551
|
Valisno JAC, May J, Singh K, Helm EY, Venegas L, Budbazar E, Goodman JB, Nicholson CJ, Avram D, Cohen RA, Mitchell GF, Morgan KG, Seta F. BCL11B Regulates Arterial Stiffness and Related Target Organ Damage. Circ Res 2021; 128:755-768. [PMID: 33530702 PMCID: PMC7969164 DOI: 10.1161/circresaha.120.316666] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Supplemental Digital Content is available in the text. BCL11B (B-cell leukemia 11b) is a transcription factor known as an essential regulator of T lymphocytes and neuronal development during embryogenesis. A genome-wide association study showed that a gene desert region downstream of BCL11B, known to function as a BCL11B enhancer, harbors single nucleotide polymorphisms associated with increased arterial stiffness. However, a role for BCL11B in the adult cardiovascular system is unknown.
Collapse
Affiliation(s)
- Jeff Arni C Valisno
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, MA (J.A.C.V., J.M., L.V., E.B., J.B.G., R.A.C., F.S.)
| | - Joel May
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, MA (J.A.C.V., J.M., L.V., E.B., J.B.G., R.A.C., F.S.)
| | - Kuldeep Singh
- Department of Health Sciences, Sargent College, Boston University, MA (K.S., C.J.N., K.G.M.)
| | - Eric Y Helm
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville (E.Y.H., D.A.)
| | - Lisia Venegas
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, MA (J.A.C.V., J.M., L.V., E.B., J.B.G., R.A.C., F.S.)
| | - Enkhjargal Budbazar
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, MA (J.A.C.V., J.M., L.V., E.B., J.B.G., R.A.C., F.S.)
| | - Jena B Goodman
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, MA (J.A.C.V., J.M., L.V., E.B., J.B.G., R.A.C., F.S.)
| | - Christopher J Nicholson
- Department of Health Sciences, Sargent College, Boston University, MA (K.S., C.J.N., K.G.M.)
| | - Dorina Avram
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville (E.Y.H., D.A.).,Department of Immunology, Moffitt Cancer Center, Tampa, FL (D.A.)
| | - Richard A Cohen
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, MA (J.A.C.V., J.M., L.V., E.B., J.B.G., R.A.C., F.S.)
| | | | - Kathleen G Morgan
- Department of Health Sciences, Sargent College, Boston University, MA (K.S., C.J.N., K.G.M.)
| | - Francesca Seta
- Vascular Biology Section, Department of Medicine, Boston University School of Medicine, MA (J.A.C.V., J.M., L.V., E.B., J.B.G., R.A.C., F.S.)
| |
Collapse
|
552
|
Wang R, Man Y, Zhou M, Zhu Y, Wang L, Yang J. Neuropathic pain-induced cognitive dysfunction and down-regulation of neuronal pentraxin 2 in the cortex and hippocampus. Neuroreport 2021; 32:274-283. [PMID: 33512875 PMCID: PMC7870040 DOI: 10.1097/wnr.0000000000001584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/08/2020] [Indexed: 10/29/2022]
Abstract
Evidence from both basic and clinical science suggests that neuropathic pain can induce cognitive dysfunction. However, these results are mainly based on a series of behavioral tests, there is a lack of quantitative variables to indicate cognitive impairment. Neuronal activity-regulated pentraxin (NPTX2) is a ubiquitously expressed, secreted protein in the nervous system. NPTX2 has been implicated to be involved in a variety of neuropathic diseases including Parkinson's disease, ischemia, and Alzheimer's disease. In a mouse model of chronic pain, NPTX2 is involved in the regulation of inflammatory responses. Here, we employ a variety of behavioral approaches to demonstrate that mice with chronic neuropathic pain have cognitive impairment and exhibit an increased anxiety response. The expression of NPTX2, but not NPTX1, was down-regulated in the hippocampus and cortex after chronic neuropathic pain exposure. The modulation effect of NPTX2 on cognitive function was also verified by behavioral tests using Nptx2 knock-out mice. Above all, we conclude that downregulation of NPTX2 induced by neuropathic pain may serve as an indicator of a progressive cognitive dysfunction during the induction and maintenance of spared nerve injury.
Collapse
Affiliation(s)
- Rongguo Wang
- Department of Anesthesiology, Intensive Care Medicine and Pain Medicine, First Affiliated Hospital of Soochow University, Suzhou
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, China
| | - Yuanyuan Man
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, China
| | - Meiyan Zhou
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, China
| | - Yangzi Zhu
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, China
| | - Liwei Wang
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, China
| | - Jianping Yang
- Department of Anesthesiology, Intensive Care Medicine and Pain Medicine, First Affiliated Hospital of Soochow University, Suzhou
| |
Collapse
|
553
|
Amooei M, Meshkati Z, Nasiri R, Dakhili AB. Cognitive decline prevention in offspring of Pb +2 exposed mice by maternal aerobic training and Cur/CaCO 3@Cur supplementations: In vitro and in vivo studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111785. [PMID: 33348254 DOI: 10.1016/j.ecoenv.2020.111785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Heavy metals are considered contaminants that hazardously influence the healthy life of humans and animals as they are widely used in industry. Contact of youngsters and women at ages of parturition with lead (Pb+2) is a main related concern, which passes through the placental barricade and its better absorption in the intestine leads to flaws in the fetal developfment. However, the metals threaten animal and human life, in particular throughout developmental stages. Products existing in the nature have a major contribution to innovating chemo-preventives. As a naturally available polyphenol and necessary curcuminoid, curcumin (Cur) is a derivative of the herb Curcuma longa (L.) rhizome, which globally recognized as "wonder drug of life"; however, Cur has a limited clinical use as it is poorly dissolved in water. Therefore, to enhance its clinically relevant parameters, curcumin-loaded calcium carbonate (CaCO3@Cur) was synthesized by one step coprecipitation method as a newly introduced in this research. Initially, its structure was physio chemically characterized using FT-IR, FESEM and DLS equipment and then the cytotoxicity of lead when it was pretreated with Cur/CaCO3@Cur were assessed by MTT assay. Both Cur and CaCO3@Cur diminished the toxic effects of Pb+2 while the most protective effect on the Pb+2 cytotoxicity was achieved by pre-incubation of cells with CaCO3@Cur. Besides, the morphological changes of Pb+2-treated cells that were pre-incubated with or without Cur/CaCO3@Cur were observed by normal and florescent microscopes. A non-pharmacologic method that lowers the hazard of brain damage is exercise training that is capable of both improving and alleviating memory. In the current study, the role of regular aerobic training and CaCO3@Cur was assessed in reducing the risk of brain damage induced by lead nitrate contact. To achieve the mentioned goal, pregnant Balb/C mice were assigned to five groups (six mice/group) at random: negative and positive controls, aerobic training group and Cur and CaCO3@Cur treated (50 mg/kg/b.wt) trained groups that exposed to Pb+2 (2 mg/kg) by drinking water during breeding and pregnancy. With the completion of study, offspring were subjected to the behavioral tasks that was tested by step-through ORT, DLB, MWM and YM tests. As a result, having regular aerobic training and CaCO3@Cur co-administration with lead nitrate could reverse the most defected behavioral indicators; yet, this was not visible for both sexes and it seems that gender can also be a source of different effects in the animal's body. In fact, having regular aerobic training along with CaCO3@Cur supplementation during pregnancy may be encouraging protecting potential agents towards the toxicity of Pb+2 that could be recommended in the areas with high pollution of heavy metals.
Collapse
Affiliation(s)
- Maryam Amooei
- Department of physical education and sport sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Zohreh Meshkati
- Department of physical education and sport sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Rozita Nasiri
- Iran National Elite Foundation, Tehran 93111-14578, Iran; Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Amir Bahador Dakhili
- Department of physical education and sport science, Faculty of shahid chamran Branch, Technical and Vocational University (TVU), Kerman, Iran
| |
Collapse
|
554
|
3D-Printed Capacitive Sensor Objects for Object Recognition Assays. eNeuro 2021; 8:ENEURO.0310-20.2020. [PMID: 33446515 PMCID: PMC7877456 DOI: 10.1523/eneuro.0310-20.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/07/2020] [Accepted: 12/17/2020] [Indexed: 01/08/2023] Open
Abstract
Object recognition tasks are widely used assays for studying learning and memory in rodents. Object recognition typically involves familiarizing mice with a set of objects and then presenting a novel object or displacing an object to a novel location or context. Learning and memory are inferred by a relative increase in time investigating the novel/displaced object. These tasks are in widespread use, but there are many inconsistencies in the way they are conducted across labs. Two major contributors to this are the lack of consistency in the method of measuring object investigation and the lack of standardization of the objects that are used. Current video-based automated algorithms can often be unreliable whereas manual scoring of object investigation is time consuming, tedious, and more subjective. To resolve these issues, we sought to design and implement 3D-printed objects that can be standardized across labs and use capacitive sensing to measure object investigation. Using a 3D printer, conductive filament, and low-cost off-the-shelf components, we demonstrate that employing 3D-printed capacitive touch objects is a reliable and precise way to perform object recognition tasks. Ultimately, this approach will lead to increased standardization and consistency across labs, which will greatly improve basic and translational research into learning and memory mechanisms.
Collapse
|
555
|
Samanta S, Rajasekhar K, Ramesh M, Murugan NA, Alam S, Shah D, Clement JP, Govindaraju T. Naphthalene Monoimide Derivative Ameliorates Amyloid Burden and Cognitive Decline in a Transgenic Mouse Model of Alzheimer's Disease. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sourav Samanta
- Bioorganic Chemistry Laboratory New Chemistry Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru 560064 India
| | - Kolla Rajasekhar
- Bioorganic Chemistry Laboratory New Chemistry Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru 560064 India
| | - Madhu Ramesh
- Bioorganic Chemistry Laboratory New Chemistry Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru 560064 India
| | - Natarajan Arul Murugan
- Department of Theoretical Chemistry and Biology School of Chemistry Biotechnology and Health KTH Royal Institute of Technology S‐106 91 Stockholm Sweden
| | - Shadab Alam
- Bioorganic Chemistry Laboratory New Chemistry Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru 560064 India
| | - Devanshi Shah
- Neuroscience Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru 560064 India
| | - James Premdas Clement
- Neuroscience Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru 560064 India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory New Chemistry Unit Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur P.O. Bengaluru 560064 India
| |
Collapse
|
556
|
Bidirectional Regulation of Cognitive and Anxiety-like Behaviors by Dentate Gyrus Mossy Cells in Male and Female Mice. J Neurosci 2021; 41:2475-2495. [PMID: 33472828 DOI: 10.1523/jneurosci.1724-20.2021] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 12/04/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023] Open
Abstract
The dentate gyrus (DG) of the hippocampus is important for cognition and behavior. However, the circuits underlying these functions are unclear. DG mossy cells (MCs) are potentially important because of their excitatory synapses on the primary cell type, granule cells (GCs). However, MCs also activate GABAergic neurons, which inhibit GCs. We used viral delivery of designer receptors exclusively activated by designer drugs (DREADDs) in mice to implement a gain- and loss-of-function study of MCs in diverse behaviors. Using this approach, manipulations of MCs could bidirectionally regulate behavior. The results suggest that inhibiting MCs can reduce anxiety-like behavior and improve cognitive performance. However, not all cognitive or anxiety-related behaviors were influenced, suggesting specific roles of MCs in some, but not all, types of cognition and anxiety. Notably, several behaviors showed sex-specific effects, with females often showing more pronounced effects than the males. We also used the immediate early gene c-Fos to address whether DREADDs bidirectionally regulated MC or GC activity. We confirmed excitatory DREADDs increased MC c-Fos. However, there was no change in GC c-Fos, consistent with MC activation leading to GABAergic inhibition of GCs. In contrast, inhibitory DREADDs led to a large increase in GC c-Fos, consistent with a reduction in MC excitation of GABAergic neurons, and reduced inhibition of GCs. Together, these results suggest that MCs regulate anxiety and cognition in specific ways. We also raise the possibility that cognitive performance may be improved by reducing anxiety.SIGNIFICANCE STATEMENT The dentate gyrus (DG) has many important cognitive roles as well as being associated with affective behavior. This study addressed how a glutamatergic DG cell type called mossy cells (MCs) contributes to diverse behaviors, which is timely because it is known that MCs regulate the activity of the primary DG cell type, granule cells (GCs), but how MC activity influences behavior is unclear. We show, surprisingly, that activating MCs can lead to adverse behavioral outcomes, and inhibiting MCs have an opposite effect. Importantly, the results appeared to be task-dependent and showed that testing both sexes was important. Additional experiments indicated what MC and GC circuitry was involved. Together, the results suggest how MCs influence behaviors that involve the DG.
