551
|
Fei H, Karnezis T, Reimer RJ, Krantz DE. Membrane topology of the Drosophila vesicular glutamate transporter. J Neurochem 2007; 101:1662-71. [PMID: 17394549 DOI: 10.1111/j.1471-4159.2007.04518.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The vesicular glutamate transporters (VGLUTs) are responsible for packaging glutamate into synaptic vesicles, and are part of a family of structurally related proteins that mediate organic anion transport. Standard computer-based predictions of transmembrane domains have led to divergent topological models, indicating the need for experimentally derived predictions. Here we present data on the topology of the VGLUT ortholog from Drosophila melanogaster (DVGLUT). Using immunofluorescence assays of DVGLUT transiently localized to the plasma membrane of heterologously transfected cells, we have determined the accessibility of epitope tags inserted into the lumenal/extracellular face of the protein. Using immunoisolation, we have identified complementary tagged sites that face the cytoplasm. Our data show that DVGLUT contains 10 hydrophobic regions that completely span the membrane (TMs 1-10) and that the amino and carboxyl termini are cytosolic. Importantly, between TMs 4 and 5 is an unforeseen cytosolic loop of some 50 residues. Other domains exposed to the cytosol include loops between TMs 6-7 and 8-9, and regions C-terminal to TM2 and N-terminal to TM3. Between TM2 and 3 is a potentially hydrophobic, but topologically ambiguous region. Lumenal domains include sequences between TMs 1-2, 3-4, 5-6, 7-8 and 9-10. These data provide a basis for determining structure-function relationships for DVGLUT and other related proteins.
Collapse
Affiliation(s)
- Hao Fei
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Gonda (Goldschmied) Center for Genetic and Neuroscience Research, Los Angeles, CA 90095-1761, USA
| | | | | | | |
Collapse
|
552
|
Abstract
Sodium-coupled glutamate transporters are essential for efficient excitatory transmission in the brain and function by exposing their binding sites alternately to either the synapse or the interior of the cell. After the recent determination of the crystal structure of an archaeal homologue of the eukaryotic glutamate transporters, corresponding to the substrate occluded form, now the same has been achieved for the outward-facing conformation. These structures provide important insights into the molecular mechanism of ion-coupled transporters.
Collapse
Affiliation(s)
- Baruch I Kanner
- Department of Biochemistry, Hebrew University, Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel.
| |
Collapse
|
553
|
Cai X. Molecular evolution and structural analysis of the Ca(2+) release-activated Ca(2+) channel subunit, Orai. J Mol Biol 2007; 368:1284-91. [PMID: 17400243 DOI: 10.1016/j.jmb.2007.03.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 03/07/2007] [Accepted: 03/08/2007] [Indexed: 12/15/2022]
Abstract
Depletion of intracellular Ca(2+) stores evokes Ca(2+) entry across the plasma membrane by inducing Ca(2+) release-activated Ca(2+) (CRAC) currents in many cell types. Recently, Orai and STIM proteins were identified as the molecular identities of the CRAC channel subunit and the endoplasmic reticulum Ca(2+) sensor, respectively. Here, extensive database searching and phylogenetic analysis revealed several lineage-specific duplication events in the Orai protein family, which may account for the evolutionary origins of distinct functional properties among mammalian Orai proteins. Based on similarity to key structural domains and essential residues for channel functions in Orai proteins, database searching also identifies a putative primordial Orai sequence in hyperthermophilic archaeons. Furthermore, modern Orai appears to acquire new structural domains as early as Urochodata, before divergence into vertebrates. The evolutionary patterns of structural domains might be related to distinct functional properties of Drosophila and mammalian CRAC currents. Interestingly, Orai proteins display two conserved internal repeats located at transmembrane segments 1 and 3, both of which contain key amino acids essential for channel function. These findings demonstrate biochemical and physiological relevance of Orai proteins in light of different evolutionary origins and will provide novel insights into future structural and functional studies of Orai proteins.
Collapse
Affiliation(s)
- Xinjiang Cai
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
554
|
Abstract
This review investigates some key aspects of transport mechanisms and recent advances in our understanding of this ubiquitous cellular process. The prevailing model of cotransport is the alternating access model, which suggests that large conformational changes in the transporter protein accompany cotransport. This model rests on decades of research and has received substantial support because many transporter characteristics are explained using its premises. New experiments, however, have revealed the existence of channels in transporters, an idea that is in conflict with traditional models. The alternating access model is the subject of previous detailed reviews. Here we concentrate on the relatively recent data that document primarily the channel properties of transporters. In some cases, namely, the observation of single-transporter currents, the evidence is direct. In other cases the evidence--for example, from fluctuation analysis or transporter currents too large to be described as anything other than channel-like--is indirect. Although the existence of channels in transporters is not in doubt, we are far from understanding the significance of this property. In the online Supplemental Material , we review some pertinent aspects of ion channel theory and cotransport physiology to provide background for the channels and transporters presented here. We discuss the existence of channels in transporters, and we speculate on the biological significance of this newly unveiled property of transport proteins.
Collapse
Affiliation(s)
- Louis J DeFelice
- Department of Pharmacology and Molecular Neuroscience, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
| | | |
Collapse
|
555
|
Rath A, Deber CM. Membrane protein assembly patterns reflect selection for non-proliferative structures. FEBS Lett 2007; 581:1335-41. [PMID: 17350624 DOI: 10.1016/j.febslet.2007.02.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 02/14/2007] [Accepted: 02/20/2007] [Indexed: 11/16/2022]
Abstract
Membrane proteins that regulate solute movement are often built from multiple copies of an identical polypeptide chain. These complexes represent striking examples of self-assembling systems that recruit monomers only until a prescribed level for function is reached. Here we report that three modes of assembly - distinguished by sequence and stoichiometry - describe all helical membrane protein complexes currently solved to high resolution. Using the 13 presently available non-redundant homo-oligomeric structures, we show that two of these types segregate with protein function: one produces energy-dependent transporters, while the other builds channels for passive diffusion. Given such limited routes to functional complexes, membrane proteins that self-assemble exist on the edge of aggregation, susceptible to mutations that may underlie human diseases.
Collapse
Affiliation(s)
- Arianna Rath
- Division of Molecular Structure and Function, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ont., Canada M5G 1X8
| | | |
Collapse
|
556
|
Boudker O, Ryan RM, Yernool D, Shimamoto K, Gouaux E. Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 2007; 445:387-93. [PMID: 17230192 DOI: 10.1038/nature05455] [Citation(s) in RCA: 398] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 11/15/2006] [Indexed: 11/09/2022]
Abstract
Secondary transporters are integral membrane proteins that catalyse the movement of substrate molecules across the lipid bilayer by coupling substrate transport to one or more ion gradients, thereby providing a mechanism for the concentrative uptake of substrates. Here we describe crystallographic and thermodynamic studies of Glt(Ph), a sodium (Na+)-coupled aspartate transporter, defining sites for aspartate, two sodium ions and d,l-threo-beta-benzyloxyaspartate, an inhibitor. We further show that helical hairpin 2 is the extracellular gate that controls access of substrate and ions to the internal binding sites. At least two sodium ions bind in close proximity to the substrate and these sodium-binding sites, together with the sodium-binding sites in another sodium-coupled transporter, LeuT, define an unwound alpha-helix as the central element of the ion-binding motif, a motif well suited to the binding of sodium and to participation in conformational changes that accompany ion binding and unbinding during the transport cycle.
Collapse
Affiliation(s)
- Olga Boudker
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
557
|
Giménez I, Forbush B. The residues determining differences in ion affinities among the alternative splice variants F, A, and B of the mammalian renal Na-K-Cl cotransporter (NKCC2). J Biol Chem 2006; 282:6540-7. [PMID: 17186942 DOI: 10.1074/jbc.m610780200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three alternatively spliced variants of the renal Na-K-Cl cotransporter (NKCC2) are found in distinct regions of the thick ascending limb of the mammalian kidney; these variants mediate Na(+)K(+)2Cl(-) transport with different ion affinities. Here, we examine the specific residues involved in the variant-specific affinity differences, utilizing a mutagenic approach to change the NKCC2B variant into the A or F variant, with functional expression in Xenopus oocytes. The splice region contains the second transmembrane domain (TM2) and the putative intracellular loop (ICL1) connecting TM2 and TM3. It is found that the B variant is functionally changed to the F variant by replacement of six residues, half of the effect brought about by three TM2 residues and half by three ICL1 residues. The involvement of the ICL1 residues strongly suggests that this region of ICL1 may actually be part of a membrane-embedded domain. Changing six residues is also sufficient to bring about the smaller functional change from the B to the A variant; three residues in TM2 appear to be primarily responsible, two of which correspond to residues involved in the B-to-F changes. A B-variant mutation reported in a mild case of Bartter disease was found to render the cotransporter inactive. These results identify the combination of amino acid variations responsible for the differences among the three splice variants of NKCC2, and they support a model in which a reentrant loop following TM2 contributes to the chloride binding and translocation domains.
Collapse
Affiliation(s)
- Ignacio Giménez
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06511, USA.
| | | |
Collapse
|
558
|
Trainer MA, Yurgel SN, Kahn ML. Role of a conserved membrane glycine residue in a dicarboxylate transporter from Sinorhizobium meliloti. J Bacteriol 2006; 189:2160-3. [PMID: 17158675 PMCID: PMC1855765 DOI: 10.1128/jb.01247-06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogen-fixing rhizobial bacteroids import dicarboxylates by using the DctA transporter. G114 of DctA is highly conserved. A G114D mutant is inactive, but DctA with a small amino acid (G114A) or a helix disrupter (G114P) retains significant activity. G114 probably interacts with other membrane helices in stabilizing a substrate-binding pocket.
