551
|
Dubois M, Inzé D. Plant growth under suboptimal water conditions: early responses and methods to study them. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1706-1722. [PMID: 31967643 DOI: 10.1093/jxb/eraa037] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 05/03/2023]
Abstract
Drought stress forms a major environmental constraint during the life cycle of plants, often decreasing plant yield and in extreme cases threatening survival. The molecular and physiological responses induced by drought have been the topic of extensive research during the past decades. Because soil-based approaches to studying drought responses are often challenging due to low throughput and insufficient control of the conditions, osmotic stress assays in plates were developed to mimic drought. Addition of compounds such as polyethylene glycol, mannitol, sorbitol, or NaCl to controlled growth media has become increasingly popular since it offers the advantage of accurate control of stress level and onset. These osmotic stress assays enabled the discovery of very early stress responses, occurring within seconds or minutes following osmotic stress exposure. In this review, we construct a detailed timeline of early responses to osmotic stress, with a focus on how they initiate plant growth arrest. We further discuss the specific responses triggered by different types and severities of osmotic stress. Finally, we compare short-term plant responses under osmotic stress versus in-soil drought and discuss the advantages, disadvantages, and future of these plate-based proxies for drought.
Collapse
Affiliation(s)
- Marieke Dubois
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
552
|
Bernal-Vicente A, Petri C, Hernández JA, Diaz-Vivancos P. Biochemical study of the effect of stress conditions on the mandelonitrile-associated salicylic acid biosynthesis in peach. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:277-286. [PMID: 31674699 DOI: 10.1111/plb.13066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Salicylic acid (SA) plays a central role in plant responses to environmental stresses. In a recent study, we suggested a third pathway for SA biosynthesis from mandelonitrile (MD) in peach plants. This pathway is an alternative to the phenylalanine ammonia-lyase pathway and links SA biosynthesis and cyanogenesis. In the present work, using biochemical approaches, we studied the effect of salt stress and Plum pox virus (PPV) infection on this proposed SA biosynthetic pathway from MD. Peach plants were submitted to salt stress and Plum pox virus (PPV) infection. We studied the levels of SA and its intermediates/precursors (phenylalanine, MD, amygdalin and benzoic acid) in in vitro shoots. Moreover, in peach seedlings, we analysed the content of H2 O2 -related enzymes, SA and the stress-related hormones abscisic acid and jasmonic acid. We showed that the contribution of this SA biosynthetic pathway from MD to the total SA pool does not seem to be important under the stress conditions assayed. Nevertheless, MD treatment not only affected the SA content, but also had a pleiotropic effect on abscisic acid and jasmonic acid levels. Furthermore, MD modulates the antioxidative metabolism via SA-dependent or -independent redox-related signalling pathways. Even though the proposed SA biosynthetic pathway seems to be functional under stress conditions, MD, and hence cyanogenic glycosides, may be operating more broadly than by influencing SA pathways and signalling. Thus, the physiological function of the proposed SA biosynthetic pathway remains to be elucidated.
Collapse
Affiliation(s)
- A Bernal-Vicente
- Biotechnology of Fruit Trees Group, Department of Plant Breeding, CEBAS-CSIC, Murcia, Spain
| | - C Petri
- Departamento de Producción Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - J A Hernández
- Biotechnology of Fruit Trees Group, Department of Plant Breeding, CEBAS-CSIC, Murcia, Spain
| | - P Diaz-Vivancos
- Biotechnology of Fruit Trees Group, Department of Plant Breeding, CEBAS-CSIC, Murcia, Spain
- Department of Plant Biology, Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
553
|
Theerawitaya C, Tisarum R, Samphumphuang T, Singh HP, Takabe T, Cha-Um S. Expression levels of vacuolar ion homeostasis-related genes, Na + enrichment, and their physiological responses to salt stress in sugarcane genotypes. PROTOPLASMA 2020; 257:525-536. [PMID: 31807913 DOI: 10.1007/s00709-019-01450-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Sugarcane is a sugar-producing crop widely grown in tropical regions in over 120 countries of the world. Salt-affected soil is one of the most significant abiotic constraints that inhibit growth and crop productivity, and, consequently, reduce sucrose concentration in the stalk. The present study investigated vacuolar ion homeostasis, Na+ accumulation, and physiological and morphological adaptations under salt stress in two different sugarcane genotypes (salt-tolerant K88-92 and salt-sensitive K92-80) under greenhouse conditions. Na+ was rapidly absorbed by the root tissues of both sugarcane genotypes within 3-7 days of 150 mM NaCl treatment, as confirmed by the results of CoroNa Green fluorescence staining. In addition, the rate of Na+ translocation from roots to shoots was evidently reduced, leading to lower amount of Na+ in the leaf tissues. At the cellular level, expression of ShNHX1 (vacuolar Na+/H+ antiporter), ShV-PPase (vacuolar H+-pyrophosphatase), and ShV-ATPase (vacuolar H+-ATPase) was upregulated in salt-stressed plants for the compartmentation of Na+ into the vacuoles of root cells. Interestingly, sucrose, glucose, and fructose in root tissues of salt-stressed sugarcane cv. K88-92 were increased by 10.61, 5.58, and 1.81 folds, respectively, over the control. Total soluble sugars in the roots and free proline in the leaves of sugarcane cv. K88-92 (salt-tolerant) were enriched by 3.08 and 1.99 folds, respectively, when plants were exposed to 150 mM NaCl, leading to maintain better photosynthetic abilities, net photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (E), and water use efficiency (WUE) in sugarcane cv. K88-92 than those in cv. K92-80. The study concludes that Na+ compartmentation in the root tissue acts as a major defense mechanism in sugarcane, especially in salt-tolerant genotype.
Collapse
Affiliation(s)
- Cattarin Theerawitaya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phaholyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phaholyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Thapanee Samphumphuang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phaholyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Harminder Pal Singh
- Department of Environment Studies, Faculty of Science, Panjab University, Chandigarh, 160014, India
| | - Teruhiro Takabe
- Research Institute, Meijo University, 1-501 Shiogamagushi, Tenpaku-ku, Nagoya, 468-8502, Japan
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phaholyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
554
|
Soliman M, Elkelish A, Souad T, Alhaithloul H, Farooq M. Brassinosteroid seed priming with nitrogen supplementation improves salt tolerance in soybean. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:501-511. [PMID: 32205926 PMCID: PMC7078400 DOI: 10.1007/s12298-020-00765-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/27/2019] [Accepted: 01/14/2020] [Indexed: 05/21/2023]
Abstract
This study was conducted to evaluate the influence of brassinosteroid (24-epibrassinolide, EBL) seed priming and optimal nitrogen (N) supply in improving salt tolerance in soybean. The experimental treatments were (a) control (nutrient solution without N and without EBL priming), (b) nutrient solution without N and EBL seed priming, (c) N supplemented nutrient solution without EBL priming and (d) EBL seed priming + N supplemented nutrient solution under optimal (0 mM NaCl) and salt stress (0 mM NaCl) conditions. Salt stress caused significant reduction in growth and biomass accumulation of soybean. However, EBL seed priming and application of N improved the soybean performance under optimal and salt stress conditions. In this regard, treatments receiving both EBL and N were more effective. EBL priming and N, alone and in combination, triggered the accumulation of osmolytes including proline, glycine betaine and sugars resulting in better photo-protection through maintenance of tissue water content. Antioxidant activity and osmolyte accumulation significantly increased due to combined treatment of N and EBL under normal as well as salt stress conditions. In conclusion, salt stress caused reduction in growth and biomass soybean due to oxidative damage and osmotic stresses. However, soybean performance was improved by seed priming with EBL. Supplementation of N further improved the effectiveness of EBL treatment in improving salt tolerance in soybean.
Collapse
Affiliation(s)
- Mona Soliman
- Biology Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Amr Elkelish
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Trabelsi Souad
- Biology Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Haifa Alhaithloul
- Biology Department, Science College, Jouf University, Sakaka, Saudi Arabia
| | - Muhammad Farooq
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Oman
- Department of Agronomy, University of Agriculture, Faisalabad, 38040 Pakistan
| |
Collapse
|
555
|
Girón-Calva PS, Twyman RM, Albajes R, Gatehouse AMR, Christou P. The Impact of Environmental Stress on Bt Crop Performance. TRENDS IN PLANT SCIENCE 2020; 25:264-278. [PMID: 31983618 DOI: 10.1016/j.tplants.2019.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/15/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Bt crops have been grown commercially for more than two decades. They have proven remarkably effective in the control of target insect pests. However, Bt crops can become less effective under various forms of environmental stress. Most studies in this area have considered the effect of environmental stress on Bt insecticidal protein levels or target pest mortality, but not both, resulting in a lack of mechanistic analysis. In this review, we critically examine previous research addressing the impact of environmental stress on the effectiveness of Bt crops. We find that the body of research data is not sufficiently robust to allow the reliable prediction of the performance of Bt crops under extreme climatic conditions.
Collapse
Affiliation(s)
- Patricia S Girón-Calva
- Department of Crop and Forest Sciences, University of Lleida-Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| | | | - Ramon Albajes
- Department of Crop and Forest Sciences, University of Lleida-Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - Angharad M R Gatehouse
- School of Natural and Environmental Sciences, Newcastle University, NE1 7RU, Newcastle, UK
| | - Paul Christou
- Department of Crop and Forest Sciences, University of Lleida-Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain; ICREA, Catalan Institute for Research and Advanced Studies, Passeig Lluıís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
556
|
Dong Y, Hu G, Yu J, Thu SW, Grover CE, Zhu S, Wendel JF. Salt-tolerance diversity in diploid and polyploid cotton (Gossypium) species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1135-1151. [PMID: 31642116 DOI: 10.1111/tpj.14580] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/21/2019] [Accepted: 10/14/2019] [Indexed: 05/22/2023]
Abstract
The development of salt-tolerant genotypes is pivotal for the effective utilization of salinized land and to increase global crop productivity. Several cotton species comprise the most important source of textile fibers globally, and these are increasingly grown on marginal or increasingly saline agroecosystems. The allopolyploid cotton species also provide a model system for polyploid research, of relevance here because polyploidy was suggested to be associated with increased adaptation to stress. To evaluate the genetic variation of salt tolerance among cotton species, 17 diverse accessions of allopolyploid (AD-genome) and diploid (A- and D-genome) Gossypium were evaluated for a total of 29 morphological and physiological traits associated with salt tolerance. For most morphological and physiological traits, cotton accessions showed highly variable responses to 2 weeks of exposure to moderate (50 mm NaCl) and high (100 mm NaCl) hydroponic salinity treatments. Our results showed that the most salt-tolerant species were the allopolyploid Gossypium mustelinum from north-east Brazil, the D-genome diploid Gossypium klotzschianum from the Galapagos Islands, followed by the A-genome diploids of Africa and Asia. Generally, A-genome accessions outperformed D-genome cottons under salinity conditions. Allopolyploid accessions from either diploid genomic group did not show significant differences in salt tolerance, but they were more similar to one of the two progenitor lineages. Our findings demonstrate that allopolyploidy in itself need not be associated with increased salinity stress tolerance and provide information for using the secondary Gossypium gene pool to breed for improved salt tolerance.