Collapse
|
557
|
Imran I, Javaid S, Waheed A, Rasool MF, Majeed A, Samad N, Saeed H, Alqahtani F, Ahmed MM, Alaqil FA. Grewia asiatica Berry Juice Diminishes Anxiety, Depression, and Scopolamine-Induced Learning and Memory Impairment in Behavioral Experimental Animal Models. Front Nutr 2021; 7:587367. [PMID: 33521033 PMCID: PMC7844311 DOI: 10.3389/fnut.2020.587367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Grewia asiatica L. fruit natively called phalsa is a popular berry of Pakistan and widely consumed in the form of fresh juices and carbonated drinks in the summer season. The berry is enriched with antioxidants such as phenols, flavonoids, anthocyanins, and vitamin C. Scientifically, it is the least explored berry in terms of neuromodulatory activities, and therefore, in the designed study, chronically fed rats with the different dilutions (5%-30%) of fruit juice were subjected to behavioral assessment for anxiety, depression, and cognition (spatial memory) followed by biochemical analysis of isolated brains. Results revealed a prominent impact of 20 and 30% dilutions of fruit exudate as treated animals showed anxiolytic behavior to central zone (P < 0.05) of open field test (OFT) and open arms of elevated plus maze (EPM) (P < 0.05) in anxiety models. Overall, immobility of rats treated with a higher concentration of exudate in forced swim test (FST) was reduced (P < 0.05) presenting antidepressant-like activity. Moreover, in learning and memory experimental models, the treated animals reversed scopolamine-induced amnesic effects as evident from improved step-through latencies (P < 0.05 vs. scopolamine; passive avoidance test), spontaneous alternation behavior (P < 0.05 vs. scopolamine; Y-maze test), discrimination index (P < 0.05 vs. scopolamine; novel object recognition test), and escape latencies (P < 0.05 vs. scopolamine; Morris water maze). Biochemical studies of isolated brains from treated rats demonstrated significantly elevated levels of superoxide dismutase and glutathione peroxidase (P < 0.05), whereas levels of acetylcholinesterase and malondialdehyde level (P < 0.05) were reduced, indicating its potential to reduce oxidative damage in the brain and modulation with the cholinergic system. The outcomes of studies support the benefits of phytoconstituents possessed by G. asiatica fruit in the amelioration of neurological disorders that could be due to their antioxidative capacity or due to interaction with GABAergic, serotonergic, and cholinergic systems in the brain.
Collapse
Affiliation(s)
- Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Aroosa Waheed
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Abdul Majeed
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Noreen Samad
- Department of Biochemistry, Faculty of Science, Bahauddin Zakariya University, Multan, Pakistan
| | - Hamid Saeed
- Section of Pharmaceutics, University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M. Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faten Abdullah Alaqil
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
558
|
Yu M, Ma L, Yuan Y, Ye X, Montagne A, He J, Ho TV, Wu Y, Zhao Z, Sta Maria N, Jacobs R, Urata M, Wang H, Zlokovic BV, Chen JF, Chai Y. Cranial Suture Regeneration Mitigates Skull and Neurocognitive Defects in Craniosynostosis. Cell 2021; 184:243-256.e18. [PMID: 33417861 PMCID: PMC7891303 DOI: 10.1016/j.cell.2020.11.037] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/28/2020] [Accepted: 11/16/2020] [Indexed: 01/20/2023]
Abstract
Craniosynostosis results from premature fusion of the cranial suture(s), which contain mesenchymal stem cells (MSCs) that are crucial for calvarial expansion in coordination with brain growth. Infants with craniosynostosis have skull dysmorphology, increased intracranial pressure, and complications such as neurocognitive impairment that compromise quality of life. Animal models recapitulating these phenotypes are lacking, hampering development of urgently needed innovative therapies. Here, we show that Twist1+/- mice with craniosynostosis have increased intracranial pressure and neurocognitive behavioral abnormalities, recapitulating features of human Saethre-Chotzen syndrome. Using a biodegradable material combined with MSCs, we successfully regenerated a functional cranial suture that corrects skull deformity, normalizes intracranial pressure, and rescues neurocognitive behavior deficits. The regenerated suture creates a niche into which endogenous MSCs migrated, sustaining calvarial bone homeostasis and repair. MSC-based cranial suture regeneration offers a paradigm shift in treatment to reverse skull and neurocognitive abnormalities in this devastating disease.
Collapse
Affiliation(s)
- Mengfei Yu
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA; Key Laboratory of Oral Biomedical Research, Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Li Ma
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Xin Ye
- Key Laboratory of Oral Biomedical Research, Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Axel Montagne
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Jinzhi He
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Yingxi Wu
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Zhen Zhao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Naomi Sta Maria
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Russell Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Mark Urata
- Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90033, USA
| | - Huiming Wang
- Key Laboratory of Oral Biomedical Research, Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033, USA.
| |
Collapse
|
559
|
Vilar-Pereira G, Castaño Barrios L, da Silva AA, Martins Batista A, Resende Pereira I, Cruz Moreira O, Britto C, Mata dos Santos HA, Lannes-Vieira J. Memory impairment in chronic experimental Chagas disease: Benznidazole therapy reversed cognitive deficit in association with reduction of parasite load and oxidative stress in the nervous tissue. PLoS One 2021; 16:e0244710. [PMID: 33400707 PMCID: PMC7785227 DOI: 10.1371/journal.pone.0244710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/15/2020] [Indexed: 01/04/2023] Open
Abstract
Memory impairment has been associated with chronic Chagas disease (CD), a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. In degenerative diseases, memory loss has been associated with increased oxidative stress, revealed as enhanced lipid peroxidation, in the cerebral cortex. Benznidazole (Bz), a trypanocidal drug efficient to reduce blood parasite load in the acute and chronic phases of infection, showed controversial effects on heart disease progression, the main clinical manifestation of CD. Here, we evaluated whether C57BL/6 mice infected with the Colombian type I T. cruzi strain present memory deficit assessed by (i) the novel object recognition task, (ii) the open field test and (iii) the aversive shock evoked test, at 120 days post infection (dpi). Next, we tested the effects of Bz therapy (25mg/Kg/day, for 30 consecutive days) on memory evocation, and tried to establish a relation between memory loss, parasite load and oxidative stress in the central nervous system (CNS). At 120 dpi, T. cruzi-infected mice showed memory impairment, compared with age-matched non-infected controls. Bz therapy (from 120 to 150 dpi) hampered the progression of habituation and aversive memory loss and, moreover, reversed memory impairment in object recognition. In vehicle-administered infected mice, neuroinflammation was absent albeit rare perivascular mononuclear cells were found in meninges and choroid plexus. Bz therapy abrogated the infiltration of the CNS by inflammatory cells, and reduced parasite load in hippocampus and cerebral cortex. At 120 and 150 dpi, lipid peroxidation was increased in the hippocampus and cortex tissue extracts. Notably, Bz therapy reduced levels of lipid peroxidation in the cerebral cortex. Therefore, in experimental chronic T. cruzi infection Bz therapy improved memory loss, in association with reduction of parasite load and oxidative stress in the CNS, providing a new perspective to improve the quality of life of Chagas disease patients.
Collapse
Affiliation(s)
- Glaucia Vilar-Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Leda Castaño Barrios
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Andrea Alice da Silva
- Laboratório Multiusuário de Apoio à Pesquisa em Nefrologia e Ciências Médicas, Departamento de Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Angelica Martins Batista
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Isabela Resende Pereira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Otacílio Cruz Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, IOC/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Constança Britto
- Laboratório de Biologia Molecular e Doenças Endêmicas, IOC/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Hílton Antônio Mata dos Santos
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Laboratório de Análise e Desenvolvimento de Inibidores Enzimáticos e Laboratório Multiusuário de Análises por RMN, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
560
|
Kalinichenko LS, Abdel-Hafiz L, Wang AL, Mühle C, Rösel N, Schumacher F, Kleuser B, Smaga I, Frankowska M, Filip M, Schaller G, Richter-Schmidinger T, Lenz B, Gulbins E, Kornhuber J, Oliveira AWC, Barros M, Huston JP, Müller CP. Neutral Sphingomyelinase is an Affective Valence-Dependent Regulator of Learning and Memory. Cereb Cortex 2021; 31:1316-1333. [PMID: 33043975 DOI: 10.1093/cercor/bhaa298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
Sphingolipids and enzymes of the sphingolipid rheostat determine synaptic appearance and signaling in the brain, but sphingolipid contribution to normal behavioral plasticity is little understood. Here we asked how the sphingolipid rheostat contributes to learning and memory of various dimensions. We investigated the role of these lipids in the mechanisms of two different types of memory, such as appetitively and aversively motivated memory, which are considered to be mediated by different neural mechanisms. We found an association between superior performance in short- and long-term appetitively motivated learning and regionally enhanced neutral sphingomyelinase (NSM) activity. An opposite interaction was observed in an aversively motivated task. A valence-dissociating role of NSM in learning was confirmed in mice with genetically reduced NSM activity. This role may be mediated by the NSM control of N-methyl-d-aspartate receptor subunit expression. In a translational approach, we confirmed a positive association of serum NSM activity with long-term appetitively motivated memory in nonhuman primates and in healthy humans. Altogether, these data suggest a new sphingolipid mechanism of de-novo learning and memory, which is based on NSM activity.
Collapse
Affiliation(s)
- Liubov S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Laila Abdel-Hafiz
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf 40225, Germany
| | - An-Li Wang
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf 40225, Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Nadine Rösel
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Fabian Schumacher
- Department of Toxicology, Faculty of Mathematics and Natural Science, Institute of Nutritional Science, University of Potsdam, Potsdam 14558, Germany.,Department of Molecular Biology, University of Duisburg-Essen, Essen 45147, Germany
| | - Burkhard Kleuser
- Department of Toxicology, Faculty of Mathematics and Natural Science, Institute of Nutritional Science, University of Potsdam, Potsdam 14558, Germany
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, Kraków 31-343, Poland
| | - Malgorzata Frankowska
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, Kraków 31-343, Poland
| | - Malgorzata Filip
- Department of Drug Addiction Pharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, Kraków 31-343, Poland
| | - Gerd Schaller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Tanja Richter-Schmidinger
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany.,Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen 45147, Germany.,Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267-0558, USA
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - André W C Oliveira
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | - Marilia Barros
- Department of Pharmacy, School of Health Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil.,Primate Center, Institute of Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf 40225, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen 91054, Germany
| |
Collapse
|
561
|
Su Q, Li T, He PF, Lu XC, Yu Q, Gao QC, Wang ZJ, Wu MN, Yang D, Qi JS. Trichostatin A ameliorates Alzheimer's disease-related pathology and cognitive deficits by increasing albumin expression and Aβ clearance in APP/PS1 mice. Alzheimers Res Ther 2021; 13:7. [PMID: 33397436 PMCID: PMC7784383 DOI: 10.1186/s13195-020-00746-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is an intractable neurodegenerative disorder in the elderly population, currently lacking a cure. Trichostatin A (TSA), a histone deacetylase inhibitor, showed some neuroprotective roles, but its pathology-improvement effects in AD are still uncertain, and the underlying mechanisms remain to be elucidated. The present study aims to examine the anti-AD effects of TSA, particularly investigating its underlying cellular and molecular mechanisms. METHODS Novel object recognition and Morris water maze tests were used to evaluate the memory-ameliorating effects of TSA in APP/PS1 transgenic mice. Immunofluorescence, Western blotting, Simoa assay, and transmission electron microscopy were utilized to examine the pathology-improvement effects of TSA. Microglial activity was assessed by Western blotting and transwell migration assay. Protein-protein interactions were analyzed by co-immunoprecipitation and LC-MS/MS. RESULTS TSA treatment not only reduced amyloid β (Aβ) plaques and soluble Aβ oligomers in the brain, but also effectively improved learning and memory behaviors of APP/PS1 mice. In vitro study suggested that the improvement of Aβ pathology by TSA was attributed to the enhancement of Aβ clearance, mainly by the phagocytosis of microglia, and the endocytosis and transport of microvascular endothelial cells. Notably, a meaningful discovery in the study was that TSA dramatically upregulated the expression level of albumin in cell culture, by which TSA inhibited Aβ aggregation and promoted the phagocytosis of Aβ oligomers. CONCLUSIONS These findings provide a new insight into the pathogenesis of AD and suggest TSA as a novel promising candidate for the AD treatment.
Collapse
Affiliation(s)
- Qiang Su
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Tian Li
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Pei-Feng He
- Institute of Medical Data Sciences and School of Management, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Xue-Chun Lu
- Department of Hematology, the Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Qi Yu
- Institute of Medical Data Sciences and School of Management, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qi-Chao Gao
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Dan Yang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jin-Shun Qi
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
562
|
Kaur A, Jaiswal G, Brar J, Kumar P. Neuroprotective effect of nerolidol in traumatic brain injury associated behavioural comorbidities in rats. Toxicol Res (Camb) 2021; 10:40-50. [PMID: 33613971 PMCID: PMC7885190 DOI: 10.1093/toxres/tfaa100] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/20/2020] [Accepted: 11/25/2020] [Indexed: 11/14/2022] Open
Abstract
Traumatic brain injury (TBI) is an insult to the brain from an external mechanical force, leading to temporary/permanent secondary injuries, i.e. impairment of cognitive, physical, and psycho-social functions with altered consciousness. The leading mechanism responsible for neuronal damage following TBI is an increase in oxidative reactions initiated by free radicals generated by the injury along with various other mechanisms. Nerolidol is reported to have potent antioxidant and anti-neuroinflammatory properties. The present study was designed to explore the neuroprotective effect of nerolidol in weight-drop-induced TBI in rats. Animals were injured on the 1st day by dropping a free-falling weight of 200 gm from a height of 1 m through a guide pipe onto the exposed skull. After 14 days of injury, nerolidol (25, 50, and 100 mg/kg, i.p.) treatment was given for the next 14 days. Locomotor activity and motor coordination were evaluated using an actophotometer and rotarod, respectively. Cognitive impairment was observed through the Morris Water Maze and Object Recognition Test. On the 29th day, animals were sacrificed, and their brains were collected for the biochemical estimation. The weight drop model significantly decreased locomotor activity, motor coordination, increased Acetylcholinesterase (AChE) activity, oxidative stress, and induced cognitive deficits in TBI rats. Nerolidol significantly improved locomotor activity, reversed motor incoordination and cognitive impairment, and reduced the AChE activity and oxidative/nitrosative stress. The present study demonstrates the promising neuroprotective effects of nerolidol, which might improve the quality of life of TBI patients.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001 (Punjab), India
| | - Gagandeep Jaiswal
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001 (Punjab), India
| | - Jasdeep Brar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001 (Punjab), India
| | - Puneet Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda-151001 (Punjab), India
- Department of Pharmacology, Central University of Punjab, Bathinda-151001 (Punjab), India
| |
Collapse
|
563
|
Dysbindin-1 regulates mitochondrial fission and gamma oscillations. Mol Psychiatry 2021; 26:4633-4651. [PMID: 33589740 PMCID: PMC8364574 DOI: 10.1038/s41380-021-01038-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/08/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Mitochondria are cellular ATP generators. They are dynamic structures undergoing fission and fusion. While much is known about the mitochondrial fission machinery, the mechanism of initiating fission and the significance of fission to neurophysiology are largely unclear. Gamma oscillations are synchronized neural activities that impose a great energy challenge to synapses. The cellular mechanism of fueling gamma oscillations has yet to be defined. Here, we show that dysbindin-1, a protein decreased in the brain of individuals with schizophrenia, is required for neural activity-induced fission by promoting Drp1 oligomerization. This process is engaged by gamma-frequency activities and in turn, supports gamma oscillations. Gamma oscillations and novel object recognition are impaired in dysbindin-1 null mice. These defects can be ameliorated by increasing mitochondrial fission. These findings identify a molecular mechanism for activity-induced mitochondrial fission, a role of mitochondrial fission in gamma oscillations, and mitochondrial fission as a potential target for improving cognitive functions.
