551
|
Elliott SJ, Wainwright LA, McDaniel TK, Jarvis KG, Deng YK, Lai LC, McNamara BP, Donnenberg MS, Kaper JB. The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol Microbiol 1998; 28:1-4. [PMID: 9593291 DOI: 10.1046/j.1365-2958.1998.00783.x] [Citation(s) in RCA: 498] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- S J Elliott
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
552
|
Bäumler AJ, Heffron F. Mosaic structure of the smpB-nrdE intergenic region of Salmonella enterica. J Bacteriol 1998; 180:2220-3. [PMID: 9555907 PMCID: PMC107151 DOI: 10.1128/jb.180.8.2220-2223.1998] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/1997] [Accepted: 02/17/1998] [Indexed: 02/07/2023] Open
Abstract
The Salmonella enterica smpB-nrdE intergenic region contains about 45 kb of DNA that is not present in Escherichia coli. This DNA region was not introduced by a single horizontal transfer event, but was generated by multiple insertions and/or deletions that gave rise to a mosaic structure in this area of the chromosome.
Collapse
Affiliation(s)
- A J Bäumler
- Department of Medical Microbiology and Immunology, Texas A&M University, College Station 77843-1114, USA.
| | | |
Collapse
|
553
|
Abstract
Large numbers of new open reading frames can be identified by whole genome sequencing of microbial genomes. Efficient new approaches are required to investigate the role of the putative genes, or to identify genes required in distinct habitats. The novel technique 'signature-tagged mutagenesis' allows the identification of individual mutants within complex pools of mutants. Large numbers of mutants can be analyzed in a parallel manner for negative phenotypes like loss of function or attenuation of virulence. Further analysis of mutations identified by a negative selection procedure can be performed by linking the position of the respective mutations to genes identified by whole genome sequencing of microbes.
Collapse
Affiliation(s)
- M Hensel
- Lehrstuhl für Bakteriologie, Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, München, Germany.
| |
Collapse
|
554
|
Hong KH, Miller VL. Identification of a novel Salmonella invasion locus homologous to Shigella ipgDE. J Bacteriol 1998; 180:1793-802. [PMID: 9537377 PMCID: PMC107092 DOI: 10.1128/jb.180.7.1793-1802.1998] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genes essential for Salmonella typhimurium invasion have been localized to Salmonella pathogenicity island 1 (SPI1) on the chromosome. However, it is clear that other genes are required for the invasion process. Mutations that abolish the SPI1 invasion type III secretion system do not significantly reduce invasion into Chinese hamster ovary tissue culture cells. Two invasion defective mutants were isolated by screening 2,500 Tn10dTc insertion mutants of S. typhimurium in the tissue culture invasion assay. One of the invasion mutants, SVM167, has an insertion between centisomes 24.5 and 25.5 in an operon homologous to the ipgDEF operon of the Shigella flexneri and Shigella sonnei virulence plasmid. A second mutant, SVM168, has an insertion in an IS3-type element with homology to the Salmonella enteritidis IS1351 element and Yersinia enterocolitica IS1400 element from a high-pathogenicity island. Further characterization of SVM167 showed that culture supernatants from this mutant lack a previously uncharacterized protein that is also missing from culture supernatants of a SPI1 mutant, suggesting it can be secreted by the SPI1 type III secretion system. In addition, transcription of this operon, sigDE (Salmonella invasion gene), is dependent on the presence of sirA, an activator of hilA expression. HilA activates transcription of several of the SPI1 genes but does not appear to have a major role in activation of transcription from the sigDE promoter.
Collapse
Affiliation(s)
- K H Hong
- Department of Microbiology and Molecular Genetics, University of California, Los Angeles, 90095, USA
| | | |
Collapse
|
555
|
Abstract
Early genetic studies showed conservation of gene order in the enteric bacteria. Two recent methods using pulsed field gel electrophoresis (PFGE) to determine the physical map of the genome are: (i) partial digestion with the endonuclease I-CeuI, which digests the DNA of bacteria in the rrn operon for rRNA (ribosomal RNA), thus establishing the "rrn genomic skeleton" (the size in kbp of the intervals between rRNA operons); (ii) analysis of XbaI and B1nI sites within Tn10 insertions in the chromosome. The order of I-CeuI fragments, which is ABCDEFG in S. typhimurium LT2 and E. coli K-12, was found to be conserved in most Salmonella species, most of which grow in many hosts (host-generalists). However, in S. typhi, S. paratyphi C, S. gallinarum, and S. pullorum, species which are host-specialized, these fragments are rearranged, due to homologous recombination between the rrn operons, resulting in translocations and inversions. Inversions and translocations not involving the rrn operons are seldom detected except for inversions over the TER (termination of replication) region. Additive genetic changes (due to lateral transfer resulting in insertion of nonhomologous DNA) have resulted in "loops" containing blocks of DNA which provide new genes to specific strains, thus driving rapid evolution of new traits.