Collapse
Affiliation(s)
- Yating Dong
- Department of Agronomy, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Guanjing Hu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jingwen Yu
- Department of Agronomy, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Sandi Win Thu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Shuijin Zhu
- Department of Agronomy, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
557
|
A cross population between D. kaki and D. virginiana shows high variability for saline tolerance and improved salt stress tolerance. PLoS One 2020; 15:e0229023. [PMID: 32097425 PMCID: PMC7041798 DOI: 10.1371/journal.pone.0229023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
Persimmon (Diospyros kaki Thunb.) production is facing important problems related to climate change in the Mediterranean areas. One of them is soil salinization caused by the decrease and change of the rainfall distribution. In this context, there is a need to develop cultivars adapted to the increasingly challenging soil conditions. In this study, a backcross between (D. kaki x D. virginiana) x D. kaki was conducted, to unravel the mechanism involved in salinity tolerance of persimmon. The backcross involved the two species most used as rootstock for persimmon production. Both species are clearly distinct in their level of tolerance to salinity. Variables related to growth, leaf gas exchange, leaf water relations and content of nutrients were significantly affected by saline stress in the backcross population. Water flow regulation appears as a mechanism of salt tolerance in persimmon via differences in water potential and transpiration rate, which reduces ion entrance in the plant. Genetic expression of eight putative orthologous genes involved in different mechanisms leading to salt tolerance was analyzed. Differences in expression levels among populations under saline or control treatment were found. The ‘High affinity potassium transporter’ (HKT1-like) reduced its expression levels in the roots in all studied populations. Results obtained allowed selection of tolerant rootstocks genotypes and describe the hypothesis about the mechanisms involved in salt tolerance in persimmon that will be useful for breeding salinity tolerant rootstocks.
Collapse
|
558
|
Abstract
Long term degradation of water quality from natural resources has led to the use of alternative water resources for irrigation that are saline. Saline water irrigation in floriculture for the production of nursery crops requires an understanding of plant response. The pot growth of four lavender species (Lavandula angustifolia, Lavandula dentata var. dentata, Lavandula dentata var. candicans and Lavandula stoechas) irrigated with water containing different concentrations of NaCl (0, 25, 50, 100 and 200 mM) was investigated under greenhouse conditions. Overall results of different plant growth variables were consistent, showing a significant decrease at 100 and 200 mM NaCl. All lavender species showed signs of salinity stress that included chlorosis, followed by leaf and stem necrosis at NaCl concentrations greater than 50 mM. L. dentata var. dentata showed the greatest plant growth followed in descending order by L. dentata var. candicans, L. stoechas and L. angustifolia. Despite greater growth of L. dentata var. dentata, the appearance of L. dentata var. candicans was “healthier”. In areas with saline irrigation water, L. dentata var. dentata and L. dentata var. candicans are proposed for the production of lavender nursery crops.
Collapse
|
559
|
Teshera-Levye J, Miles B, Terwilliger V, Lovelock CE, Cavender-Bares J. Drivers of habitat partitioning among three Quercus species along a hydrologic gradient. TREE PHYSIOLOGY 2020; 40:142-157. [PMID: 31860720 DOI: 10.1093/treephys/tpz112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
A critical process that allows multiple, similar species to coexist in an ecological community is their ability to partition local habitat gradients. The mechanisms that underlie this separation at local scales may include niche differences associated with their biogeographic history, differences in ecological function associated with the degree of shared ancestry and trait-based performance differences, which may be related to spatial or temporal variation in habitat. In this study we measured traits related to water-use, growth and stress tolerance in mature trees and seedlings of three oak species (Quercus alba L., Quercus falcata Michx. and Quercus palustris Münchh). which co-occur in temperate forests across the eastern USA but tend to be found in contrasting hydrologic environments. The three species showed significant differences in their local distributions along a hydrologic gradient. We tested three possible mechanisms that influence their contrasting local environmental distributions and promote their long-term co-existence: (i) differences in their climatic distributions across a broad geographic range, (ii) differences in functional traits related to water use, drought tolerance and growth and (iii) contrasting responses to temporal variation in water availability. We identified key differences between the species in both their range-wide climatic distributions (especially aridity index and mean annual temperature) and physiological traits in mature trees and seedlings, including daily water loss, hydraulic conductance, stress responses, growth rate and biomass allocation. Taken together, these differences explain the habitat partitioning that allows three closely related species to co-occur locally.
Collapse
Affiliation(s)
- Jennifer Teshera-Levye
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN 55108, USA
| | - Brianna Miles
- Smithsonian Environmental Research Center, Edgewater, MD 21037, USA
- Center for Urban Environmental Research and Education University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Valery Terwilliger
- Smithsonian Environmental Research Center, Edgewater, MD 21037, USA
- Department of Geography and Atmospheric Science, University of Kansas, Lawrence, KS 66045, USA
| | - Catherine E Lovelock
- Smithsonian Environmental Research Center, Edgewater, MD 21037, USA
- School of Biological Science University of Queensland, St Lucia, QLD Brisbane 4072, Australia
| | - Jeannine Cavender-Bares
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN 55108, USA
- Smithsonian Environmental Research Center, Edgewater, MD 21037, USA
| |
Collapse
|
560
|
Anees M, Qayyum A, Jamil M, Rehman FU, Abid M, Malik MS, Yunas M, Ullah K. Role of halotolerant and chitinolytic bacteria in phytoremediation of saline soil using spinach plant. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:653-661. [PMID: 32064897 DOI: 10.1080/15226514.2019.1707160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Novel technologies are required for rapid reclamation of saline soils. The halotrophic and chitinolytic bacterial strains were used for phytoremediation of saline soils using spinach plants (Spinacia oleracea L.). The previously isolated chitinolytic bacteria showed high antifungal potential against Fusarium oxysporum, and Alternaria spp. The halotolerant bacterial strains were previously isolated showing a salt tolerance of up to 20% in culture media. Specially designed microcosms were used here to investigate the reclamation of saline soil by bacteria. The soil salinity was reduced by both types of bacteria (from 6.5 to 2 dS/m). A decline in Na contents from 22-24 to 9-12 meq/L and in sodium adsorption ratio from 10-11 to 7-8 was also observed in saline soils. The Ca/Mg contents increased from 24 to 30-33 meq/L. The bioassays were performed to evaluate the effect of the bacteria on the phytoremediation. The shoot, root weights (both fresh (1.927 g, 0.244 g) and dry (0.387 g, 0.104 g)) increased by bacterial inoculation as compared to control in saline soils. The Na/K ratio decreased in plant tissues. Here we report the increased efficacy of phytoremediation by combined inoculation of chitinolytic and halotolerant bacterial strains in soil which has never been reported before.
Collapse
Affiliation(s)
- Muhammad Anees
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Arshad Qayyum
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Jamil
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Pakistan
| | - Fayyaz Ur Rehman
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Abid
- Department of Plant Pathology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Saqib Malik
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | | | - Kalim Ullah
- Department of Zoology, Kohat University of Science and Technology, Kohat, Pakistan
| |
Collapse
|
561
|
Romano-Armada N, Yañez-Yazlle MF, Irazusta VP, Rajal VB, Moraga NB. Potential of Bioremediation and PGP Traits in Streptomyces as Strategies for Bio-Reclamation of Salt-Affected Soils for Agriculture. Pathogens 2020; 9:E117. [PMID: 32069867 PMCID: PMC7169405 DOI: 10.3390/pathogens9020117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/31/2020] [Accepted: 02/08/2020] [Indexed: 12/11/2022] Open
Abstract
Environmental limitations influence food production and distribution, adding up to global problems like world hunger. Conditions caused by climate change require global efforts to be improved, but others like soil degradation demand local management. For many years, saline soils were not a problem; indeed, natural salinity shaped different biomes around the world. However, overall saline soils present adverse conditions for plant growth, which then translate into limitations for agriculture. Shortage on the surface of productive land, either due to depletion of arable land or to soil degradation, represents a threat to the growing worldwide population. Hence, the need to use degraded land leads scientists to think of recovery alternatives. In the case of salt-affected soils (naturally occurring or human-made), which are traditionally washed or amended with calcium salts, bio-reclamation via microbiome presents itself as an innovative and environmentally friendly option. Due to their low pathogenicity, endurance to adverse environmental conditions, and production of a wide variety of secondary metabolic compounds, members of the genus Streptomyces are good candidates for bio-reclamation of salt-affected soils. Thus, plant growth promotion and soil bioremediation strategies combine to overcome biotic and abiotic stressors, providing green management options for agriculture in the near future.
Collapse
Affiliation(s)
- Neli Romano-Armada
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Av. Bolivia 5150, Salta 4400, Argentina; (N.R.-A.); (M.F.Y.-Y.); (V.P.I.); (N.B.M.)
- Facultad de Ingeniería, UNSa, Salta 4400, Argentina
| | - María Florencia Yañez-Yazlle
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Av. Bolivia 5150, Salta 4400, Argentina; (N.R.-A.); (M.F.Y.-Y.); (V.P.I.); (N.B.M.)
- Facultad de Ciencias Naturales, UNSa, Salta 4400, Argentina
| | - Verónica P. Irazusta
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Av. Bolivia 5150, Salta 4400, Argentina; (N.R.-A.); (M.F.Y.-Y.); (V.P.I.); (N.B.M.)
- Facultad de Ciencias Naturales, UNSa, Salta 4400, Argentina
| | - Verónica B. Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Av. Bolivia 5150, Salta 4400, Argentina; (N.R.-A.); (M.F.Y.-Y.); (V.P.I.); (N.B.M.)
- Facultad de Ingeniería, UNSa, Salta 4400, Argentina
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Norma B. Moraga
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Av. Bolivia 5150, Salta 4400, Argentina; (N.R.-A.); (M.F.Y.-Y.); (V.P.I.); (N.B.M.)
- Facultad de Ingeniería, UNSa, Salta 4400, Argentina
| |
Collapse
|
562
|
Mahmud JA, Hasanuzzaman M, Khan MIR, Nahar K, Fujita M. β-Aminobutyric Acid Pretreatment Confers Salt Stress Tolerance in Brassica napus L. by Modulating Reactive Oxygen Species Metabolism and Methylglyoxal Detoxification. PLANTS (BASEL, SWITZERLAND) 2020; 9:E241. [PMID: 32069866 PMCID: PMC7076386 DOI: 10.3390/plants9020241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/16/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Salinity is a serious environmental hazard which limits world agricultural production by adversely affecting plant physiology and biochemistry. Hence, increased tolerance against salt stress is very important. In this study, we explored the function of β-aminobutyric acid (BABA) in enhancing salt stress tolerance in rapeseed (Brassica napus L.). After pretreatment with BABA, seedlings were exposed to NaCl (100 and 150 mM) for 2 days. Salt stress increased Na content and decreased K content in shoot and root. It disrupted the antioxidant defense system by producing reactive oxygen species (ROS; H2O2 and O2•-), methylglyoxal (MG) content and causing oxidative stress. It also reduced the growth and photosynthetic pigments of seedlings but increased proline (Pro) content. However, BABA pretreatment in salt-stressed seedlings increased ascorbate (AsA) and glutathione (GSH) contents; GSH/GSSG ratio; and the activities of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione peroxidase (GPX), superoxide dismutase (SOD), catalase (CAT), glyoxalase I (Gly I), and glyoxalase II (Gly II) as well as the growth and photosynthetic pigments of plants. In addition, compared to salt stress alone, BABA increased Pro content, reduced the H2O2, MDA and MG contents, and decreased Na content in root and increased K content in shoot and root of rapeseed seedlings. Our findings suggest that BABA plays a double role in rapeseed seedlings by reducing Na uptake and enhancing stress tolerance through upregulating the antioxidant defense and glyoxalase systems.
Collapse
Affiliation(s)
- Jubayer Al Mahmud
- Department of Agroforestry and Environmental Science, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka-1207, Bangladesh;
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka-1207, Bangladesh
| | - M. Iqbal R. Khan
- Plant Systems Biology Laboratory, Department of Botany, Jamia Hamdard, New Delhi-110062, India;
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka-1207, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| |
Collapse
|
563
|
Ecotypes of Aquatic Plant Vallisneria americana Tolerate Different Salinity Concentrations. DIVERSITY 2020. [DOI: 10.3390/d12020065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increased salinity caused by saltwater intrusion or runoff from de-icing salts can severely affect freshwater vegetation and deteriorate aquatic ecosystems. These habitats can be restored with freshwater ecotypes (locally adapted populations) that tolerate above-normal salinity. Vallisneria americana is a prominent species in many freshwater ecosystems that responds differently to abiotic conditions such as substrate composition and fertility, so, in this study, we evaluated the effects of salt stress on 24 ecotypes of V. americana. Instant Ocean aquarium salt was used to create saline solutions (0.2 to 20.0 parts per thousand (ppt)), then plants were abruptly exposed to these solutions and maintained in these concentrations for five weeks before being visually assessed for quality and destructively harvested. Analysis of variance and nonlinear regression were used to calculate LC50 values—the lethal concentration of salt that reduced plant biomass and quality by 50% compared to control treatment. Growth rate and visual quality varied significantly among ecotypes, and ecotypes that were most and least sensitive to salt had 50% biomass reductions at 0.47 and 9.10 ppt, respectively. All ecotypes survived 10.0 ppt salinity concentration but none survived at 20.0 ppt, which suggests that the maximum salinity concentration tolerated by these ecotypes is between 15.0 and 20.0 ppt.