Collapse
Affiliation(s)
- Maria A Trainer
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | | | |
Collapse
|
559
|
Abstract
The glucose transporter GLUT2 has been shown to also transport water. In the present paper we investigated the relation between sugar and water transport in human GLUT2 expressed in Xenopus oocytes. Sugar transport was determined from uptakes of non-metabolizable glucose analogues, primarily 3-O-methyl-D-glucopyranoside; key experimental results were confirmed using D(+)-glucose. Water transport was derived from changes in oocyte volume monitored at a high resolution (20 pl, 1 s). Expression of GLUT2 induced a sugar permeability, P(S), of about 5 x 10(-6) cm s(-1) and a passive water permeability, L(p), of 5.5 x 10(-5) cm s(-1). Accordingly, the passive water permeability of a GLUT2 protein is about 10 times higher than its sugar permeability. Both permeabilities were abolished by phloretin. Isosmotic addition of sugar to the bathing solution (replacing mannitol) induced two parallel components of water influx in GLUT2, one by osmosis and one by cotransport. The osmotic driving force arose from sugar accumulation at the intracellular side of the membrane and was given by an intracellular diffusion coefficient for sugar of 10(-6) cm(2) s(-1), one-fifth of the free solution value. The diffusion coefficient was determined in oocytes coexpressing GLUT2 and the water channel AQP1 where water transport was predominantly osmotic. By the cotransport mechanism about 35 water molecules were transported for each sugar molecule by a mechanism within the GLUT2. These water molecules could be transported uphill, against an osmotic gradient, energized by the flux of sugar. This capacity for cotransport is 10 times smaller than that of the Na(+)-coupled glucose transporters (SGLT1). The physiological role of GLUT2 for intestinal transport under conditions of high luminal sugar concentrations is discussed.
Collapse
Affiliation(s)
- Thomas Zeuthen
- Nordic Centre for Water Imbalance Related Disorders, Department of Medical Physiology, The Panum Institute, Blegdamsvej 3C, University of Copenhagen DK-2200 N, Denmark.
| | | | | |
Collapse
|
560
|
Duckwitz W, Hausmann R, Aschrafi A, Schmalzing G. P2X5 Subunit Assembly Requires Scaffolding by the Second Transmembrane Domain and a Conserved Aspartate. J Biol Chem 2006; 281:39561-72. [PMID: 17001079 DOI: 10.1074/jbc.m606113200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Functional homomeric and heteromeric ATP-gated P2X receptor channels have been shown to display a characteristic trimeric architecture. Of the seven different isoforms (designated P2X(1)-P2X(7)), P2X(5) occurs in humans primarily as a non-functional variant lacking the C-terminal end of the ectodomain and the outer half of the second transmembrane domain. We show that this truncated variant, which results from the splice-skipping of exon 10, is prone to subunit aggregation because the residual transmembrane domain 2 is too short to insert into the membrane. Alleviation of the negative hydrophobic mismatch by the addition of a stretch of moderately hydrophobic residues enabled formation of a second membrane-spanning domain and strictly parallel homotrimerization. Systematic mutagenesis identified only one transmembrane domain 2 residue, Asp(355), which supported homotrimerization in a side chain-specific manner. Our results indicate that transmembrane domain 2 formation contributes 2-fold to hP2X(5) homotrimerization by tethering the end of the ectodomain to the membrane, thereby topologically restricting conformational mobility, and by intramembrane positioning of Asp(355). While transmembrane domain 2 appears to favor assembly by enabling productive subunit interactions in the ectodomain, Asp(355) seems to assist by simultaneously driving intramembrane helix interactions. Overall, these results indicate a complex interplay between topology, helix-helix interactions, and oligomerization to achieve a correctly folded structure.
Collapse
Affiliation(s)
- Wiebke Duckwitz
- Department of Molecular Pharmacology, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen, Wendlingweg 2, D-52074 Aachen, Germany
| | | | | | | |
Collapse
|
561
|
Karatza P, Panos P, Georgopoulou E, Frillingos S. Cysteine-scanning Analysis of the Nucleobase-Ascorbate Transporter Signature Motif in YgfO Permease of Escherichia coli. J Biol Chem 2006; 281:39881-90. [PMID: 17077086 DOI: 10.1074/jbc.m605748200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nucleobase-ascorbate transporter (NAT) signature motif is a conserved sequence motif of the ubiquitous NAT/NCS2 family implicated in defining the function and selectivity of purine translocation pathway in the major fungal homolog UapA. To analyze the role of NAT motif more systematically, we employed Cys-scanning mutagenesis of the Escherichia coli xanthine-specific homolog YgfO. Using a functional mutant devoid of Cys residues (C-less), each amino acid residue in sequence (315)GSIPITTFAQNNGVIQMTGVASRYVG(340) (motif underlined) was replaced individually with Cys. Of the 26 single-Cys mutants, 16 accumulate xanthine to > or =50% of the steady state observed with C-less YgfO, 4 accumulate to low levels (10-25% of C-less), F322C, N325C, and N326C accumulate marginally (5-8% of C-less), and P318C, Q324C, and G340C are inactive. When transferred to wild type, F322C(wt) and N326C(wt) are highly active, but P318G(wt), Q324C(wt), N325C(wt), and G340C(wt) are inactive, and G340A(wt) displays low activity. Immunoblot analysis shows that replacements at Pro-318 or Gly-340 are associated with low or negligible expression in the membrane. More extensive mutagenesis reveals that Gln-324 is critical for high affinity uptake and ligand recognition, and Asn-325 is irreplaceable for active xanthine transport, whereas Thr-332 and Gly-333 are important determinants of ligand specificity. All single-Cys mutants react with N-ethylmaleimide, but regarding sensitivity to inactivation, they fall to three regions; positions 315-322 are insensitive to N-ethylmaleimide, with IC(50) values > or =0.4 mM, positions 323-329 are highly sensitive, with IC(50) values of 15-80 microM, and sensitivity of positions 330-340 follows a periodicity, with mutants sensitive to inactivation clustering on one face of an alpha-helix.
Collapse
Affiliation(s)
- Panayiota Karatza
- Laboratory of Biological Chemistry, University of Ioannina Medical School, 45110 Ioannina, Greece
| | | | | | | |
Collapse
|
562
|
Seidel M, Alderwick LJ, Sahm H, Besra GS, Eggeling L. Topology and mutational analysis of the single Emb arabinofuranosyltransferase of Corynebacterium glutamicum as a model of Emb proteins of Mycobacterium tuberculosis. Glycobiology 2006; 17:210-9. [PMID: 17088267 DOI: 10.1093/glycob/cwl066] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The cell wall mycolyl-arabinogalactan (AG)--peptidoglycan complex is essential in mycobacterial species, such as Mycobacterium tuberculosis, and is the target of several antitubercular drugs. For instance, ethambutol (EMB) targets AG biosynthesis through inhibition of the arabinofuranosyltransferases Mt-EmbA and Mt-EmbB, as well as the single Emb from Corynebacterium glutamicum. Here, we present for the first time an experimental analysis of the membrane topology of Emb. The domain organization clearly positions highly conserved loop regions, like the recognized glycosyltransferase C motif and the hydrophilic C-terminus towards the periplasmic side of the cell. Moreover, the assignment and orientation of hydrophobic segments identified a loop region, which might dip into the membrane and could possibly line a transportation channel for the emerging substrate. Site-directed mutations introduced into plasmid-encoded Cg-emb were analyzed in a C. glutamicumDeltaemb strain for their AG glycosyl composition and linkage analysis. Mutations analyzed did not perturb galactan synthesis; however, D297A produced a dramatically reduced arabinan content and prevented growth, indicating an inactive Emb. A second D298A mutation also drastically reduced arabinan content; however, growth of the corresponding mutant was not altered, indicating a certain tolerance of this mutation in terms of Emb function. A W659L-P667A-Q674E triple mutation in the chain length regulation motif (Pro-motif) resulted in a reduced arabinose deposition in AG but retained all arabinofuranosyl linkages. Taken together, the data clearly define important residues of Emb involved in arabinan domain formation and, for the first time, shed new light on the topology of this important enzyme.
Collapse
Affiliation(s)
- Mathias Seidel
- Institute for Biotechnology 1, Research Centre Juelich, D-52425 Juelich, Germany
| | | | | | | | | |
Collapse
|
563
|
Beart PM, O'Shea RD. Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 2006; 150:5-17. [PMID: 17088867 PMCID: PMC2013845 DOI: 10.1038/sj.bjp.0706949] [Citation(s) in RCA: 305] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
L-Glutamate (Glu) is the major excitatory neurotransmitter in the mammalian CNS and five types of high-affinity Glu transporters (EAAT1-5) have been identified. The transporters EAAT1 and EAAT2 in glial cells are responsible for the majority of Glu uptake while neuronal EAATs appear to have specialized roles at particular types of synapses. Dysfunction of EAATs is specifically implicated in the pathology of neurodegenerative conditions such as amyotrophic lateral sclerosis, epilepsy, Huntington's disease, Alzheimer's disease and ischemic stroke injury, and thus treatments that can modulate EAAT function may prove beneficial in these conditions. Recent advances have been made in our understanding of the regulation of EAATs, including their trafficking, splicing and post-translational modification. This article summarises some recent developments that improve our understanding of the roles and regulation of EAATs.
