551
|
|
552
|
Dipeptidyl peptidase IV inhibition attenuates blood pressure rising in young spontaneously hypertensive rats. J Hypertens 2011; 29:520-8. [PMID: 21150640 DOI: 10.1097/hjh.0b013e328341939d] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The present study aimed to assess the effect of the specific dipeptidyl peptidase IV (DPPIV) inhibitor sitagliptin on blood pressure and renal function in young prehypertensive (5-week-old) and adult spontaneously hypertensive rats (SHRs; 14-week-old). METHODS Sitagliptin (40 mg/kg twice daily) was given by oral gavage to young (Y-SHR + IDPPIV) and adult (A-SHR + IDPPIV) SHRs for 8 days. Kidney function was assessed daily and compared with age-matched vehicle-treated SHR (Y-SHR and A-SHR) and with normotensive Wistar-Kyoto rats (Y-WKY and A-WKY). Arterial blood pressure was measured in these animals at the end of the experimental protocol. Additionally, Na/H exchanger isoform 3 (NHE3) function and expression in microvilli membrane vesicles were assessed in young animals. RESULTS Mean arterial blood pressure of Y-SHR + IDPPIV was significantly lower than that of Y-SHR (104 ± 3 vs. 123 ± 5 mmHg, P < 0.01) and was similar to Y-WKY (94 ± 4 mmHg, P > 0.05). Compared to Y-SHR, Y-SHR + IDPPIV exhibited enhanced cumulative urinary flow and sodium excretion and decreased NHE3 activity and expression in proximal tubule microvilli. In the A-SHR, sitagliptin treatment had no significant effect on either renal function or arterial blood pressure. CONCLUSION Our data suggest that DPPIV inhibition attenuates blood pressure rising in young prehypertensive SHRs, partially by inhibiting NHE3 activity in renal proximal tubule.
Collapse
|
553
|
Stromal expression of CD34, α-smooth muscle actin and CD26/DPPIV in squamous cell carcinoma of the skin: a comparative immunohistochemical study. Pathol Oncol Res 2011; 18:25-31. [PMID: 21674250 DOI: 10.1007/s12253-011-9412-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 05/03/2011] [Indexed: 12/16/2022]
Abstract
Invasion pathogenesis is one of the most complicated issues in the literature. There are numerous studies concerning the tumor markers implicated in the preinvasive-invasive tumor sequence. Despite ample studies on the invasion pathogenesis of cutaneous melanomas, there is limited and dispersed work presently available on non-melanoma skin cancer. The vast knowledge in the literature concerning this issue in squamous cell carcinoma comes mostly from the studies of the oral cavity, esophagus, larynx, and cervix. In this study, we investigated tumor-free neighboring stroma and tumor stroma in squamous cell carcinomas (SCCs) of the skin as well as keratoacanthomas (KAs) with respect to the presence of stromal CD34-positive (CD34+) fibrocytes and α-smooth muscle actin-positive (α-SMA+) myofibroblasts using seborrheic keratosis (SKs) and non-tumoral skin samples as controls. We also evaluated the stromal expression pattern of CD26/DPPIV (CD26), a tumor suppressor gene product that also has immunoregulatory properties. Immunohistochemistry was performed on samples of 31 SCC, 8 KA, 15 SK and 10 non-tumoral skin samples. Peri-tumoral stroma from resection margins was also evaluated. We found that CD34 and α-SMA demonstrated significantly different staining between benign and malignant squamous skin lesions consisting of a loss of CD34+ fibrocytes paralleled by a gain of α-SMA+ myofibroblasts in malignant tumor stroma. Additionally, it was shown that CD26 expression was lower in tumor stroma when compared to that of tumor neighboring stroma. However, we concluded that this finding may be attributable to the solar elastosis areas in the peritumoral tissue, which shows diffuse strong positivity for this marker.