Collapse
Affiliation(s)
- K E Sanderson
- Salmonella Genetic Stock Centre, Department of Biological Sciences, University of Calgary, Alberta, Canada.
| | | |
Collapse
|
556
|
Karaolis DK, Johnson JA, Bailey CC, Boedeker EC, Kaper JB, Reeves PR. A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc Natl Acad Sci U S A 1998; 95:3134-9. [PMID: 9501228 PMCID: PMC19707 DOI: 10.1073/pnas.95.6.3134] [Citation(s) in RCA: 339] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/1997] [Accepted: 01/12/1998] [Indexed: 02/06/2023] Open
Abstract
The bacterial species Vibrio cholerae includes harmless aquatic strains as well as strains capable of causing epidemics and global pandemics of cholera. While investigating the relationship between pathogenic and nonpathogenic strains, we identified a chromosomal pathogenicity island (PAI) that is present in epidemic and pandemic strains but absent from nonpathogenic strains. Initially, two ToxR-regulated genes (aldA and tagA) were studied and were found to be associated with epidemic and pandemic strains but absent in nontoxigenic strains. The region containing aldA and tagA comprises 13 kb of previously unidentified DNA and is part of a PAI that contains a regulator of virulence genes (ToxT) and a gene cluster encoding an essential colonization factor and the cholera toxin phage receptor (toxin-coregulated pilus; TCP). The PAI is 39.5 kb in size, has low %G+C (35%), contains putative integrase and transposase genes, is flanked by att sites, and inserts near a 10Sa RNA gene (ssrA), suggesting it may be of bacteriophage origin. We found this PAI in two clinical non-O1/non-O139 cholera toxin-positive strains, suggesting that it can be transferred within V. cholerae. The sequence within this PAI includes an ORF with homology to a gene associated with the type IV pilus gene cluster of enteropathogenic Escherichia coli, a transposase from Vibrio anguillarum, and several ORFs with no known homology. As the PAI contains the CTXPhi receptor, it may represent the initial genetic factor required for the emergence of epidemic and pandemic cholera. We propose to call this island VPI (V. cholerae pathogenicity island).
Collapse
Affiliation(s)
- D K Karaolis
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | | | |
Collapse
|
557
|
Hardt WD, Urlaub H, Galán JE. A substrate of the centisome 63 type III protein secretion system of Salmonella typhimurium is encoded by a cryptic bacteriophage. Proc Natl Acad Sci U S A 1998; 95:2574-9. [PMID: 9482928 PMCID: PMC19418 DOI: 10.1073/pnas.95.5.2574] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/1997] [Indexed: 02/06/2023] Open
Abstract
Salmonella enterica has evolved a type III protein secretion system that allows these enteropathogens to translocate effector molecules directly into the host cell cytoplasm. These effectors mediate a variety of responses, including cytoskeletal rearrangements, cytokine production, and in certain cells, the induction of apoptosis. We report here the characterization of a substrate of this secretion system in S. enterica serovar typhimurium (Salmonella typhimurium) that is homologous to the SopE protein of Salmonella dublin implicated in bacterial entry into cultured epithelial cells. The sopE locus is located within a cluster of genes that encode tail and tail fiber proteins of a cryptic P2-like prophage, outside of the centisome 63 pathogenicity island that encodes the invasion-associated type III secretion system. Southern hybridization analysis revealed that sopE is present in only a subset of S. enterica serovars and that the flanking bacteriophage genes are also highly polymorphic. Encoding effector proteins that are delivered through type III secretion systems in highly mobile genetic elements may allow pathogens to adapt rapidly by facilitating the assembly of an appropriate set of effector proteins required for successful replication in a new environment.
Collapse
Affiliation(s)
- W D Hardt
- Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook, Stony Brook, NY 11794-5222, USA
| | | | | |
Collapse
|
558
|
Abstract
The year 1997 saw the publication of the complete nucleotide sequence of Helicobacter pylori and Escherichia coli. It is conceivable that the complete nucleotide sequence for all the major human bacterial pathogens will be available by the end of the century. Database alignments have been used to ascribe the putative functions of open reading frames in the sequenced isolates and to define the differences between bacterial species at the nucleotide level. The most striking finding from all genome projects has been the high proportion of open reading frames that have no known function. Experimental data demonstrating the utility of the genome sequencing projects are only just beginning to emerge.
Collapse
Affiliation(s)
- C M Tang
- Molecular Infectious Diseases Group, University Department of Paediatrics, Oxford University, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | | | | |
Collapse
|
559
|
Abstract
Bacteria are remarkably adaptable organisms that are able to survive and multiply in diverse and sometimes hostile environments. Adaptability is determined by the complement of genetic information available to an organism and by the mechanisms that control gene expression. In general, gene products conferring a growth or survival advantage in a particular situation are expressed, while unnecessary or deleterious functions are not. Expression of virulence gene products that allow pathogenic bacteria to multiply on and within host cells and tissues are no exception to this rule. Being of little or no use to the bacterium except during specific stages of the infectious cycle, these accessory factors are nearly always subject to tight and coordinate regulation. As a result of recent advances, we are beginning to appreciate the complexities of the interactions between bacteria and their hosts. The ability to probe virulence gene regulation in vivo has broadened our perspectives on pathogenesis.