Collapse
|
564
|
Kestering-Ferreira E, Tractenberg SG, Lumertz FS, Orso R, Creutzberg KC, Wearick-Silva LE, Viola TW, Grassi-Oliveira R. Long-term Effects of Maternal Separation on Anxiety-Like Behavior and Neuroendocrine Parameters in Adult Balb/c Mice. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2021; 5:24705470211067181. [PMID: 34993376 PMCID: PMC8725222 DOI: 10.1177/24705470211067181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022]
Abstract
Introduction: Disruption of maternal care using maternal separation (MS) models has provided significant evidence of the deleterious long-term effects of early life stress. Several preclinical studies investigating MS showed multiple behavioral and biomolecular alterations. However, there is still conflicting results from MS studies, which represents a challenge for reliability and replicability of those findings. Objective: To address that, this study was conducted to investigate whether MS would affect anxiety-like behaviors using a battery of classical tasks, as well as central and peripheral stress-related biomarkers. Methods: Male Balb/c mice were exposed to MS from postnatal day (PND) 2 to 14 for 180-min per day. Two independent cohorts were performed to evaluate both baseline and anxiety-like behavior responses to MS at PND60. We performed composite scores to evaluate MS effects on anxiety and risk assessment phenotypes. Also, we assessed mRNA gene expression in the medial pre-frontal cortex (mPFC) of glucocorticoid and mineralocorticoid receptors (GR and MR) using real-time PCR and peripheral corticosterone levels (CORT) to investigate possible neurobiological correlates to anxiety behaviors. Results: We found increased anxiety-like behavior and decreased risk assessment and exploratory behaviors in MS mice. The animals exposed to MS also presented a decrease in MR mRNA expression and higher levels of CORT compared to controls. Conclusions: Our findings reinforce the body of evidence suggesting that long-term MS induces effects on anxiety and risk assessment phenotypes following the exposure to a standardized MS protocol. Moreover, MS affected the expression of MR mRNA and induced significant changes on CORT response. This data highlights that the reprograming MS effects on HPA axis could be mediate by MR gene expression in mPFC and chronic overactivity of peripheral CORT levels.
Collapse
Affiliation(s)
- Erika Kestering-Ferreira
- Developmental Cognitive Neuroscience Lab
(DCNL), Pontifical University Catholic of Rio Grande do Sul
| | - Saulo Gantes Tractenberg
- Developmental Cognitive Neuroscience Lab
(DCNL), Pontifical University Catholic of Rio Grande do Sul
| | | | - Rodrigo Orso
- Developmental Cognitive Neuroscience Lab
(DCNL), Pontifical University Catholic of Rio Grande do Sul
| | | | | | - Thiago Wendt Viola
- Developmental Cognitive Neuroscience Lab
(DCNL), Pontifical University Catholic of Rio Grande do Sul
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab
(DCNL), Pontifical University Catholic of Rio Grande do Sul
- Aarhus University, Denmark
| |
Collapse
|
565
|
Understanding stress: Insights from rodent models. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2:100013. [PMID: 36246514 PMCID: PMC9559100 DOI: 10.1016/j.crneur.2021.100013] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 02/01/2023] Open
Abstract
Through incorporating both physical and psychological forms of stressors, a variety of rodent models have provided important insights into the understanding of stress physiology. Rodent models also have provided significant information with regards to the mechanistic basis of the pathophysiology of stress-related disorders such as anxiety disorders, depressive illnesses, cognitive impairment and post-traumatic stress disorder. Additionally, rodent models of stress have served as valuable tools in the area of drug screening and drug development for treatment of stress-induced conditions. Although rodent models do not accurately reproduce the biochemical or physiological parameters of stress response and cannot fully mimic the natural progression of human disorders, yet, animal research has provided answers to many important scientific questions. In this review article, important studies utilizing a variety of stress models are described in terms of their design and apparatus, with specific focus on their capabilities to generate reliable behavioral and biochemical read-out. The review focusses on the utility of rodent models by discussing examples in the literature that offer important mechanistic insights into physiologically relevant questions. The review highlights the utility of rodent models of stress as important tools for advancing the mission of scientific research and inquiry. Stressful life events may lead to the onset of severe psychopathologies in humans. Rodents may model many features of stress exposure in human populations. Induction of stress via pharmacological and psychological manipulations alter rodent behavior. Mechanistic rodent studies reveal key molecular targets critical for new therapeutic targets.
Collapse
|
566
|
Pang N, Huang X, Zhou H, Xia X, Liu X, Wang Y, Meng W, Bian T, Meng L, Xu L, Niu L. Transcranial Ultrasound Stimulation of Hypothalamus in Aging Mice. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:29-37. [PMID: 31985418 DOI: 10.1109/tuffc.2020.2968479] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The hypothalamus plays an important role in the control of aging. Transcranial ultrasound stimulation (TUS) has been reported as a noninvasive method of neuromodulation. However, the effect of TUS of the hypothalamus on aging remains unclear. Therefore, the aim of this study is to verify whether TUS of the hypothalamus could affect the behaviors of aging mice and the expression level of apoptosis factors and inflammatory cytokines. TUS was delivered to the hypothalamus of mice ( n = 44 ) for 14 days (15 min/day) at a fundamental frequency of 1 MHz, pulse repetition frequency of 1 kHz (US1) or 10 Hz (US2), duty cycle of 10%, and acoustic pressure of 0.13 MPa. The effect of TUS on aging was evaluated by the behavioral tests or Western blotting in different stages. The behavioral results showed that mice in the US2 group improved their movement and learning. In addition, there was a significant improvement in the grip strength after TUS in the second behavioral tests (Sham: 0.0351 ± 0.0020 N/g; US1: 0.0340 ± 0.0023 N/g; US2: 0.0425 ± 0.0029 N/g, p = 0.034 ). Furthermore, the level of inflammation (TNF- α : Sham: 0.69 ± 0.084; US1: 0.39 ± 0.054; US2: 0.49 ± 0.1, p = 0.021 ) and apoptosis (Bax: Sham: 0.47 ± 0.049; US1: 0.42 ± 0.054; US2: 0.18 ± 0.055, p = 0.001 ) was significantly reduced after TUS in this stage. We did not see a long-lasting effect of TUS in the third behavioral tests. In addition, we found that TUS is safe according to hematoxylin and eosin (HE) staining. In conclusion, TUS could effectively modulate the hypothalamus, which may provide a new method for controlling aging.
Collapse
|
567
|
Appropriate exercise level attenuates gut dysbiosis and valeric acid increase to improve neuroplasticity and cognitive function after surgery in mice. Mol Psychiatry 2021; 26:7167-7187. [PMID: 34663905 PMCID: PMC8873004 DOI: 10.1038/s41380-021-01291-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/19/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Postoperative cognitive dysfunction (POCD) affects the outcome of millions of patients each year. Aging is a risk factor for POCD. Here, we showed that surgery induced learning and memory dysfunction in adult mice. Transplantation of feces from surgery mice but not from control mice led to learning and memory impairment in non-surgery mice. Low intensity exercise improved learning and memory in surgery mice. Exercise attenuated surgery-induced neuroinflammation and decrease of gut microbiota diversity. These exercise effects were present in non-exercise mice receiving feces from exercise mice. Exercise reduced valeric acid, a gut microbiota product, in the blood. Valeric acid worsened neuroinflammation, learning and memory in exercise mice with surgery. The downstream effects of exercise included attenuating growth factor decrease, maintaining astrocytes in the A2 phenotypical form possibly via decreasing C3 signaling and improving neuroplasticity. Similar to these results from adult mice, exercise attenuated learning and memory impairment in old mice with surgery. Old mice receiving feces from old exercise mice had better learning and memory than those receiving control old mouse feces. Surgery increased blood valeric acid. Valeric acid blocked exercise effects on learning and memory in old surgery mice. Exercise stabilized gut microbiota, reduced neuroinflammation, attenuated growth factor decrease and preserved neuroplasticity in old mice with surgery. These results provide direct evidence that gut microbiota alteration contributes to POCD development. Valeric acid is a mediator for this effect and a potential target for brain health. Low intensity exercise stabilizes gut microbiota in the presence of insult, such as surgery.
Collapse
|
568
|
Almeida RF, Nonose Y, Ganzella M, Loureiro SO, Rocha A, Machado DG, Bellaver B, Fontella FU, Leffa DT, Pettenuzzo LF, Venturin GT, Greggio S, da Costa JC, Zimmer ER, Elisabetsky E, Souza DO. Antidepressant-Like Effects of Chronic Guanosine in the Olfactory Bulbectomy Mouse Model. Front Psychiatry 2021; 12:701408. [PMID: 34421682 PMCID: PMC8371253 DOI: 10.3389/fpsyt.2021.701408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/01/2021] [Indexed: 12/27/2022] Open
Abstract
Major depressive disorder (MDD) leads to pervasive changes in the health of afflicted patients. Despite advances in the understanding of MDD and its treatment, profound innovation is needed to develop fast-onset antidepressants with higher effectiveness. When acutely administered, the endogenous nucleoside guanosine (GUO) shows fast-onset antidepressant-like effects in several mouse models, including the olfactory bulbectomy (OBX) rodent model. OBX is advocated to possess translational value and be suitable to assess the time course of depressive-like behavior in rodents. This study aimed at investigating the long-term behavioral and neurochemical effects of GUO in a mouse model of depression induced by bilateral bulbectomy (OBX). Mice were submitted to OBX and, after 14 days of recovery, received daily (ip) administration of 7.5 mg/kg GUO or 40 mg/kg imipramine (IMI) for 45 days. GUO and IMI reversed the OBX-induced hyperlocomotion and recognition memory impairment, hippocampal BDNF increase, and redox imbalance (ROS, NO, and GSH levels). GUO also mitigated the OBX-induced hippocampal neuroinflammation (IL-1, IL-6, TNF-α, INF-γ, and IL-10). Brain microPET imaging ([18F]FDG) shows that GUO also prevented the OBX-induced increase in hippocampal FDG metabolism. These results provide additional evidence for GUO antidepressant-like effects, associated with beneficial neurochemical outcomes relevant to counteract depression.
Collapse
Affiliation(s)
- Roberto Farina Almeida
- Programa de Pós-Graduação em Ciências Biológicas, Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Yasmine Nonose
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcelo Ganzella
- Neurobiology Department, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Samanta Oliveira Loureiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andréia Rocha
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Daniele Guilhermano Machado
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruna Bellaver
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Urruth Fontella
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Douglas T Leffa
- Attention Deficit Hyperactivity Disorder Outpatient Program & Development Psychiatry Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Letícia Ferreira Pettenuzzo
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gianina Teribele Venturin
- Preclinical Imaging Center, Brain Institute (Brains) of Rio Grande do Sul, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Samuel Greggio
- Preclinical Imaging Center, Brain Institute (Brains) of Rio Grande do Sul, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaderson Costa da Costa
- Preclinical Imaging Center, Brain Institute (Brains) of Rio Grande do Sul, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo R Zimmer
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departament of Pharmacology, UFRGS, Porto Alegre, Brazil
| | - Elaine Elisabetsky
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diogo O Souza
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
569
|
Cardoso FDS, Lopes Martins RÁB, Gomes da Silva S. Therapeutic Potential of Photobiomodulation In Alzheimer's Disease: A Systematic Review. J Lasers Med Sci 2020; 11:S16-S22. [PMID: 33995964 PMCID: PMC7956031 DOI: 10.34172/jlms.2020.s3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introduction: Alzheimer disease (AD) is characterized by the decline of cognitive functions such as learning and memory. Scientific society has proposed some non-pharmacological interventions, among which photobiomodulation has gained prominence for its beneficial effects. Therefore, we investigated, through systematic review, the therapeutic potential of photobiomodulation in AD. Methods: This systematic review was registered under the number CRD42019128416 in the International Prospective Record of Systematic Reviews (PROSPERO). A systematic search was conducted on the bibliographic databases (PubMed and ScienceDirect) with the keywords based on MeSH terms: "photobiomodulation therapy" or "low-level laser therapy" or "LLLT" or "light emitting diode" and "amyloid" or "Alzheimer". The data search was conducted from 2008 to 2019. We follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. The search strategy included experimental in vivo and in vitro studies in the English language and photobiomodulation as a non-pharmacological intervention. We included 10 studies, being 5 in vivo studies, 4 in vitro studies and 1 study using in vivo and in vitro. To evaluate the quality of the studies, we used the Rob tool of the Systematic Review Center for Laboratory Animal Experimentation (SYRLE). Results: The studies showed that photobiomodulation is able to reduce inflammatory response, oxidative stress and apoptotic effects generated by amyloid beta (Aβ) and restore mitochondrial function and cognitive behavior. Conclusion: Taken together, these results indicate that photobiomodulation may be a useful tool for treating AD.