Collapse
|
554
|
Cordero OJ, Imbernon M, Chiara LD, Martinez-Zorzano VS, Ayude D, de la Cadena MP, Rodriguez-Berrocal FJ. Potential of soluble CD26 as a serum marker for colorectal cancer detection. World J Clin Oncol 2011; 2:245-61. [PMID: 21773075 PMCID: PMC3139035 DOI: 10.5306/wjco.v2.i6.245] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/28/2011] [Accepted: 04/05/2011] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is characterized by a low survival rate even though the basis for colon cancer development, which involves the evolution of adenomas to carcinoma, is known. Moreover, the mortality rates continue to rise in economically transitioning countries although there is the opportunity to intervene in the natural history of the adenoma–cancer sequence through risk factors, screening, and treatment. Screening in particular accounted for most of the decline in colorectal cancer mortality achieved in the USA during the period 1975-2000. Patients show a better prognosis when the neoplasm is diagnosed early. Among the variety of screening strategies, the methods range from invasive and costly procedures such as colonoscopy to more low-cost and non-invasive tests such as the fecal occult blood test (guaiac and immunochemical). As a non-invasive biological serum marker would be of great benefit because of the performance of the test, several biomarkers, including cytologic assays, DNA and mRNA, and soluble proteins, have been studied. We found that the soluble CD26 (sCD26) concentration is diminished in serum of colorectal cancer patients compared to healthy donors, suggesting the potential utility of a sCD26 immunochemical detection test for early diagnosis. sCD26 originates from plasma membrane CD26 lacking its transmembrane and cytoplasmic domains. Some 90%–95% of sCD26 has been associated with serum dipeptidyl peptidase IV (DPP-IV) activity. DPP-IV, assigned to the CD26 cluster, is a pleiotropic enzyme expressed mainly on epithelial cells and lymphocytes. Our studies intended to validate this test for population screening to detect colorectal cancer and advanced adenomas are reviewed here.
Collapse
Affiliation(s)
- Oscar J Cordero
- Oscar J Cordero, Monica Imbernon, Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, School of Biology, CIBUS Building, Campus Vida, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
555
|
Barnett AH. Linagliptin: a novel dipeptidyl peptidase 4 inhibitor with a unique place in therapy. Adv Ther 2011; 28:447-59. [PMID: 21603986 DOI: 10.1007/s12325-011-0028-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Indexed: 02/07/2023]
Abstract
The dipeptidyl peptidase 4 (DPP-4) inhibitors comprise a promising new class of agent for the management of type 2 diabetes. They possess a range of physiological effects associated with improved glycemic control including stimulation of glucose-dependent insulin secretion and suppression of glucagon secretion, and lower blood glucose levels through different, but potentially complementary, mechanisms to standard oral therapies. Linagliptin is the latest DPP-4 inhibitor to complete pivotal phase 3 trials. The data show that linagliptin provides significant, clinically meaningful and sustained improvements in glycemic control, with an incidence of adverse events similar to placebo and an excellent tolerability profile. In addition, linagliptin has been shown to be weight neutral and, importantly, there was no increased risk of hypoglycemia attributed to linagliptin use in monotherapy or combination therapy with metformin or pioglitazone. A unique characteristic of linagliptin that differentiates it from other members of the class is its primarily nonrenal route of excretion. The linagliptin phase 3 program included several hundred patients with type 2 diabetes and different stages of renal disease and the data suggest that the drug would not need dose adjustment, regardless of the degree of renal impairment. There is a particular need for safe and effective therapeutic agents that can be used when renal function declines. Linagliptin has recently been approved by the US Food and Drug Administration and may find a place in therapy as a treatment option for the significant number of patients in whom metformin and the other DPP-4 inhibitors are either contraindicated or require dose adjustment because of moderate to severe renal impairment.
Collapse
Affiliation(s)
- Anthony H Barnett
- Heart of England National Health Service Foundation Trust (Teaching), University of Birmingham and Biomedical Research Unit, UK.