Collapse
Affiliation(s)
- P M Beart
- Howard Florey Institute, The University of Melbourne, Parkville, Victoria 3800, Australia.
| | | |
Collapse
|
564
|
Forster IC, Hernando N, Biber J, Murer H. Proximal tubular handling of phosphate: A molecular perspective. Kidney Int 2006; 70:1548-59. [PMID: 16955105 DOI: 10.1038/sj.ki.5001813] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Members of the SLC34 gene family of solute carriers encode for three Na+-dependent phosphate (P i) cotransporter proteins, two of which (NaPi-IIa/SLC34A1 and NaPi-IIc/SLC34A3) control renal reabsorption of P i in the proximal tubule of mammals, whereas NaPi-IIb/SCLC34A2 mediates P i transport in organs other than the kidney. The P i transport mechanism has been extensively studied in heterologous expression systems and structure-function studies have begun to reveal the intricacies of the transport cycle at the molecular level using techniques such as cysteine scanning mutagenesis, and voltage clamp fluorometry. Moreover, sequence differences between the three types of cotransporters have been exploited to obtain information about the molecular determinants of hormonal sensitivity and electrogenicity. Renal handling of P i is regulated by hormonal and non-hormonal factors. Changes in urinary excretion of P i are almost invariably mirrored by changes in the apical expression of NaPi-IIa and NaPi-IIc in proximal tubules. Therefore, understanding the mechanisms that control the apical expression of NaPi-IIa and NaPi-IIc as well as their functional properties is critical to understanding how an organism achieves P i homeostasis.
Collapse
MESH Headings
- Animals
- Homeostasis
- Humans
- Kidney Tubules, Proximal/metabolism
- Mice
- Parathyroid Hormone/physiology
- Phosphates/metabolism
- Sodium-Phosphate Cotransporter Proteins, Type IIa/chemistry
- Sodium-Phosphate Cotransporter Proteins, Type IIa/genetics
- Sodium-Phosphate Cotransporter Proteins, Type IIa/metabolism
- Sodium-Phosphate Cotransporter Proteins, Type IIb/chemistry
- Sodium-Phosphate Cotransporter Proteins, Type IIb/genetics
- Sodium-Phosphate Cotransporter Proteins, Type IIb/metabolism
- Sodium-Phosphate Cotransporter Proteins, Type IIc/chemistry
- Sodium-Phosphate Cotransporter Proteins, Type IIc/genetics
- Sodium-Phosphate Cotransporter Proteins, Type IIc/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- I C Forster
- Institute of Physiology and ZIHP, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
565
|
Bamber L, Harding M, Butler PJG, Kunji ERS. Yeast mitochondrial ADP/ATP carriers are monomeric in detergents. Proc Natl Acad Sci U S A 2006; 103:16224-9. [PMID: 17056710 PMCID: PMC1618811 DOI: 10.1073/pnas.0607640103] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial carriers are believed widely to be homodimers both in the inner membrane of the organelle and in detergents. The dimensions and molecular masses of the detergent and protein-detergent micelles were measured for yeast ADP/ATP carriers in a range of different detergents. The radius of the carrier at the midpoint of the membrane, its average radius, its Stokes' radius, its molecular mass, and its excluded volume were determined. These parameters are consistent with the known structural model of the bovine ADP/ATP carrier and they demonstrate that the yeast mitochondrial ADP/ATP carriers are monomeric in detergents. Therefore, models of substrate transport have to be considered in which the carrier operates as a monomer rather than as a dimer.
Collapse
Affiliation(s)
| | | | - P. Jonathan G. Butler
- Laboratory of Molecular Biology, Medical Research Council, Hills Road, CB2 2XY Cambridge, United Kingdom
| | | |
Collapse
|
566
|
Leighton BH, Seal RP, Watts SD, Skyba MO, Amara SG. Structural Rearrangements at the Translocation Pore of the Human Glutamate Transporter, EAAT1. J Biol Chem 2006; 281:29788-96. [PMID: 16877378 DOI: 10.1074/jbc.m604991200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structure-function studies of mammalian and bacterial excitatory amino acid transporters (EAATs), as well as the crystal structure of a related archaeal glutamate transporter, support a model in which TM7, TM8, and the re-entrant loops HP1 and HP2 participate in forming a substrate translocation pathway within each subunit of a trimer. However, the transport mechanism, including precise binding sites for substrates and co-transported ions and changes in the tertiary structure underlying transport, is still not known. In this study, we used chemical cross-linking of introduced cysteine pairs in a cysteine-less version of EAAT1 to examine the dynamics of key domains associated with the translocation pore. Here we show that cysteine substitution at Ala-395, Ala-367, and Ala-440 results in functional single and double cysteine transporters and that in the absence of glutamate or dl-threo-beta-benzyloxyaspartate (dl-TBOA), A395C in the highly conserved TM7 can be cross-linked to A367C in HP1 and to A440C in HP2. The formation of these disulfide bonds is reversible and occurs intra-molecularly. Interestingly, cross-linking A395C to A367C appears to abolish transport, whereas cross-linking A395C to A440C lowers the affinities for glutamate and dl-TBOA but does not change the maximal transport rate. Additionally, glutamate and dl-TBOA binding prevent cross-linking in both double cysteine transporters, whereas sodium binding facilitates cross-linking in the A395C/A367C transporter. These data provide evidence that within each subunit of EAAT1, Ala-395 in TM7 resides close to a residue at the tip of each re-entrant loop (HP1 and HP2) and that these residues are repositioned relative to one another at different steps in the transport cycle. Such behavior likely reflects rearrangements in the tertiary structure of the translocation pore during transport and thus provides constraints for modeling the structural dynamics associated with transport.
Collapse
Affiliation(s)
- Barbara H Leighton
- Howard Hughes Medical Institute, Vollum Institute, Oregon Health and Science University, Portland, Oregon 97201, USA
| | | | | | | | | |
Collapse
|
567
|
Menaker D, Bendahan A, Kanner BI. The substrate specificity of a neuronal glutamate transporter is determined by the nature of the coupling ion. J Neurochem 2006; 99:20-8. [PMID: 16831195 DOI: 10.1111/j.1471-4159.2006.04003.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glutamate transporters are essential for terminating synaptic transmission. Glutamate is translocated together with three sodium ions. In the neuronal glutamate transporter EAAC1, lithium can replace sodium. To address the question of whether the coupling ion interacts with the 'driven' substrate during co-transport, the kinetic parameters of transport of the three substrates, L-glutamate and D- and L-aspartate by EAAC-1 in sodium- and lithium-containing media were compared. The major effect of the substitution of sodium by lithium was on Km. In the presence of sodium, the values for Km and Imax of these substrates were similar. In the presence of lithium, the Km for L-aspartate was increased around 13-fold. Remarkably, the corresponding increase for L-glutamate and D-aspartate was much larger, around 130-fold. In marked contrast, the Ki values for a non-transportable substrate analogue were similar in the presence of either sodium or lithium. The preference for L-aspartate in the presence of lithium was also observed when electrogenic transport of radioactive substrates was monitored in EAAC1-containing proteoliposomes. Our results indicate that, subsequent to substrate binding, the co-transported solutes interact functionally in the binding pocket of the transporter.
Collapse
Affiliation(s)
- David Menaker
- Department of Biochemistry, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
568
|
Abstract
Serotonin transporter (SERT) catalyzes reuptake of the neurotransmitter serotonin (5-HT) and is a target for antidepressant drugs and psychostimulants. It is a member of a large family of neurotransmitter and amino acid transporters. A recent study using site-directed cysteine modification identified a helical region of the transporter with high accessibility to the cytoplasm. Subsequently, the high resolution structure of LeuT, a prokaryotic homologue, showed that the residues corresponding to this helical region are part of the fifth transmembrane domain. The accessibility of these positions is now shown to depend on conformational changes corresponding to interconversion of SERT between two forms that face the extracellular medium and the cytoplasm, respectively. Binding of the extracellular inhibitor cocaine decreased accessibility at these positions, whereas 5-HT, the transported substrate, increased it. The effect of 5-HT required the simultaneous presence of Na+ and Cl-, which are transported into the cell together (symported) with 5-HT. In light of the LeuT structure, these results begin to define the pathway through which 5-HT diffuses between its binding site and the cytoplasm. They also confirm a prediction of the alternating access model for transport, namely, that all symported substrates must bind together before translocation.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, USA
| | | |
Collapse
|
569
|
Tawfik VL, Lacroix-Fralish ML, Bercury KK, Nutile-McMenemy N, Harris BT, Deleo JA. Induction of astrocyte differentiation by propentofylline increases glutamate transporter expression in vitro: heterogeneity of the quiescent phenotype. Glia 2006; 54:193-203. [PMID: 16819765 DOI: 10.1002/glia.20365] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Reactive astrocytes display decreased glutamate transporters, such as GLT-1, and as a result synaptic glutamate clearance is impaired. In addition, these activated astrocytes are immunocompetent and release algesic mediators that can sensitize neurons in the spinal cord. Currently, we evaluated the effect of propentofylline (PPF), an experimental antiallodynic agent, on the phenotype and glutamate transporter expression of astrocytes. Primary astrocyte cultures, which represent an activated phenotype with a polygonal morphology and low GLT-1 expression, were treated for 3 or 7 days with 10, 100, or 1,000 microM PPF or dibutyryl-cAMP (db-cAMP), a known inducer of GLT-1 expression. PPF dose-dependently induced astrocytes to display a mature phenotype, with elongated processes and a stellate shape, as well as increased GLT-1 and GLAST immunoreactivity, similar to that seen with db-cAMP. Real time RT-PCR and Western blot analysis clearly demonstrated that PPF caused a potent dose-dependent induction of GLT-1 and GLAST mRNA and protein in these astrocytes. Importantly, the observed increase in glutamate transporters was found to have a functional effect, with significantly enhanced glutamate uptake in astrocytes treated with 100 or 1,000 microM PPF that was sensitive to dihydrokainate inhibition, suggesting it is GLT-1 mediated. Finally, the effect of PPF on lipopolysaccharide-induced chemokine release was investigated. Interestingly, PPF was able to dampen both MCP-1 (CCL2) and MIP-2 (CXCL2) release from astrocytes while db-cAMP significantly enhanced this chemokine expression. These findings suggest that PPF is capable of differentiating astrocytes to a homeostatic, mature phenotype, competent for glutamate clearance and distinct from that induced by db-cAMP.