Collapse
|
564
|
Lum TD, Barton KE. Ontogenetic variation in salinity tolerance and ecophysiology of coastal dune plants. ANNALS OF BOTANY 2020; 125:301-314. [PMID: 31162531 PMCID: PMC7442332 DOI: 10.1093/aob/mcz097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/01/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS Global climate change includes shifts in temperature and precipitation, increases in the frequency and intensity of extreme weather events and sea level rise, which will drastically impact coastal ecosystems. The aim of this study is to quantify salinity tolerance and to identify physiological mechanisms underlying tolerance across wholeplant ontogeny in two widespread native coastal plant species in Hawai'i, Jacquemontia sandwicensis (Convolvulaceae) and Sida fallax (Malvaceae). METHODS At the seed, seedling, juvenile and mature ontogenetic stages, plants were exposed to high salinity watering treatments. Tolerance was assayed as the performance of stressed compared with control plants using multiple fitness metrics, including germination, survival, growth and reproduction. Potential physiological mechanisms underlying salinity tolerance were measured at each ontogenetic stage, including: photosynthesis and stomatal conductance rates, leaf thickness, leaf mass per area and biomass allocation. KEY RESULTS Salinity tolerance varied between species and across ontogeny but, overall, salinity tolerance increased across ontogeny. For both species, salinity exposure delayed flowering. Physiological and morphological leaf traits shifted across plant ontogeny and were highly plastic in response to salinity. Traits enhancing performance under high salinity varied across ontogeny and between species. For J. sandwicensis, water use efficiency enhanced growth for juvenile plants exposed to high salinity, while chlorophyll content positively influenced plant growth under salinity in the mature stage. For S. fallax, transpiration enhanced plant growth only under low salinity early in ontogeny; high transpiration constrained growth under high salinity across all ontogenetic stages. CONCLUSIONS That salinity effects vary across ontogenetic stages indicates that demographic consequences of sea level rise and coastal flooding will influence population dynamics in complex ways. Furthermore, even coastal dune plants presumably adapted to tolerate salinity demonstrate reduced ecophysiological performance, growth and reproduction under increased salinity, highlighting the conservation importance of experimental work to better project climate change effects on plants.
Collapse
Affiliation(s)
- Tiffany D Lum
- Department of Botany, University of Hawai’i at Mānoa, Honolulu, Hawai’i, USA
| | - Kasey E Barton
- Department of Botany, University of Hawai’i at Mānoa, Honolulu, Hawai’i, USA
| |
Collapse
|
565
|
Qiu R, Katul GG. Maximizing leaf carbon gain in varying saline conditions: An optimization model with dynamic mesophyll conductance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:543-554. [PMID: 31571298 DOI: 10.1111/tpj.14553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
While the adverse effects of elevated salinity levels on leaf gas exchange in many crops are not in dispute, representing such effects on leaf photosynthetic rates (A) continues to draw research attention. Here, an optimization model for stomatal conductance (gc ) that maximizes A while accounting for mesophyll conductance (gm ) was used to interpret new leaf gas exchange measurements collected for five irrigation water salinity levels. A function between chloroplastic CO2 concentration (cc ) and intercellular CO2 concentration (ci ) modified by salinity stress to estimate gm was proposed. Results showed that with increased salinity, the estimated gm and maximum photosynthetic capacity were both reduced, whereas the marginal water use efficiency λ increased linearly. Adjustments of gm , λ and photosynthetic capacity were shown to be consistent with a large corpus of drought-stress experiments. The inferred model parameters were then used to evaluate the combined effects of elevated salinity and atmospheric CO2 concentration (ca ) on leaf gas exchange. For a given salinity level, increasing ca increased A linearly, but these increases were accompanied by mild reductions in gc and transpiration. The ca level needed to ameliorate A reductions due to increased salinity is also discussed using the aforementioned model calculations.
Collapse
Affiliation(s)
- Rangjian Qiu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Gabriel G Katul
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
566
|
Asrar H, Hussain T, Qasim M, Nielsen BL, Gul B, Khan MA. Salt induced modulations in antioxidative defense system of Desmostachya bipinnata. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:113-124. [PMID: 31855817 DOI: 10.1016/j.plaphy.2019.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
This study addressed the interactions between salt stress and the antioxidant responses of a halophytic grass, Desmostachya bipinnata. Plants were grown in a semi-hydroponic system and treated with different NaCl concentrations (0 mM, 100 mM, 400 mM) for a month. ROS degradation enzyme activities were stimulated by addition of NaCl. Synthesis of antioxidant compounds, such as phenols, was enhanced in the presence of NaCl leading to accumulation of these compounds under moderate salinity. However, when the ROS production rate exceeded the capacity of enzyme-controlled degradation, antioxidant compounds were consumed and oxidative damage was indicated by significant levels of hydrogen peroxide at high salinity. The cellular concentration of salicylic acid increased upon salt stress, but since no direct interaction with ROS was detected, a messenger function may be postulated. High salinity treatment caused a significant decrease of plant growth parameters, whereas treatment with moderate salinity resulted in optimal growth. The activity and abundance of superoxide dismutase (SOD) increased with salinity, but the abundance of SOD isoforms was differentially affected, depending on the NaCl concentration applied. Detoxification of hydrogen peroxide (H2O2) was executed by catalase and guaiacol peroxidase at moderate salinity, whereas the enzymes detoxifying H2O2 through the ascorbate/glutathione cycle dominated at high salinity. The redox status of glutathione was impaired at moderate salinity, whereas the levels of both ascorbate and glutathione significantly decreased only at high salinity. Apparently, the maximal activation of enzyme-controlled ROS degradation was insufficient in comparison to the ROS production at high salinity. As a result, ROS-induced damage could not be prevented, if the applied stress exceeded a critical value in D. bipinnata plants.
Collapse
Affiliation(s)
- Hina Asrar
- Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan
| | - Tabassum Hussain
- Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Qasim
- Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan
| | - Brent L Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Bilquees Gul
- Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan.
| | - M Ajmal Khan
- Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
567
|
Chandra D, Srivastava R, Glick BR, Sharma AK. Rhizobacteria producing ACC deaminase mitigate water-stress response in finger millet ( Eleusine coracana (L.) Gaertn.). 3 Biotech 2020; 10:65. [PMID: 32030334 PMCID: PMC6979641 DOI: 10.1007/s13205-019-2046-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 12/30/2019] [Indexed: 10/25/2022] Open
Abstract
The aim of the study was to examine the influence of single and consortia treatments of drought tolerant rhizobacteria producing ACC deaminase together with additional plant growth promoting (PGP) characteristics on finger millet growth, antioxidant and nutrient concentration under water-stressed and irrigated (no stress) conditions. These rhizobacteria belong to the Variovorax sp. Achromobacter spp. Pseudomonas spp. and Ochrobactrum sp. The single inoculant of RAA3 (Variovorax paradoxus) and a consortium inoculant of four bacteria, i.e., DPC9 (Ochrobactrum anthropi), DPB13 (Pseudomonas palleroniana), DPB15 (Pseudomonas fluorescens) and DPB16 (Pseudomonas palleroniana), significantly boosted the overall growth parameters and nutrient concentrations in leaves of finger millet. Moreover, elevated levels of the reactive oxygen species scavenging enzymes-superoxide dismutase (17.3%, 11.6%), guaiacol peroxidase (38.7%, 22.2%), catalase (33.7%, 21.3%) and ascorbate peroxidase (18.2%, 10.0%); cellular osmolytes-proline (41.5%, 25.0%), phenol (44.5%, 37.5%); higher leaf chlorophyll (64.4%, 30.8%) and a reduced level of hydrogen peroxide (50.7%, 59.5%) and malondialdehyde (48.4%,72.5%) were noted, respectively, after single inoculation of RAA3 and a consortium treatment by strains DPC9 + DPB13 + DPB15 + DPB16, in contrast with non-treated plants mainly under water-stressed conditions. This finding clearly illustrates that PGPB that express ACC deaminase along with additional PGP traits could be an efficient approach for improving plant health in environments, where agricultural practices are reliant on rain for water.
Collapse
Affiliation(s)
- Dinesh Chandra
- Department of Biological Sciences, CBS&H, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar, Uttarakhand 263 145 India
- GIC Chamtola, Almora, Uttarakhand 263 622 India
| | - Rashmi Srivastava
- Department of Biological Sciences, CBS&H, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar, Uttarakhand 263 145 India
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, N2L 3G1 Canada
| | - Anil Kumar Sharma
- Department of Biological Sciences, CBS&H, G.B. Pant University of Agriculture and Technology, Pantnagar, U.S. Nagar, Uttarakhand 263 145 India
| |
Collapse
|
568
|
Fricke W. Energy costs of salinity tolerance in crop plants: night-time transpiration and growth. THE NEW PHYTOLOGIST 2020; 225:1152-1165. [PMID: 30834533 DOI: 10.1111/nph.15773] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/25/2019] [Indexed: 05/28/2023]
Abstract
Plants grow and transpire during the night. The aim of the present work was to assess the relative flows of carbon, water and solutes, and the energy involved, in sustaining night-time transpiration and leaf expansive growth under control and salt-stress conditions. Published and unpublished data were used, for barley plants grown in presence of 0.5-1 mM NaCl (control) and 100 mM NaCl. Night-time leaf growth presents a more efficient use of taken-up water compared with day-time growth. This efficiency increases several-fold with salt stress. Night-time transpiration cannot be supported entirely through osmotically driven uptake of water through roots under salt stress. Using a simple three- (root medium/cytosol/vacuole) compartment approach, the energy required to support cell expansion during the night is in the lower percentage region (0.03-5.5%) of the energy available through respiration, under both, control and salt-stress conditions. Use of organic (e.g. hexose equivalents) rather than inorganic (e.g. Na+ , Cl- , K+ ) solutes for generation of osmotic pressure in growing cells, increases the energy demand by orders of magnitude, yet requires only a small portion of carbon assimilated during the day. Night-time transpiration and leaf expansive growth should be considered as a potential acclimation mechanism to salinity.
Collapse
Affiliation(s)
- Wieland Fricke
- School of Biology and Environmental Sciences, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| |
Collapse
|
569
|
GOSWAMI M, DEKA S. Plant growth-promoting rhizobacteria—alleviators of abiotic stresses in soil: A review. PEDOSPHERE 2020; 30:40-61. [PMID: 0 DOI: 10.1016/s1002-0160(19)60839-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
570
|
Ahanger MA, Mir RA, Alyemeni MN, Ahmad P. Combined effects of brassinosteroid and kinetin mitigates salinity stress in tomato through the modulation of antioxidant and osmolyte metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:31-42. [PMID: 31838316 DOI: 10.1016/j.plaphy.2019.12.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 05/08/2023]
Abstract
Salinity stress reduces growth and yield productivity of most crop plants. Potentiality of kinetin (Kn) and epi-brassinolide (EBL), either individually or combinedly in preventing the salinity (100 mM NaCl) stress mediated oxidative damage and photosynthetic inhibition was studied in Solanum lycopersicum. Combined application of Kn and EBL imparted much prominent impact on the growth, photosynthesis and metabolism of antioxidants, osmolytes and secondary metabolites. Synthesis of chlorophylls and carotenoids increased and the photosynthetic parameters like stomatal conductance, intercellular CO2 concentration and net photosynthesis were significantly improved due to application of Kn and EBL. Photosystem II functioning (Fv/Fm), photochemical quenching and electron transport rate (ETR) improved significantly in Kn and EBL treated plants imparting significant decline in salinity induced non-photochemical quenching. Exogenous Kn and EBL effectively prevented the oxidative damage by significantly declining the generation of hydrogen peroxide and superoxide under saline and non-saline conditions as reflected in lowered lipid peroxidation and electrolyte leakage. Reduced oxidative damage in Kn and EBL treated plants was accompanied down-regulation of protease and lipoxygenase concomitant with up-regulation of the antioxidant system and the accumulation of compatible osmolytes. Treatment of Kn and EBL proved effective in enhancing the contents of redox homeostasis, ascorbic acid and reduced glutathione, and the secondary metabolites assisting the enzymatic antioxidant system in combating the salinity stress efficiently. Results suggest that combined application of Kn and EBL regulate growth and photosynthesis in tomato more effectively than their individual application through a probable regulatory crosstalk mechanism.