| |
Collapse
|
556
|
Enzymatic preparation of 5-hydroxy-l-proline, N-Cbz-5-hydroxy-l-proline, and N-boc-5-hydroxy-l-proline from (α-N-protected)-l-ornithine using a transaminase or an amine oxidase. Enzyme Microb Technol 2011; 48:445-53. [DOI: 10.1016/j.enzmictec.2011.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 03/16/2011] [Accepted: 03/17/2011] [Indexed: 11/20/2022]
|
557
|
Abstract
CD26 is a 110-kDa surface glycoprotein with intrinsic dipeptidyl peptidase IV (DPPIV) activity that is expressed on various cell types and has many biological functions. An important aspect of CD26 biology is its peptidase activity and its functional and physical association with molecules with key roles in human immunological programs. CD26 role in immune regulation has been extensively characterized, with recent findings elucidating its link age with signaling pathways and structures involved in T cell activation a well as antigen-presenting cell-T cell interaction, being a marker of diseas behavior clinically as well as playing an important role in autoimmune pathogenesis and development. Through the use of various experimental approaches and agents to influence CD26/DPPIV expression and activity, such as anti-CD26 antibodies, CD26/DPPIV chemical inhibitors, siRNAs to inhibit CD26 expression, overexpressing CD26 transfectants, soluble CD26 molecules and proteomic approach, we have shown that CD26 interacts with structures with essential cellular functions in T cell responses. We will review emerging data that suggest CD26 may be an appropriate therapeutic target for the treatment of selected immune disorders.
Collapse
Affiliation(s)
- Kei Ohnuma
- Division of Rheumatology and Allergy, Research Hospital, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
558
|
Reinhold D, Bank U, Entz D, Goihl A, Stoye D, Wrenger S, Brocke S, Thielitz A, Stefin S, Nordhoff K, Heimburg A, Täger M, Ansorge S. PETIR-001, a dual inhibitor of dipeptidyl peptidase IV (DP IV) and aminopeptidase N (APN), ameliorates experimental autoimmune encephalomyelitis in SJL/J mice. Biol Chem 2011; 392:233-7. [PMID: 21194377 DOI: 10.1515/bc.2011.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cellular dipeptidyl peptidase IV (DP IV, CD26) and amino-peptidase N (APN, CD13) play regulatory roles in T cell activation and represent potential targets for treatment of inflammatory disorders. We have developed a novel therapeutic strategy, 'peptidase-targeted Immunoregulation' (PETIR™), which simultaneously targets both cellular DP IV and APN via selective binding sites different from the active sites with a single inhibitor. To prove the therapeutic concept of PETIR™ in autoimmunity of the central nervous system (CNS), we evaluated the effect of a single substance, PETIR-001, in an animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE) in SJL/J mice. Administration of PETIR-001 significantly delayed and decreased clinical signs of active EAE, when given in a therapeutic manner intraperitoneally from day 15 to day 24 after induction of EAE. Both the acute phase and the first relapse of EAE were markedly inhibited. Importantly, a similar therapeutic benefit was obtained after oral administration of PETIR-001 from day 12 to day 21 after disease induction. Our results demonstrate that PETIR-001 exhibits a therapeutic effect on EAE in SJL/J mice. Thus, PETIR™ represents a novel and efficient therapeutic approach for immunotherapy of CNS inflammation.
Collapse
Affiliation(s)
- Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, D-39120 Magdeburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
559
|
Matheeussen V, Baerts L, De Meyer G, De Keulenaer G, Van der Veken P, Augustyns K, Dubois V, Scharpé S, De Meester I. Expression and spatial heterogeneity of dipeptidyl peptidases in endothelial cells of conduct vessels and capillaries. Biol Chem 2011; 392:189-98. [PMID: 21194356 DOI: 10.1515/bc.2011.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dipeptidyl peptidase IV (DPPIV)/CD26 is by far the most extensively studied member of the prolyl oligopeptidase family of serine proteases. The discovery of the related enzymes DPP8 and DPP9 necessitates a (re-)evaluation of the DPPIV-like enzymatic activity in cells and organs. In this study, we aimed (1) to investigate the expression of the individual dipeptidyl peptidases in different types of endothelial cells (ECs) and (2) to reconsider published data in relation to our findings. Examination of DPP expression in rat primary ECs of aortic, endocardial and cardiac microvascular origin revealed the presence of DPPIV-like activity in all cell lysates. More than half of this activity could be attributed to DPP8/9. Western blot analysis revealed an abundance of the DPP8 protein as compared to DPP9. The expression of DPPIV and DPP8 was significantly higher in the cardiac microvascular endothelium than in the other ECs, suggesting a more pronounced role of these DPPs in the microvasculature. In situ, DPP activity in ventricular microvasculature was completely inhibited by sitagliptin, indicating that DPPIV is the predominant DPPIV-like enzyme in this organ. By contrast, immunohistochemical studies indicated DPP9 as the predominant DPP in human carotid artery ECs. In conclusion, our results support a highly regulated expression of individual DPPs in ECs, with a spatial heterogeneity in the cardiovascular tree.