Collapse
Affiliation(s)
- Vivianne L Tawfik
- Department of Pharmacology, Dartmouth Medical School, Hanover, New Hampshire 03756, USA
| | | | | | | | | | | |
Collapse
|
570
|
Owe SG, Marcaggi P, Attwell D. The ionic stoichiometry of the GLAST glutamate transporter in salamander retinal glia. J Physiol 2006; 577:591-9. [PMID: 17008380 PMCID: PMC1890427 DOI: 10.1113/jphysiol.2006.116830] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Maintaining a low extracellular glutamate concentration in the central nervous system is important for terminating synaptic transmission and preventing excitotoxic cell death. The stoichiometry of the most abundant glutamate transporter, GLT-1, predicts that a very low glutamate concentration, approximately 2 nM, should be reached in the absence of glutamate release, yet microdialysis measurements give a value of approximately 1 microM. If other glutamate transporters had a different stoichiometry, the predicted minimum glutamate concentration could be higher, for example if those transporters were driven by the cotransport of 2 Na+ (rather than of 3 Na+ as for GLT-1). Here we investigated the ionic stoichiometry of the glutamate transporter GLAST, which is the major glutamate transporter expressed in the retina and cerebellum, is expressed in other adult brain areas at a lower level than GLT-1, and is present throughout the brain early in development when expression of GLT-1 is low. Glutamate transport by GLAST was found to be driven, as for GLT-1, by the cotransport of 3 Na+ and 1 H+ and the counter-transport of 1 K+, suggesting that the minimum extracellular glutamate concentration should be similar during development and in the adult brain. A less powerful accumulation of glutamate by GLAST than by GLT-1 cannot be used to explain the high glutamate concentration measured by microdialysis.
Collapse
Affiliation(s)
- Simen Gylterud Owe
- Department of Physiology, University College London, London, WC1E 6BT, UK
| | | | | |
Collapse
|
571
|
Oppedisano F, Pochini L, Galluccio M, Indiveri C. The glutamine/amino acid transporter (ASCT2) reconstituted in liposomes: transport mechanism, regulation by ATP and characterization of the glutamine/glutamate antiport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:291-8. [PMID: 17046712 DOI: 10.1016/j.bbamem.2006.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 08/06/2006] [Accepted: 09/06/2006] [Indexed: 11/25/2022]
Abstract
The glutamine/amino acid transporter solubilized from rat renal apical plasma membrane (brush-border membrane) with C12E8 and reconstituted into liposomes has been previously identified as the ASCT2 transporter. The reconstituted transporter catalyses an antiport reaction in which external glutamine and Na+ are cotransported in exchange with internal glutamine (or other amino acids). The glutamine-Na+ cotransport occurred with a 1:1 stoichiometry. The concentration of Na+ did not influence the Km for glutamine and vice versa. Experimental data obtained by a bi-substrate analysis of the glutamine-Na+ cotransport, together with previous report on the glutamine(ex)/glutamine(in) pseudo bi-reactant analysis, indicated that the transporter catalyses a three-substrate transport reaction with a random simultaneous mechanism. The presence of ATP in the internal compartment of the proteoliposomes led to an increase of the Vmax of the transport and to a decrease of the Km of the transporter for external Na+. The reconstituted glutamine/amino acid transporter was inhibited by glutamate; the inhibition was more pronounced at acidic pH. A kinetic analysis revealed that the inhibition was competitive with respect to glutamine. Glutamate was also transported in exchange with glutamine. The external Km of the transporter for glutamate (13.3 mM) was slightly higher than the internal one (8.3 mM). At acidic pH the external but not the internal Km decreased. According with the Km values, glutamate should be transported preferentially from inside to outside in exchange for external glutamine and Na+.
Collapse
Affiliation(s)
- Francesca Oppedisano
- Department of Cell Biology, University of Calabria, Via P. Bucci 4c 87036 Arcavacata di Rende, Italy
| | | | | | | |
Collapse
|
572
|
Martin-Galiano AJ, Frishman D. Defining the fold space of membrane proteins: the CAMPS database. Proteins 2006; 64:906-22. [PMID: 16802318 DOI: 10.1002/prot.21081] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent progress in structure determination techniques has led to a significant growth in the number of known membrane protein structures, and the first structural genomics projects focusing on membrane proteins have been initiated, warranting an investigation of appropriate bioinformatics strategies for optimal structural target selection for these molecules. What determines a membrane protein fold? How many membrane structures need to be solved to provide sufficient structural coverage of the membrane protein sequence space? We present the CAMPS database (Computational Analysis of the Membrane Protein Space) containing almost 45,000 proteins with three or more predicted transmembrane helices (TMH) from 120 bacterial species. This large set of membrane proteins was subjected to single-linkage clustering using only sequence alignments covering at least 40% of the TMH present in a given family. This process yielded 266 sequence clusters with at least 15 members, roughly corresponding to membrane structural folds, sufficiently structurally homogeneous in terms of the variation of TMH number between individual sequences. These clusters were further subdivided into functionally homogeneous subclusters according to the COG (Clusters of Orthologous Groups) system as well as more stringently defined families sharing at least 30% identity. The CAMPS sequence clusters are thus designed to reflect three main levels of interest for structural genomics: fold, function, and modeling distance. We present a library of Hidden Markov Models (HMM) derived from sequence alignments of TMH at these three levels of sequence similarity. Given that 24 out of 266 clusters corresponding to membrane folds already have associated known structures, we estimate that 242 additional new structures, one for each remaining cluster, would provide structural coverage at the fold level of roughly 70% of prokaryotic membrane proteins belonging to the currently most populated families.
Collapse
|
573
|
Foreword. J Membr Biol 2006. [DOI: 10.1007/s00232-006-0874-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
574
|
Rosental N, Bendahan A, Kanner BI. Multiple Consequences of Mutating Two Conserved β-Bridge Forming Residues in the Translocation Cycle of a Neuronal Glutamate Transporter. J Biol Chem 2006; 281:27905-15. [PMID: 16870620 DOI: 10.1074/jbc.m600331200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutamate transporters remove this neurotransmitter from the synapse in an electrogenic process. After sodium-coupled glutamate translocation, the cycle is completed by obligatory outward translocation of potassium. In the crystal structure of an archaeal homologue, two conserved residues form a beta-bridge, which points away from the binding pocket. In the neuronal glutamate transporter EAAC1, the equivalent residues are asparagine 366 and aspartate 368. Substitution mutants N366Q and D368E, but not N366D and D368N, show glutamate-induced inwardly rectifying steady-state currents, but their apparent substrate affinity is dramatically decreased. Such currents, which reflect electrogenic net uptake of substrate are not observed with the reciprocal double mutant N366D/D368N. Remarkably, the double mutant exhibits slow substrate-induced voltage-dependent capacitative transient currents. These currents apparently reflect the reversible sodium-coupled glutamate translocation step, because the interaction of the double mutant with potassium is largely impaired. Moreover, when the analogous double mutant in the glutamate transporter GLT-1 is reconstituted into liposomes, a slow exchange of radioactive and unlabeled acidic amino acids is observed. Our results suggest that it is the interaction of asparagine 366 and aspartate 368 that is important during the glutamate translocation step. On the other hand, the side chains of these residues themselves are required for the subsequent potassium relocation step.
Collapse
Affiliation(s)
- Noa Rosental
- Department of Biochemistry, Hebrew University Hadassah Medical School, P. O. Box 12272, Jerusalem 91120, Israel
| | | | | |
Collapse
|
575
|
Seeger MA, Schiefner A, Eicher T, Verrey F, Diederichs K, Pos KM. Structural Asymmetry of AcrB Trimer Suggests a Peristaltic Pump Mechanism. Science 2006; 313:1295-8. [PMID: 16946072 DOI: 10.1126/science.1131542] [Citation(s) in RCA: 430] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The AcrA/AcrB/TolC complex spans the inner and outer membranes of Escherichia coli and serves as its major drug-resistance pump. Driven by the proton motive force, it mediates the efflux of bile salts, detergents, organic solvents, and many structurally unrelated antibiotics. Here, we report a crystallographic structure of trimeric AcrB determined at 2.9 and 3.0 angstrom resolution in space groups that allow asymmetry of the monomers. This structure reveals three different monomer conformations representing consecutive states in a transport cycle. The structural data imply an alternating access mechanism and a novel peristaltic mode of drug transport by this type of transporter.
Collapse
Affiliation(s)
- Markus A Seeger
- Institute of Physiology and Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
576
|
Farhan H, Freissmuth M, Sitte HH. Oligomerization of neurotransmitter transporters: a ticket from the endoplasmic reticulum to the plasma membrane. Handb Exp Pharmacol 2006:233-49. [PMID: 16722239 DOI: 10.1007/3-540-29784-7_12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cellular localization of neurotransmitter transporters is important for the precise control of synaptic transmission. By removing the neurotransmitters from the synaptic cleft, these transporters terminate signalling and affect duration and intensity of neurotransmission. Thus, a lot of work has been invested in the determination of the cellular compartment to which neurotransmitter transporters localize. In particular, the polarized distribution has received substantial attention. However, trafficking of transporters in the early secretory pathway has been largely ignored. Oligomer formation is a prerequisite for newly formed transporters to pass the stringent quality control mechanisms of the endoplasmic reticulum (ER), and this quaternary structure is also the preferred state which transporters reside in at the plasma membrane. Only properly assembled transporters are able to recruit the coatomer coat proteins that are needed for ER-to-Golgi trafficking. In this review, we will start with a brief description on transporter oligomerization that underlies ER-to-Golgi trafficking, followed by an introduction to ER-to-Golgi trafficking of neurotransmitter transporters. Finally, we will discuss the importance of oligomer formation for the pharmacological action of the illicitly used amphetamines and its derivatives.