Collapse
Affiliation(s)
- P A Cotter
- Department of Microbiology and Immunology, University of California at Los Angeles School of Medicine, 10833 Le Conte Avenue, Los Angeles, CA 90095-1747, USA.
| | | |
Collapse
|
560
|
Chiang SL, Mekalanos JJ. Use of signature-tagged transposon mutagenesis to identify Vibrio cholerae genes critical for colonization. Mol Microbiol 1998; 27:797-805. [PMID: 9515705 DOI: 10.1046/j.1365-2958.1998.00726.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pathogenesis of cholera begins with colonization of the host intestine by Vibrio cholerae. The toxin co-regulated pilus (TCP), a fimbrial structure produced by V. cholerae, is absolutely required for colonization (i.e. the persistence, survival and growth of V. cholerae in the upper intestinal milieu), but many other aspects of the colonization process are not well understood. In this study, we use signature-tagged transposon mutagenesis (STM) to conduct a screen for random insertion mutations that affect colonization in the suckling mouse model for cholera. Of approximately 1100 mutants screened, five mutants (approximately 0.5%) with transposon insertions in TCP biogenesis genes were isolated, validating the use of STM to identify attenuated mutants. Insertions in lipopolysaccharide, biotin and purine biosynthetic genes were also found to cause colonization defects. Similar results were observed for mutations in homologues of pta and ptfA, two genes involved in phosphate transfer. Finally, our screen identified several novel genes, disruption of which also caused colonization defects in the mouse model. These results demonstrate that STM is a powerful method for isolating colonization-defective mutants of V. cholerae.
Collapse
Affiliation(s)
- S L Chiang
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
561
|
7.3 Signature Tagged Mutagenesis. J Microbiol Methods 1998. [DOI: 10.1016/s0580-9517(08)70297-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
|
562
|
1.1 Detection of Virulence Genes Expressed within Infected Cells. METHODS IN MICROBIOLOGY 1998. [DOI: 10.1016/s0580-9517(08)70262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
563
|
He SY. Type III protein secretion systems in plant and animal pathogenic bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 1998; 36:363-92. [PMID: 15012505 DOI: 10.1146/annurev.phyto.36.1.363] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Among many interesting and sophisticated mechanisms used by bacterial pathogens to subvert eukaryotic hosts is a class of specialized protein secretion systems (known as type III protein secretion systems) that deliver bacterial virulence proteins directly into the host cell. Recent studies have revealed four important features of these secretion systems. First, they are widespread among plant and animal bacterial pathogens, and mutations affecting type III protein secretion often eliminate bacterial virulence completely. Second, at least eight type III secretion components share sequence similarities with those of the flagellar assembly machinery and flagellum-like structures are associated with type III secretion, raising the possibility that these secretion systems are derived from the presumably more ancient flagellar assembly apparatus. Third, type III secretion is activated in vivo upon contact with host cells. Fourth, the type III secretion mechanism is Sec-independent and the effector proteins may possess mRNA-based targeting signals. This review highlights the similarities and differences among type III secretion systems of selected model plant and animal pathogenic bacteria.
Collapse
Affiliation(s)
- S Y He
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA.
| |
Collapse
|
564
|
Conner CP, Heithoff DM, Mahan MJ. In vivo gene expression: contributions to infection, virulence, and pathogenesis. Curr Top Microbiol Immunol 1997; 225:1-12. [PMID: 9386325 DOI: 10.1007/978-3-642-80451-9_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- C P Conner
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara 93106, USA
| | | | | |
Collapse
|
565
|
Rajakumar K, Sasakawa C, Adler B. Use of a novel approach, termed island probing, identifies the Shigella flexneri she pathogenicity island which encodes a homolog of the immunoglobulin A protease-like family of proteins. Infect Immun 1997; 65:4606-14. [PMID: 9353040 PMCID: PMC175661 DOI: 10.1128/iai.65.11.4606-4614.1997] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The she gene of Shigella flexneri 2a, which also harbors the internal enterotoxin genes set1A and set1B (F. R. Noriega, GenBank accession no. U35656, 1995) encodes a homolog of the virulence-related immunoglobulin A (IgA) protease-like family of secreted proteins, Tsh, EspC, SepA, and Hap, from an avian pathogenic Escherichia coli, an enteropathogenic E. coli, S. flexneri 5, and Haemophilus influenzae, respectively. To investigate the possibility that this locus was carried on a larger deletable element, the S. flexneri 2a YSH6000T she gene was insertionally disrupted by allelic exchange using a Tn10-derived tetAR(B) cassette. Then, to detect loss of the she locus, the tetracycline-resistant derivative was plated onto fusaric acid medium to select for tetracycline-sensitive revertants, which were observed to arise at a frequency of 10(-5) to 10(-6). PCR and pulsed-field gel electrophoresis analysis confirmed loss of the she::tetAR(B) locus in six independent tetracycline-sensitive isolates. Sample sequencing over a 25-kb region flanking she identified four insertion sequence-like elements, the group II intron-like sequence Sf.IntA, and the 3' end of a second IgA protease-like homolog, sigA, lying 3.6 kb downstream and in an orientation inverted with respect to she. The deletion was mapped to chromosomal NotI fragment A and determined to have a size of 51 kb. Hybridization with flanking probes confirmed that at least 17.7 kb of the 51-kb deletable element was unique to the seven she+ strains investigated, supporting the conclusion that she lay within a large pathogenicity island. The method described in this study, termed island probing, provides a useful tool to further the study of pathogenicity islands in general. Importantly, this approach could also be of value in constructing safer live attenuated bacterial vaccines.