Collapse
Affiliation(s)
- Veerle Matheeussen
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Antwerp), Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
560
|
Lee JG, Kang DG, Yu JR, Kim Y, Kim J, Koh G, Lee D. Changes in Adenosine Deaminase Activity in Patients with Type 2 Diabetes Mellitus and Effect of DPP-4 Inhibitor Treatment on ADA Activity. Diabetes Metab J 2011; 35:149-58. [PMID: 21738897 PMCID: PMC3122899 DOI: 10.4093/dmj.2011.35.2.149] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 11/08/2010] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Dipeptidyl peptidase 4 (DPP-4, also known as CD26) binds with adenosine deaminase (ADA) to activate T lymphocytes. Here, we investigated whether ADA activity is specifically affected by treatment with DPP-4 inhibitor (DPP4I) compared with other anti-diabetic agents. METHODS Fasting ADA activity, in addition to various metabolic and biochemical parameters, were measured in 262 type 2 diabetes mellitus (T2DM) patients taking various anti-diabetic agents and in 46 non-diabetic control subjects. RESULTS ADA activity was increased in T2DM patients compared with that in non-diabetic control subjects (mean±standard error, 23.1±0.6 U/L vs. 18.6±0.8 U/L; P<0.05). ADA activity was correlated with fasting plasma glucose (r=0.258, P<0.05), HbA1c (r=0.208, P<0.05), aspartate aminotransferase (r=0.325, P<0.05), and alanine aminotransferase (r=0.248, P<0.05). Compared with the well-controlled T2DM patients (HbA1c<7%), the poorly controlled group (HbA1c>9%) showed significantly increased ADA activity (21.1±0.8 U/L vs. 25.4±1.6 U/L; P<0.05). The effect of DPP4I on ADA activity in T2DM patients did not differ from those of other oral anti-diabetic agents or insulin. T2DM patients on metformin monotherapy showed a lower ADA activity (20.9±1.0 U/L vs. 28.1±2.8 U/L; P<0.05) compared with that of those on sulfonylurea monotherapy. CONCLUSION Our results show that ADA activity is increased in T2DM patients compared to that in non-diabetic patients, is positively correlated with blood glucose level, and that DPP4I has no additional specific effect on ADA activity, except for a glycemic control- or HbA1c-dependent effect.
Collapse
Affiliation(s)
- Jae-Geun Lee
- Department of Internal Medicine, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Korea
| | - Dong Gu Kang
- Department of Internal Medicine, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Korea
| | - Jung Re Yu
- Department of Internal Medicine, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Korea
| | - Youngree Kim
- Department of Laboratory Medicine, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Korea
| | - Jinsoek Kim
- Department of Internal Medicine, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Korea
| | - Gwanpyo Koh
- Department of Internal Medicine, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Korea
| | - Daeho Lee
- Department of Internal Medicine, Jeju National University Hospital, Jeju National University School of Medicine, Jeju, Korea
| |
Collapse
|
561
|
Zhang X, Wang Z, Huang Y, Wang J. Effects of chronic administration of alogliptin on the development of diabetes and β-cell function in high fat diet/streptozotocin diabetic mice. Diabetes Obes Metab 2011; 13:337-47. [PMID: 21205126 DOI: 10.1111/j.1463-1326.2010.01354.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIM Alogliptin is a potent and highly selective dipeptidyl peptidase-4 (DPP-4) inhibitor. The aim of this study was to determine its effects on glucose control and pancreas islet function and to identify the underlying molecular mechanisms after chronic administration, in a non-genetic mouse model of type 2 diabetes. METHODS Alogliptin (5, 15 and 45 mg/kg) was orally administered to high fat diet/streptozotocin (HFD/STZ) diabetic mice daily for 10 weeks. Postprandial and 6-h fasting blood glucose levels, blood A1C level, oral glucose tolerance and pancreas insulin content were measured during or after the treatment period. Alogliptin plasma concentration was determined by an