Collapse
Affiliation(s)
- H Farhan
- Institute of Pharmacology, Centre for Biomolecular Medicine and Pharmacology, Medical University Vienna, Währingerstrasse 13a, 1090 Vienna, Austria
| | | | | |
Collapse
|
577
|
Abstract
Neurotransmitter transporters located at the presynaptic or glial cell membrane are responsible for the stringent and rapid clearance of the transmitter from the synapse, and hence they terminate signaling and control the duration of synaptic inputs in the brain. Two distinct families of neurotransmitter transporters have been identified based on sequence homology: (1) the neurotransmitter sodium symporter family (NSS), which includes the Na+/C1(-)-dependent transporters for dopamine, norepinephrine, and serotonin; and (2) the dicarboxylate/amino acid cation symporter family (DAACS), which includes the Na(+)-dependent glutamate transporters (excitatory amino acid transporters; EAAT). In this chapter, we describe how the identification of endogenous Zn2(+)-binding sites, as well as engineering of artificial Zn2(+)-binding sites both in the Na+/Cl(-)-dependent transporters and in the EAATs, have proved to be an important tool for studying the molecular function of these proteins. We also interpret the current available data on Zn2(+)-binding sites in the context of the recently published crystal structures. Moreover, we review how the identification of endogenous Zn2(+)-binding sites has indirectly suggested the possibility that several of the transporters are modulated by Zn2+ in vivo, and thus that Zn2+ can play a role as a neuromodulator by affecting the function of neurotransmitter transporters.
Collapse
Affiliation(s)
- K Nørgaard-Nielsen
- Molecular Neuropharmacology Group, Department of Pharmacology, The Panum Institute, University of Copenhagen, 2200 Copenhagen N, Denmark
| | | |
Collapse
|
578
|
Zhou Y, Zomot E, Kanner BI. Identification of a Lithium Interaction Site in the γ-Aminobutyric Acid (GABA) Transporter GAT-1. J Biol Chem 2006; 281:22092-22099. [PMID: 16757479 DOI: 10.1074/jbc.m602319200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sodium- and chloride-dependent electrogenic gamma-aminobutyric acid (GABA) transporter GAT-1, which transports two sodium ions together with GABA, is essential for synaptic transmission by this neurotransmitter. Although lithium by itself does not support GABA transport, it has been proposed that lithium can replace sodium at one of the binding sites but not at the other. To identify putative lithium selectivity determinants, we have mutated the five GAT-1 residues corresponding to those whose side chains participate in the sodium binding sites Na1 and Na2 of the bacterial leucine-transporting homologue LeuT(Aa). In GAT-1 and in most other neurotransmitter transporter family members, four of these residues are conserved, but aspartate 395 replaces the Na2 residue threonine 354. At varying extracellular sodium, lithium stimulated sodium-dependent transport currents as well as [3H]GABA uptake in wild type GAT-1. The extent of this stimulation was dependent on the GABA concentration. In mutants in which aspartate 395 was replaced by threonine or serine, the stimulation of transport by lithium was abolished. Moreover, these mutants were unable to mediate the lithium leak currents. This phenotype was not observed in mutants at the four other positions, although their transport properties were severely impacted. Thus at saturating GABA, the site corresponding to Na2 behaves as a low affinity sodium binding site where lithium can replace sodium. We propose that GABA participates in the other sodium binding site, just like leucine does in the Na1 site, and that at limiting GABA, this site determines the apparent sodium affinity of GABA transport.
Collapse
Affiliation(s)
- Yonggang Zhou
- Department of Biochemistry, Hebrew University Hadassah Medical School, P. O. Box 12272, Jerusalem 91120, Israel
| | - Elia Zomot
- Department of Biochemistry, Hebrew University Hadassah Medical School, P. O. Box 12272, Jerusalem 91120, Israel
| | - Baruch I Kanner
- Department of Biochemistry, Hebrew University Hadassah Medical School, P. O. Box 12272, Jerusalem 91120, Israel.
| |
Collapse
|
579
|
Abstract
Excitatory amino acid transporters (EAATs) play a central role in the termination of synaptic transmission and in extracellular glutamate homeostasis in the mammalian CNS. A functional transporter is assembled as oligomer consisting of three subunits, each of which appears to transport glutamate independently from the neighboring subunits. EAATs do not only sustain a secondary-active glutamate transport but also function as anion channel. We here address the question whether intersubunit interactions play a role in pore-mediated anion conduction. We expressed a neuronal isoform, EAAT4, heterologously in Xenopus oocytes and mammalian cells and measured glutamate flux and anion currents under various concentrations of Na+ and glutamate. EAAT4 anion channels are active in the absence of both substrates, and increasing concentrations activate EAAT4 anion currents with a sigmoidal concentration dependence. Because only one glutamate molecule is cotransported per uptake cycle, the cooperativity between glutamate binding sites most likely arises from an interaction between different carrier domains. This interaction is modified by two point mutations close to the putative glutamate binding site, G464S and Q467S. Both mutations alter the dissociation constants and Hill coefficient of the substrate dependence of anion currents, leaving the concentration dependence of glutamate uptake unaffected. Our results demonstrate that glutamate carriers cooperatively interact during anion channel activation.
Collapse
|
580
|
Kawate T, Gouaux E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 2006; 14:673-81. [PMID: 16615909 DOI: 10.1016/j.str.2006.01.013] [Citation(s) in RCA: 538] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 12/27/2005] [Accepted: 01/05/2006] [Indexed: 11/28/2022]
Abstract
Formation of well-ordered crystals of membrane proteins is a bottleneck for structure determination by X-ray crystallography. Nevertheless, one can increase the probability of successful crystallization by precrystallization screening, a process by which one analyzes the monodispersity and stability of the protein-detergent complex. Traditionally, this has required microgram to milligram quantities of purified protein and a concomitant investment of time and resources. Here, we describe a rapid and efficient precrystallization screening strategy in which the target protein is covalently fused to green fluorescent protein (GFP) and the resulting unpurified protein is analyzed by fluorescence-detection size-exclusion chromatography (FSEC). This strategy requires only nanogram quantities of unpurified protein and allows one to evaluate localization and expression level, the degree of monodispersity, and the approximate molecular mass. We show the application of this precrystallization screening to four membrane proteins derived from prokaryotic or eukaryotic organisms.
Collapse
Affiliation(s)
- Toshimitsu Kawate
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168(th) Street, New York, New York 10032, USA
| | | |
Collapse
|
581
|
Nieoullon A, Canolle B, Masmejean F, Guillet B, Pisano P, Lortet S. The neuronal excitatory amino acid transporter EAAC1/EAAT3: does it represent a major actor at the brain excitatory synapse? J Neurochem 2006; 98:1007-18. [PMID: 16800850 DOI: 10.1111/j.1471-4159.2006.03978.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
EAAC1/EAAT3 is a transporter of glutamate (Glu) present at the post-synaptic neuronal element, in opposition to the two other main transporters, GLAST/EAAT1 and GLT1/EAAT2, expressed at the excitatory amino acid (EAA) synapse by surrounding astrocytes. Although, in the adult, EAAC1/EAAT3 exhibits a rather low expression level and is considered to make a minor contribution to Glu removal from the synapse, its early expression during brain development, before the astrocytes are functional, suggests that such a neuronal transporter is involved in the developmental effects of EAA and, possibly, in the biosynthesis and trophic role of GABA, which is excitatory in nature in different brain regions during the earlier stages of brain development. This neuronal Glu transporter is considered to have a dual action as it is apparently involved in the neuronal uptake of cysteine, which acts as a key substrate for the synthesis of glutathione, a major anti-oxidant, because the neurones do not express the Xc(-) transport system in the mature brain. Interestingly, EAAC1/EAAT3 activity/expression was shown to be highly regulated by neuronal activity as well as by intracellular signalling pathways involving primarily alpha protein kinase C (alphaPKC) and phosphatidylinositol-3-kinase (PI3K). Such regulatory processes could act either at the post-traductional level or at the transcriptional level. It is worth noting that EAAC1/EAAT3 exhibits specificity, compared with other EAA transporters, because it is present mainly in the intracellular compartment and only for about 20% at the plasma membrane. Variations in neuronal Glu uptake were shown to be associated with rapid changes in the trafficking of the transporter protein altering the membranar location of the transporter. More recent data show that astrocyte-secreted factors such as cholesterol could also influence rapid changes in the location of EAAC1/EAAT3 between the plasma membrane and the cytoplasmic compartment. Such a highly regulated process of EAAC1/EAAT3 activity/expression may have implications in the physiopathology of major diseases affecting EAA brain signalling, which is further supported by data obtained in animal models of hypoxia-anoxia, for example.