Collapse
Affiliation(s)
| | - Rayees Ahmad Mir
- School of Studies in Botany, Jiwaji University, Gwalior, MP, India
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saudi University, P. O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saudi University, P. O. Box. 2460, Riyadh, 11451, Saudi Arabia; Department of Botany, S.P. College, Srinagar, 190001, Jammu and Kashmir, India.
| |
Collapse
|
571
|
Effect of Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth-Promoting Bacteria (PGPR) Inoculations on Elaeagnus angustifolia L. in Saline Soil. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030945] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) are considered highly-efficient agents for conferring salt tolerance in host plants and improving soil fertility in rhizosphere. However, information about the inoculation of beneficial microbes on halophytes in arid and semi-arid regions remains inadequate. The objective of this study was to evaluate the influence of AMF (Glomus mosseae) inoculation, alone or in combination with PGPR (Bacillus amyloliquefaciens), on biomass accumulation, morphological characteristics, photosynthetic capacity, and rhizospheric soil enzyme activities of Elaeagnus angustifolia L., a typical halophyte in the northwest of China. The results indicate that, for one-year-old seedlings of Elaeagnus angustifolia L., AMF significantly promoted biomass accumulation in aboveground organs, increased the numbers of leaves and branches, and improved the leaf areas, stem diameters and plant height. AMF-mediated morphological characteristics of aboveground organs favored light interception and absorption and maximized the capacities for photosynthesis, transpiration, carbon dioxide assimilation and gas exchange of Elaeagnus angustifolia L. seedlings in saline soil. AMF also promoted root growth, modified root architecture, and enhanced soil enzyme activities. Elaeagnus angustifolia L. was more responsive to specific inoculation by AMF than by a combination of AMF and PGPR or by solely PGPR in saline soils. Therefore, we suggest that G. mosseae can be used in saline soil to enhance Elaeagnus angustifolia L. seedlings growth and improve soil nutrient uptake. This represents a biological technique to aid in restoration of saline-degraded areas.
Collapse
|
572
|
Munns R, Day DA, Fricke W, Watt M, Arsova B, Barkla BJ, Bose J, Byrt CS, Chen ZH, Foster KJ, Gilliham M, Henderson SW, Jenkins CLD, Kronzucker HJ, Miklavcic SJ, Plett D, Roy SJ, Shabala S, Shelden MC, Soole KL, Taylor NL, Tester M, Wege S, Wegner LH, Tyerman SD. Energy costs of salt tolerance in crop plants. THE NEW PHYTOLOGIST 2020; 225:1072-1090. [PMID: 31004496 DOI: 10.1111/nph.15864] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/25/2019] [Indexed: 05/21/2023]
Abstract
Agriculture is expanding into regions that are affected by salinity. This review considers the energetic costs of salinity tolerance in crop plants and provides a framework for a quantitative assessment of costs. Different sources of energy, and modifications of root system architecture that would maximize water vs ion uptake are addressed. Energy requirements for transport of salt (NaCl) to leaf vacuoles for osmotic adjustment could be small if there are no substantial leaks back across plasma membrane and tonoplast in root and leaf. The coupling ratio of the H+ -ATPase also is a critical component. One proposed leak, that of Na+ influx across the plasma membrane through certain aquaporin channels, might be coupled to water flow, thus conserving energy. For the tonoplast, control of two types of cation channels is required for energy efficiency. Transporters controlling the Na+ and Cl- concentrations in mitochondria and chloroplasts are largely unknown and could be a major energy cost. The complexity of the system will require a sophisticated modelling approach to identify critical transporters, apoplastic barriers and root structures. This modelling approach will inform experimentation and allow a quantitative assessment of the energy costs of NaCl tolerance to guide breeding and engineering of molecular components.
Collapse
Affiliation(s)
- Rana Munns
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, and School of Agriculture and Environment, The University of Western Australia, Crawley, WA, 6009, Australia
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - David A Day
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
| | - Wieland Fricke
- School of Biology and Environmental Sciences, University College Dublin (UCD), Dublin, 4, Ireland
| | - Michelle Watt
- Plant Sciences, Institute of Bio and Geosciences, Forschungszentrum Juelich, Helmholtz Association, 52425, Juelich, Germany
| | - Borjana Arsova
- Plant Sciences, Institute of Bio and Geosciences, Forschungszentrum Juelich, Helmholtz Association, 52425, Juelich, Germany
| | - Bronwyn J Barkla
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, 2481, Australia
| | - Jayakumar Bose
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Caitlin S Byrt
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Zhong-Hua Chen
- School of Science and Health, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Kylie J Foster
- Phenomics and Bioinformatics Research Centre, School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Matthew Gilliham
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Sam W Henderson
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Urrbrae, SA, 5064, Australia
| | - Colin L D Jenkins
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
| | - Herbert J Kronzucker
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Stanley J Miklavcic
- Phenomics and Bioinformatics Research Centre, School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Darren Plett
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Stuart J Roy
- Australian Research Council (ARC) Industrial Transformation Research Hub for Wheat in a Hot and Dry Climate, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, 5064, Australia
| | - Sergey Shabala
- Tasmanian Institute for Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas., 7001, Australia
- International Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
| | - Megan C Shelden
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Kathleen L Soole
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
| | - Nicolas L Taylor
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Molecular Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Mark Tester
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Stefanie Wege
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Lars H Wegner
- Karlsruhe Institute of Technology, Institute for Pulsed Power and Microwave Technology (IHM), D-76344, Eggenstein-Leopoldshafen, Germany
| | - Stephen D Tyerman
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
573
|
Ca2+/Na+ Ratio as a Critical Marker for Field Evaluation of Saline-Alkaline Tolerance in Alfalfa (Medicago sativa L.). AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10020191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Current indices of saline-alkaline (SA) tolerance are mainly based on the traditional growth and physiological indices for salinity tolerance and likely affect the accuracy of alfalfa tolerance predictions. We determined whether the inclusion of soil alkalinity-affected indices, particularly Ca2+, Mg2+, and their ratios to Na+ in plants, based on the traditional method could improve the prediction accuracy of SA tolerance in alfalfa, determine important indices for SA tolerance, and identify suitable alfalfa cultivars in alkaline salt-affected soils. Fifty alfalfa cultivars were evaluated for their SA tolerance under SA and non-SA field conditions. The SA-tolerance coefficient (SATC) for each investigated index of the alfalfa shoot was calculated as the ratio of SA to non-SA field conditions, and the contribution of SATC under different growth and physiological indices to SA tolerance was quantified based on the inclusion/exclusion of special alkalinity-affected indices. The traditional method, excluding the special alkalinity-affected indices, explained nearly all of the variation in alfalfa SA tolerance, and the most important predictor was the SATC of stem length. The new method, which included these special alkalinity-affected indices, had similar explanatory power but instead identified the SATC of shoot Ca2+/Na+ ratio, followed by that of stem length, as key markers for the field evaluation of SA tolerance. Ca2+, Mg2+, and their ratios to Na+ hold promise for enhancing the robustness of SA-tolerance predictions in alfalfa. These results encourage further investigation into the involvement of Ca2+ in such predictions in other plant species and soil types under more alkaline salt-affected conditions.
Collapse
|
574
|
Wang Z, Liu L, Cheng C, Ren Z, Xu S, Li X. GAI Functions in the Plant Response to Dehydration Stress in Arabidopsis thaliana. Int J Mol Sci 2020; 21:ijms21030819. [PMID: 32012796 PMCID: PMC7037545 DOI: 10.3390/ijms21030819] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/15/2022] Open
Abstract
DELLA (GAI/RGA/RGL1/RGL2/RGL3) proteins are key negative regulators in GA (gibberellin) signaling and are involved in regulating plant growth as a response to environmental stresses. It has been shown that the DELLA protein PROCERA (PRO) in tomato promotes drought tolerance, but its molecular mechanism remains unknown. Here, we showed that the gai-1 (gibberellin insensitive 1) mutant (generated from the gai-1 (Ler) allele (with a 17 amino acid deletion within the DELLA domain of GAI) by backcrossing gai-1 (Ler) with Col-0 three times), the gain-of-function mutant of GAI (GA INSENSITIVE) in Arabidopsis, increases drought tolerance. The stomatal density of the gai-1 mutant was increased but its stomatal aperture was decreased under abscisic acid (ABA) treatment conditions, suggesting that the drought tolerance of the gai-1 mutant is a complex trait. We further tested the interactions between DELLA proteins and ABF2 (abscisic acid (ABA)-responsive element (ABRE)-binding transcription factors) and found that there was a strong interaction between DELLA proteins and ABF2. Our results provide new insight into DELLA proteins and their role in drought stress tolerance.
Collapse
Affiliation(s)
- Zhijuan Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.W.); (Z.R.)
| | - Liu Liu
- The State Key Laboratory of Plant Cell & Chromosome Engineering, Center for Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China; (L.L.); (C.C.)
- Graduate University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Chunhong Cheng
- The State Key Laboratory of Plant Cell & Chromosome Engineering, Center for Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China; (L.L.); (C.C.)
- Graduate University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Ziyin Ren
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.W.); (Z.R.)
| | - Shimin Xu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.W.); (Z.R.)
| | - Xia Li
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.W.); (Z.R.)
- Correspondence: ; Tel.: +86-027-87856637
| |
Collapse
|
575
|
Wang J, Jiang X, Zhao C, Fang Z, Jiao P. Transcriptomic and metabolomic analysis reveals the role of CoA in the salt tolerance of Zygophyllum spp. BMC PLANT BIOLOGY 2020; 20:9. [PMID: 31906853 PMCID: PMC6945424 DOI: 10.1186/s12870-019-2226-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Zygophyllum is an important medicinal plant, with notable properties such as resistance to salt, alkali, and drought, as well as tolerance of poor soils and shifting sand. However, the response mechanism of Zygophyllum spp. to abiotic stess were rarely studied. RESULTS Here, we aimed to explore the salt-tolerance genes of Zygophyllum plants by transcriptomic and metabolic approaches. We chose Z. brachypterum, Z. obliquum and Z. fabago to screen for salt tolerant and sensitive species. Cytological observation showed that both the stem and leaf of Z. brachypterum were significantly thicker than those of Z. fabago. Then, we treated these three species with different concentrations of NaCl, and found that Z. brachypterum exhibited the highest salt tolerance (ST), while Z. fabago was the most sensitive to salt (SS). With the increase of salt concentration, the CAT, SOD and POD activity, as well as proline and chlorophyll content in SS decreased significantly more than in ST. After salt treatment, the proportion of open stomata in ST decreased significantly more than in SS, although there was no significant difference in stomatal number between the two species. Transcriptomic analysis identified a total of 11 overlapping differentially expressed genes (DEGs) in the leaves and roots of the ST and SS species after salt stress. Two branched-chain-amino-acid aminotransferase (BCAT) genes among the 11 DEGs, which were significantly enriched in pantothenate and CoA biosynthesis, as well as the valine, leucine and isoleucine biosynthesis pathways, were confirmed to be significantly induced by salt stress through qRT-PCR. Furthermore, overlapping differentially abundant metabolites showed that the pantothenate and CoA biosynthesis pathways were significantly enriched after salt stress, which was consistent with the KEGG pathways enriched according to transcriptomics. CONCLUSIONS In our study, transcriptomic and metabolomic analysis revealed that BCAT genes may affect the pantothenate and CoA biosynthesis pathway to regulate the salt tolerance of Zygophyllum species, which may constitute a newly identified signaling pathway through which plants respond to salt stress.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar, 843300, China
- College of Life Sciences, Tarim University, Alar, 843300, China
- Center of Applied Biotechnology, Wuhan University of Bioengineering, Wuhan, 430415, China
| | - Xi Jiang
- College of Plant Sciences, Tarim University, Alar, 843300, China
| | - Chufeng Zhao
- State Key Laboratory of Hybrid Rice, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhongming Fang
- College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Peipei Jiao
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar, 843300, China.