LC/MS/MS method. Islet morphology and architectural changes were evaluated with immunohistochemical analysis. Islet endocrine secretion ability was assessed by measuring insulin release from isolated islets which were challenged with 16 mM glucose and 30 mM potassium chloride, respectively. Gene expression profiles of the pancreas were analysed using the mouse diabetes RT(2) Profiler PCR array which contains 84 genes related to the onset, development and progression of diabetes. RESULTS Alogliptin showed dose-dependent reduction of postprandial and fasting blood glucose levels and blood A1C levels. Glucose clearance ability and pancreas insulin content were both increased. Alogliptin significantly restored the β-cell mass and islet morphology, thus preserving islet function of insulin secretion. Expression of 10 genes including Ins1 was significantly changed in the pancreas of diabetic mice. Chronic alogliptin treatment completely or partially reversed the abnormalities in gene expression. CONCLUSIONS Chronic treatment of alogliptin improved glucose control and facilitated restoration of islet architecture and function in HFD/STZ diabetic mice. The gene expression profiles suggest that the underlying molecular mechanisms of β-cell protection by alogliptin may involve alleviating endoplasmic reticulum burden and mitochondria oxidative stress, increasing β-cell differentiation and proliferation, enhancing islet architecture remodelling and preserving islet function.
Collapse
Affiliation(s)
- X Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766, USA
| | | | | | | |
Collapse
|
562
|
Kshirsagar AD, Aggarwal AS, Harle UN, Deshpande AD. DPP IV inhibitors: successes, failures and future prospects. Diabetes Metab Syndr 2011; 5:105-112. [PMID: 22813415 DOI: 10.1016/j.dsx.2012.02.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The dipeptidyl peptidase IV (DPP IV) enzyme is a novel target for the treatment of type 2 diabetes. Several DPP IV inhibitors are in the clinical development, since they are safe and tolerable with no increased risk of adverse events compared to placebo and have a low risk of hypoglycemia. They are flourishing as monotherapy and also in combination with commonly prescribed antidiabetic agents and are appropriate for once-daily oral dosing. However, further studies are needed to validate both long-term β-cell preservation and the role of these agents in the management of diabetes. The present review gives an inside out of the DPP IV inhibitors for its success, failure and future prospects in the treatment of diabetes and associated complication.
Collapse
Affiliation(s)
- Ajay D Kshirsagar
- Department of Pharmacology, Padm. Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune 411018, Maharashtra, India.
| | | | | | | |
Collapse
|
563
|
Byrd JS, Minor DS, Elsayed R, Marshall GD. DPP-4 inhibitors and angioedema: a cause for concern? Ann Allergy Asthma Immunol 2011; 106:436-8. [PMID: 21530877 DOI: 10.1016/j.anai.2011.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 02/10/2011] [Accepted: 02/16/2011] [Indexed: 11/30/2022]
Affiliation(s)
- Jennifer S Byrd
- Department of Pharmacy, University of Mississippi Medical Center, Jackson, USA
| | | | | | | |
Collapse
|
564
|
Diez-Torrubia A, Balzarini J, Andrei G, Snoeck R, De Meester I, Camarasa MJ, Velázquez S. Dipeptidyl Peptidase IV Dependent Water-Soluble Prodrugs of Highly Lipophilic Bicyclic Nucleoside Analogues. J Med Chem 2011; 54:1927-42. [DOI: 10.1021/jm101624e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | - Jan Balzarini
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Graciela Andrei
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Robert Snoeck
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - María-José Camarasa
- Instituto de Química Médica (C.S.I.C.), Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Sonsoles Velázquez
- Instituto de Química Médica (C.S.I.C.), Juan de la Cierva 3, E-28006 Madrid, Spain
| |
Collapse
|
565
|
|
566
|