Collapse
Affiliation(s)
- André Nieoullon
- IBDML-IC2N, UMR 6216 CNRS, Université de la Méditerranée, Institut de Biologie du Développement de Marseille-Luminy, Marseille, France.
| | | | | | | | | | | |
Collapse
|
582
|
Monaco C, Talà A, Spinosa MR, Progida C, De Nitto E, Gaballo A, Bruni CB, Bucci C, Alifano P. Identification of a meningococcal L-glutamate ABC transporter operon essential for growth in low-sodium environments. Infect Immun 2006; 74:1725-40. [PMID: 16495545 PMCID: PMC1418650 DOI: 10.1128/iai.74.3.1725-1740.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GdhR is a meningococcal transcriptional regulator that was previously shown to positively control the expression of gdhA, encoding the NADP-specific L-glutamate dehydrogenase (NADP-GDH), in response to the growth phase and/or to the carbon source. In this study we used reverse transcriptase-PCR-differential display (to identify additional GdhR-regulated genes. The results indicated that GdhR, in addition to NADP-GDH, controls the expression of a number of genes involved in glucose catabolism by the Entner-Doudoroff pathway and in l-glutamate import by an unknown ABC transport system. The genes encoding the putative periplasmic substrate-binding protein (NMB1963) and the permease (NMB1965) of the ABC transporter were genetically inactivated. Uptake experiments demonstrated an impairment of L-glutamate import in the NMB1965-defective mutant in the absence or in the presence of a low sodium ion concentration. In contrast, at a sodium ion concentration above 60 mM, the uptake defect disappeared, possibly because the activity of a sodium-driven secondary transporter became predominant. Indeed, the NMB1965-defective mutant was unable to grow at a low sodium ion concentration (<20 mM) in a chemically defined medium containing L-glutamate and four other amino acids that supported meningococcal growth, but it grew when the sodium ion concentration was raised to higher values (>60 mM). The same growth phenotype was observed in the NMB1963-defective mutant. Cell invasion and intracellular persistence assays and expression data during cell invasion provided evidence that the l-glutamate ABC transporter, tentatively named GltT, was critical for meningococcal adaptation in the low-sodium intracellular environment.
Collapse
Affiliation(s)
- Caterina Monaco
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università di Lecce, Via Monteroni, 73100 Lecce, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
583
|
Valluru N, Silva F, Dhage M, Rodriguez G, Alloor SR, Renthal R. Transmembrane helix-helix association: relative stabilities at low pH. Biochemistry 2006; 45:4371-7. [PMID: 16584172 PMCID: PMC2519877 DOI: 10.1021/bi0525268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have previously studied the unfolding equilibrium of bacterioopsin in a single phase solvent, using Förster mechanism fluorescence resonance energy transfer (FRET) as a probe, from tryptophan donors to a dansyl acceptor. We observed an apparent unfolding transition in bacterioopsin perturbed by increasing ethanol concentrations [Nannepaga et al. (2004) Biochemistry 43, 50-59]. We have further investigated this transition and find that the unfolding is pH-dependent. We have now measured the apparent pK of acid-induced unfolding of bacterioopsin in 90% ethanol. When the acceptor is on helix B (Lys 41), the apparent pK for unfolding is 4.75; on the EF connecting loop (Cys 163), 5.15; and on helix G (Cys 222), 5.75. Five-helix proteolytic fragments are less stable. The apparent unfolding pKs are 5.46 for residues 72-248 (Cys 163) and 7.36 for residues 1-166 (Lys 41). When interpreted in terms of a simple equilibrium model for unfolding, the apparent pKs give relative free energies of unfolding in the range of -0.54 to -3.5 kcal/mol. The results suggest that the C-terminal helix of bacterioopsin is less stably folded than the N-terminal helices. We analyzed the pairwise helix-helix interaction surfaces of bacteriorhodopsin and three other seven-transmembrane-helix proteins on the basis of crystal structures. The results show that the interaction surfaces are smoother and the helix axis separations are closer in the amino-terminal two-thirds of the proteins compared with the carboxyl-terminal one-third. However, the F helix is important in stabilizing the folded structure, as shown by the instability of the 1-166 fragment. Considering the high-resolution crystal structure of bacteriorhodopsin, there are no obvious helix-helix interactions involving protein side chains which would be destabilized by protonation at the estimated pH of the unfolding transitions. However, a number of helix-bridging water molecules could become protonated, thereby weakening the helix-helix interactions.
Collapse
Affiliation(s)
- Neelima Valluru
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249
| | - Frances Silva
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249
| | - Manmath Dhage
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249
| | - Gustavo Rodriguez
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249
| | - Srinivas R. Alloor
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249
| | - Robert Renthal
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
- To whom to address correspondence at Dept. of Biology, U. of Texas at San Antonio, San Antonio, TX 78249; email ; tel. 210-458-5452; fax 210-458-4467
| |
Collapse
|
584
|
Boston-Howes W, Gibb SL, Williams EO, Pasinelli P, Brown RH, Trotti D. Caspase-3 Cleaves and Inactivates the Glutamate Transporter EAAT2. J Biol Chem 2006; 281:14076-84. [PMID: 16567804 DOI: 10.1074/jbc.m600653200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
EAAT2 is a high affinity, Na+-dependent glutamate transporter with predominant astroglial localization. It accounts for the clearance of the bulk of glutamate released at central nervous system synapses and therefore has a crucial role in shaping glutamatergic neurotransmission and limiting excitotoxicity. Caspase-3 activation and impairment in expression and activity of EAAT2 are two distinct molecular mechanisms occurring in human amyotrophic lateral sclerosis (ALS) and in the transgenic rodent model of the disease. Excitotoxicity caused by down-regulation of EAAT2 is thought to be a contributing factor to motor neuron death in ALS. In this study, we report the novel evidence that caspase-3 cleaves EAAT2 at a unique site located in the cytosolic C-terminal domain of the transporter, a finding that links excitotoxicity and activation of caspase-3 as converging mechanisms in the pathogenesis of ALS. Caspase-3 cleavage of EAAT2 leads to a drastic and selective inhibition of this transporter. Heterologous expression of mutant SOD1 proteins linked to the familial form of ALS leads to inhibition of EAAT2 through a mechanism that largely involves activation of caspase-3 and cleavage of the transporter. In addition, we found evidence in spinal cord homogenates of mutant SOD1 ALS mice of a truncated form of EAAT2, likely deriving from caspase-3-mediated proteolytic cleavage, which appeared concurrently to the loss of EAAT2 immunoreactivity and to increased expression of activated caspase-3. Taken together, our findings suggest that caspase-3 cleavage of EAAT2 is one mechanism responsible for the impairment of glutamate uptake in mutant SOD1-linked ALS.
Collapse
Affiliation(s)
- William Boston-Howes
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | |
Collapse
|
585
|
Tsai CJ, Ziegler C. Structure Determination of Secondary Transport Proteins by Electron Crystallography: Two-Dimensional Crystallization of the Betaine Uptake System BetP. J Mol Microbiol Biotechnol 2006; 10:197-207. [PMID: 16645315 DOI: 10.1159/000091565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Structure determination at high resolution is still a challenge for membrane proteins in general, but in particular for secondary transporters due to their highly dynamic nature. X-ray structures of ten secondary transporters have recently been determined, but a thorough understanding of transport mechanisms necessitates structures at different functional states. Electron cryo-microscopy of two-dimensional (2D) crystals offers an alternative to obtain structural information at intermediate resolution. Electron crystallography is a sophisticated way to study proteins in a natural membrane environment and to track conformational changes in situ. Furthermore, basic interactions between protein and lipids can be investigated. Projection and 3-dimensional maps of six secondary transporters from different families have been determined by electron crystallography of 2D crystals at a resolution of 8 A and better. In this review, we give an overview about the principles of 2D crystallization, in particular of secondary transporters, and summarize the important steps successfully applied to establish and improve the 2D crystallization of the high-affinity glycine betaine uptake system from Corynebacterium glutamicum, BetP.
Collapse
Affiliation(s)
- Ching-Ju Tsai
- Max Planck Institute of Biophysics Frankfurt, Department of Structural Biology, Frankfurt a. Main, Germany
| | | |
Collapse
|
586
|
Kunji ERS, Robinson AJ. The conserved substrate binding site of mitochondrial carriers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1237-48. [PMID: 16759636 DOI: 10.1016/j.bbabio.2006.03.021] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 03/10/2006] [Accepted: 03/24/2006] [Indexed: 10/24/2022]
Abstract
Mitochondrial carriers transport nucleotides, co-factors and metabolic intermediates across the inner mitochondrial membrane permeability barrier. They belong to a family of transporters unique to eukaryotes and they differ in structure and transport mechanism from other secondary transporters. The main structural fold consists of a barrel of six transmembrane alpha-helices closed at the matrix side by a salt-bridge network at the bottom of the cavity. The significant sequence conservation in the mitochondrial carrier family suggests that specific recognition of substrates is coupled to a common mechanism of transport. We have identified a common substrate binding site comprising residues that are highly conserved and, as demonstrated by mutagenesis, are essential for function. The binding site explains substrate selectivity, ion coupling and the effects of the membrane potential on transport. The main contact points in the site are related by threefold symmetry like the common structural fold. The substrate is bound at the midpoint of the membrane and may function as a pivot point for the movements of the transmembrane alpha-helices as the carrier changes conformation. The trigger for the translocation event is likely to be the substrate-induced perturbation of the salt bridge network at the bottom of the cavity.
Collapse
Affiliation(s)
- Edmund R S Kunji
- The Medical Research Council, Dunn Human Nutrition Unit, CB2 2XY, Cambridge, UK.
| | | |
Collapse
|
587
|
Henry LK, DeFelice LJ, Blakely RD. Getting the Message Across: A Recent Transporter Structure Shows the Way. Neuron 2006; 49:791-6. [PMID: 16543127 DOI: 10.1016/j.neuron.2006.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Efforts to define the mechanisms governing neurotransmitter uptake and drug action have moved into high gear with the publication of a high-resolution structure of a leucine transporter from Aquifex aeolicus, a bacterial member of the SLC6 transporter family. Solved with the substrate leucine bound, the new structure corroborates extensive biochemical and mutagenesis studies performed with related mammalian neurotransmitter transporters and provides exciting suggestions as to how coupling arises between ions and substrates to permit efficient neurotransmitter clearance.