- College of Life Sciences, Tarim University, Alar, 843300, China.
| |
Collapse
|
576
|
Zhang Y, Wang Y, Xing J, Wan J, Wang X, Zhang J, Wang X, Li Z, Zhang M. Copalyl Diphosphate Synthase Mutation Improved Salt Tolerance in Maize ( Zea mays. L) via Enhancing Vacuolar Na + Sequestration and Maintaining ROS Homeostasis. FRONTIERS IN PLANT SCIENCE 2020; 11:457. [PMID: 32477376 PMCID: PMC7237720 DOI: 10.3389/fpls.2020.00457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/27/2020] [Indexed: 05/13/2023]
Abstract
Salinity stress impairs plant growth and causes crops to yield losses worldwide. Reduction of in vivo gibberellin acid (GA) level is known to repress plant size but is beneficial to plant salt tolerance. However, the mechanisms of in vivo GA deficiency-enhanced salt tolerance in maize are still ambiguous. In this study, we generated two independent maize knockout mutant lines of ent-copalyl diphosphate synthase (one of the key enzymes for early steps of GA biosynthesis), zmcps-1 and zmcps-7, to explore the role of GA in maize salt tolerance. The typical dwarf phenotype with lower GA content and delayed leaf senescence under salinity was observed in the mutant plants. The leaf water potential and cell turgor potential were significantly higher in zmcps-1 and zmcps-7 than in the wild type (WT) under salt stress. The mutant plants exhibited a lower superoxide anion production rate in leaves and also a downregulated relative expression level of NAPDH oxidase ZmRbohA-C than the WT maize under salt stress. Also, the mutant plants had higher enzymatic activities of superoxide dismutase (SOD) and catalase (CAT) and higher content of soluble sugars and proline under salt stress. The Na+/K+ ratio was not significantly different between the mutant maize plants and WT plants under salt stress conditions, but the Na+ and K+ content was increased in zmcps-1 and zmcps-7 leaves and shoots. Na+ fluorescent dye staining showed that the mutant leaves have significantly higher vacuolar Na+ intensity than the WT maize. The expression level of vacuolar Na+/H+ exchanger gene ZmNHX1 and vacuolar proton pump genes ZmVP1-1 and ZmVP2 were upregulated in the zmcps-1 and zmcps-7 plants under salinity, further proving that in vivo GA deficiency enhanced vacuolar Na+ sequestration in zmcps-1 and zmcps-7 leaves cells to avoid Na+ cytotoxicity. Together, our results suggested that maintaining ROS homeostasis and enhancing vacuolar Na+ sequestration could be involved in GA deficiency-improved maize salt tolerance.
Collapse
Affiliation(s)
- Yushi Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yubin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiapeng Xing
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiachi Wan
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xilei Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Juan Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xiaodong Wang
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhaohu Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Center for Crop Functional Genomics and Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Mingcai Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
577
|
Amjad M, Ameen N, Murtaza B, Imran M, Shahid M, Abbas G, Naeem MA, Jacobsen SE. Comparative physiological and biochemical evaluation of salt and nickel tolerance mechanisms in two contrasting tomato genotypes. PHYSIOLOGIA PLANTARUM 2020; 168:27-37. [PMID: 30684269 DOI: 10.1111/ppl.12930] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/18/2018] [Accepted: 01/22/2019] [Indexed: 05/17/2023]
Abstract
Plant tolerance against a combination of abiotic stresses is a complex phenomenon, which involves various mechanisms. Physiological and biochemical analyses of salinity (NaCl) and nickel (Ni) tolerance in two contrasting tomato genotypes were performed in a hydroponics experiment. The tomato genotypes selected were proved to be tolerant (Naqeeb) and sensitive (Nadir) to both salinity and Ni stress in our previous experiment. The tomato genotypes were exposed to combinations of NaCl (0, 75 and 150 mM) and Ni (0, 15, and 20 mg l-1 ) for 28 days. The results revealed that the tolerant and sensitive tomato genotypes showed similar response to NaCl and Ni stress; however, the level of response was significantly different in both genotypes. The tolerant tomato genotype showed less reduction in growth than the sensitive genotype against both NaCl and Ni stress. Root and shoot ionic analysis showed a decrease in Na and increase in K concentration by increasing Ni levels in the growth medium. Moreover, accumulation of Na and Ni in tissues showed a decrease in membrane stability index and an increase in malondialdehyde contents. The activity of superoxide dismutase, catalase, peroxidase and glutathione reductase under NaCl and Ni stress was significantly higher in the tolerant compared to the sensitive genotype. Enhanced activity of many antioxidant enzymes in Naqeeb under stress conditions is among the other mechanisms that enabled the genotype to better detoxify reactive oxygen species and therefore Naqeeb tolerated the stresses better than Nadir.
Collapse
Affiliation(s)
- Muhammad Amjad
- Department of Environmental Sciences, COMSATS University Islamabad, Islamabad, 61100, Pakistan
| | - Nuzhat Ameen
- Department of Environmental Sciences, COMSATS University Islamabad, Islamabad, 61100, Pakistan
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Islamabad, 61100, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Islamabad, 61100, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Islamabad, 61100, Pakistan
| | - Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Islamabad, 61100, Pakistan
| | - Muhammad A Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Islamabad, 61100, Pakistan
| | | |
Collapse
|
578
|
Ma Y, Dias MC, Freitas H. Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:591911. [PMID: 33281852 PMCID: PMC7691295 DOI: 10.3389/fpls.2020.591911] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/19/2020] [Indexed: 05/19/2023]
Abstract
Drought and salinity are among the most important environmental factors that hampered agricultural productivity worldwide. Both stresses can induce several morphological, physiological, biochemical, and metabolic alterations through various mechanisms, eventually influencing plant growth, development, and productivity. The responses of plants to these stress conditions are highly complex and depend on other factors, such as the species and genotype, plant age and size, the rate of progression as well as the intensity and duration of the stresses. These factors have a strong effect on plant response and define whether mitigation processes related to acclimation will occur or not. In this review, we summarize how drought and salinity extensively affect plant growth in agriculture ecosystems. In particular, we focus on the morphological, physiological, biochemical, and metabolic responses of plants to these stresses. Moreover, we discuss mechanisms underlying plant-microbe interactions that confer abiotic stress tolerance.
Collapse
|
579
|
Khalid MF, Hussain S, Anjum MA, Ahmad S, Ali MA, Ejaz S, Morillon R. Better salinity tolerance in tetraploid vs diploid volkamer lemon seedlings is associated with robust antioxidant and osmotic adjustment mechanisms. JOURNAL OF PLANT PHYSIOLOGY 2020; 244:153071. [PMID: 31756571 DOI: 10.1016/j.jplph.2019.153071] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 05/05/2023]
Abstract
Tetraploids are usually more tolerant to environmental stresses than diploids. Citrus plants face numerous abiotic stresses, including salinity, which negatively affect growth and yield. Double diploid citrus rootstocks have been shown to be more tolerant to abiotic stresses than their diploid relatives. In this study, we evaluated the antioxidative and osmotic adjustment mechanisms of diploid (2x) and double diploid (4x) volkamer lemon (Citrus volkameriana Tan. and Pasq.) rootstocks, which act against salt stress (75 and 150 mM). Results indicated that, under salt stress, all physiological variables (photosynthesis, stomatal conductance, transpiration rate, and leaf greenness) decreased, and these decreases were more noticeable in 2x plants than in 4x plants. On the other hand, accumulation of oxidative markers (malondialdehyde and hydrogen peroxide) was greater in the leaves and roots of 2x seedlings than in 4x seedlings. Similarly, the activities of antioxidative enzymes (peroxidase, ascorbate peroxidase, glutathione reductase, and catalase) were higher in the leaves and roots of 4x plants than in 2x plants. However, superoxide dismutase activity was higher in the roots of 2x seedlings than 4x seedlings. Double diploid plants affected by salt stress accumulated more osmolytes (i.e. proline and glycine betaine) in their leaves and roots than that by 2x plants. Total protein content, antioxidant capacity, and total phenolic content were also higher in 4x plants than 2x plants under salinity. At 150 mM, both 2x and 4x plants showed more symptoms of stress than those at 75 mM. Sodium content was the highest in the roots of 2x plants and in the leaves of 4x plants, while chloride content peaked in the leaves of 2x plants and in the roots of 4x plants. Overall, our results demonstrate that the active antioxidative defence mechanisms of 4x plants increase their tolerance to salinity compared to their corresponding 2x relatives. Thus, the use of newly developed tetraploid rootstocks may be a strategy for enhancing crop production in saline conditions.
Collapse
Affiliation(s)
- Muhammad Fasih Khalid
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan; Citrus Research and Education Center, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Sajjad Hussain
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan.
| | - Muhammad Akbar Anjum
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Shakeel Ahmad
- Department of Agronomy, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Arif Ali
- Department of Soil science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Shaghef Ejaz
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Raphael Morillon
- Equpie "Structure Evolutive des Agrumes, Polyploidie et Amelioration Genetique", SEAPAG-UM AGAP-Department BIOS-CIRAD Station de Roujol, 97170, Petit Bourg, Guadeloupe, France
| |
Collapse
|
580
|
Jia K, Zhang Q, Xing Y, Yan J, Liu L, Nie K. A Development-Associated Decrease in Osmotic Potential Contributes to Fruit Ripening Initiation in Strawberry ( Fragaria ananassa). FRONTIERS IN PLANT SCIENCE 2020; 11:1035. [PMID: 32754182 PMCID: PMC7365926 DOI: 10.3389/fpls.2020.01035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/24/2020] [Indexed: 05/17/2023]
Abstract
Fruit development and ripening are accompanied by a large increase in cellular soluble solid contents, which results in a significant decrease in osmotic potential (DOP). Here, we report that this development-associated DOP contributes to the initiation of ripening in strawberry (Fragaria ananassa Duch., Benihoppe) fruit. We show that fruit water potential significantly decreases at the onset of ripening as a result of the DOP. Further analysis using nuclear magnetic resonance spectroscopy (NMR) indicated that the change in fruit water potential was likely caused by catabolism of large molecules in receptacle cells, and bioinformatic analysis identified a family of osmotin-like proteins (OLP) that have a potential role in osmolyte accommodation. The gene expression of more than half of the OLP members increased substantially at the onset of fruit ripening, and specifically responded to DOP treatment, consistent with a close relationship between DOP and fruit ripening. We report that the DOP induced either by mannitol or water loss, triggered fruit ripening, as indicated by the elevated expression of multiple ripening genes and diverse ripening-associated physiological parameters. Collectively, these results suggest that the DOP contributes to strawberry fruit ripening initiation.