Kühn-Wache K, Bär JW, Hoffmann T, Wolf R, Rahfeld JU, Demuth HU. Selective inhibition of dipeptidyl peptidase 4 by targeting a substrate-specific secondary binding site. Biol Chem 2011; 392:223-31. [PMID: 21284559 DOI: 10.1515/bc.2011.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dipeptidyl peptidase 4/CD26 (DP4) is a multifunctional serine protease liberating dipeptide from the N-terminus of (oligo)peptides which can modulate the activity of these peptides. The enzyme is involved in physiological processes such as blood glucose homeostasis and immune response. DP4 substrate specificity is characterized in detail using synthetic dipeptide derivatives. The specificity constant k(cat)/K(m) strongly depends on the amino acid in P₁-position for proline, alanine, glycine and serine with 5.0 x 10⁵ M⁻¹ s⁻¹, 1.8 x 10⁴ M⁻¹ s⁻¹, 3.6 x 10² M⁻¹ s⁻¹, 1.1 x 10² M⁻¹ s⁻¹, respectively. By contrast, kinetic investigation of larger peptide substrates yields a different pattern. The specific activity of DP4 for neuropeptide Y (NPY) cleavage comprising a proline in P₁-position is the same range as the k(cat)/K(m) values of NPY derivatives containing alanine or serine in P₁-position with 4 x 10⁵ M⁻¹ s⁻¹, 9.5 x 10⁵ M⁻¹ s⁻¹ and 2.1 x 10⁵ M⁻¹ s⁻¹, respectively. The proposed existence of an additional binding region outside the catalytic center is supported by measurements of peptide substrates with extended chain length. This 'secondary' binding site interaction depends on the amino acid sequence in P₄'-P₈'-position. Interactions with this binding site could be specifically blocked for substrates of the GRF/glucagon peptide family. By contrast, substrates not belonging to this peptide family and dipeptide derivative substrates that only bind to the catalytic center of DP4 were not inhibited. This more selective inhibition approach allows, for the first time, to distinguish between substrate families by substrate-discriminating inhibitors.
Collapse
|
567
|
Turcot V, Bouchard L, Faucher G, Tchernof A, Deshaies Y, Pérusse L, Bélisle A, Marceau S, Biron S, Lescelleur O, Biertho L, Vohl MC. DPP4 gene DNA methylation in the omentum is associated with its gene expression and plasma lipid profile in severe obesity. Obesity (Silver Spring) 2011; 19:388-95. [PMID: 20847730 DOI: 10.1038/oby.2010.198] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Severely obese subjects with the metabolic syndrome (MS) have higher dipeptidyl peptidase-4 (DPP4) expression in their visceral adipose tissue (VAT) compared to obese individuals without MS. We tested the hypothesis that methylation level of CpG sites in the DPP4 promoter CpG island in VAT was genotype-dependent and associated with DPP4 mRNA abundance and MS-related phenotypes. The VAT DNA was extracted in 92 severely obese premenopausal women undergoing biliopancreatic derivation for the treatment of obesity. Women were nondiabetic and none of them used medication to treat MS features. Cytosine methylation rates (%) of 102 CpG sites in the DPP4 CpG island were assessed by pyrosequencing of sodium bisulfite-treated DNA. Methylation rates were >10% for CpG sites 94-102. Their mean methylation rate (%Meth(94-102)) was different between genotypes for DPP4 polymorphisms rs13015258 (P = 0.001), rs17848915 (P = 0.0004), and c.1926 G>A (P = 0.001). The %Meth(94-102) correlated negatively with DPP4 mRNA abundance (r = -0.25, P < 0.05) and positively with plasma high-density lipoprotein (HDL) cholesterol concentrations (r = 0.22, P < 0.05), whereas DPP4 mRNA abundance correlated positively with plasma total-/HDL-cholesterol ratio (r = 0.25; P < 0.05). In the VAT of nondiabetic severely obese women, genotype-dependent methylation levels of specific CpG sites in the DPP4 promoter CpG island were associated with DPP4 gene expression and variability in the plasma lipid profile. Higher DPP4 gene expression in VAT and its relationship with the plasma lipid profile may be explained by actually unknown DPP4 biological effect or, to another extent, may also be a marker of VAT inflammation known to be associated with metabolic disturbances.