Collapse
Affiliation(s)
- K Rajakumar
- Department of Microbiology, Monash University, Clayton, Victoria, Australia.
| | | | | |
Collapse
|
566
|
Jones BD, Nichols WA, Gibson BW, Sunshine MG, Apicella MA. Study of the role of the htrB gene in Salmonella typhimurium virulence. Infect Immun 1997; 65:4778-83. [PMID: 9353064 PMCID: PMC175685 DOI: 10.1128/iai.65.11.4778-4783.1997] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have undertaken a study to investigate the contribution of the htrB gene to the virulence of pathogenic Salmonella typhimurium. An htrB::mini-Tn10 mutation from Escherichia coli was transferred by transduction to the mouse-virulent strain S. typhimurium SL1344 to create an htrB mutant. The S. typhimurium htrB mutant was inoculated into mice and found to be severely limited in its ability to colonize organs of the lymphatic system and to cause systemic disease in mice. A variety of experiments were performed to determine the possible reasons for this loss of virulence. Serum killing assays revealed that the S. typhimurium htrB mutant was as resistant to killing by complement as the wild-type strain. However, macrophage survival assays revealed that the S. typhimurium htrB mutant was more sensitive to the intracellular environment of murine macrophages than the wild-type strain. In addition, the bioactivity of the lipopolysaccharide (LPS) of the htrB mutant was reduced compared to that of the LPS from the parent strain as measured by both a Limulus amoebocyte lysate endotoxin quantitation assay and a tumor necrosis factor alpha bioassay. These results indicate that the htrB gene plays a role in the virulence of S. typhimurium.
Collapse
Affiliation(s)
- B D Jones
- Department of Microbiology, University of Iowa College of Medicine, Iowa City 52242-1109, USA.
| | | | | | | | | |
Collapse
|
567
|
Abstract
A selection strategy was devised to identify bacterial genes preferentially expressed when a bacterium associates with its host cell. Fourteen Salmonella typhimurium genes, which were under the control of at least four independent regulatory circuits, were identified to be selectively induced in host macrophages. Four genes encode virulence factors, including a component of a type III secretory apparatus. This selection methodology should be generally applicable to the identification of genes from pathogenic organisms that are induced upon association with host cells or tissues.
Collapse
Affiliation(s)
- R H Valdivia
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
568
|
Collighan RJ, Woodward MJ. Sequence analysis and distribution of an IS3-like insertion element isolated from Salmonella enteritidis. FEMS Microbiol Lett 1997; 154:207-13. [PMID: 9311118 DOI: 10.1111/j.1574-6968.1997.tb12645.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The nucleotide sequence of a 3 kb region immediately upstream of the sef operon of Salmonella enteritidis was determined. A 1230 base pair insertion sequence which shared sequence identity (> 75%) with members of the IS3 family was revealed. This element, designated IS1230, had almost identical (90% identity) terminal inverted repeats to Escherichia coli IS3 but unlike other IS3-like sequences lacked the two characteristic open reading frames which encode the putative transposase. S. enteritidis possessed only one copy of this insertion sequence although Southern hybridisation analysis of restriction digests of genomic DNA revealed another fragment located in a region different from the sef operon which hybridised weakly which suggested the presence of an IS1230 homologue. The distribution of IS1230 and IS1230-like elements was shown to be widespread amongst salmonellas and the patterns of restriction fragments which hybridised differed significantly between Salmonella serotypes and it is suggested that IS1230 has potential for development as a differential diagnostic tool.
Collapse
Affiliation(s)
- R J Collighan
- Bacteriology Department, Central Veterinary Laboratory, Addlestone, Surrey, UK.
| | | |
Collapse
|
569
|
Stephens C, Mohr C, Boyd C, Maddock J, Gober J, Shapiro L. Identification of the fliI and fliJ components of the Caulobacter flagellar type III protein secretion system. J Bacteriol 1997; 179:5355-65. [PMID: 9286988 PMCID: PMC179404 DOI: 10.1128/jb.179.17.5355-5365.1997] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Caulobacter crescentus is motile by virtue of a polar flagellum assembled during the predivisional stage of the cell cycle. Three mutant strains in which flagellar assembly was blocked at an early stage were isolated. The mutations in these strains mapped to an operon of two genes, fliI and fliJ, both of which are necessary for motility. fliI encodes a 50-kDa polypeptide whose sequence is closely related to that of the Salmonella typhimurium FliI protein, an ATPase thought to energize the export of flagellar subunits across the cytoplasmic membrane through a type III protein secretion system. fliJ encodes a 16-kDa hydrophilic protein of unknown function. Epistasis experiments demonstrated that the fliIJ operon is located in class II of the C. crescentus flagellar regulatory hierarchy, suggesting that the gene products act at an early stage in flagellar assembly. The expression of fliIJ is induced midway through the cell cycle, coincident with other class II operons, but the FliI protein remains present throughout the cell cycle. Subcellular fractionation showed that FliI is present both in the cytoplasm and in association with the membrane. Mutational analysis of FliI showed that two highly conserved amino acid residues in a bipartite ATP binding motif are necessary for flagellar assembly.