Collapse
Affiliation(s)
- L Keith Henry
- Department of Pharmacology and Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
588
|
Glutamate (excitatory amino acid). Br J Pharmacol 2006. [DOI: 10.1038/sj.bjp.0706487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
589
|
Aller SG, Unger VM. Projection structure of the human copper transporter CTR1 at 6-A resolution reveals a compact trimer with a novel channel-like architecture. Proc Natl Acad Sci U S A 2006; 103:3627-32. [PMID: 16501047 PMCID: PMC1450133 DOI: 10.1073/pnas.0509929103] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human CTR1 is a high-affinity copper transporter that also mediates the uptake of the anticancer drug cisplatin by largely unknown transport mechanisms. Here we report the 6-A projection structure obtained for human CTR1 by using electron crystallography of 2D protein crystals in a native phospholipid bilayer. The projection of CTR1 reveals a symmetrical trimer that is <40 A wide. Notably, the center threefold axis of each trimer forms a region of very low electron density likely to be involved in copper translocation. The formation of a putative pore for metal ions at the interface of three identical subunits deviates from the structural design of typical primary and secondary active transporters and reveals that copper uptake transporters have a novel architecture that is structurally more closely related to channel proteins.
Collapse
Affiliation(s)
- Stephen G. Aller
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, P.O. Box 208024, New Haven, CT 06520-8024
| | - Vinzenz M. Unger
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, P.O. Box 208024, New Haven, CT 06520-8024
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
590
|
Sobczak I, Lolkema JS. The 2-hydroxycarboxylate transporter family: physiology, structure, and mechanism. Microbiol Mol Biol Rev 2006; 69:665-95. [PMID: 16339740 PMCID: PMC1306803 DOI: 10.1128/mmbr.69.4.665-695.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 2-hydroxycarboxylate transporter family is a family of secondary transporters found exclusively in the bacterial kingdom. They function in the metabolism of the di- and tricarboxylates malate and citrate, mostly in fermentative pathways involving decarboxylation of malate or oxaloacetate. These pathways are found in the class Bacillales of the low-CG gram-positive bacteria and in the gamma subdivision of the Proteobacteria. The pathways have evolved into a remarkable diversity in terms of the combinations of enzymes and transporters that built the pathways and of energy conservation mechanisms. The transporter family includes H+ and Na+ symporters and precursor/product exchangers. The proteins consist of a bundle of 11 transmembrane helices formed from two homologous domains containing five transmembrane segments each, plus one additional segment at the N terminus. The two domains have opposite orientations in the membrane and contain a pore-loop or reentrant loop structure between the fourth and fifth transmembrane segments. The two pore-loops enter the membrane from opposite sides and are believed to be part of the translocation site. The binding site is located asymmetrically in the membrane, close to the interface of membrane and cytoplasm. The binding site in the translocation pore is believed to be alternatively exposed to the internal and external media. The proposed structure of the 2HCT transporters is different from any known structure of a membrane protein and represents a new structural class of secondary transporters.
Collapse
Affiliation(s)
- Iwona Sobczak
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | |
Collapse
|
591
|
Tao Z, Zhang Z, Grewer C. Neutralization of the aspartic acid residue Asp-367, but not Asp-454, inhibits binding of Na+ to the glutamate-free form and cycling of the glutamate transporter EAAC1. J Biol Chem 2006; 281:10263-72. [PMID: 16478724 PMCID: PMC2430067 DOI: 10.1074/jbc.m510739200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Substrate transport by the plasma membrane glutamate transporter EAAC1 is coupled to cotransport of three sodium ions. One of these Na(+) ions binds to the transporter already in the absence of glutamate. Here, we have investigated the possible involvement of two conserved aspartic acid residues in transmembrane segments 7 and 8 of EAAC1, Asp-367 and Asp-454, in Na(+) cotransport. To test the effect of charge neutralization mutations in these positions on Na(+) binding to the glutamate-free transporter, we recorded the Na(+)-induced anion leak current to determine the K(m) of EAAC1 for Na(+). For EAAC1(WT), this K(m) was determined as 120 mm. When the negative charge of Asp-367 was neutralized by mutagenesis to asparagine, Na(+) activated the anion leak current with a K(m) of about 2 m, indicating dramatically impaired Na(+) binding to the mutant transporter. In contrast, the Na(+) affinity of EAAC1(D454N) was virtually unchanged compared with the wild type transporter (K(m) = 90 mm). The reduced occupancy of the Na(+) binding site of EAAC1(D367N) resulted in a dramatic reduction in glutamate affinity (K(m) = 3.6 mm, 140 mm [Na(+)]), which could be partially overcome by increasing extracellular [Na(+)]. In addition to impairing Na(+) binding, the D367N mutation slowed glutamate transport, as shown by pre-steady-state kinetic analysis of transport currents, by strongly decreasing the rate of a reaction step associated with glutamate translocation. Our data are consistent with a model in which Asp-367, but not Asp-454, is involved in coordinating the bound Na(+) in the glutamate-free transporter form.
Collapse
Affiliation(s)
- Zhen Tao
- Department of Physiology and Biophysics, University of Miami School of Medicine, 1600 NW 10th Avenue, Miami, FL 33136, USA
| | | | | |
Collapse
|
592
|
Abstract
Glutamate is the primary excitatory neurotransmitter in the central nervous system. During synaptic activity, glutamate is released into the synaptic cleft and binds to glutamate receptors on the pre- and postsynaptic membrane as well as on neighboring astrocytes in order to start a number of intracellular signaling cascades. To allow for an efficient signaling to occur, glutamate levels in the synaptic cleft have to be maintained at very low levels. This process is regulated by glutamate transporters, which remove excess extracellular glutamate via a sodium-potassium coupled uptake mechanism. When extracellular glutamate levels rise to about normal, glutamate overactivates glutamate receptors, triggering a multitude of intracellular events in the postsynaptic neuron, which ultimately results in neuronal cell death. This phenomenon is known as excitotoxicity and is the underlying mechanisms of a number of neurodegenerative diseases. A dysfunction of the glutamate transporter is thought to contribute to cell death during excitotoxicity. Therefore, efforts have been made to understand the regulation of glutamate transporter function. Transporter activity can be regulated in different ways, including through gene expression, transporter protein targeting and trafficking and through posttranslational modifications of the transporter protein. The identification of these mechanisms has helped to understand the role of glutamate transporters during pathology and will aid in the development of therapeutic strategies with the transporter as a desirable target.
Collapse
Affiliation(s)
- R Sattler
- Department of Neurology, Johns Hopkins University, 600 N Wolfe Street, Meyer 6-109, Baltimore, MD 21287, USA
| | | |
Collapse
|
593
|
Abstract
Glutamate transporters are a family of transporters that regulate extracellular glutamate concentrations so as to maintain a dynamic and high-fidelity cell signalling process in the brain. Site-directed mutagenesis has been used to investigate various aspects of the structural and functional properties of these transporters to gain insights into how they work. This field of research has recently undergone a major development with the determination of the crystal structure of a bacterial glutamate transporter, and this chapter relates the results from mutagenesis experiments with what we now know about glutamate transporter structure.
Collapse
Affiliation(s)
- R J Vandenberg
- Department of Pharmacology, Institute for Biomedical Research, University of Sydney, 2006 New South Wales, Australia.
| |
Collapse
|
594
|
Sheldon AL, González MI, Robinson MB. A carboxyl-terminal determinant of the neuronal glutamate transporter, EAAC1, is required for platelet-derived growth factor-dependent trafficking. J Biol Chem 2005; 281:4876-86. [PMID: 16368696 DOI: 10.1074/jbc.m504983200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neuronal glutamate transporter, EAAC1 (excitatory amino acid carrier 1), undergoes rapid regulation after treatment with platelet-derived growth factor (PDGF) or phorbol ester in C6 glioma cells and neurons. A large intracellular pool of EAAC1 exists, from which transporters are redistributed to the cell surface in response to these signals. Here we show that PDGF had no effect on subcellular localization of the glial glutamate transporter, GLT-1, after transfection into C6 glioma cells. Chimeras consisting of domains from EAAC1 or GLT-1 were used to investigate structural motifs involved in PDGF-dependent redistribution of EAAC1. PDGF did not induce trafficking of an EAAC1 chimera containing the carboxyl-terminal domain of GLT-1; however, it did induce trafficking of a GLT-1 chimera containing the carboxyl-terminal domain of EAAC1. A truncated mutant of EAAC1 lacking 10 carboxyl-terminal amino acids was responsive to PDGF, whereas a mutant lacking 20 residues was not. Alanine substitution mutagenesis in this region revealed a short motif, (502)YVN(504), necessary for regulated trafficking. This motif was also involved in protein kinase C-dependent trafficking, as mutant transporters exhibited an attenuated response to phorbol ester. Interestingly, the presence of YVN in the homologous region of a nonresponsive chimera was not sufficient to confer regulated trafficking; however, the presence of a 12-amino acid motif starting at this Tyr residue was sufficient to confer responsiveness to PDGF. These studies identify a novel motif within the carboxyl terminus of EAAC1 which is required for regulated trafficking. The possibility that this motif targets EAAC1 to an intracellular, "regulated pool" is discussed.