Collapse
Affiliation(s)
- Valérie Turcot
- Nutraceuticals and Functional Foods Institute, Quebec, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
568
|
Singh S, Sethi S, Khanna V, Benjamin B, Kant R, Sattigeri J, Bansal VS, Bhatnagar PK, Davis JA. RBx-0597, a potent, selective and slow-binding inhibitor of dipeptidyl peptidase-IV for the treatment of type 2 diabetes. Eur J Pharmacol 2011; 652:157-63. [DOI: 10.1016/j.ejphar.2010.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 05/31/2010] [Accepted: 06/03/2010] [Indexed: 01/20/2023]
|
569
|
Yu DMT, Slaitini L, Gysbers V, Riekhoff AGM, Kähne T, Knott HM, De Meester I, Abbott CA, McCaughan GW, Gorrell MD. Soluble CD26 / dipeptidyl peptidase IV enhances human lymphocyte proliferation in vitro independent of dipeptidyl peptidase enzyme activity and adenosine deaminase binding. Scand J Immunol 2011; 73:102-111. [PMID: 21198750 DOI: 10.1111/j.1365-3083.2010.02488.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human CD26 has dipeptidyl peptidase-4 (DPP IV) enzyme activity and binds to adenosine deaminase (ADA). CD26 is costimulatory for lymphocytes and has a circulating soluble form (sCD26). DPP IV enzyme inhibition is a new successful type 2 diabetes therapy. We examined whether the ADA binding and catalytic functions of sCD26 contribute to its effects on T-cell proliferation. Wildtype soluble recombinant human CD26 (srhCD26), an enzyme inactive mutant (srhCD26E-) and an ADA non-binding mutant (srhCD26A-) were co-incubated in in vitro T-cell proliferation assays with peripheral blood mononuclear cells (PBMC) stimulated with phytohaemagglutinin (PHA), muromonab-CD3 or Herpes simplex virus antigen (HSV Ag). Both srhCD26 and srhCD26E- enhanced PHA-induced T-cell proliferation dose-dependently in all six subjects tested. srhCD26 and srhCD26A- had no overall effect on anti-CD3-stimulated PBMC proliferation in four of five subjects. srhCD26, srhCD26E- and srhCD26A- enhanced HSV Ag induced PBMC proliferation in low responders to HSV Ag, but had no effect or inhibited proliferation in HSV-high responders. Thus, effects of soluble human CD26 on human T-cell proliferation are mechanistically independent of both the enzyme activity and the ADA-binding capability of sCD26.
Collapse
Affiliation(s)
- D M T Yu
- A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Centenary Institute and Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
570
|
Wang X, Zhang D, Xu W, Liu H, Wang W. Pharmacokinetics of lipoyl vildagliptin, a novel dipeptidyl peptidase IV inhibitor after oral administration in rats. Xenobiotica 2011; 40:707-12. [PMID: 20735236 DOI: 10.3109/00498254.2010.511683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The pharmacokinetics of lipoyl vildagliptin, a novel dipeptidyl peptidase IV (DPP IV) inhibitor, was studied in rats after oral administration for developing it as an antidiabetic agent. A liquid chromatography-tandem mass spectroscopy (LC-MS/MS) method was developed to determine lipoyl vildagliptin in rat plasma. After an overnight fasting, rats were orally given lipoyl vildagliptin. Following a single oral dose of 25, 50, and 100 mg x kg(-1), T(max) values were from 1.25 to 1.84 h, CL/F values were around 100 l h(-1) kg(-1). In the dose range, C(max) values (63.9-296 μg x l(-1)) and AUC(0-∞)values (260-1214 μg x h x l(-1)) were proportional to the doses. In conclusion, this LC-MS/MS method for the determination of lipoyl vildagliptin in rat plasma was selective and sensitive. In rats, lipoyl vildagliptin displayed linear pharmacokinetics after a single oral dose in the range of 25-100 mg x kg(-1). Lipoyl vildagliptin might have very high CL/F values and V(d)/F values, which indicated that the bioavailability of this drug might be low or lipoyl vildagliptin might distribute extensively or accumulate in tissues in view of its high liposolubility.