Collapse
Affiliation(s)
| | | | - Sérgio Gomes da Silva
- Universidade de Mogi das Cruzes (UMC) - SP, Brazil
- Centro Universitário UNIFAMINAS - MG, Brazil
- Hospital do Câncer de Muriaé - Fundação Cristiano Varella - MG, Brazil
| |
Collapse
|
570
|
Wang J, Bai T, Wang N, Li H, Guo X. Neuroprotective potential of imatinib in global ischemia-reperfusion-induced cerebral injury: possible role of Janus-activated kinase 2/signal transducer and activator of transcription 3 and connexin 43. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:11-18. [PMID: 31908570 PMCID: PMC6940502 DOI: 10.4196/kjpp.2020.24.1.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022]
Abstract
The present study was aimed to explore the neuroprotective role of imatinib in global ischemia-reperfusion-induced cerebral injury along with possible mechanisms. Global ischemia was induced in mice by bilateral carotid artery occlusion for 20 min, which was followed by reperfusion for 24 h by restoring the blood flow to the brain. The extent of cerebral injury was assessed after 24 h of global ischemia by measuring the locomotor activity (actophotometer test), motor coordination (inclined beam walking test), neurological severity score, learning and memory (object recognition test) and cerebral infarction (triphenyl tetrazolium chloride stain). Ischemia-reperfusion injury produced significant cerebral infarction, impaired the behavioral parameters and decreased the expression of connexin 43 and phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in the brain. A single dose administration of imatinib (20 and 40 mg/kg) attenuated ischemia-reperfusion-induced behavioral deficits and the extent of cerebral infarction along with the restoration of connexin 43 and p-STAT3 levels. However, administration of AG490, a selective Janus-activated kinase 2 (JAK2)/STAT3 inhibitor, abolished the neuroprotective actions of imatinib and decreased the expression of connexin 43 and p-STAT3. It is concluded that imatinib has the potential of attenuating global ischemia-reperfusion-induced cerebral injury, which may be possibly attributed to activation of JAK2/STAT3 signaling pathway along with the increase in the expression of connexin 43.
Collapse
Affiliation(s)
- Jieying Wang
- Department of Pediatrics, Shaanxi Provincial People's Hospital, The Affiliated Hospital of Xi'an Medical University, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710068, Shaanxi, China
| | - Taomin Bai
- Department of Pediatrics, Shaanxi Provincial People's Hospital, The Affiliated Hospital of Xi'an Medical University, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710068, Shaanxi, China
| | - Nana Wang
- Central Laboratory, Shaanxi Provincial People's Hospital, The Affiliated Hospital of Xi'an Medical University, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710068, Shaanxi, China
| | - Hongyan Li
- Department of Pediatrics, Shaanxi Provincial People's Hospital, The Affiliated Hospital of Xi'an Medical University, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710068, Shaanxi, China
| | - Xiangyang Guo
- Department of Pediatrics, Shaanxi Provincial People's Hospital, The Affiliated Hospital of Xi'an Medical University, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710068, Shaanxi, China.,Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi, China
| |
Collapse
|
571
|
Eyolfson E, Carr T, Khan A, Wright DK, Mychasiuk R, Lohman AW. Repetitive Mild Traumatic Brain Injuries in Mice during Adolescence Cause Sexually Dimorphic Behavioral Deficits and Neuroinflammatory Dynamics. J Neurotrauma 2020; 37:2718-2732. [DOI: 10.1089/neu.2020.7195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Eric Eyolfson
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada
| | - Thomas Carr
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada
| | - Asher Khan
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada
| | - David K. Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Alexander W. Lohman
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
572
|
Ontogeny of spontaneous recognition memory in rodents. Neurobiol Learn Mem 2020; 177:107361. [PMID: 33307181 DOI: 10.1016/j.nlm.2020.107361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/24/2020] [Accepted: 12/07/2020] [Indexed: 01/31/2023]
Abstract
Spontaneous recognition memory tasks explore thewhat,whereandwhencomponents of recognition memory. These tasks are widely used in rodents to assess cognitive function across the lifespan. While several neurodevelopmental and mental disorders present symptom onset in early life, very little is known about how memories are expressed in early life, and as a consequence how they may be affected in pathological conditions. In this review, we conduct an analysis of the studies examining the expression of spontaneous recognition memory in young rodents. We compiled studies using four different tasks: novel object recognition, object location, temporal order recognition and object place. First, we identify major sources of variability between early life spontaneous recognition studies and classify them for later comparison. Second, we use these classifications to explore the current knowledge on the ontogeny of each of these four spontaneous recognition memory tasks. We conclude by discussing the possible implications of the relative time of onset for each of these tasks and their respective neural correlates. In compiling this research, we hope to advance on establishing a developmental timeline for the emergence of distinct components of recognition memory, while also identifying key areas of focus for future research. Establishing the ontogenetic profile of rodent spontaneous recognition memory tasks will create a necessary blueprint for cognitive assessment in animal models of neurodevelopmental and mental disorders, a first step towards improved and earlier diagnosis as well as novel intervention strategies.
Collapse
|
573
|
Laureano-Melo R, Dos-Santos RC, da Conceição RR, de Souza JS, da Silva Lau R, da Silva Souza Silva S, Marinho BG, Giannocco G, Ahmed RG, da Silva Côrtes W. Perinatal fluoxetine treatment promotes long-term behavioral changes in adult mice. Metab Brain Dis 2020; 35:1341-1351. [PMID: 32827287 DOI: 10.1007/s11011-020-00606-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/04/2020] [Indexed: 01/19/2023]
Abstract
Serotonin exerts a significant role in the mammalian central nervous system embryogenesis and brain ontogeny. Therefore, we investigate the effect of perinatal fluoxetine (FLX), a selective serotonin reuptake inhibitor, administration on the behavioral expression of adult male Swiss mice. For this purpose, two groups (n = 6 each, and ~ 35 g) of pregnant female Swiss mice were mated. Their offspring were treated with FLX (10 mg/Kg, s.c.) from postnatal day (PND) 5 to 15. At PND 16, one male puppy of each litter was euthanized, and the hippocampus was dissected for RNA analysis. At 70 days of life, the male offspring underwent a behavioral assessment in the open field, object recognition task, light-dark box, tail suspension and rotarod test. According to our results, the programmed animals had a decrease in TPH2, 5HT1a, SERT, BDNF, and LMX1B expression. Also, it was observed less time of immobility in tail suspension test and higher grooming time in the open field test. In the light-dark box test, the FLX-treated offspring had less time in the light side than control. We also observed a low cognitive performance in the object recognition task and poor motor skill learning in the rotarod test. These findings suggest that programming with FLX during the neonatal period alters a hippocampal serotonergic system, promoting anxiety and antidepressant behavior in adults, as well as a low mnemonic capacity.
Collapse
Affiliation(s)
- Roberto Laureano-Melo
- Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Health and Biological Sciences, Universidade Federal Rural do Rio de Janeiro, Seropedica, Brazil.
- Department of Veterinary Medicine, Barra Mansa University Center, Rio de Janeiro, Brazil.
| | - Raoni Conceição Dos-Santos
- Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Health and Biological Sciences, Universidade Federal Rural do Rio de Janeiro, Seropedica, Brazil
| | - Rodrigo Rodrigues da Conceição
- Molecular and Translational Endocrinology Laboratory, Department of Medicine, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Janaina Sena de Souza
- Molecular and Translational Endocrinology Laboratory, Department of Medicine, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Raphael da Silva Lau
- Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Health and Biological Sciences, Universidade Federal Rural do Rio de Janeiro, Seropedica, Brazil
| | - Samantha da Silva Souza Silva
- Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Health and Biological Sciences, Universidade Federal Rural do Rio de Janeiro, Seropedica, Brazil
| | - Bruno Guimarães Marinho
- Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Health and Biological Sciences, Universidade Federal Rural do Rio de Janeiro, Seropedica, Brazil
| | - Gisele Giannocco
- Molecular and Translational Endocrinology Laboratory, Department of Medicine, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - R G Ahmed
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Wellington da Silva Côrtes
- Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Health and Biological Sciences, Universidade Federal Rural do Rio de Janeiro, Seropedica, Brazil
| |
Collapse
|
574
|
Yu B, Tang Y, Cai D. Brain is an endocrine organ through secretion and nuclear transfer of parathymosin. Life Sci Alliance 2020; 3:e202000917. [PMID: 33087487 PMCID: PMC7652378 DOI: 10.26508/lsa.202000917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
This study reports that parathymosin (PTMS) is secreted by hypothalamic stem/progenitor cells (htNSC) to inhibit senescence of recipient cells such as fibroblasts. Upon release, PTMS is rapidly transferred into the nuclei of various cell types, including neuronal GT1-7 cells and different peripheral cells, and it is effectively transferred into neuronal nuclei in various brain regions in vivo. Notably, brain neurons also produce and release PTMS, and because neuronal populations are large, they are important for maintaining PTMS in the cerebrospinal fluid which is further transferable into the blood. Compared with several other brain regions, the hypothalamus is stronger for long-distance PTMS transfer, supporting a key hypothalamic role in this function. In physiology, aging is associated with declines in PTMS production and transfer in the brain, and ptms knockdown in the hypothalamus versus hippocampus were studied showing different contributions to neurobehavioral physiology. In conclusion, the brain is an endocrine organ through secretion and nuclear transfer of PTMS, and the hypothalamus-brain orchestration of this function is protective in physiology and counteractive against aging-related disorders.
Collapse
Affiliation(s)
- Bin Yu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yizhe Tang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
575
|
Hoang THX, Ho DV, Van Phan K, Le QV, Raal A, Nguyen HT. Effects of Hippeastrum reticulatum on memory, spatial learning and object recognition in a scopolamine-induced animal model of Alzheimer's disease. PHARMACEUTICAL BIOLOGY 2020; 58:1098-1104. [PMID: 33170051 PMCID: PMC7671694 DOI: 10.1080/13880209.2020.1841810] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/10/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
CONTEXT The methanol extracts from Hippeastrum reticulatum (L'Hér.) Herb. (Amaryllidaceae) (HR) display acetylcholinesterase inhibitory (AChEI) activity. OBJECTIVE AChEI of alkaloids isolated from HR bulbs and the ameliorating effects of the alkaloid fraction (AHR) on memory and cognitive dysfunction in scopolamine-treated mice were investigated. MATERIALS AND METHODS Alkaloids were isolated by column chromatography and identified by spectroscopy. AChEI was evaluated using the modified Ellman's method. Sixty Swiss male mice were randomly divided into six groups, received samples for 15 days. Normal group received saline, scopolamine-treated group scopolamine (1.5 mg/kg, intraperitoneal injection). Test groups received AHR (5, 10 and 15 mg/kg, per os) and positive control group donepezil (5 mg/kg, per os), administered 1 h before the test, scopolamine was injected 30 min prior to testing. The cognitive-enhancing activity of AHR against scopolamine-induced memory impairments was investigated using Y-maze, the novel object recognition test (NORT) and the Morris water maze (MWM) test. RESULTS Seven alkaloids were isolated for the first time from the genus Hippeastrum: trans-dihydronarciclasine (1), N-chloromethylnarcissidinium (2), narciprimin (3), narciclasine-4-O-β-d-xylopyranoside (4), N-methyltyramine (5), 3β,11α-dihydroxy-1,2-dehydrocrinane (6) and brunsvigine (7); three are new compounds (2, 5, 6). Among them, 2-3 and 5-6 showed AChEI in vitro with IC50 values of 29.1, 46.4, 70.1 and 104.5 µg/mL, respectively. The anti-AChEI of 2, 5 and 6 are reported for the first time. In in vivo test, AHR (15 mg/kg) significantly increased in spontaneous alternation performance in the Y-maze test (p < 0.01), it significantly increased the time spent exploring the novel object (p < 0.05) comparison with scopolamine-treated group. The administration of AHR at doses 10 and 15 mg/kg significantly decreased escapes latency and swimming distance to the platform on day 6 compared to these in day 1 (p < 0.01 and p < 0.05, respectively). CONCLUSIONS AHR could be a potential candidate of future trials for treatment of memory and cognitive dysfunction in Alzheimer's disease.
Collapse
Affiliation(s)
- Trang Huyen Xuan Hoang
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Duc Viet Ho
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Kiem Van Phan
- Institute of Marine Biochemistry, The Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Quan Van Le
- Department of Functional Exploration, Vietnam Military Medical University, Hanoi, Vietnam
| | - Ain Raal
- Faculty of Medicine, Institute of Pharmacy, University of Tartu, Tartu, Estonia
| | - Hoai Thi Nguyen
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| |
Collapse
|
576
|
Aluko OM, Umukoro S. Methyl jasmonate reverses chronic stress-induced memory dysfunctions through modulation of monoaminergic neurotransmission, antioxidant defense system, and Nrf2 expressions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2339-2353. [PMID: 32666287 DOI: 10.1007/s00210-020-01939-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022]
Abstract
Unpredictable chronic mild stress (UCMS) has been shown to cause memory loss via increased oxidative stress and deregulation of monoaminergic and cholinergic neurotransmissions. Although the benefits of methyl jasmonate (MJ), a well-known anti-stress plant hormone against chronic stress-induced psychopathologies, have been earlier reported, its effects on antioxidant defense molecules, monoaminergic transmitters, and nuclear factor erythroid 2-related factor 2 (Nrf2) immunopositive cells have not been extensively studied. The present study was designed to examine its effect on memory functions, antioxidant biomarkers, monoaminergic transmitters, and Nrf2 immunopositive cell expression in rats exposed to UCMS. Rats received an intraperitoneal injection of MJ (10, 25, and 50 mg/kg) 30 min before exposure to UCMS daily for 28 days. Memory function was assessed on day 29 using a modified elevated plus maze and novel object recognition tests. The antioxidant biomarkers, level of monoamines (serotonin, noradrenaline, and dopamine), and Nrf2 immunopositive cell expression were determined in the rat brain tissues. The activity of cholinesterase and monoamine oxidase enzymes was also determined. MJ attenuated memory deficits and elevated the brain levels of monoamines in UCMS rats. UCMS-induced increase of brain cholinesterase and monoamine oxidase activities was inhibited by MJ. Also, MJ attenuated UCMS-induced decrease in antioxidant enzymes (CAT, GPx, GST, and SOD) and thiol contents in the brains of rats. UCMS-induced increase in NO level and Nrf2 immunopositive cell expression in the rat's brain was attenuated by MJ. Taken together, these findings suggest that increasing antioxidant defense molecules and monoaminergic/cholinergic neurotransmitters and decreasing the Nrf2 immunopositive cell expressions may contribute to the memory-promoting effects of MJ in rats exposed to UCMS.