Collapse
Affiliation(s)
- Kenan Jia
- College of International Education, Beijing University of Chemical Technology, Beijing, China
| | - Qing Zhang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yu Xing
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jiaqi Yan
- College of Horticulture, China Agricultural University, Beijing, China
- *Correspondence: Jiaqi Yan, ; Luo Liu, ; Kaili Nie,
| | - Luo Liu
- College of International Education, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Jiaqi Yan, ; Luo Liu, ; Kaili Nie,
| | - Kaili Nie
- College of International Education, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Jiaqi Yan, ; Luo Liu, ; Kaili Nie,
| |
Collapse
|
581
|
Sinha R, Bala M, Kumar M, Sharma TR, Singh AK. Methods for Screening Legume Crops for Abiotic Stress Tolerance through Physiological and Biochemical Approaches. Methods Mol Biol 2020; 2107:277-303. [PMID: 31893454 DOI: 10.1007/978-1-0716-0235-5_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Legume crops are subjected to a wide range of abiotic stresses, which stimulate an array of physiological, biochemical, and molecular responses. However, different genotypes may exhibit significant variations between individual responses, which can determine their tolerance or susceptibility to these stresses. The present chapter suggests a broad range of assays that can help in understanding stress perception by plants at cellular and molecular levels. The genotypes may be sorted depending on their tolerance potential, by broadly analysing morphological, physiological, biochemical, and enzyme kinetics parameters. These assays are very beneficial in revealing the mechanism of stress perception and response in varied plant types, and have helped in discriminating contrasting genotypes. Here, we have described detailed protocols of assays which may be carried out to assess tolerance or susceptibility to abiotic stresses. The analysis, as a whole, can help researchers understand the effect of abiotic stresses on plant biochemical pathways, be it photosynthesis, redox homeostasis, metabolite perturbation, signaling, transcription, and translation. These protocols may be beneficial in identification of suitable donors for breeding programs, as well as for identifying promising candidate genes or pathways for developing stress tolerant legume crops through genetic engineering.
Collapse
Affiliation(s)
- Ragini Sinha
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Meenu Bala
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
- Vinoba Bhave University, Hazaribagh, India
| | - Madan Kumar
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Tilak Raj Sharma
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Anil Kumar Singh
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India.
| |
Collapse
|
582
|
Abo Nouh FA, Abo Nahas HH, Abdel-Azeem AM. Piriformospora indica: Endophytic Fungus for Salt Stress Tolerance and Disease Resistance. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
583
|
Silicon Nanoparticles and Plants: Current Knowledge and Future Perspectives. SUSTAINABLE AGRICULTURE REVIEWS 41 2020. [DOI: 10.1007/978-3-030-33996-8_7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
584
|
Chen C, Norton GJ, Price AH. Genome-Wide Association Mapping for Salt Tolerance of Rice Seedlings Grown in Hydroponic and Soil Systems Using the Bengal and Assam Aus Panel. FRONTIERS IN PLANT SCIENCE 2020; 11:576479. [PMID: 33193518 PMCID: PMC7644878 DOI: 10.3389/fpls.2020.576479] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/02/2020] [Indexed: 05/04/2023]
Abstract
Salinity is a major abiotic stress which inhibits rice production in coastal, arid and semi-aid areas in many countries, such as India and Bangladesh. Identification of salt tolerant cultivars, quantitative trait loci (QTLs) and genes is essential for breeding salt tolerant rice. The aus subpopulation of rice is considered to have originated predominantly from Bangladesh and India and have rich genetic diversity with wide variation in abiotic stress resistance. The objective of this study was to identify QTLs, and subsequently candidate genes using cultivars from the aus subpopulation and compare the results of two different seedling stage screening methods. Salt tolerance at the rice seedling stage was evaluated on 204 rice accessions from the Bengal and Assam Aus Panel (BAAP) grown in both hydroponics and soil under control and salt stress conditions. Ten salt related traits of stress symptoms, plant growth and the content of sodium and potassium were measured. Three cultivars, BRRI dhan 47, Goria, and T 1 showed more salt tolerance than the tolerant check Pokkali in both systems. Genome-wide association mapping was conducted on salt indices traits with 2 million SNPs using an efficient mixed model (EMMA) controlling population structure and kinship, and a significance threshold of P < 0.0001 was used to determine significant SNPs. A total of 97 and 74 QTLs associated with traits in hydroponic and soil systems were identified, respectively, including 11 QTLs identified in both systems. A total of 65 candidate genes were found including a well-known major gene OsHKT1;5. The most significant QTL was detected at around 40 Mb on chromosome 1 coinciding with two post-translational modifications SUMOylation genes (OsSUMO1 and OsSUMO2), this QTL was investigated. The salt tolerance rice cultivars and QTLs/genes identified here will provide useful information for future studies on genetics and breeding salt tolerant rice.
Collapse
|
585
|
Guo J, Dong X, Li Y, Wang B. NaCl treatment markedly enhanced pollen viability and pollen preservation time of euhalophyte Suaeda salsa via up regulation of pollen development-related genes. JOURNAL OF PLANT RESEARCH 2020; 133:57-71. [PMID: 31654246 DOI: 10.1007/s10265-019-01148-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 10/02/2019] [Indexed: 05/27/2023]
Abstract
Vegetable growth of halophytes has significantly increased through moderate salinity. However, little is known about the reproductive traits of euhalophytes. Male reproduction is pivotal for fertilization and seed production and sensitive to abiotic stressors. The pollen viability and pollen longevity of Suaeda salsa treated with 0 and 200 mM of NaCl were evaluated. It was revealed that the pollen size of S. salsa treated with NaCl was significantly bigger than that in controls. Furthermore, the pollen viability of S. salsa plants treated with NaCl was also significantly higher than that of control after 8 h of the pollens were collected (from 10 to 27 h). The pollen viability of NaCl-treated plants in the field could be maintained for 8 h (from 07:00 to 15:00) in sunny days, which was 1 h longer than that of control plants (from 07:00 to 14:00). Meanwhile, the pollen preservation time of NaCl-treated plants was 16 h at room temperature, which was 8 h longer than that of control plants. Genes related to pollen development, such as SsPRK3, SsPRK4, and SsLRX, exhibited high expression in the flowers of NaCl-treated plants. This indicated that NaCl markedly improved the pollen viability and preservation time via the increased expression of pollen development-related genes, and this benefits the population establishment of halophytes such as S. salsa in saline regions.
Collapse
Affiliation(s)
- Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, Shandong, China
| | - Xinxiu Dong
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, Shandong, China
| | - Ying Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, Shandong, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, Shandong, China.
| |
Collapse
|
586
|
Abo Nouh FA, Abdel-Azeem AM. Role of Fungi in Adaptation of Agricultural Crops to Abiotic Stresses. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
587
|
Jing Y, Shi L, Li X, Zheng H, Gao J, Wang M, He L, Zhang W. OXS2 is Required for Salt Tolerance Mainly through Associating with Salt Inducible Genes, CA1 and Araport11, in Arabidopsis. Sci Rep 2019; 9:20341. [PMID: 31889067 PMCID: PMC6937310 DOI: 10.1038/s41598-019-56456-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/06/2019] [Indexed: 11/09/2022] Open
Abstract
Salt stress is one of the abiotic stresses affecting crop growth and yield. The functional screening and mechanism investigation of the genes in response to salt stress are essential for the development of salt-tolerant crops. Here, we found that OXIDATIVE STRESS 2 (OXS2) was a salinity-induced gene, and the mutant oxs2-1 was hypersensitive to salt stress during seed germination and root elongation processes. In the absence of stress, OXS2 was predominantly localized in the cytoplasm; when the plants were treated with salt, OXS2 entered the nuclear. Further RNA-seq analysis and qPCR identification showed that, in the presence of salt stress, a large number of differentially expressed genes (DEGs) were activated, which contain BOXS2 motifs previously identified as the binding element for AtOXS2. Further ChIP analysis revealed that, under salt stress, OXS2 associated with CA1 and Araport11 directly through binding the BOXS2 containing fragments in the promoter regions. In conclusion, our results indicate that OXS2 is required for salt tolerance in Arabidopsis mainly through associating with the downstream CA1 and Araport11 directly.
Collapse
Affiliation(s)
- Ying Jing
- Institute of Vegetables and Flowers, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Lin Shi
- Institute of Vegetables and Flowers, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xin Li
- Institute of Vegetables and Flowers, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Han Zheng
- Institute of Vegetables and Flowers, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jianwei Gao
- Institute of Vegetables and Flowers, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Mei Wang
- Institute of Vegetables and Flowers, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Lilong He
- Institute of Vegetables and Flowers, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China.
| | - Wei Zhang
- Institute of Vegetables and Flowers, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
588
|
Singh S, Singh UB, Trivedi M, Sahu PK, Paul S, Paul D, Saxena AK. Seed Biopriming with Salt-Tolerant Endophytic Pseudomonas geniculata-Modulated Biochemical Responses Provide Ecological Fitness in Maize ( Zea mays L.) Grown in Saline Sodic Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:E253. [PMID: 31905865 PMCID: PMC6981434 DOI: 10.3390/ijerph17010253] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 11/24/2022]
Abstract
Under changing climate, soil salinity and sodicity is a limiting factor to crop production and are considered a threat to sustainability in agriculture. A number of attempts are being made to develop microbe-based technologies for alleviation of toxic effects of salts. However, the mechanisms of salt tolerance in agriculturally important crops are not fully understood and still require in-depth study in the backdrop of emerging concepts in biological systems. The present investigation was aimed to decipher the microbe-mediated mechanisms of salt tolerance in maize. Endophytic Pseudomonas geniculate MF-84 was isolated from maize rhizosphere and tagged with green fluorescent protein for localization in the plant system. Confocal microphotographs clearly indicate that MF-84 was localized in the epidermal cells, cortical tissues, endodermis and vascular bundles including proto-xylem, meta-xylem, phloem and bundle sheath. The role of P. geniculate MF-84 in induction and bioaccumulation of soluble sugar, proline and natural antioxidants enzymes in maize plant was investigated which lead not only to growth promotion but also provide protection from salt stress in maize. Results suggested that application of P. geniculate MF-84 reduces the uptake of Na+ and increases uptake of K+ and Ca2+ in maize roots indicative of the role of MF-84 in maintaining ionic balance/homeostasis in the plant roots under higher salt conditions. It not only helps in alleviation of toxic effects of salt but also increases plant growth along with reduction in crop losses due to salinity and sodicity.
Collapse
Affiliation(s)
- Shailendra Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, MaunathBhanjan 275 103, India; (S.S.); (P.K.S.); (S.P.); (A.K.S.)
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 227 105, India;
| | - Udai B. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, MaunathBhanjan 275 103, India; (S.S.); (P.K.S.); (S.P.); (A.K.S.)
| | - Mala Trivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 227 105, India;
| | - Pramod Kumar Sahu
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, MaunathBhanjan 275 103, India; (S.S.); (P.K.S.); (S.P.); (A.K.S.)
| | - Surinder Paul
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, MaunathBhanjan 275 103, India; (S.S.); (P.K.S.); (S.P.); (A.K.S.)
| | - Diby Paul
- Pilgram Marpeck School of Science, Technology, Engineering and Mathematics, TruettMcConnel University, 100 Alumni Dr., Cleveland, GA 30528, USA
| | - Anil Kumar Saxena
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, MaunathBhanjan 275 103, India; (S.S.); (P.K.S.); (S.P.); (A.K.S.)
| |
Collapse
|
589
|
Erel R, T. Le T, Eshel A, Cohen S, Offenbach R, Strijker T, Shtein I. Root Development of Bell Pepper ( Capsicum annuum L.) as Affected by Water Salinity and Sink Strength. PLANTS (BASEL, SWITZERLAND) 2019; 9:E35. [PMID: 31881669 PMCID: PMC7020163 DOI: 10.3390/plants9010035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/09/2019] [Accepted: 12/23/2019] [Indexed: 11/17/2022]
Abstract
Fruits are the dominant sinks for assimilates. At optimal conditions, assimilates supply can meet the demand of fruits and those of the vegetative organs; however, extreme circumstances such as strong sink strength or an environmental stress may disturb this fine balance. While most studies focus on aboveground parameters, information regarding root growth dynamics under variable sink strength are scarce. The objective of this study was to evaluate the effect of sink strength (represented by fruit load) and salinity on bell-pepper root development. Three levels of fruit load were combined with two salinity levels in plants grown in an aeroponic system. Root growth was determined both by root capacitance and destructive measurements. Salinity and sink strength significantly affected root, shoot and fruit growth dynamics. Root growth was less affected by fruit load. Salinity stress was negatively associated with shoot growth, but after an acclimation period, salinity enhanced root development. Additionally, this study shows for the first time that root capacitance is a valid approach for non-destructive measurement of root development in aeroponic systems. The good correlation measured by us (r2 0.86) opens new opportunities for continuous root growth monitoring in aeroponic systems in the future.