Collapse
Affiliation(s)
- Amanda L Sheldon
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania 19104-4318, USA
| | | | | |
Collapse
|
595
|
Vinothkumar KR, Raunser S, Jung H, Kühlbrandt W. Oligomeric structure of the carnitine transporter CaiT from Escherichia coli. J Biol Chem 2005; 281:4795-801. [PMID: 16365043 DOI: 10.1074/jbc.m508993200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The carnitine transporter CaiT from Escherichia coli belongs to the betaine, choline, and carnitine transporter family of secondary transporters. It acts as an L-carnitine/gamma-butyrobetaine exchanger and is predicted to span the membrane 12 times. Unlike the other members of this transporter family, it does not require an ion gradient and does not respond to osmotic stress (Jung, H., Buchholz, M., Clausen, J., Nietschke, M., Revermann, A., Schmid, R., and Jung, K. (2002) J. Biol. Chem. 277, 39251-39258). The structure and oligomeric state of the protein was examined in detergent and in lipid bilayers. Blue native gel electrophoresis indicated that CaiT was a trimer in detergent solution. This result was further supported by gel filtration and cross-linking studies. Electron microscopy and single particle analysis of the protein showed a triangular structure of three masses or two parallel elongated densities. Reconstitution of CaiT into lipid bilayers yielded two-dimensional crystals that indicated that CaiT was a trimer in the membrane, similar to its homologue BetP. The implications of the trimeric structure on the function of CaiT are discussed.
Collapse
|
596
|
Abstract
The transport of ions across the membranes of cells and organelles is a prerequisite for many of life's processes. Transport often involves very precise selectivity for specific ions. Recently, atomic-resolution structures have been determined for channels or pumps that are selective for sodium, potassium, calcium, and chloride: four of the most abundant ions in biology. From these structures we can begin to understand the principles of selective ion transport in terms of the architecture and detailed chemistry of the ion conduction pathways.
Collapse
Affiliation(s)
- Eric Gouaux
- Vollum Institute and Howard Hughes Medical Institute, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | |
Collapse
|
597
|
Purhonen P, Lundbäck AK, Lemonnier R, Leblanc G, Hebert H. Three-dimensional structure of the sugar symporter melibiose permease from cryo-electron microscopy. J Struct Biol 2005; 152:76-83. [PMID: 16139519 DOI: 10.1016/j.jsb.2005.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 07/08/2005] [Accepted: 07/12/2005] [Indexed: 10/25/2022]
Abstract
Melibiose permease (MelB) of Escherichia coli is a secondary transporter that couples the uptake of melibiose and various other galactosides to symport of cations that can be Na+, Li+ or H+. MelB belongs to the glycoside-pentoside-hexuronide: cation symporter family of porters and is suggested to have 12 transmembrane helices. We have determined the three-dimensional structure of MelB at 10A resolution in the membrane plane with cryo-electron microscopy from two-dimensional crystals. The three-dimensional map shows a heart-shaped molecule composed of two domains with a large central cavity between them. The structure is constricted at one side of the membrane while it is open to the other. The overall molecular shape resembles those of lactose permease and glycerol-3-phosphate transporter. However, organization of helices in MelB seems less symmetrical than in these two members of the major facilitator superfamily.
Collapse
Affiliation(s)
- Pasi Purhonen
- Karolinska Institutet, Department of Biosciences at Novum, S-141 57 Huddinge,Sweden
| | | | | | | | | |
Collapse
|
598
|
Zeuthen T, Belhage B, Zeuthen E. Water transport by Na+-coupled cotransporters of glucose (SGLT1) and of iodide (NIS). The dependence of substrate size studied at high resolution. J Physiol 2005; 570:485-99. [PMID: 16322051 PMCID: PMC1479871 DOI: 10.1113/jphysiol.2005.100933] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The relation between substrate and water transport was studied in Na+-coupled cotransporters of glucose (SGLT1) and of iodide (NIS) expressed in Xenopus oocytes. The water transport was monitored from changes in oocyte volume at a resolution of 20 pl, more than one order of magnitude better than previous investigations. The rate of cotransport was monitored as the clamp current obtained from two-electrode voltage clamp. The high resolution data demonstrated a fixed ratio between the turn-over of the cotransporter and the rate of water transport. This applied to experiments in which the rate of cotransport was changed by isosmotic application of substrate, by rapid changes in clamp voltage, or by poisoning. Transport of larger substrates gave rise to less water transport. For the rabbit SGLT1, 378+/-20 (n=18 oocytes) water molecules were cotransported along with the 2 Na+ ions and the glucose-analogue alpha-MDG (MW 194); using the larger sugar arbutin (MW 272) this number was reduced by a factor of at least 0.86+/-0.03 (15). For the human SGLT1 the respective numbers were 234+/-12 (18) and 0.85+/-0.8 (7). For NIS, 253+/-16 (12) water molecules were cotransported for each 2 Na+ and 1 thiocyanate (SCN-, MW 58), with I- as anion (MW 127) only 162+/-11 (19) water molecules were cotransported. The effect of substrate size suggests a molecular mechanism for water cotransport and is opposite to what would be expected from unstirred layer effects. Data were analysed by a model which combined cotransport and osmosis at the membrane with diffusion in the cytoplasm. The combination of high resolution measurements and precise modelling showed that water transport across the membrane can be explained by cotransport of water in the membrane proteins and that intracellular unstirred layers effects are minute.
Collapse
Affiliation(s)
- Thomas Zeuthen
- Nordic Centre for Water Imbalance Related Disorders, Department of Medical Physiology, The Panum Institute, Blegdamsvej 3C, University of Copenhagen, DK-2200 N, Denmark.
| | | | | |
Collapse
|
599
|
Grewer C, Balani P, Weidenfeller C, Bartusel T, Tao Z, Rauen T. Individual subunits of the glutamate transporter EAAC1 homotrimer function independently of each other. Biochemistry 2005; 44:11913-23. [PMID: 16128593 PMCID: PMC2459315 DOI: 10.1021/bi050987n] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glutamate transporters are thought to be assembled as trimers of identical subunits that line a central hole, possibly the permeation pathway for anions. Here, we have tested the effect of multimerization on the transporter function. To do so, we coexpressed EAAC1(WT) with the mutant transporter EAAC1(R446Q), which transports glutamine but not glutamate. Application of 50 microM glutamate or 50 microM glutamine to cells coexpressing similar numbers of both transporters resulted in anion currents of 165 and 130 pA, respectively. Application of both substrates at the same time generated an anion current of 297 pA, demonstrating that the currents catalyzed by the wild-type and mutant transporter subunits are purely additive. This result is unexpected for anion permeation through a central pore but could be explained by anion permeation through independently functioning subunits. To further test the subunit independence, we coexpressed EAAC1(WT) and EAAC1(H295K), a transporter with a 90-fold reduced glutamate affinity as compared to EAAC1(WT), and determined the glutamate concentration dependence of currents of the mixed transporter population. The data were consistent with two independent populations of transporters with apparent glutamate affinities similar to those of EAAC1(H295K) and EAAC1(WT), respectively. Finally, we coexpressed EAAC1(WT) with the pH-independent mutant transporter EAAC1(E373Q), showing two independent populations of transporters, one being pH-dependent and the other being pH-independent. In conclusion, we propose that EAAC1 assembles as trimers of identical subunits but that the individual subunits in the trimer function independently of each other.
Collapse
Affiliation(s)
- Christof Grewer
- University of Miami School of Medicine, 1600 NW 10th Avenue, Miami, Florida 33136, USA.
| | | | | | | | | | | |
Collapse
|
600
|
Lolkema JS, Slotboom DJ. Sequence and hydropathy profile analysis of two classes of secondary transporters. Mol Membr Biol 2005; 22:177-89. [PMID: 16096261 DOI: 10.1080/09687860500063324] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A structural class in the MemGen classification of membrane proteins is a set of evolutionary related proteins sharing a similar global fold. A structural class contains both closely related pairs of proteins for which homology is clear from sequence comparison and very distantly related pairs, for which it is not possible to establish homology based on sequence similarity alone. In the latter case the evolutionary link is based on hydropathy profile analysis. Here, we use these evolutionary related sets of proteins to analyze the relationship between E-values in BLAST searches, sequence similarities in multiple sequence alignments and structural similarities in hydropathy profile analyses. Two structural classes of secondary transporters termed ST[3], which includes the Ion Transporter (IT) superfamily and ST[4], which includes the DAACS family (TC# 2.A.23) were extracted from the NCBI protein database. ST[3] contains 2051 unique sequences distributed over 32 families and 59 subfamilies. ST[4] is a smaller class containing 399 unique sequences distributed over 2 families and 7 subfamilies. One subfamily in ST[4] contains a new class of binding protein dependent secondary transporters. Comparison of the averaged hydropathy profiles of the subfamilies in ST[3] and ST[4] revealed that the two classes represent different folds. Divergence of the sequences in ST[4] is much smaller than observed in ST[3], suggesting different constraints on the proteins during evolution. Analysis of the correlation between the evolutionary relationship of pairs of proteins in a class and the BLAST E-value revealed that: (i) the BLAST algorithm is unable to pick up the majority of the links between proteins in structural class ST[3], (ii) "low complexity filtering" and "composition based statistics" improve the specificity, but strongly reduce the sensitivity of BLAST searches for distantly related proteins, indicating that these filters are too stringent for the proteins analyzed, and (iii) the E-value cut-off, which may be used to evaluate evolutionary significance of a hit in a BLAST search is very different for the two structural classes of membrane proteins.
Collapse
Affiliation(s)
- Juke S Lolkema
- Molecular Microbiology, Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands.
| | | |
Collapse
|