Collapse
Affiliation(s)
- Oritoke M Aluko
- Department of Physiology, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria.
| | - Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
577
|
Biyong EF, Alfos S, Dumetz F, Helbling JC, Aubert A, Brossaud J, Foury A, Moisan MP, Layé S, Richard E, Patterson E, Murphy K, Rea K, Stanton C, Schellekens H, Cryan JF, Capuron L, Pallet V, Ferreira G. Dietary vitamin A supplementation prevents early obesogenic diet-induced microbiota, neuronal and cognitive alterations. Int J Obes (Lond) 2020; 45:588-598. [PMID: 33223517 DOI: 10.1038/s41366-020-00723-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/30/2020] [Accepted: 11/05/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Early consumption of obesogenic diets, rich in saturated fat and added sugar, is associated with a plethora of biological dysfunctions, at both peripheral and brain levels. Obesity is also linked to decreased vitamin A bioavailability, an essential molecule for brain plasticity and memory function. METHODS Here we investigated in mice whether dietary vitamin A supplementation (VAS) could prevent some of the metabolic, microbiota, neuronal and cognitive alterations induced by obesogenic, high-fat and high-sugar diet (HFSD) exposure from weaning to adulthood, i.e. covering periadolescent period. RESULTS As expected, VAS was effective in enhancing peripheral vitamin A levels as well as hippocampal retinoic acid levels, the active metabolite of vitamin A, regardless of the diet. VAS attenuated HFSD-induced excessive weight gain, without affecting metabolic changes, and prevented alterations of gut microbiota α-diversity. In HFSD-fed mice, VAS prevented recognition memory deficits but had no effect on aversive memory enhancement. Interestingly, VAS alleviated both HFSD-induced higher neuronal activation and lower glucocorticoid receptor phosphorylation in the hippocampus after training. CONCLUSION Dietary VAS was protective against the deleterious effects of early obesogenic diet consumption on hippocampal function, possibly through modulation of the gut-brain axis.
Collapse
Affiliation(s)
- Essi F Biyong
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, UFR de Pharmacie, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Serge Alfos
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, UFR de Pharmacie, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Fabien Dumetz
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, UFR de Pharmacie, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France.,INRAE, MycSa, UMR 1264, Villenave d'Ornon Cedex, France
| | - Jean-Christophe Helbling
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, UFR de Pharmacie, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Agnès Aubert
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, UFR de Pharmacie, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Julie Brossaud
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, UFR de Pharmacie, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Aline Foury
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, UFR de Pharmacie, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Marie-Pierre Moisan
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, UFR de Pharmacie, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Sophie Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, UFR de Pharmacie, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Emmanuel Richard
- Université de Bordeaux, INSERM, U1035, CHU Bordeaux, Place Amélie Raba Léon, 33000, Bordeaux, France
| | | | - Kiera Murphy
- Teagasc Food Research Centre, Moorepark, Co, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland & Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Harriët Schellekens
- APC Microbiome Ireland & Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland & Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Lucile Capuron
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, UFR de Pharmacie, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Véronique Pallet
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, UFR de Pharmacie, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Guillaume Ferreira
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, UFR de Pharmacie, 146 Rue Léo Saignat, 33076, Bordeaux Cedex, France.
| |
Collapse
|
578
|
Li J, Jiang RY, Arendt KL, Hsu YT, Zhai SR, Chen L. Defective memory engram reactivation underlies impaired fear memory recall in Fragile X syndrome. eLife 2020; 9:61882. [PMID: 33215988 PMCID: PMC7679137 DOI: 10.7554/elife.61882] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/13/2020] [Indexed: 11/25/2022] Open
Abstract
Fragile X syndrome (FXS) is an X chromosome-linked disease associated with severe intellectual disabilities. Previous studies using the Fmr1 knockout (KO) mouse, an FXS mouse model, have attributed behavioral deficits to synaptic dysfunctions. However, how functional deficits at neural network level lead to abnormal behavioral learning remains unexplored. Here, we show that the efficacy of hippocampal engram reactivation is reduced in Fmr1 KO mice performing contextual fear memory recall. Experiencing an enriched environment (EE) prior to learning improved the engram reactivation efficacy and rescued memory recall in the Fmr1 KO mice. In addition, chemogenetically inhibiting EE-engaged neurons in CA1 reverses the rescue effect of EE on memory recall. Thus, our results suggest that inappropriate engram reactivation underlies cognitive deficits in FXS, and enriched environment may rescue cognitive deficits by improving network activation accuracy.
Collapse
Affiliation(s)
- Jie Li
- Department of Neurosurgery, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, United States
| | - Rena Y Jiang
- Department of Neurosurgery, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, United States
| | - Kristin L Arendt
- Department of Neurosurgery, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, United States
| | - Yu-Tien Hsu
- Department of Neurosurgery, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, United States
| | - Sophia R Zhai
- Department of Neurosurgery, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, United States
| | - Lu Chen
- Department of Neurosurgery, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
579
|
Fonseca-Rodrigues D, Amorim D, Almeida A, Pinto-Ribeiro F. Emotional and cognitive impairments in the peripheral nerve chronic constriction injury model (CCI) of neuropathic pain: A systematic review. Behav Brain Res 2020; 399:113008. [PMID: 33171146 DOI: 10.1016/j.bbr.2020.113008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/29/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Emotional and cognitive impairments are common comorbidities of chronic neuropathic pain that significantly impact the quality of life of patients. While the nociceptive components of the peripheral nerve chronic constriction injury (CCI) animal model have been extensively analyzed, data related to the development of mood and cognitive disorders, and especially its impact on female rats remains fragmented. We systematically reviewed the literature analyzing the methods used to induce and evaluate the development of emotional- and cognitive-like impairments and sex-specific differences in the CCI model. DATABASES AND DATA TREATMENT We searched PubMed, Google Scholar and Web of Science from inception to September 30th, 2019, and a total of 44 papers were considered eligible for inclusion. We included animal studies assessing nociception, locomotion, anxious-like, depressive-like and cognitive behaviours after the CCI induction. RESULTS The overall quality of the studies was considered moderate to high. Overall, the induction of CCI leads to the development of emotional impairments, namely anxiety- and depressive-like behaviours, as well as cognitive impairments. With the majority of the studies using male subjects, the lack of evidence on female animals prevents the evaluation of sex-specific differences. CONCLUSIONS This review supports the development of an anxiodepressive-like phenotype, associated with cognitive impairments, in CCI-induced animals. These results support the use of this animal model for the study of the mechanisms underlying these comorbidities, as well as a screening tool for the development/repurposing of drugs that tackle both the neuropathy-induced nociceptive and emotional impairments, such as tricyclic antidepressants. Importantly, our review also highlights the need for studies performed in female rodents as these are almost non-existent.
Collapse
Affiliation(s)
- Diana Fonseca-Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus of Gualtar, University of Minho, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Diana Amorim
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus of Gualtar, University of Minho, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus of Gualtar, University of Minho, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus of Gualtar, University of Minho, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
580
|
Fernández-Mendívil C, Luengo E, Trigo-Alonso P, García-Magro N, Negredo P, López MG. Protective role of microglial HO-1 blockade in aging: Implication of iron metabolism. Redox Biol 2020; 38:101789. [PMID: 33212416 PMCID: PMC7680814 DOI: 10.1016/j.redox.2020.101789] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/06/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is an inducible enzyme known for its anti-inflammatory, antioxidant and neuroprotective effects. However, increased expression of HO-1 during aging and age-related neurodegenerative diseases have been associated to neurotoxic ferric iron deposits. Being microglia responsible for the brain's innate immune response, the aim of this study was to understand the role of microglial HO-1 under inflammatory conditions in aged mice. For this purpose, aged wild type (WT) and LysMCreHmox1△△ (HMOX1M-KO) mice that lack HO-1 in microglial cells, were used. Aged WT mice showed higher basal expression levels of microglial HO-1 in the brain than adult mice. This increase was even higher when exposed to an inflammatory stimulus (LPS via i.p.) and was accompanied by alterations in different iron-related metabolism proteins, resulting in an increase of iron deposits, oxidative stress, ferroptosis and cognitive decline. Furthermore, microglia exhibited a primed phenotype and increased levels of inflammatory markers such as iNOS, p65, IL-1β, TNF-α, Caspase-1 and NLRP3. Interestingly, all these alterations were prevented in aged HMOX1M-KO and WT mice treated with the HO-1 inhibitor ZnPPIX. In order to determine the effects of microglial HO-1-dependent iron overload, aged WT mice were treated with the iron chelator deferoxamine (DFX). DFX caused major improvements in iron, inflammatory and behavioral alterations found in aged mice exposed to LPS. In conclusion, this study highlights how microglial HO-1 overexpression contributes to neurotoxic iron accumulation providing deleterious effects in aged mice exposed to an inflammatory insult. Microglial HO-1 increases with aging and under an acute inflammatory stimulus. LPS-dependent microglial HO-1 upregulation during aging leads to iron overload. Microglial HO-1-dependent iron accumulation leads to ferroptosis. HO-1-dependent iron alterations lead to neuroinflammation. HO-1 inhibitors/iron chelators reduce iron accumulation and neuroinflammation.
Collapse
Affiliation(s)
- Cristina Fernández-Mendívil
- Instituto Teófilo Hernando for Drug Discovery. Department of Pharmacology. School of Medicine. Universidad Autónoma Madrid. Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de La Princesa, Madrid, Spain
| | - Enrique Luengo
- Instituto Teófilo Hernando for Drug Discovery. Department of Pharmacology. School of Medicine. Universidad Autónoma Madrid. Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de La Princesa, Madrid, Spain
| | - Paula Trigo-Alonso
- Instituto Teófilo Hernando for Drug Discovery. Department of Pharmacology. School of Medicine. Universidad Autónoma Madrid. Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de La Princesa, Madrid, Spain
| | - Nuria García-Magro
- Department of Anatomy, Histology and Neuroscience. School of Medicine. Universidad Autónoma de Madrid. Madrid, Spain
| | - Pilar Negredo
- Department of Anatomy, Histology and Neuroscience. School of Medicine. Universidad Autónoma de Madrid. Madrid, Spain
| | - Manuela G López
- Instituto Teófilo Hernando for Drug Discovery. Department of Pharmacology. School of Medicine. Universidad Autónoma Madrid. Madrid, Spain; Instituto de Investigación Sanitario (IIS-IP), Hospital Universitario de La Princesa, Madrid, Spain.
| |
Collapse
|
581
|
Zhang WD, Chen XY, Wu C, Lian YN, Wang YJ, Wang JH, Yang F, Liu CH, Li XY. Evodiamine reduced peripheral hypersensitivity on the mouse with nerve injury or inflammation. Mol Pain 2020; 16:1744806920902563. [PMID: 31992128 PMCID: PMC6990609 DOI: 10.1177/1744806920902563] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Management of chronic pain is still hard, and new analgesic drugs are needed. Evodiamine (Evo) and rutaecarpine (Rut) are two major active components of Evodia rutaecarpa, a Chinese traditional medicine that has been used as an analgesic for a long time. However, their effects on peripheral hypersensitivity remain unknown. Similar to capsaicin, the Evo and Rut were docked to the transient receptor potential cation channel subfamily V member 1 (TRPV1) in molecular simulation experiments. Moreover, Evo (10 µM) and Rut (50 µM) activated TRPV1 on human embryonic kidney 293 (HEK293) cells in electrophysiological recording experiments. Behaviorally, the application of Evo and Rut reduced peripheral hypersensitivity in a dose-dependent manner, which was blocked by capsazepine (a selective inhibitor of TRPV1). Furthermore, both Evo and Rut increased time in the open arms of the elevated plus maze on mice with nerve injury. These observations suggested that Evo and Rut reduced peripheral hypersensitivity and anxiety in mice with nerve injury or inflammation via TRPV1.