Collapse
Affiliation(s)
- C Stephens
- Department of Developmental Biology, Stanford University, California 94305-5427, USA.
| | | | | | | | | | | |
Collapse
|
570
|
Blanc-Potard AB, Groisman EA. The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. EMBO J 1997; 16:5376-85. [PMID: 9311997 PMCID: PMC1170169 DOI: 10.1093/emboj/16.17.5376] [Citation(s) in RCA: 253] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pathogenicity islands are chromosomal clusters of horizontally acquired virulence genes that are often found at tRNA loci. The selC tRNA locus of Escherichia coli has served as the site of integration of two distinct pathogenicity islands which are responsible for converting benign strains into uro- and enteropathogens. Because virulence genes are targeted to the selC locus of E.coli, we investigated the homologous region of the Salmonella typhimurium chromosome for the presence of horizontally acquired sequences. At this site, we identified a 17 kb DNA segment that is both unique to Salmonella and necessary for virulence. This segment harbors a gene, mgtC, that is required for intramacrophage survival and growth in low Mg2+ media. The mgtC locus is regulated by the PhoP/PhoQ two-component system, a major regulator of virulence functions present in both pathogenic and non-pathogenic bacterial species. Cumulatively, our experiments indicate that the ability to replicate in low Mg2+ environments is necessary for Salmonella virulence, and suggest that a similar mechanism is responsible for the dissemination and acquisition of pathogenicity islands in enteric bacteria.
Collapse
Affiliation(s)
- A B Blanc-Potard
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S.Euclid Ave, Campus Box 8230, St Louis, MO 63110, USA
| | | |
Collapse
|
571
|
O'Connor CD, Farris M, Fowler R, Qi SY. The proteome of Salmonella enterica serovar typhimurium: current progress on its determination and some applications. Electrophoresis 1997; 18:1483-90. [PMID: 9298662 DOI: 10.1002/elps.1150180823] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Salmonella typhimurium (official designation Salmonella enterica serovar Typhimurium) is an enteric pathogen and a principal cause of gastroenteritis in humans. A comprehensive description of the proteins of Salmonella and their patterns of expression under different environmental conditions would greatly increase our understanding of the virulence of this organism at the molecular level and provide insights into many other aspects of Salmonella biology. While a variety of two-dimensional studies of Salmonella have been previously carried out to address specific questions, little systematic information is available at the protein level on the numbers of Salmonella polypeptides that have homologues in other organisms, their abundance, and the frequency of post-translational modifications. To test the feasibility of determining the proteome of Salmonella, the identities of 53 randomly sequenced cell envelope proteins have been determined by N-terminal sequencing of spots from two-dimensional gels. In addition to confirming the existence of previously hypothetical proteins predicted from genomic sequencing projects, we found that approximately 20% of the proteins had no matches in sequence databases. The results suggest that proteome analysis is an efficient way to identify novel proteins from prokaryotes and that the analysis provides a useful approach to the study of Salmonella virulence.
Collapse
Affiliation(s)
- C D O'Connor
- Department of Biochemistry, University of Southampton, UK.
| | | | | | | |
Collapse
|
572
|
Falkow S. Perspectives series: host/pathogen interactions. Invasion and intracellular sorting of bacteria: searching for bacterial genes expressed during host/pathogen interactions. J Clin Invest 1997; 100:239-43. [PMID: 9218498 PMCID: PMC508184 DOI: 10.1172/jci119527] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- S Falkow
- Department of Microbiology and Immunology, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
573
|
Slauch J, Taylor R, Maloy S. Survival in a cruel world: how Vibrio cholerae and Salmonella respond to an unwilling host. Genes Dev 1997; 11:1761-74. [PMID: 9242485 DOI: 10.1101/gad.11.14.1761] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- J Slauch
- Department of Microbiology, University of Illinois, Urbana 61801, USA
| | | | | |
Collapse
|
574
|
Abstract
Bacterial pathogens employ a number of genetic strategies to cause infection and, occasionally, disease in their hosts. Many of these virulence factors and their regulatory elements can be divided into a smaller number of groups based on the conservation of similar mechanisms. These common themes are found throughout bacterial virulence factors. For example, there are only a few general types of toxins, despite a large number of host targets. Similarly, there are only a few conserved ways to build the bacterial pilus and nonpilus adhesins used by pathogens to adhere to host substrates. Bacterial entry into host cells (invasion) is a complex mechanism. However, several common invasion themes exist in diverse microorganisms. Similarly, once inside a host cell, pathogens have a limited number of ways to ensure their survival, whether remaining within a host vacuole or by escaping into the cytoplasm. Avoidance of the host immune defenses is key to the success of a pathogen. Several common themes again are employed, including antigenic variation, camouflage by binding host molecules, and enzymatic degradation of host immune components. Most virulence factors are found on the bacterial surface or secreted into their immediate environment, yet virulence factors operate through a relatively small number of microbial secretion systems. The expression of bacterial pathogenicity is dependent upon complex regulatory circuits. However, pathogens use only a small number of biochemical families to express distinct functional factors at the appropriate time that causes infection. Finally, virulence factors maintained on mobile genetic elements and pathogenicity islands ensure that new strains of pathogens evolve constantly. Comprehension of these common themes in microbial pathogenicity is critical to the understanding and study of bacterial virulence mechanisms and to the development of new "anti-virulence" agents, which are so desperately needed to replace antibiotics.
