth J, Bieri TA, Nelson JO, Berkowicz N, Wohldmann PE, Cook LL, Hickenbotham MT, Eldred J, Williams D, Bedell JA, Mardis ER, Clifton SW, Chissoe SL, Marra MA, Raymond C, Haugen E, Gillett W, Zhou Y, James R, Phelps K, Iadanoto S, Bubb K, Simms E, Levy R, Clendenning J, Kaul R, Kent WJ, Furey TS, Baertsch RA, Brent MR, Keibler E, Flicek P, Bork P, Suyama M, Bailey JA, Portnoy ME, Torrents D, Chinwalla AT, Gish WR, Eddy SR, McPherson JD, Olson MV, Eichler EE, Green ED, Waterston RH, Wilson RK. The DNA sequence of human chromosome 7. Nature 2003; 424:157-64. [PMID: 12853948 DOI: 10.1038/nature01782] [Show More Authors] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2003] [Accepted: 04/23/2003] [Indexed: 11/09/2022]
Abstract
Human chromosome 7 has historically received prominent attention in the human genetics community, primarily related to the search for the cystic fibrosis gene and the frequent cytogenetic changes associated with various forms of cancer. Here we present more than 153 million base pairs representing 99.4% of the euchromatic sequence of chromosome 7, the first metacentric chromosome completed so far. The sequence has excellent concordance with previously established physical and genetic maps, and it exhibits an unusual amount of segmentally duplicated sequence (8.2%), with marked differences between the two arms. Our initial analyses have identified 1,150 protein-coding genes, 605 of which have been confirmed by complementary DNA sequences, and an additional 941 pseudogenes. Of genes confirmed by transcript sequences, some are polymorphic for mutations that disrupt the reading frame.
Collapse
Affiliation(s)
- Ladeana W Hillier
- Genome Sequencing Center, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, Missouri 63108, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
595
|
|
596
|
Bayés M, Magano LF, Rivera N, Flores R, Pérez Jurado LA. Mutational mechanisms of Williams-Beuren syndrome deletions. Am J Hum Genet 2003; 73:131-51. [PMID: 12796854 PMCID: PMC1180575 DOI: 10.1086/376565] [Citation(s) in RCA: 264] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2003] [Accepted: 04/24/2003] [Indexed: 11/03/2022] Open
Abstract
Williams-Beuren syndrome (WBS) is a segmental aneusomy syndrome that results from a heterozygous deletion of contiguous genes at 7q11.23. Three large region-specific low-copy repeat elements (LCRs), composed of different blocks (A, B, and C), flank the WBS deletion interval and are thought to predispose to misalignment and unequal crossing-over, causing the deletions. In this study, we have determined the exact deletion size and LCR copy number in 74 patients with WBS, as well as precisely defined deletion breakpoints in 30 of them, using LCR-specific nucleotide differences. Most patients (95%) exhibit a 1.55-Mb deletion caused by recombination between centromeric and medial block B copies, which share approximately 99.6% sequence identity along 105-143 kb. In these cases, deletion breakpoints were mapped at several sites within the recombinant block B, with a cluster (>27%) occurring at a 12 kb region within the GTF2I/GTF2IP1 gene. Almost one-third (28%) of the transmitting progenitors were found to be heterozygous for an inversion between centromeric and telomeric LCRs. All deletion breakpoints in the patients with the inversion occurred in the distal 38-kb block B region only present in the telomeric and medial copies. Finally, only four patients (5%) displayed a larger deletion ( approximately 1.84 Mb) caused by recombination between centromeric and medial block A copies. We propose models for the specific pairing and precise aberrant recombination leading to each of the different germline rearrangements that occur in this region, including inversions and deletions associated with WBS. Chromosomal instability at 7q11.23 is directly related to the genomic structure of the region.
Collapse
Affiliation(s)
- Mònica Bayés
- Unitat de Genètica, Departament Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Doctor Aiguader 80, 08003 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
597
|
Avidan N, Tamary H, Dgany O, Cattan D, Pariente A, Thulliez M, Borot N, Moati L, Barthelme A, Shalmon L, Krasnov T, Ben-Asher E, Olender T, Khen M, Yaniv I, Zaizov R, Shalev H, Delaunay J, Fellous M, Lancet D, Beckmann JS. CATSPER2, a human autosomal nonsyndromic male infertility gene. Eur J Hum Genet 2003; 11:497-502. [PMID: 12825070 DOI: 10.1038/sj.ejhg.5200991] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In the course of positional cloning of the Congenital Dyserythropoietic Anemia type I (CDAI) [MIM 224120] gene on 15q15.1-15.3, we examined a family of French origin, in which the propositus suffered from asthenoteratozoospermia and nonsyndromic deafness in addition to CDAI. Two of his brothers had a similar phenotype. All three siblings were homozygous carriers of the CDA1 mutation as well as of a distally located approximately 70 kb deletion of the proximal copy of a 106 kb tandem repeat on chromosome 15q15. These repeats encode four genes whose distal copies may be considered pseudogenes. Lack of functional stereocilin and CATSPER2 (a voltage-gate cation channel expressed specifically in spermatozoa) may explain the observed deafness and male infertility phenotypes. To the best of our knowledge, the involvement of CATSPER2 in asthenoteratozoospermia is the first description of a human autosomal gene defect associated with nonsyndromic male infertility.