Collapse
Affiliation(s)
- Wen-Dong Zhang
- Department of Physiology, Institute of Neuroscience and Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiao-Ying Chen
- China National Institute of Standardization, Beijing, China
| | - Cheng Wu
- Department of Physiology, Institute of Neuroscience and Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan-Na Lian
- Department of Physiology, Institute of Neuroscience and Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yong-Jie Wang
- Department of Biophysics, Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing-Hua Wang
- Department of Physiology, Institute of Neuroscience and Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fan Yang
- Department of Biophysics, Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chun-Hui Liu
- China National Institute of Standardization, Beijing, China
| | - Xiang-Yao Li
- Department of Physiology, Institute of Neuroscience and Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
582
|
Wang X, Xu Z, Zhao F, Lin KJ, Foster JB, Xiao T, Kung N, Askwith CC, Bruno JP, Valentini V, Hodgetts KJ, Lin CLG. Restoring tripartite glutamatergic synapses: A potential therapy for mood and cognitive deficits in Gulf War illness. Neurobiol Stress 2020; 13:100240. [PMID: 33344696 PMCID: PMC7739039 DOI: 10.1016/j.ynstr.2020.100240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/05/2020] [Accepted: 07/05/2020] [Indexed: 01/13/2023] Open
Abstract
Gulf War illness is associated with a combination of exposure to war-related chemical agents and traumatic stress. Currently, there are no effective treatments, and the pathophysiology remains elusive. Neurological problems are among the most commonly reported symptoms. In this study, we investigated the glutamatergic system in the hippocampi of mice exposed to war-related chemical agents and stress. Mice developed Gulf War illness-like symptoms, including mood deficits, cognitive impairments, and fatigue. They exhibited the following pathological changes in hippocampi: elevated extracellular glutamate levels, impaired glutamatergic synapses, astrocyte atrophy, loss of interneurons, and decreased neurogenesis. LDN/OSU-215111 is a small-molecule that can strengthen the structure and function of both the astrocytic processes and the glutamatergic synapses that together form the tripartite synapses. We found that LDN/OSU-215111 effectively prevented the development of mood and cognitive deficits in mice when treatment was implemented immediately following the exposure. Moreover, when symptoms were already present, LDN/OSU-215111 still significantly ameliorated these deficits; impressively, benefits were sustained one month after treatment cessation, indicating disease modification. LDN/OSU-215111 effectively normalized hippocampal pathological changes. Overall, this study provides strong evidence that restoration of tripartite glutamatergic synapses by LDN/OSU-215111 is a potential therapy for Gulf War illness.
Collapse
Key Words
- BBB, Blood brain barrier
- CA, Cornu ammonis
- DCX, Doublecortin
- DEET, N, N-Diethyl-meta-toluamide
- DG, Dentate gyrus
- EAAT2, Excitatory amino acid transporter 2
- GABA, γ-aminobutyric acid
- GFAP, glial fibrillary acidic protein
- GWI, gulf war illness
- Gulf war illness
- LTP, Long term potentiation
- Mood deficits and cognitive impairments
- PB, Pyridostigmine bromide
- PSD95, Postsynaptic density protein 95
- PV, Parvalbumin
- TBS, Theta burst stimulation
- Therapy
- Traumatic stress
- Tripartite glutamatergic synapses
- fEPSP, field excitatory postsynaptic potentials
- sEPSC/mEPSC, Spontaneous/miniature excitatory postsynaptic current
- sIPSC/mIPSC, Spontaneous/miniature inhibitory postsynaptic current
- vGAT, Vesicular inhibitory amino acid transporter
- vGLUT1, Vesicular glutamate transporter 1
Collapse
Affiliation(s)
- Xueqin Wang
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Zan Xu
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Fangli Zhao
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kuanhung J. Lin
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Joshua B. Foster
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Tianqi Xiao
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Nydia Kung
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Candice C. Askwith
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - John P. Bruno
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
- Department of Psychology, College of Arts and Sciences, The Ohio State University, Columbus, OH, USA
| | - Valentina Valentini
- Department of Psychology, College of Arts and Sciences, The Ohio State University, Columbus, OH, USA
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Kevin J. Hodgetts
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Chien-liang Glenn Lin
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
583
|
Naqvi S, Kumar P, Flora SJS. Comparative efficacy of Nano and Bulk Monoisoamyl DMSA against arsenic-induced neurotoxicity in rats. Biomed Pharmacother 2020; 132:110871. [PMID: 33069968 DOI: 10.1016/j.biopha.2020.110871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 10/23/2022] Open
Abstract
Chelation therapy is considered as a safe and effective strategy to combat metal poisoning. Arsenic is known to cause neurological dysfunctions such as impaired memory, encephalopathy, and peripheral neuropathy as it easily crosses the blood-brain barrier. Oxidative stress is one of the mechanisms suggested for arsenic-induced neurotoxicity. We prepared Solid Lipid nanoparticles loaded with Monoisoamyl 2, 3-dimercaptosuccinic acid (Nano-MiADMSA), and compared their efficacy with bulk MiADMSA for treating arsenic-induced neurological and other biochemical effects. Solid lipid nanoparticles entrapping MiADMSA were synthesized and particle characterization was carried out by transmission electron microscopy (TEM) and dynamic light scattering (DLS). An in vivo study was planned to investigate the therapeutic efficacy of MiADMSA-encapsulated solid lipid nanoparticles (Nano-MiADMSA; 50 mg/kg orally for 5 days) and compared it with bulk MiADMSA against sodium meta-arsenite exposed rats (25 ppm in drinking water, for 12 weeks) in male rats. The results suggested the size of Nano-MiADMSA was between 100-120 nm ranges. We noted enhanced chelating properties of Nano-MiADMSA compared with bulk MiADMSA as evident by the reversal of oxidative stress variables like blood δ-aminolevulinic acid dehydratase (δ-ALAD), Reactive Oxygen Species (ROS), Catalase activity, Superoxide Dismutase (SOD), Thiobarbituric Acid Reactive Substances (TBARS), Reduced Glutathione (GSH) and Oxidized Glutathione (GSSG), Glutathione Peroxidase (GPx), Glutathione-S-transferase (GST) and efficient removal of arsenic from the blood and tissues. Recoveries in neurobehavioral parameters further confirmed nano-MiADMSA to be more effective than bulk MiADMSA. We conclude that treatment with Nano-MiADMSA is a better therapeutic strategy than bulk MiADMSA in reducing the effects of arsenic-induced oxidative stress and associated neurobehavioral changes.
Collapse
Affiliation(s)
- Saba Naqvi
- National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, CRPF Base Camp, P.O. Mati, Sarojini Nagar, Lucknow, UP, 226002, India
| | - Prince Kumar
- National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, CRPF Base Camp, P.O. Mati, Sarojini Nagar, Lucknow, UP, 226002, India
| | - S J S Flora
- National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, CRPF Base Camp, P.O. Mati, Sarojini Nagar, Lucknow, UP, 226002, India.
| |
Collapse
|
584
|
Kim J, Lee S, Kim J, Ham S, Park JHY, Han S, Jung YK, Shim I, Han JS, Lee KW, Kim J. Ca2+-permeable TRPV1 pain receptor knockout rescues memory deficits and reduces amyloid-β and tau in a mouse model of Alzheimer's disease. Hum Mol Genet 2020; 29:228-237. [PMID: 31814000 DOI: 10.1093/hmg/ddz276] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/14/2019] [Accepted: 11/11/2019] [Indexed: 01/31/2023] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) protein is a pain receptor that elicits a hot sensation when an organism eats the capsaicin of red chili peppers. This calcium (Ca2+)-permeable cation channel is mostly expressed in the peripheral nervous system sensory neurons but also in the central nervous system (e.g. hippocampus and cortex). Preclinical studies found that TRPV1 mediates behaviors associated with anxiety and depression. Loss of TRPV1 functionality increases expression of genes related to synaptic plasticity and neurogenesis. Thus, we hypothesized that TRPV1 deficiency may modulate Alzheimer's disease (AD). We generated a triple-transgenic AD mouse model (3xTg-AD+/+) with wild-type (TRPV1+/+), hetero (TRPV1+/-) and knockout (TRPV1-/-) TRPV1 to investigate the role of TRPV1 in AD pathogenesis. We analyzed the animals' memory function, hippocampal Ca2+ levels and amyloid-β (Aβ) and tau pathologies when they were 12 months old. We found that compared with 3xTg-AD-/-/TRPV1+/+ mice, 3xTg-AD+/+/TRPV1+/+ mice had memory impairment and increased levels of hippocampal Ca2+, Aβ and total and phosphorylated tau. However, 3xTg-AD+/+/TRPV1-/- mice had better memory function and lower levels of hippocampal Ca2+, Aβ, tau and p-tau, compared with 3xTg-AD+/+/TRPV1+/+ mice. Examination of 3xTg-AD-derived primary neuronal cultures revealed that the intracellular Ca2+ chelator BAPTA/AM and the TRPV1 antagonist capsazepine decreased the production of Aβ, tau and p-tau. Taken together, these results suggested that TRPV1 deficiency had anti-AD effects and promoted resilience to memory loss. These findings suggest that drugs or food components that modulate TRPV1 could be exploited as therapeutics to prevent or treat AD.
Collapse
Affiliation(s)
- Juyong Kim
- Department of Agricultural Biotechnology, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Siyoung Lee
- Department of Agricultural Biotechnology, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jaekyoon Kim
- Department of Agricultural Biotechnology, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sangwoo Ham
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jung Han Yoon Park
- Center for Food and Bioconvergence, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seungbong Han
- Department of Applied Statistics, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea
| | - Yong-Keun Jung
- School of Biological Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jung-Soo Han
- Department of Biological Sciences, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ki Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea.,Center for Food and Bioconvergence, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jiyoung Kim
- Center for Food and Bioconvergence, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
585
|
Braga SP, Delanogare E, Machado AE, Prediger RD, Moreira ELG. Switching from high-fat feeding (HFD) to regular diet improves metabolic and behavioral impairments in middle-aged female mice. Behav Brain Res 2020; 398:112969. [PMID: 33075395 DOI: 10.1016/j.bbr.2020.112969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/18/2020] [Accepted: 10/10/2020] [Indexed: 12/30/2022]
Abstract
Obesity represents a risk factor for metabolic syndrome and cardiovascular and psychiatric disorders. Excessive caloric intake, particularly in dietary fats, is an environmental factor that contributes to obesity development. Thus, the observation that switching from long-standing dietary obesity to standard diet (SD) can ameliorate the high-fat diet-induced metabolic, memory, and emotionality-related impairments are particularly important. Herein we investigated whether switching from the high-fat diet (HFD) to SD could improve the metabolic and behavioral impairments observed in middle-aged females C57Bl/6 mice. During twelve weeks, the animals received a high-fat diet (61 % fat) or SD diet. After 12-weeks, the HFD group's diet was switched to SD for an additional four weeks. It was observed a progressive deleterious effect of HFD in metabolic and behavioral parameters in mice. After four weeks of HFD-feeding, the animals showed glucose intolerance and increased locomotor activity. A subsequent increase in the body mass gain, hyperglycemia, and depressive-like behavior was observed after eight weeks, and memory impairments after twelve weeks. After replacing the HFD to SD, it was observed an improvement of metabolic (loss of body mass, normal plasma glucose levels, and glucose tolerance) and behavioral (absence of memory and emotional alterations) parameters. These results demonstrate the temporal development of metabolic and behavioral impairments following HFD in middle-age female mice and provide new evidence that these alterations can be improved by switching back the diet to SD.
Collapse
Affiliation(s)
- Sara Pereira Braga
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Eslen Delanogare
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Adriano Emanuel Machado
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Rui Daniel Prediger
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil; Departamento de Farmacologia, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil
| | - Eduardo Luiz Gasnhar Moreira
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil; Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil; Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
586
|
Celorrio M, Rhodes J, Vadivelu S, Davies M, Friess SH. N-acetylcysteine reduces brain injury after delayed hypoxemia following traumatic brain injury. Exp Neurol 2020; 335:113507. [PMID: 33065076 DOI: 10.1016/j.expneurol.2020.113507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/10/2020] [Accepted: 10/09/2020] [Indexed: 01/11/2023]
Abstract
Preclinical investigations into neuroprotective agents for traumatic brain injury (TBI) have shown promise when administered before or very early after experimental TBI. However clinical trials of therapeutics demonstrating preclinical efficacy for TBI have failed to replicate these results in humans, a lost in translation phenomenon. N-acetylcysteine (NAC) is a potent anti-oxidant with demonstrated efficacy in pre-clinical TBI when administered early after primary injury. Utilizing our clinically relevant mouse model, we hypothesized that NAC administration in a clinically relevant timeframe could improve the brain's resilience to the secondary insult of hypoxemia. NAC or vehicle administered daily starting 2 h prior to hypoxemia (24 h after controlled cortical impact) for 3 doses in male mice reduced short-term axonal injury and hippocampal neuronal loss. Six month behavioral assessments including novel object recognition, socialization, Barnes maze, and fear conditioning did not reveal performance differences between sham controls and injured mice receiving NAC or saline vehicle. At 7 months after injury, NAC administered mice had reduced hippocampal neuronal loss but no reduction in lesion volume. In summary, our preclinical trial to test the neuroprotective efficacy of NAC against a secondary hypoxic insult after TBI demonstrated short and long-term neuropathological evidence of neuroprotection but a lack of detectable differences in long-term behavioral assessments between sham controls and injured mice limits conclusions on its impact on long-term neurobehavioral outcomes.