Collapse
Affiliation(s)
- B B Finlay
- Biotechnology Laboratory, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
575
|
Abstract
The growing number of complete microbial genome sequences provides a powerful tool for studying the biology of microorganisms. In combination with assays for function, genomic-based approaches can facilitate efficient and directed research strategies to elucidate mechanisms of bacterial pathogenicity. As genomic information accrues, the challenge remains to construct a picture of the biology that accurately reflects how individual genes collaborate to create the complex world of microbial specialization.
Collapse
Affiliation(s)
- E J Strauss
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5402, USA.
| | | |
Collapse
|
576
|
Ginocchio CC, Rahn K, Clarke RC, Galán JE. Naturally occurring deletions in the centisome 63 pathogenicity island of environmental isolates of Salmonella spp. Infect Immun 1997; 65:1267-72. [PMID: 9119461 PMCID: PMC175127 DOI: 10.1128/iai.65.4.1267-1272.1997] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have identified several environmental isolates of Salmonella senftenberg and S. litchfield which carry a deletion encompassing a vast segment of the centisome 63 region of the Salmonella chromosome. The deletion includes the entire inv, spa, and hil loci, which are required for entry of Salmonella spp. into mammalian cells. Consequently, these isolates were found to be markedly deficient in the ability to enter cultured epithelial cells. In contrast, no deletions were found in the corresponding regions of the chromosomes of clinical isolates of these serovars; consequently, these isolates were found to be highly invasive for cultured epithelial cells. These data confirm the importance of the centisome 63 region of the Salmonella chromosome in mediating the entry of these organisms into cultured mammalian cells and indicate that additional entry pathways are presumably not utilized by these environmental isolates. These results are also consistent with the notion that this region constitutes a pathogenicity island which remains unstable in certain Salmonella serotypes.
Collapse
Affiliation(s)
- C C Ginocchio
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York at Stony Brook, 11794-5222, USA
| | | | | | | |
Collapse
|
577
|
Boyd EF, Li J, Ochman H, Selander RK. Comparative genetics of the inv-spa invasion gene complex of Salmonella enterica. J Bacteriol 1997; 179:1985-91. [PMID: 9068645 PMCID: PMC178923 DOI: 10.1128/jb.179.6.1985-1991.1997] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The chromosomal region containing the Salmonella enterica pathogenic island inv-spa was present in the last common ancestor of all the contemporary lineages of salmonellae. For multiple strains of S. enterica, representing all eight subspecies, nucleotide sequences were obtained for five genes of the inv-spa invasion complex, invH, invE, invA, spaM, and spaN, al of which encode proteins that are required for entry of the bacteria into cultured epithelial cells. The invE, invA, spaM, and spaN genes were present in all eight subspecies of S. enterica, and for invE and invA and their products, levels of sequence variation among strains were within the ranges reported for housekeeping genes. In contrast, the InvH, SpaM, and SpaN proteins were unusually variable in amino acid sequence. Furthermore, invH was absent from the subspecies V isolates examined. The SpaM and SpaN proteins provide further evidence of a relationship (first detected by Li et al. [J. Li, H. Ochman, E. A. Groisman, E. F. Boyd, F. Solomon, K. Nelson, and R. K. Selander, Proc. Natl. Acad. Sci. USA 92:7252-7256, 1995]) between the cellular location of the products of the inv-spa genes and evolutionary rate, as reflected in the level of polymorphism within S. enterica. Invasion proteins that are membrane bound or membrane associated are relatively conserved in amino acid sequence, whereas those that are exported to the extracellular environment are hypervariable, possibly reflecting the action of diversifying selection.
Collapse
Affiliation(s)
- E F Boyd
- Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park 16802, USA
| | | | | | | |
Collapse
|
578
|
Heithoff DM, Conner CP, Hanna PC, Julio SM, Hentschel U, Mahan MJ. Bacterial infection as assessed by in vivo gene expression. Proc Natl Acad Sci U S A 1997; 94:934-9. [PMID: 9023360 PMCID: PMC19617 DOI: 10.1073/pnas.94.3.934] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In vivo expression technology (IVET) has been used to identify > 100 Salmonella typhimurium genes that are specifically expressed during infection of BALB/c mice and/or murine cultured macrophages. Induction of these genes is shown to be required for survival in the animal under conditions of the IVET selection. One class of in vivo induced (ivi) genes, iviVI-A and iviVI-B, constitute an operon that resides in a region of the Salmonella genome with low G+C content and presumably has been acquired by horizontal transfer. These ivi genes encode predicted proteins that are similar to adhesins and invasins from prokaryotic and eukaryotic pathogens (Escherichia coli [tia], Plasmodium falciparum [PfEMP1]) and have coopted the PhoPQ regulatory circuitry of Salmonella virulence genes. Examination of the in vivo induction profile indicates (i) many ivi genes encode regulatory functions (e.g., phoPQ and pmrAB) that serve to enhance the sensitivity and amplitude of virulence gene expression (e.g., spvB); (ii) the biochemical function of many metabolic genes may not represent their sole contribution to virulence; (iii) the host ecology can be inferred from the biochemical functions of ivi genes; and (iv) nutrient limitation plays a dual signaling role in pathogenesis: to induce metabolic functions that complement host nutritional deficiencies and to induce virulence functions required for immediate survival and spread to subsequent host sites.