Collapse
Affiliation(s)
- Nili Avidan
- Department of Molecular Genetics, The Crown Human Genome Center, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
598
|
|
599
|
Volik S, Zhao S, Chin K, Brebner JH, Herndon DR, Tao Q, Kowbel D, Huang G, Lapuk A, Kuo WL, Magrane G, De Jong P, Gray JW, Collins C. End-sequence profiling: sequence-based analysis of aberrant genomes. Proc Natl Acad Sci U S A 2003; 100:7696-701. [PMID: 12788976 PMCID: PMC164650 DOI: 10.1073/pnas.1232418100] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genome rearrangements are important in evolution, cancer, and other diseases. Precise mapping of the rearrangements is essential for identification of the involved genes, and many techniques have been developed for this purpose. We show here that end-sequence profiling (ESP) is particularly well suited to this purpose. ESP is accomplished by constructing a bacterial artificial chromosome (BAC) library from a test genome, measuring BAC end sequences, and mapping end-sequence pairs onto the normal genome sequence. Plots of BAC end-sequences density identify copy number abnormalities at high resolution. BACs spanning structural aberrations have end pairs that map abnormally far apart on the normal genome sequence. These pairs can then be sequenced to determine the involved genes and breakpoint sequences. ESP analysis of the breast cancer cell line MCF-7 demonstrated its utility for analysis of complex genomes. End sequencing of approximately 8,000 clones (0.37-fold haploid genome clonal coverage) produced a comprehensive genome copy number map of the MCF-7 genome at better than 300-kb resolution and identified 381 genome breakpoints, a subset of which was verified by fluorescence in situ hybridization mapping and sequencing.
Collapse
Affiliation(s)
- Stanislav Volik
- Cancer Research Institute and Department of Laboratory Medicine, University of California Comprehensive Cancer Center, 2340 Sutter Street, San Francisco, CA 94115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
600
|
Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L, Brown LG, Repping S, Pyntikova T, Ali J, Bieri T, Chinwalla A, Delehaunty A, Delehaunty K, Du H, Fewell G, Fulton L, Fulton R, Graves T, Hou SF, Latrielle P, Leonard S, Mardis E, Maupin R, McPherson J, Miner T, Nash W, Nguyen C, Ozersky P, Pepin K, Rock S, Rohlfing T, Scott K, Schultz B, Strong C, Tin-Wollam A, Yang SP, Waterston RH, Wilson RK, Rozen S, Page DC. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 2003; 423:825-37. [PMID: 12815422 DOI: 10.1038/nature01722] [Citation(s) in RCA: 1436] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2003] [Accepted: 04/08/2003] [Indexed: 01/06/2023]
Abstract
The male-specific region of the Y chromosome, the MSY, differentiates the sexes and comprises 95% of the chromosome's length. Here, we report that the MSY is a mosaic of heterochromatic sequences and three classes of euchromatic sequences: X-transposed, X-degenerate and ampliconic. These classes contain all 156 known transcription units, which include 78 protein-coding genes that collectively encode 27 distinct proteins. The X-transposed sequences exhibit 99% identity to the X chromosome. The X-degenerate sequences are remnants of ancient autosomes from which the modern X and Y chromosomes evolved. The ampliconic class includes large regions (about 30% of the MSY euchromatin) where sequence pairs show greater than 99.9% identity, which is maintained by frequent gene conversion (non-reciprocal transfer). The most prominent features here are eight massive palindromes, at least six of which contain testis genes.
Collapse
MESH Headings
- Chromosomes, Human, X/genetics
- Chromosomes, Human, Y/genetics
- Crossing Over, Genetic/genetics
- DNA Transposable Elements/genetics
- Euchromatin/genetics
- Evolution, Molecular
- Female
- Gene Amplification/genetics
- Gene Conversion/genetics
- Genes/genetics
- Heterochromatin/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Male
- Models, Genetic
- Multigene Family/genetics
- Organ Specificity
- Pseudogenes/genetics
- Sequence Homology, Nucleic Acid
- Sex Characteristics
- Sex Determination Processes
- Species Specificity
- Testis/metabolism
- Transcription, Genetic/genetics
- Transducin
Collapse
Affiliation(s)
- Helen Skaletsky
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|