Collapse
Affiliation(s)
- Marta Celorrio
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, One Children's Place, St. Louis, MO 63110, USA
| | - James Rhodes
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, One Children's Place, St. Louis, MO 63110, USA
| | - Sangeetha Vadivelu
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, One Children's Place, St. Louis, MO 63110, USA
| | - McKenzie Davies
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, One Children's Place, St. Louis, MO 63110, USA
| | - Stuart H Friess
- Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, One Children's Place, St. Louis, MO 63110, USA.
| |
Collapse
|
587
|
Esquerda-Canals G, Roda AR, Martí-Clúa J, Montoliu-Gaya L, Rivera-Hernández G, Villegas S. Treatment with scFv-h3D6 Prevented Neuronal Loss and Improved Spatial Memory in Young 3xTg-AD Mice by Reducing the Intracellular Amyloid-β Burden. J Alzheimers Dis 2020; 70:1069-1091. [PMID: 31306135 DOI: 10.3233/jad-190484] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The intracellular deposition of amyloid-β (Aβ) peptides has been described in the brains of both Alzheimer's disease (AD) patients and animal models. A correlation between the intracellular amyloid burden and neurodegeneration has recently been reported in a triple-transgenic AD (3xTg-AD) murine model. In the present study, we assessed the effect of scFv-h3D6, an anti-Aβ single-chain variable fragment (scFv) derived from the antibody bapineuzumab, on amyloid pathology in 5-month-old 3xTg-AD female mice, focusing on intracellular Aβ clearance, neuronal survival, and functional abilities. We also examined neuroinflammation and the histology of peripheral organ samples to detect any adverse effects. A single intraperitoneal injection of scFv-h3D6 dramatically reduced intracellular Aβ burden in the deep layers of the cerebral cortex, pyramidal cells layer of the hippocampus, and basolateral amygdalar nucleus. The treatment prevented neuronal loss in the hippocampus and amygdala, while neither astrogliosis nor microgliosis was induced. Instead, an increase in the size of the white pulp after the treatment indicated that the spleen could be involved in the clearance mechanism. Although the treatment did not ameliorate behavioral and psychological symptoms of dementia-like symptoms, the results of cognitive testing pointed to a noticeable improvement in spatial memory. These findings indicated that the mechanism underlying the therapeutic effect of scFv-h3D6 was the clearance of intracellular Aβ, with subsequent prevention of neuronal loss and amelioration of cognitive disabilities. The treatment was safe in terms of neuroinflammation and kidney and liver function, whereas some effects on the spleen were observed.
Collapse
Affiliation(s)
- Gisela Esquerda-Canals
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Edifici C, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,Departament de Biologia Cellular, de Fisiologia i d'Immunologia, Unitat de Citologia i d'Histologia, Facultat de Biociències, Edifici C, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Alejandro R Roda
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Edifici C, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Joaquim Martí-Clúa
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Edifici C, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,Departament de Biologia Cellular, de Fisiologia i d'Immunologia, Unitat de Citologia i d'Histologia, Facultat de Biociències, Edifici C, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Laia Montoliu-Gaya
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Edifici C, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,Current address: Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Geovanny Rivera-Hernández
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Edifici C, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Sandra Villegas
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Edifici C, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
588
|
Stazi M, Wirths O. Physical activity and cognitive stimulation ameliorate learning and motor deficits in a transgenic mouse model of Alzheimer's disease. Behav Brain Res 2020; 397:112951. [PMID: 33027669 DOI: 10.1016/j.bbr.2020.112951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/07/2020] [Accepted: 09/26/2020] [Indexed: 10/23/2022]
Abstract
Epidemiological studies suggest that physical exercise or cognitive stimulation might contribute to lower the risk of developing dementia disorders such as Alzheimer's disease (AD). Here, we used the well-established enrichment environment (EE) paradigm to study the impact of prolonged physical activity and cognitive stimulation in a mouse model of AD overexpressing only Aβ4-42 peptides. These mice display age-dependent memory and motor deficits, in the absence of human amyloid precursor protein (APP) overexpression. We demonstrate that housing under EE conditions leads to an entire preservation of recognition and spatial memory, as well as a rescue of motor deficits in this mouse model. Moreover, we find that Tg4-42hom mice present a typical floating phenotype in the Morris water maze task that could be completely ameliorated upon long-term EE housing. Our findings are in line with epidemiological studies suggesting that physical activity and cognitive stimulation might represent efficient strategies to prevent age-related neurodegenerative disorders such as AD.
Collapse
Affiliation(s)
- Martina Stazi
- Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, Göttingen, Germany.
| |
Collapse
|
589
|
Castro-Sánchez S, Zaldivar-Diez J, Luengo E, López MG, Gil C, Martínez A, Lastres-Becker I. Cognitive enhancement, TAU phosphorylation reduction, and neuronal protection by the treatment of an LRRK2 inhibitor in a tauopathy mouse model. Neurobiol Aging 2020; 96:148-154. [PMID: 33007689 DOI: 10.1016/j.neurobiolaging.2020.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/07/2020] [Accepted: 09/01/2020] [Indexed: 01/31/2023]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a protein kinase whose activity plays an important role in neurodegenerative diseases. Although mutations in LRRK2 gene are the most common cause of monogenic Parkinson's disease, it has been reported that LRRK2 may promote Tau phosphorylation, increasing its aggregation. Thus, the modulation of LRRK2 activity by small molecules able to inhibit this kinase activity could be an innovative therapeutic strategy for different tauopathies. We examined the therapeutic effects of a new benzothiazole-based LRRK2 inhibitor, known as JZ1.40, in a mouse model of tauopathy. Mice were injected in the right hippocampus with an adeno-associated vector expressing human-TAUP301L and treated daily with JZ1.40 (10 mg/kg, i.p) or vehicle for three weeks. JZ1.40 reaches the brain and modulates RAB10 and Tau phosphorylation at the epitopes modified by LRRK2. Moreover, JZ1.40 treatment ameliorates the cognitive impairment induced by TAUP301L overexpression, which correlates with prevention of granular cell layer degeneration by improving synaptic plasticity. These data show that JZ1.40 is neuroprotective in vivo, which is translated into cognition enhancement.
Collapse
Affiliation(s)
- Sara Castro-Sánchez
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, Spain; Department of Biochemistry, School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | | | - Enrique Luengo
- Institute Teófilo Hernando for Drug Discovery, Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuela G López
- Institute Teófilo Hernando for Drug Discovery, Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen Gil
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | - Ana Martínez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | - Isabel Lastres-Becker
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, Spain; Department of Biochemistry, School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain.
| |
Collapse
|
590
|
Liu X, Hao J, Yao E, Cao J, Zheng X, Yao D, Zhang C, Li J, Pan D, Luo X, Wang M, Wang W. Polyunsaturated fatty acid supplement alleviates depression-incident cognitive dysfunction by protecting the cerebrovascular and glymphatic systems. Brain Behav Immun 2020; 89:357-370. [PMID: 32717402 DOI: 10.1016/j.bbi.2020.07.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/20/2020] [Accepted: 07/19/2020] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION Depression, the most prevalent mood disorder, has high comorbidity with cerebrovascular disease and cognitive decline. However, there is little understanding of the cellular mechanisms involved in depression and its comorbid cerebrovascular damage and cognition impairment. Here, we tested the prediction that the chronic unpredictable mild stress (CUMS) mouse model would manifest in disturbed glymphatic function and that dietary supplementation with polyunsaturated fatty acids (PUFA) could ameliorate these deficits while alleviating the depression-associated cognitive decline. METHODS To test the treatment effects of PUFA or Es on behaviours, we applied the tail suspension, open field, and sucrose preference tests to assess depressive symptoms, and applied the Morris water maze test to assess cognition in groups of control, chronic unpredictable mild stress (CUMS), PUFA, and escitalopram (Es) treatment. We measured the extracellular concentrations of dopamine (DA), 5-hydroxytryptamine (5-HT) and noradrenaline (NA) in microdialysates from prefrontal cortex (PFC) by liquid chromatography mass spectrometry. Glia cells and inflammatory factors were analysed with fluorescent immunochemistry and western blot, respectively. We tested brain vasomotor function with two-photon and laser speckle imaging in vivo, and measured glymphatic system function by two-photon imaging in vivo and fluorescence tracer imaging ex vivo, using awake and anesthetized mice. Besides, we monitored cortical spreading depression by laser speckle imaging system. AQP4 depolarization is analysed by fluorescent immunochemistry and western blot. RESULTS We confirmed that CUMS elicited depression-like and amnestic symptoms, accompanied by decreased monoamines neurotransmitter concentration in PFC and upregulated neuroinflammation markers. Moreover, CUMS mice showed reduced arterial pulsation and compliance in brain, and exhibited depolarized expression of AQP4, thus indicating glymphatic dysfunction both in awake and anesthetized states. PUFA supplementation rescued depression-like behaviours of CUMS mice, reduced neuroinflammation and cerebrovascular dysfunction, ultimately improved cognitive performance, all of which accompanied by restoring glymphatic system function. In contrast, Es treatment alleviated only the depression-like behavioural symptoms, while showing no effects on glymphatic function and depression-incident cognitive deficits. CONCLUSIONS The CUMS depression model entails suppression of the glymphatic system. PUFA supplementation rescued most behavioural signs of depression and the associated cognitive dysfunction by restoring the underlying glymphatic system disruption and protecting cerebral vascular function.
Collapse
Affiliation(s)
- Xinghua Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Trauma Centre/Department of Emergency and Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiahuan Hao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ensheng Yao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jie Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaolong Zheng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Di Yao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chenyan Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jia Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dengji Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Minghuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Neurological Diseases of Chinese Ministry of Education, the School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
591
|
Liu L, Kelly MG, Yang XR, Fernandez TG, Wierzbicki EL, Skrobach A, Doré S. Nrf2 Deficiency Exacerbates Cognitive Impairment and Reactive Microgliosis in a Lipopolysaccharide-Induced Neuroinflammatory Mouse Model. Cell Mol Neurobiol 2020; 40:1185-1197. [PMID: 32170572 PMCID: PMC11448839 DOI: 10.1007/s10571-020-00807-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/30/2020] [Indexed: 02/08/2023]
Abstract
The transcription factor Nrf2 is a central regulator of anti-inflammatory and antioxidant mechanisms that contribute to the development and progression of various neurological disorders. Although the direct and indirect Nrf2 regulatory roles on inflammation have been reviewed in recent years, the in vivo evidence of Nrf2 function on lipopolysaccharide (LPS)-induced cognitive decline and characteristic alterations of reactive microglia and astrocytes remains incomplete. During the 3-5 days after LPS or saline injection, 5-6-month-old wildtype (WT) and Nrf2-/- C57BL/6 mice were subjected to the novel object recognition task. Immunohistochemistry staining was employed for analyses of brain cells. The Nrf2-/- mice displayed exacerbated LPS-induced cognition impairment (28.1 ± 9.6% in the discrimination index of the novel object recognition task), enhanced hippocampal reactive microgliosis and astrogliosis, and an increased expression level of the water channel transmembrane protein aquaporin 4 when compared with WT controls. In addition, similar overt effects of Nrf2 deficiency on LPS-induced characteristic alterations of brain cells were observed in the cortex and striatum regions of mice. In summary, this transgenic loss-of-function study provides direct in vivo evidence that highlights the functional importance of Nrf2 activation in regulating LPS-induced cognitive alteration, glial responses, and aquaporin 4 expression. This finding provides a better understanding of the complex nature of Nrf2 signaling and neuroprotection.
Collapse
Affiliation(s)
- Lei Liu
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Marie G Kelly
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Xiao Rui Yang
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Tyler G Fernandez
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Erika L Wierzbicki
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Anna Skrobach
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, 1275 Center Drive, Biomed Sci J493, Gainesville, FL, 32610, USA.
- Departments of Neurology, Psychiatry, Pharmaceutics, and Neuroscience, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
592
|
De Souza L, Barros WDM, De Souza RM, Delanogare E, Machado AE, Braga SP, Rosa GK, Nardi GM, Rafacho A, Speretta GFF, Moreira ELG. Impact of different fructose concentrations on metabolic and behavioral parameters of male and female mice. Physiol Behav 2020; 228:113187. [PMID: 32987042 DOI: 10.1016/j.physbeh.2020.113187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022]
Abstract
Clinical evidence has shown that a high consumption of sugar-sweetened beverages is a risk factor for developing obesity and metabolic syndrome. There has also been increasing interest in the potential effects of high-fructose intake on behavior. The present study evaluated sex differences in behavioral and metabolic characteristics in response to chronic fructose intake in mice. Swiss mice (3-months-old) had access to tap water or fructose-water solution (at 15% or 30% w/v) ad libitum for nine weeks. After the 8 weeks, the mice were submitted to a battery of behavioral tests. A glucose tolerance test was performed one day after these behavioral tests, and the next day blood was collected for biochemical analysis. At a 15% concentration, fructose-intaking resulted in higher plasma cholesterol levels and glucose intolerance in mice that paralleled with a passive stress-coping behavior in the female mice and lower self-care behavior in the male and the female mice. At a 30% concentration, fructose-intaking resulted in higher body mass gain and higher plasma cholesterol and triglycerides levels in the male and the female mice, whereas glucose intolerance was more pronounced in the male mice. Spatial memory impairments and lower self-care behavior were observed in the male and the female mice, while passive stress-coping behavior was observed only in the female mice. Collectively, high-fructose intake induces metabolic and behavioral alterations in mice, with the males being more susceptible to glucose metabolism dysfunctions and the females to depressive-like endophenotypes.
Collapse
Affiliation(s)
- Letícia De Souza
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil
| | - Wellinghton de Medeiros Barros
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil
| | - Raul Marin De Souza
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil
| | - Eslen Delanogare
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil
| | - Adriano Emanuel Machado
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil
| | - Sara Pereira Braga
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil
| | - Giovana Karoline Rosa
- Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil
| | - Geisson Marcos Nardi
- Programa de Pós-Graduação em Biologia Celular e do Desenvolvimento, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil
| | - Alex Rafacho
- Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil; Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil
| | - Guilherme Fleury Fina Speretta
- Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil; Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil
| | - Eduardo Luiz Gasnhar Moreira
- Departamento de Ciências Fisiológicas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil; Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, SC, Brasil.
| |
Collapse
|
593
|
Socodato R, Henriques JF, Portugal CC, Almeida TO, Tedim-Moreira J, Alves RL, Canedo T, Silva C, Magalhães A, Summavielle T, Relvas JB. Daily alcohol intake triggers aberrant synaptic pruning leading to synapse loss and anxiety-like behavior. Sci Signal 2020; 13:13/650/eaba5754. [PMID: 32963013 DOI: 10.1126/scisignal.aba5754] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alcohol abuse adversely affects the lives of millions of people worldwide. Deficits in synaptic transmission and in microglial function are commonly found in human alcohol abusers and in animal models of alcohol intoxication. Here, we found that a protocol simulating chronic binge drinking in male mice resulted in aberrant synaptic pruning and substantial loss of excitatory synapses in the prefrontal cortex, which resulted in increased anxiety-like behavior. Mechanistically, alcohol intake increased the engulfment capacity of microglia in a manner dependent on the kinase Src, the subsequent activation of the transcription factor NF-κB, and the consequent production of the proinflammatory cytokine TNF. Pharmacological blockade of Src activation or of TNF production in microglia, genetic ablation of Tnf, or conditional ablation of microglia attenuated aberrant synaptic pruning, thereby preventing the neuronal and behavioral effects of the alcohol. Our data suggest that aberrant pruning of excitatory synapses by microglia may disrupt synaptic transmission in response to alcohol abuse.