Collapse
Affiliation(s)
- D M Heithoff
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara 93106, USA
| | | | | | | | | | | |
Collapse
|
579
|
Hensel M, Shea JE, Bäumler AJ, Gleeson C, Blattner F, Holden DW. Analysis of the boundaries of Salmonella pathogenicity island 2 and the corresponding chromosomal region of Escherichia coli K-12. J Bacteriol 1997; 179:1105-11. [PMID: 9023191 PMCID: PMC178805 DOI: 10.1128/jb.179.4.1105-1111.1997] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We recently identified a pathogenicity island (SPI2) located at 30.7 centisomes on the Salmonella typhimurium chromosome. SPI2 contains genes encoding a type III secretion system whose function is distinct from that of the type III secretion system encoded by a pathogenicity island (SPI1) at 63 centisomes which is involved in epithelial cell entry. An analysis of the boundaries of SPI2 and comparison with the corresponding region of the Escherichia coli chromosome revealed that SPI2 inserted adjacent to the tRNA(Val) gene. The E. coli chromosome contains 9 kb of DNA at the region corresponding to the SPI2 insertion point which appears to be absent in S. typhimurium. The distribution of SPI1 and SPI2 was examined in various Salmonella isolates. In contrast to type III secretion system genes of SPI1, those of SPI2 are not present in Salmonella bongori, which diverged at the first branch point in the Salmonella lineage. These and other data indicate that SPI2 was acquired by a Salmonella strain already harboring SPI1 by horizontal transfer from an unknown source.
Collapse
Affiliation(s)
- M Hensel
- Lehrstuhl für Bakteriologie, Max von Pettenkofer-Institut für Hygieneund Medizinische Mikrobiologie, Munich, Germany
| | | | | | | | | | | |
Collapse
|
580
|
Lindgren PB. The role of hrp genes during plant-bacterial interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 1997; 35:129-52. [PMID: 15012518 DOI: 10.1146/annurev.phyto.35.1.129] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
hrp genes control the ability of phytopathogenic bacteria to cause disease and to elicit hypersensitive reactions on resistant plants. Genetic and biochemical studies have demonstrated that Hrp proteins are components of Type III secretion systems, regulatory proteins, proteinaceous elicitors of the hypersensitive reaction, and enzymes needed for synthesis of periplasmic glucans. Significantly, Type III secretion systems are involved with the secretion of pathogenicity proteins in bacterial pathogens of animals. The transcriptional activation of a number of bacterial avirulence (avr) genes is controlled by Hrp regulatory proteins, and recent experimental evidence suggests that Avr proteins may be transported by Hrp secretion systems. It has also been hypothesized that pathogenicity and/or virulence gene products exit bacterial phytopathogens via Hrp pathways. Thus, hrp genes may be one of the most important groups of genes found in phytopathogenic bacteria in relationship to pathogenicity and host range.
Collapse
Affiliation(s)
- P B Lindgren
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695-7616, USA.
| |
Collapse
|
581
|
Bäumler AJ, Gilde AJ, Tsolis RM, van der Velden AW, Ahmer BM, Heffron F. Contribution of horizontal gene transfer and deletion events to development of distinctive patterns of fimbrial operons during evolution of Salmonella serotypes. J Bacteriol 1997; 179:317-22. [PMID: 8990281 PMCID: PMC178699 DOI: 10.1128/jb.179.2.317-322.1997] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Only certain serotypes of Salmonella represent 99% of all human clinical isolates. We determined whether the phylogenetic distribution of fimbrial operons would account for the host adaptations observed for Salmonella serotypes. We found that three fimbrial operons, fim, lpf, and agf, were present in a lineage ancestral to Salmonella. While the fim and agf fimbrial operons were highly conserved among all Salmonella serotypes, sequence analysis suggested that the lpf operon was lost from many distantly related lineages. As a consequence, the distribution of the lpf operon cannot be explained easily and may be a consequence of positive and negative selection in different hosts for the presence of these genes. Two other fimbrial operons, sef and pef, each entered two distantly related Salmonella lineages and each is present only in a small number of serotypes. These results show that horizontal gene transfer and deletion events have created unique combinations of fimbrial operons among Salmonella serotypes. The presence of sef and pef correlated with serotypes frequently isolated from common domesticated animals.