Collapse
Affiliation(s)
- Ran Erel
- Gilat Research Center, Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Negev 85-280, Israel;
| | - Thuc T. Le
- Gilat Research Center, Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Negev 85-280, Israel;
- Yair Station, Central and Northern Arava R&D Center, Hazeva 8681500, Israel; (S.C.); (R.O.); (T.S.)
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Amram Eshel
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Shabtai Cohen
- Yair Station, Central and Northern Arava R&D Center, Hazeva 8681500, Israel; (S.C.); (R.O.); (T.S.)
| | - Rivka Offenbach
- Yair Station, Central and Northern Arava R&D Center, Hazeva 8681500, Israel; (S.C.); (R.O.); (T.S.)
| | - Tobias Strijker
- Yair Station, Central and Northern Arava R&D Center, Hazeva 8681500, Israel; (S.C.); (R.O.); (T.S.)
| | - Ilana Shtein
- Department of Oenology and Agriculture, Eastern R&D Center, Ariel 40700, Israel;
| |
Collapse
|
590
|
Kamran M, Parveen A, Ahmar S, Malik Z, Hussain S, Chattha MS, Saleem MH, Adil M, Heidari P, Chen JT. An Overview of Hazardous Impacts of Soil Salinity in Crops, Tolerance Mechanisms, and Amelioration through Selenium Supplementation. Int J Mol Sci 2019; 21:E148. [PMID: 31878296 PMCID: PMC6981449 DOI: 10.3390/ijms21010148] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 02/05/2023] Open
Abstract
Soil salinization is one of the major environmental stressors hampering the growth and yield of crops all over the world. A wide spectrum of physiological and biochemical alterations of plants are induced by salinity, which causes lowered water potential in the soil solution, ionic disequilibrium, specific ion effects, and a higher accumulation of reactive oxygen species (ROS). For many years, numerous investigations have been made into salinity stresses and attempts to minimize the losses of plant productivity, including the effects of phytohormones, osmoprotectants, antioxidants, polyamines, and trace elements. One of the protectants, selenium (Se), has been found to be effective in improving growth and inducing tolerance against excessive soil salinity. However, the in-depth mechanisms of Se-induced salinity tolerance are still unclear. This review refines the knowledge involved in Se-mediated improvements of plant growth when subjected to salinity and suggests future perspectives as well as several research limitations in this field.
Collapse
Affiliation(s)
- Muhammad Kamran
- Key Laboratory of Arable Land Conservation, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China;
| | - Aasma Parveen
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (A.P.); (Z.M.)
| | - Sunny Ahmar
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.S.C.); (M.H.S.)
| | - Zaffar Malik
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (A.P.); (Z.M.)
| | - Sajid Hussain
- Stat Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China;
| | - Muhammad Sohaib Chattha
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.S.C.); (M.H.S.)
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (M.S.C.); (M.H.S.)
| | - Muhammad Adil
- College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China;
| | - Parviz Heidari
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Shahrood 3619995161, Iran;
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan
| |
Collapse
|
591
|
Effects of Salt Stress on Growth, Photosynthesis, and Mineral Nutrients of 18 Pomegranate (Punica granatum) Cultivars. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy10010027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pomegranate (Punica granatum L.) is widely grown in arid and semiarid regions, where the salinization may have developed through irrigation. A greenhouse experiment was conducted to investigate NaCl stress on growth, photosynthesis, and nutrients of 18 pomegranate cultivars. One group was irrigated twice a week with a nutrient solution. The other group was watered twice a week with the same nutrient solution and 200 mM NaCl for five weeks. Dry weight, shoot length, new shoot number, root length and number, leaf area, leaf relative water content, and net photosynthesis of salt-treated plants were negatively impacted by salt stress, and there was a significant difference among cultivars. Few foliar damages were observed. Na content of plants significantly increased in all cultivars, while P, S, K, Ca, Mg, Si, Al, Zn content of plants decreased under salt stress. Fe, Mn, and Cu content increased in most cultivars. Pomegranate accumulated supraoptimal Na mostly in roots and transported more K and Ca to shoots, which was attributed to maintaining a higher ratio of K/Na and Ca/Na in the aerial part of plants. Ten of the 18 cultivars were considered salt-tolerant, which would offer a reference for pomegranate cultivation on saline lands.
Collapse
|
592
|
Patil S, Shinde M, Prashant R, Kadoo N, Upadhyay A, Gupta V. Comparative Proteomics Unravels the Differences in Salt Stress Response of Own-Rooted and 110R-Grafted Thompson Seedless Grapevines. J Proteome Res 2019; 19:583-599. [PMID: 31808345 DOI: 10.1021/acs.jproteome.9b00420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Thompson Seedless, a commonly grown table grape variety, is sensitive to salinity when grown on its own roots, and therefore, it is frequently grafted onto salinity-tolerant wild grapevine rootstocks. Rising soil salinity is a growing concern in irrigated agricultural systems. The accumulation of salts near the root zone severely hampers plant growth, leading to a decrease in the productive lifespan of grapevine and causing heavy yield losses to the farmer. In the present study, we investigated the differences in response to salinity between own-rooted Thompson Seedless (TSOR) and 110R-grafted Thompson Seedless (TS110R) grapevines, wherein 110R is reported to be a salt-tolerant rootstock. The grapevines were subjected to salt stress by treating them with a 150 mM NaCl solution. The stress-induced changes in protein abundance were investigated using a label-free shotgun proteomics approach at three time-points viz. 6 h, 48 h, and 7 days of salt treatment. A total of 2793 proteins were identified, of which 246 were differentially abundant at various time-points in TSOR and TS110R vines. The abundance of proteins involved in several biological processes such as photosynthesis, amino acid metabolism, translation, chlorophyll biosynthesis, and generation of precursor metabolites was significantly affected by salt stress in both the vines but at different stages of stress. The results revealed that TSOR vines responded fervently to salt stress, while TS110R vines adopted a preventive approach. The findings of this study add to the knowledge of salinity response in woody and grafted plants and hence open the scope for further studies on salt stress-specific differences induced by grafting.
Collapse
Affiliation(s)
- Sucheta Patil
- Biochemical Sciences Division , CSIR-National Chemical Laboratory , Pune 411008 , India.,Academy of Scientific and Innovative Research , Ghaziabad 201002 , India
| | - Manisha Shinde
- ICAR-National Research Centre for Grapes , Pune 412307 , India
| | - Ramya Prashant
- Biochemical Sciences Division , CSIR-National Chemical Laboratory , Pune 411008 , India
| | - Narendra Kadoo
- Biochemical Sciences Division , CSIR-National Chemical Laboratory , Pune 411008 , India.,Academy of Scientific and Innovative Research , Ghaziabad 201002 , India
| | | | - Vidya Gupta
- Biochemical Sciences Division , CSIR-National Chemical Laboratory , Pune 411008 , India.,Academy of Scientific and Innovative Research , Ghaziabad 201002 , India
| |
Collapse
|
593
|
Ullah A, Li M, Noor J, Tariq A, Liu Y, Shi L. Effects of salinity on photosynthetic traits, ion homeostasis and nitrogen metabolism in wild and cultivated soybean. PeerJ 2019; 7:e8191. [PMID: 31844583 PMCID: PMC6907091 DOI: 10.7717/peerj.8191] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/11/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Carbon and nitrogen metabolism need to be highly regulated to achieve cell acclimation to changing environmental conditions. The understanding of physio-biochemical responses of crops to salinity stress could help to stabilize their performance and yield. In this study we have analyzed the roles of photosynthesis, ion physiology and nitrate assimilation toward saline/alkaline stress acclimation in wild and cultivated soybean seedlings. METHODS Growth and photosynthetic parameters, ion concentrations and the activity of enzymes involved in nitrogen assimilation were determined in seedlings of one wild and one cultivated soybean accession subjected to saline or alkaline stresses. RESULTS Both saline and alkaline stresses had a negative impact on the growth and metabolism of both wild and cultivated soybean.The growth, photosynthesis, and gas exchange parameters showed a significant decrease in response to increasing salt concentration. Additionally, a significant increase in root Na+ and Cl- concentration was observed. However, photosynthetic performance and ion regulation were higher in wild than in cultivated soybean under saline and alkaline stresses. Nitrate reductase (NR) and the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle showed a significant decrease in leaves of both genotypes. The reduction in the GS/GOGAT cycle was accompanied by high aminating glutamate dehydrogenase (NADH-glutamate dehydrogenase) activity, indicating the assimilation of high levels of NH4 +. A significant increase in the activities of aminating and deaminating enzymes, including glutamate dehydrogenase (GDH), alanine aminotransferase (AlaAT) and aspartate aminotransferase (AspAT), was observed, probably due to the high glutamate demand and maintenance of the Krebs cycle to correct the C: N status. CONCLUSIONS Cultivated soybean was much more stress sensitive than was the wild soybean. The decrease in growth, photosynthesis, ion regulation and nitrogen assimilation enzymes was greater in cultivated soybean than in wild soybean. The impact of alkaline stress was more pronounced than that of saline stress. Wild soybean regulated the physiological mechanisms of photosynthesis and nitrate assimilation more effectively than did cultivated soybean. The present findings provide a theoretical basis with which to screen and utilize wild and cultivated soybean germplasm for breeding new stress-tolerant soybean.
Collapse
Affiliation(s)
- Abd Ullah
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Mingxia Li
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Javaria Noor
- Department of Botany, Islamia College University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Akash Tariq
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, Xinjiang, China
- Key Laboratory of Biogeography and Bioresource in Arid Zone, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Liu
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Lianxuan Shi
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| |
Collapse
|
594
|
Enhanced solvent-free microwave extraction of Foeniculum vulgare Mill. essential oil seeds using double walled reactor. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
595
|
Li J, Sun P, Xia Y, Zheng G, Sun J, Jia H. A Stress-Associated Protein, PtSAP13, From Populus trichocarpa Provides Tolerance to Salt Stress. Int J Mol Sci 2019; 20:ijms20225782. [PMID: 31744233 PMCID: PMC6888306 DOI: 10.3390/ijms20225782] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 01/19/2023] Open
Abstract
The growth and production of poplars are usually affected by unfavorable environmental conditions such as soil salinization. Thus, enhancing salt tolerance of poplars will promote their better adaptation to environmental stresses and improve their biomass production. Stress-associated proteins (SAPs) are a novel class of A20/AN1 zinc finger proteins that have been shown to confer plants' tolerance to multiple abiotic stresses. However, the precise functions of SAP genes in poplars are still largely unknown. Here, the expression profiles of Populus trichocarpa SAPs in response to salt stress revealed that PtSAP13 with two AN1 domains was up-regulated dramatically during salt treatment. The β-glucuronidase (GUS) staining showed that PtSAP13 was accumulated dominantly in leaf and root, and the GUS signal was increased under salt condition. The Arabidopsis transgenic plants overexpressing PtSAP13 exhibited higher seed germination and better growth than wild-type (WT) plants under salt stress, demonstrating that overexpression of PtSAP13 increased salt tolerance. Higher activities of antioxidant enzymes were found in PtSAP13-overexpressing plants than in WT plants under salt stress. Transcriptome analysis revealed that some stress-related genes, including Glutathione peroxidase 8, NADP-malic enzyme 2, Response to ABA and Salt 1, WRKYs, Glutathione S-Transferase, and MYBs, were induced by salt in transgenic plants. Moreover, the pathways of flavonoid biosynthesis and metabolic processes, regulation of response to stress, response to ethylene, dioxygenase activity, glucosyltransferase activity, monooxygenase activity, and oxidoreductase activity were specially enriched in transgenic plants under salt condition. Taken together, our results demonstrate that PtSAP13 enhances salt tolerance through up-regulating the expression of stress-related genes and mediating multiple biological pathways.