Collapse
Affiliation(s)
- Renato Socodato
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Joana F Henriques
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Camila C Portugal
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Tiago O Almeida
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Tedim-Moreira
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Renata L Alves
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Teresa Canedo
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Cátia Silva
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Teresa Summavielle
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal. .,Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
594
|
tPA Deficiency Underlies Neurovascular Coupling Dysfunction by Amyloid-β. J Neurosci 2020; 40:8160-8173. [PMID: 32928888 DOI: 10.1523/jneurosci.1140-20.2020] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/29/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
The amyloid-β (Aβ) peptide, a key pathogenic factor in Alzheimer's disease, attenuates the increase in cerebral blood flow (CBF) evoked by neural activity (functional hyperemia), a vital homeostatic response in which NMDA receptors (NMDARs) play a role through nitric oxide, and the CBF increase produced by endothelial factors. Tissue plasminogen activator (tPA), which is reduced in Alzheimer's disease and in mouse models of Aβ accumulation, is required for the full expression of the NMDAR-dependent component of functional hyperemia. Therefore, we investigated whether tPA is involved in the neurovascular dysfunction of Aβ. tPA activity was reduced, and the tPA inhibitor plasminogen inhibitor-1 (PAI-1) was increased in male mice expressing the Swedish mutation of the amyloid precursor protein (tg2576). Counteracting the tPA reduction with exogenous tPA or with pharmacological inhibition or genetic deletion of PAI-1 completely reversed the attenuation of the CBF increase evoked by whisker stimulation but did not ameliorate the response to the endothelium-dependent vasodilator acetylcholine. The tPA deficit attenuated functional hyperemia by suppressing NMDAR-dependent nitric oxide production during neural activity. Pharmacological inhibition of PAI-1 increased tPA activity, prevented neurovascular uncoupling, and ameliorated cognition in 11- to 12-month-old tg2576 mice, effects associated with a reduction of cerebral amyloid angiopathy but not amyloid plaques. The data unveil a selective role of the tPA in the suppression of functional hyperemia induced by Aβ and in the mechanisms of cerebral amyloid angiopathy, and support the possibility that modulation of the PAI-1-tPA pathway may be beneficial in diseases associated with amyloid accumulation.SIGNIFICANCE STATEMENT Amyloid-β (Aβ) peptides have profound neurovascular effects that may contribute to cognitive impairment in Alzheimer's disease. We found that Aβ attenuates the increases in blood flow evoked by neural activation through a reduction in tissue plasminogen activator (tPA) caused by upregulation of its endogenous inhibitor plasminogen inhibitor-1 (PAI-1). tPA deficiency prevents NMDA receptors from triggering nitric oxide production, thereby attenuating the flow increase evoked by neural activity. PAI-1 inhibition restores tPA activity, rescues neurovascular coupling, reduces amyloid deposition around blood vessels, and improves cognition in a mouse model of Aβ accumulation. The findings demonstrate a previously unappreciated role of tPA in Aβ-related neurovascular dysfunction and in vascular amyloid deposition. Restoration of tPA activity could be of therapeutic value in diseases associated with amyloid accumulation.
Collapse
|
595
|
S100A9 Upregulation Contributes to Learning and Memory Impairments by Promoting Microglia M1 Polarization in Sepsis Survivor Mice. Inflammation 2020; 44:307-320. [PMID: 32918665 DOI: 10.1007/s10753-020-01334-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/16/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022]
Abstract
Sepsis-associated encephalopathy (SAE) is a clinical syndrome of brain dysfunction secondary to sepsis, which is characterized by long-term neurocognitive deficits such as memory, attention, and executive dysfunction. However, the mechanisms underlying SAE remain unclear. By using transcriptome sequencing approach, we showed that hippocampal S100A9 was significantly increased in sepsis induced by cecal ligation and puncture (CLP) or lipopolysaccharide (LPS) challenge. Thus, we used S100A9 inhibitor Paquinimod to study the role of S100A9 in cognitive impairments in CLP-induced and LPS-induced mice models of SAE. Sepsis survivor mice underwent behavioral tests or the hippocampal tissues subjected to Western blotting, real-time quantitative PCR, and immunohistochemistry. Our results showed that CLP-induced and LPS-induced memory impairments were accompanied with increased expressions of hippocampal microglia Iba1 and CD86 (M1 markers), but reduced expression of Arg1 (M2 marker). Notably, S100A9 inhibition significantly improved the survival rate and learning and memory impairments in sepsis survivors, with a shift from M1 to M2 phenotype. Taken together, our study suggests that S100A9 upregulation might contribute to learning and memory impairments by promoting microglia M1 polarization in sepsis survivors, whereas S100A9 inhibition might provide a potential therapeutic target for SAE.
Collapse
|
596
|
Ma X, Huang M, Zheng M, Dai C, Song Q, Zhang Q, Li Q, Gu X, Chen H, Jiang G, Yu Y, Liu X, Li S, Wang G, Chen H, Lu L, Gao X. ADSCs-derived extracellular vesicles alleviate neuronal damage, promote neurogenesis and rescue memory loss in mice with Alzheimer's disease. J Control Release 2020; 327:688-702. [PMID: 32931898 DOI: 10.1016/j.jconrel.2020.09.019] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
Despite the various mechanisms that involved in the pathogenesis of Alzheimer's disease (AD), neuronal damage and synaptic dysfunction are the key events leading to cognition impairment. Therefore, neuroprotection and neurogenesis would provide essential alternatives to the rescue of AD cognitive function. Here we demonstrated that extracellular vesicles secreted from adipose-derived mesenchymal stem cells (ADSCs-derived EVs, abbreviated as EVs) entered the brain quickly and efficiently following intranasal administration, and majorly accumulated in neurons within the central nervous system (CNS). Proteomics analysis showed that EVs contained multiple proteins possessing neuroprotective and neurogenesis activities, and neuronal RNA sequencing showed genes enrichment in neuroprotection and neurogenesis following the treatment with EVs. As a result, EVs exerted powerful neuroprotective effect on Aβ1-42 oligomer or glutamate-induced neuronal toxicity, effectively ameliorated neurologic damage in the whole brain areas, remarkably increased newborn neurons and powerfully rescued memory deficits in APP/PS1 transgenic mice. EVs also reduced Aβ deposition and decreased microglia activation although in a less extent. Collectively, here we provide direct evidence that ADSCs-derived EVs may potentially serve as an alternative for AD therapy through alleviating neuronal damage and promoting neurogenesis.
Collapse
Affiliation(s)
- Xinyi Ma
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Meng Huang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mengna Zheng
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chengxiang Dai
- Cellular Biomedicine Group, Inc., Shanghai 201210, China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian Li
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
| | - Xiao Gu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huan Chen
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ye Yu
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shan Dong Road, Shanghai 200001, China
| | - Xuesong Liu
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shan Dong Road, Shanghai 200001, China
| | - Suke Li
- Cellular Biomedicine Group, Inc., Shanghai 201210, China
| | - Gang Wang
- Department of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liangjing Lu
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shan Dong Road, Shanghai 200001, China.
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
597
|
Stazi M, Wirths O. Chronic Memantine Treatment Ameliorates Behavioral Deficits, Neuron Loss, and Impaired Neurogenesis in a Model of Alzheimer's Disease. Mol Neurobiol 2020; 58:204-216. [PMID: 32914393 PMCID: PMC7695672 DOI: 10.1007/s12035-020-02120-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/05/2020] [Indexed: 02/06/2023]
Abstract
Memantine, a non-competitive NMDA receptor antagonist possessing neuroprotective properties, belongs to the small group of drugs which have been approved for the treatment of Alzheimer's disease (AD). While several preclinical studies employing different transgenic AD mouse models have described beneficial effects with regard to rescued behavioral deficits or reduced amyloid plaque pathology, it is largely unknown whether memantine might have beneficial effects on neurodegeneration. In the current study, we assessed whether memantine treatment has an impact on hippocampal neuron loss and associated behavioral deficits in the Tg4-42 mouse model of AD. We demonstrate that a chronic oral memantine treatment for 4 months diminishes hippocampal CA1 neuron loss and rescues learning and memory performance in different behavioral paradigms, such as Morris water maze or a novel object recognition task. Cognitive benefits of chronic memantine treatment were accompanied by an amelioration of impaired adult hippocampal neurogenesis. Taken together, our results demonstrate that memantine successfully counteracts pathological alterations in a preclinical mouse model of AD.
Collapse
Affiliation(s)
- Martina Stazi
- Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Medical Center (UMG), Georg-August University, Von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Medical Center (UMG), Georg-August University, Von-Siebold-Str. 5, 37075, Göttingen, Germany.
| |
Collapse
|
598
|
Ibi D, Nakasai G, Koide N, Sawahata M, Kohno T, Takaba R, Nagai T, Hattori M, Nabeshima T, Yamada K, Hiramatsu M. Reelin Supplementation Into the Hippocampus Rescues Abnormal Behavior in a Mouse Model of Neurodevelopmental Disorders. Front Cell Neurosci 2020; 14:285. [PMID: 32982694 PMCID: PMC7492784 DOI: 10.3389/fncel.2020.00285] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
In the majority of schizophrenia patients, chronic atypical antipsychotic administration produces a significant reduction in or even complete remission of psychotic symptoms such as hallucinations and delusions. However, these drugs are not effective in improving cognitive and emotional deficits in patients with schizophrenia. Atypical antipsychotic drugs have a high affinity for the dopamine D2 receptor, and a modest affinity for the serotonin 5-HT2A receptor. The cognitive and emotional deficits in schizophrenia are thought to involve neural networks beyond the classical dopaminergic mesolimbic pathway, however, including serotonergic systems. For example, mutations in the RELN gene, which encodes Reelin, an extracellular matrix protein involved in neural development and synaptic plasticity, are associated with neurodevelopmental disorders such as schizophrenia and autism spectrum disorder. Furthermore, hippocampal Reelin levels are down-regulated in the brains of both schizophrenic patients and in rodent models of schizophrenia. In the present study, we investigated the effect of Reelin microinjection into the mouse hippocampus on behavioral phenotypes to evaluate the role of Reelin in neurodevelopmental disorders and to test a therapeutic approach that extends beyond classical monoamine targets. To model the cognitive and emotional deficits, as well as histological decreases in Reelin-positive cell numbers and hippocampal synaptoporin distribution, a synaptic vesicle protein, offspring that were prenatally exposed to maternal immune activation were used. Microinjections of recombinant Reelin protein into the hippocampus rescued impairments in object memory and anxiety-like behavior and recruited synaptoporin in the hippocampus in offspring exposed to antenatal inflammation. These results suggest that Reelin supplementation has the potential to treat cognitive and emotional impairments, as well as synaptic disturbances, in patients with neurodevelopmental disorders such as schizophrenia.
Collapse
Affiliation(s)
- Daisuke Ibi
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Genki Nakasai
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Nayu Koide
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Masahito Sawahata
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Rika Takaba
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Project Office for Neuropsychological Research Center, Fujita Health University, Toyoake, Japan
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University, Graduate School of Health Sciences, Toyoake, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masayuki Hiramatsu
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| |
Collapse
|
599
|
Kwon HJ, Mohammed AE, Eltom KH, Albrahim JS, Alburae NA. Evaluation of antibiotic-induced behavioral changes in mice. Physiol Behav 2020; 223:113015. [PMID: 32553641 DOI: 10.1016/j.physbeh.2020.113015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Gut microbiota (GM) plays a critical role in health maintenance. Previous reports connected GM with metabolic, immunologic and neurologic pathways. The main purpose of the current investigation was to study whether antibiotic-induced disturbances of GM affects psychological or behavioral conditions on mice as animal model. Mice were exposed to clindamycin or amoxicillin, and their behaviors were evaluated. Antibiotic-treated groups displayed reduced recognition memory and increased depression. No significant changes in the locomotor activity and anxiety were observed. Our data suggested that changes in GM composition by antibiotics may lead to the cognitive and behavioral deficit.
Collapse
Affiliation(s)
- Hye-Joo Kwon
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia; The University of Utah Asia Campus, Incheon, Korea
| | - Afrah E Mohammed
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia.
| | - Kamal H Eltom
- Unit of Animal Health and Safety of Animal Products, Institute for Studies and Promotion of Animal Exports, University of Khartoum, Shambat Postal Code 13314, Khartoum North, Sudan
| | - Jehan S Albrahim
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Najla Ali Alburae
- Department of Biology, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
600
|
Guanosine Neuroprotection of Presynaptic Mitochondrial Calcium Homeostasis in a Mouse Study with Amyloid-β Oligomers. Mol Neurobiol 2020; 57:4790-4809. [DOI: 10.1007/s12035-020-02064-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/07/2020] [Indexed: 01/12/2023]
|