Collapse
Affiliation(s)
- A J Bäumler
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland 97201-3098, USA
| | | | | | | | | | | |
Collapse
|
582
|
Censini S, Lange C, Xiang Z, Crabtree JE, Ghiara P, Borodovsky M, Rappuoli R, Covacci A. cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A 1996; 93:14648-53. [PMID: 8962108 PMCID: PMC26189 DOI: 10.1073/pnas.93.25.14648] [Citation(s) in RCA: 1388] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/1996] [Accepted: 10/09/1996] [Indexed: 02/07/2023] Open
Abstract
cagA, a gene that codes for an immunodominant antigen, is present only in Helicobacter pylori strains that are associated with severe forms of gastroduodenal disease (type I strains). We found that the genetic locus that contains cagA (cag) is part of a 40-kb DNA insertion that likely was acquired horizontally and integrated into the chromosomal glutamate racemase gene. This pathogenicity island is flanked by direct repeats of 31 bp. In some strains, cag is split into a right segment (cagI) and a left segment (cagII) by a novel insertion sequence (IS605). In a minority of H. pylori strains, cagI and cagII are separated by an intervening chromosomal sequence. Nucleotide sequencing of the 23,508 base pairs that form the cagI region and the extreme 3' end of the cagII region reveals the presence of 19 ORFs that code for proteins predicted to be mostly membrane associated with one gene (cagE), which is similar to the toxin-secretion gene of Bordetella pertussis, ptlC, and the transport systems required for plasmid transfer, including the virB4 gene of Agrobacterium tumefaciens. Transposon inactivation of several of the cagI genes abolishes induction of IL-8 expression in gastric epithelial cell lines. Thus, we believe the cag region may encode a novel H. pylori secretion system for the export of virulence determinants.
Collapse
Affiliation(s)
- S Censini
- Immunobiological Research Institute of Siena, Chiron Vaccines, Italy
| | | | | | | | | | | | | | | |
Collapse
|
583
|
Abstract
We investigated the phylogenetic distribution of the SPI-1 and SPI-2 pathogenicity islands in Salmonella spp. SPI-1 was present in representatives of all eight subspecific groups, but no SPI-2-hybridizing sequences were detected in group V (S. bongori). Our data suggest that SPI-2 was acquired by S. enterica after its split from S. bongori.
Collapse
Affiliation(s)
- H Ochman
- Department of Biology, University of Rochester, New York 14627, USA
| | | |
Collapse
|
584
|
Affiliation(s)
- E A Groisman
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
585
|
Clark MA, Reed KA, Lodge J, Stephen J, Hirst BH, Jepson MA. Invasion of murine intestinal M cells by Salmonella typhimurium inv mutants severely deficient for invasion of cultured cells. Infect Immun 1996; 64:4363-8. [PMID: 8926113 PMCID: PMC174381 DOI: 10.1128/iai.64.10.4363-4368.1996] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have examined the role of the Salmonella typhimurium inv locus in invasion of the murine intestine. Previous studies have demonstrated that M cells within the lymphoid-follicle-associated epithelia are the primary site of intestinal invasion by S. typhimurium. In this study, we show that mutants possessing defects in one of two inv genes, invA or invG, which render them severely deficient for invasion of polarized epithelial MDCK cells, retain their ability to actively invade mouse Peyer's patch M cells. The interaction of these mutants with M cells was associated with apical membrane remodelling resembling that induced by wild-type strains. These data demonstrate that Salmonella invasion in vivo can proceed via mechanisms other than those previously defined in cultured cells.
Collapse
Affiliation(s)
- M A Clark
- Department of Physiological Sciences, Medical School, University of Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | |
Collapse
|
586
|
Abstract
A specialized protein secretion pathway is used by some Gram-negative bacterial pathogens for delivery of virulence factors directly into mammalian host cells. This pathway is parallel to, and probably evolved from, a system used for construction of the bacterial flagellum.
Collapse
Affiliation(s)
- C Stephens
- Department of Developmental Biology, Beckman Center, Stanford University, Stanford, California 94305-5427, USA
| | | |
Collapse
|
587
|
Hensel M, Holden DW. Molecular genetic approaches for the study of virulence in both pathogenic bacteria and fungi. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 5):1049-1058. [PMID: 8704948 DOI: 10.1099/13500872-142-5-1049] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Michael Hensel
- Department of Infectious Diseases and Bacteriology, Royal Postgraduate Medical School, Du Cane Road, London W12 ONN, UK
| | - David W Holden
- Department of Infectious Diseases and Bacteriology, Royal Postgraduate Medical School, Du Cane Road, London W12 ONN, UK
| |
Collapse
|
588
|
Mecsas JJ, Strauss EJ. Molecular mechanisms of bacterial virulence: type III secretion and pathogenicity islands. Emerg Infect Dis 1996; 2:270-88. [PMID: 8969244 PMCID: PMC2639918 DOI: 10.3201/eid0204.960403] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Recently, two novel but widespread themes have emerged in the field of bacterial virulence: type III secretion systems and pathogenicity islands. Type III secretion systems, which are found in various gram-negative organisms, are specialized for the export of virulence factors delivered directly to host cells. These factors subvert normal host cell functions in ways that seem beneficial to invading bacteria. The genes encoding several type III secretion systems reside on pathogenicity islands, which are inserted DNA segments within the chromosome that confer upon the host bacterium a variety of virulence traits, such as the ability to acquire iron and to adhere to or enter host cells. Many of these segments of DNA appear to have been acquired in a single step from a foreign source. The ability to obtain complex virulence traits in one genetic event, rather than by undergoing natural selection for many generations, provides a mechanism for sudden radical changes in bacterial-host interactions. Type III secretion systems and pathogenicity islands must have played critical roles in the evolution of known pathogens and are likely to lead to the emergence of novel infectious diseases in the future.
Collapse
Affiliation(s)
- J J Mecsas
- Department of Microbiology, Stanford University School of Medicine, Stanford, CA 94305-5402, USA.
| | | |
Collapse
|