Collapse
Affiliation(s)
- Jianbo Li
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China; (Y.X.); (G.Z.); (J.S.)
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China;
- Correspondence: (J.L.); (H.J.)
| | - Pei Sun
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China;
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yongxiu Xia
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China; (Y.X.); (G.Z.); (J.S.)
| | - Guangshun Zheng
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China; (Y.X.); (G.Z.); (J.S.)
| | - Jingshuang Sun
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 102300, China; (Y.X.); (G.Z.); (J.S.)
| | - Huixia Jia
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China;
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Correspondence: (J.L.); (H.J.)
| |
Collapse
|
596
|
González-Orenga S, Al Hassan M, Llinares JV, Lisón P, López-Gresa MP, Verdeguer M, Vicente O, Boscaiu M. Qualitative and Quantitative Differences in Osmolytes Accumulation and Antioxidant Activities in Response to Water Deficit in Four Mediterranean Limonium Species. PLANTS 2019; 8:plants8110506. [PMID: 31731597 PMCID: PMC6918351 DOI: 10.3390/plants8110506] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022]
Abstract
Limonium is a genus represented in the Iberian Peninsula by numerous halophytic species that are affected in nature by salinity, and often by prolonged drought episodes. Responses to water deficit have been studied in four Mediterranean Limonium species, previously investigated regarding salt tolerance mechanisms. The levels of biochemical markers, associated with specific responses—photosynthetic pigments, mono- and divalent ions, osmolytes, antioxidant compounds and enzymes—were determined in the control and water-stressed plants, and correlated with their relative degree of stress-induced growth inhibition. All the tested Limonium taxa are relatively resistant to drought on the basis of both the constitutive presence of high leaf ion levels that contribute to osmotic adjustment, and the stress-induced accumulation of osmolytes and increased activity of antioxidant enzymes, albeit with different qualitative and quantitative induction patterns. Limonium santapolense activated the strongest responses and clearly differed from Limonium virgatum, Limonium girardianum, and Limonium narbonense, as indicated by cluster and principal component analysis (PCA) analyses in agreement with its drier natural habitat, and compared to that of the other plants. Somewhat surprisingly, however, L. santapolense was the species most affected by water deficit in growth inhibition terms, which suggests the existence of additional mechanisms of defense operating in the field that cannot be mimicked in greenhouses.
Collapse
Affiliation(s)
- Sara González-Orenga
- Instituto Agroforestal Mediterráneo (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (S.G.-O.); (J.V.L.); (M.V.)
| | - Mohamad Al Hassan
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas (CSIC), Camino de Vera s/n, 46022 Valencia, Spain; (M.A.H.); (P.L.); (M.P.L.-G.)
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| | - Josep V. Llinares
- Instituto Agroforestal Mediterráneo (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (S.G.-O.); (J.V.L.); (M.V.)
| | - Purificación Lisón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas (CSIC), Camino de Vera s/n, 46022 Valencia, Spain; (M.A.H.); (P.L.); (M.P.L.-G.)
| | - M. Pilar López-Gresa
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas (CSIC), Camino de Vera s/n, 46022 Valencia, Spain; (M.A.H.); (P.L.); (M.P.L.-G.)
| | - Mercedes Verdeguer
- Instituto Agroforestal Mediterráneo (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (S.G.-O.); (J.V.L.); (M.V.)
| | - Oscar Vicente
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | - Monica Boscaiu
- Instituto Agroforestal Mediterráneo (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (S.G.-O.); (J.V.L.); (M.V.)
- Correspondence: ; Tel.: +34-963-879-253; Fax: +34-963-879-269
| |
Collapse
|
597
|
Khan A, Khan AL, Muneer S, Kim YH, Al-Rawahi A, Al-Harrasi A. Silicon and Salinity: Crosstalk in Crop-Mediated Stress Tolerance Mechanisms. FRONTIERS IN PLANT SCIENCE 2019; 10:1429. [PMID: 31787997 PMCID: PMC6853871 DOI: 10.3389/fpls.2019.01429] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/15/2019] [Indexed: 05/06/2023]
Abstract
Salinity stress hinders the growth potential and productivity of crop plants by influencing photosynthesis, disturbing the osmotic and ionic concentrations, producing excessive oxidants and radicals, regulating endogenous phytohormonal functions, counteracting essential metabolic pathways, and manipulating the patterns of gene expression. In response, plants adopt counter mechanistic cascades of physio-biochemical and molecular signaling to overcome salinity stress; however, continued exposure can overwhelm the defense system, resulting in cell death and the collapse of essential apparatuses. Improving plant vigor and defense responses can thus increase plant stress tolerance and productivity. Alternatively, the quasi-essential element silicon (Si)-the second-most abundant element in the Earth's crust-is utilized by plants and applied exogenously to combat salinity stress and improve plant growth by enhancing physiological, metabolomic, and molecular responses. In the present review, we elucidate the potential role of Si in ameliorating salinity stress in crops and the possible mechanisms underlying Si-associated stress tolerance in plants. This review also underlines the need for future research to evaluate the role of Si in salinity stress in plants and the identification of gaps in the understanding of this process as a whole at a broader field level.
Collapse
Affiliation(s)
- Adil Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Abdul Latif Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Sowbiya Muneer
- School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India
| | - Yoon-Ha Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Ahmed Al-Rawahi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
598
|
Yuenyong W, Sirikantaramas S, Qu LJ, Buaboocha T. Isocitrate lyase plays important roles in plant salt tolerance. BMC PLANT BIOLOGY 2019; 19:472. [PMID: 31694539 PMCID: PMC6833277 DOI: 10.1186/s12870-019-2086-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/20/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Isocitrate lyase (ICL) is a key enzyme in the glyoxylate cycle. In a previous study in rice, the expression of the ICL-encoding gene (OsICL) was highly induced by salt stress and its expression was enhanced in transgenic rice lines overexpressing OsCam1-1, a calmodulin (CaM)-encoding gene. CaM has been implicated in salt tolerance mechanisms in plants; however, the cellular mechanisms mediated by CaM are not clearly understood. In this study, the role of OsICL in plant salt tolerance mechanisms and the possible involvement of CaM were investigated using transgenic plants expressing OsICL or OsCam1-1. RESULTS OsICL was highly expressed in senesced leaf and significantly induced by salt stress in three OsCam1-1 overexpressing transgenic rice lines as well as in wild type (WT). In WT young leaf, although OsICL expression was not affected by salt stress, all three transgenic lines exhibited highly induced expression levels. In Arabidopsis, salt stress had negative effects on germination and seedling growth of the AtICL knockout mutant (Aticl mutant). To examine the roles of OsICL we generated the following transgenic Arabidopsis lines: the Aticl mutant expressing OsICL driven by the native AtICL promoter, the Aticl mutant overexpressing OsICL driven by the 35SCaMV promoter, and WT overexpressing OsICL driven by the 35SCaMV promoter. Under salt stress, the germination rate and seedling fresh and dry weights of the OsICL-expressing lines were higher than those of the Aticl mutant, and the two lines with the icl mutant background were similar to the WT. The Fv/Fm and temperature of rosette leaves in the OsICL-expressing lines were less affected by salt stress than they were in the Aticl mutant. Finally, glucose and fructose contents of the Aticl mutant under salt stress were highest, whereas those of OsICL-expressing lines were similar to or lower than those of the WT. CONCLUSIONS OsICL, a salt-responsive gene, was characterized in the transgenic Arabidopsis lines, revealing that OsICL expression could revert the salt sensitivity phenotypes of the Aticl knockout mutant. This work provides novel evidence that supports the role of ICL in plant salt tolerance through the glyoxylate cycle and the possible involvement of OsCam1-1 in regulating its transcription.
Collapse
Affiliation(s)
- Worawat Yuenyong
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Supaart Sirikantaramas
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing, 100871 China
- The National Plant Gene Research Center (Beijing), Beijing, 100101 China
| | - Teerapong Buaboocha
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
599
|
Adhikari ND, Simko I, Mou B. Phenomic and Physiological Analysis of Salinity Effects on Lettuce. SENSORS (BASEL, SWITZERLAND) 2019; 19:E4814. [PMID: 31694293 PMCID: PMC6864466 DOI: 10.3390/s19214814] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/23/2019] [Accepted: 11/01/2019] [Indexed: 01/08/2023]
Abstract
Salinity is a rising concern in many lettuce-growing regions. Lettuce (Lactuca sativa L.) is sensitive to salinity, which reduces plant biomass, and causes leaf burn and early senescence. We sought to identify physiological traits important in salt tolerance that allows lettuce adaptation to high salinity while maintaining its productivity. Based on previous salinity tolerance studies, one sensitive and one tolerant genotype each was selected from crisphead, butterhead, and romaine, as well as leaf types of cultivated lettuce and its wild relative, L. serriola L. Physiological parameters were measured four weeks after transplanting two-day old seedlings into 350 mL volume pots filled with sand, hydrated with Hoagland nutrient solution and grown in a growth chamber. Salinity treatment consisted of gradually increasing concentrations of NaCl and CaCl2 from 0 mM/0 mM at the time of transplanting, to 30 mM/15 mM at the beginning of week three, and maintaining it until harvest. Across the 10 genotypes, leaf area and fresh weight decreased 0-64% and 16-67%, respectively, under salinity compared to the control. Salinity stress increased the chlorophyll index by 4-26% in the cultivated genotypes, while decreasing it by 5-14% in the two wild accessions. Tolerant lines less affected by elevated salinity were characterized by high values of the chlorophyll fluorescence parameters Fv/Fm and instantaneous photosystem II quantum yield (QY), and lower leaf transpiration.
Collapse
Affiliation(s)
- Neil D. Adhikari
- Crop Improvement and Protection Research Unit, United States Department of Agriculture, Agricultural Research Service, Salinas, CA 93905, USA;
| | | | - Beiquan Mou
- Crop Improvement and Protection Research Unit, United States Department of Agriculture, Agricultural Research Service, Salinas, CA 93905, USA;
| |
Collapse
|
600
|
Chang J, Cheong BE, Natera S, Roessner U. Morphological and metabolic responses to salt stress of rice (Oryza sativa L.) cultivars which differ in salinity tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:427-435. [PMID: 31639558 DOI: 10.1016/j.plaphy.2019.10.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 05/25/2023]
Abstract
Salinization is one of the most important abiotic stressors for crop growth and productivity. Rice (Oryza sativa L.), as the major food source around the world, is very sensitive to salt, especially at seedling stage. In order to examine how salt stress influences the metabolism of rice, we compared the levels of a range of sugars and organic acids in three rice cultivars with different tolerance under salt stress over time. According to the morphological result, the shoot length and root fresh weight were only affected by salinity in the salt sensitive cultivar (Nipponbare). The responses of metabolites to salinity were time-, tissue- and cultivar-dependent. Shikimate and quinate, involved in the shikimate pathway, were dramatically decreased in the leaves of all three cultivars, which was regarded as a response to salinity. Many sugars in the leaves of the salt tolerant cultivar (Dendang and Fatmawati) showed earlier increases to salt stress compared to Nipponbare leaves. Moreover, only in the leaves of tolerant cultivars (Dendang and Fatimawati), malate was significantly decreased while sucrose was significantly increased. In Dendang roots, mannitol levels were significantly higher than in Nipponbare roots after 14 days of salt treatment, which may be attributed to its higher salt tolerance. It is proposed that these responses in the more tolerant cultivars are involved in their resistance to high salt stress which may lay the foundation for breeding tolerant rice cultivars.
Collapse
Affiliation(s)
- Jing Chang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Bo Eng Cheong
- School of BioSciences, The University of Melbourne, Victoria, 3010, Australia
| | - Siria Natera
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Victoria, 3010, Australia; Metabolomics Australia, Bio21 Institute, The University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|