Collapse
Affiliation(s)
- X Wang
- College of Pharmacy, Shandong University, Jinan, P.R. China
| | | | | | | | | |
Collapse
|
571
|
Fonseca VA. Incretin-based therapies in complex patients: practical implications and opportunities for maximizing clinical outcomes: a discussion with Dr. Vivian A. Fonseca. Am J Med 2011; 124:S54-61. [PMID: 21194580 DOI: 10.1016/j.amjmed.2010.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Elderly patients and patients with renal impairment present unique challenges in the management of diabetes mellitus. Impaired renal function is a common comorbidity (or complication) associated with type 2 diabetes, as well as a complicating factor in the treatment of the disease. Renal insufficiency, which can result in elevated plasma concentrations of pharmaceutical agents, may preclude the use of some antihyperglycemic medications and require that the dosages of others be reduced. Failure to select and dose medications carefully in these patients may increase the risk of hypoglycemia and other adverse effects. For example, elevated plasma concentrations of some sulfonylureas may increase the risk of hypoglycemia. Because patients with chronic renal insufficiency tend to retain fluids, treatment with a thiazolidinedione--a class of agents associated with fluid retention--may exacerbate the risk of edema. Older patients with type 2 diabetes--like patients with renal insufficiency an important and populous subgroup--also have issues with therapy selection and dosing regimens. As a result of the effects of aging on kidney function, older patients may also be subject to elevated plasma levels with consequent additional risk of hypoglycemia and other adverse events. Because older patients tend to be treated with multiple medications for multiple comorbidities, it becomes challenging to design regimens that avoid or reduce the risk of drug-drug interactions. For both older patients and patients with chronic renal insufficiency, the most important drug-related adverse effect to avoid is hypoglycemia. Accordingly, incretin-based agents have an advantage because they are unlikely to cause hypoglycemia.
Collapse
Affiliation(s)
- Vivian A Fonseca
- Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA.
| |
Collapse
|
572
|
Chilton R, Wyatt J, Nandish S, Oliveros R, Lujan M. Cardiovascular comorbidities of type 2 diabetes mellitus: defining the potential of glucagonlike peptide-1-based therapies. Am J Med 2011; 124:S35-53. [PMID: 21194579 DOI: 10.1016/j.amjmed.2010.11.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The global epidemic of diabetes mellitus (~95% type 2 diabetes) has been fueled by a parallel increase in obesity and overweight. Together, these metabolic disease epidemics have contributed to the increasing incidence and prevalence of cardiovascular disease. The accumulation of metabolic and cardiovascular risk factors in patients with type 2 diabetes--risk factors that may exacerbate one another--complicates treatment. Inadequate treatment, treatment that fails to achieve goals, increases the risk for cardiovascular morbidity and mortality. From a clinical perspective, type 2 diabetes is a cardiovascular disease, an observation that is supported by a range of epidemiologic, postmortem, and cardiovascular imaging studies. Vascular wall dysfunction, and particularly endothelial dysfunction, has been posited as a "common soil" linking dysglycemic and cardiovascular diseases. Vascular wall dysfunction promoted by environmental triggers (e.g., sedentary lifestyle) and metabolic triggers (chronic hyperglycemia, obesity) has been associated with the upregulation of reactive oxygen species and chronic inflammatory and hypercoagulable states, and as such with the pathogenesis of type 2 diabetes, atherosclerosis, and cardiovascular disease. Glucagon-like peptide-1 (GLP)-1, an incretin hormone, and synthetic GLP-1 receptor agonists represent promising new areas of research and therapeutics in the struggle not only against type 2 diabetes but also against the cardiovascular morbidity and mortality associated with type 2 diabetes. In a number of small trials in humans, as well as in preclinical and in vitro studies, both native GLP-1 and GLP-1 receptor agonists have demonstrated positive effects on a range of cardiovascular disease pathologies and clinical targets, including such markers of vascular inflammation as high-sensitivity C-reactive protein, plasminogen activator inhibitor-1, and brain natriuretic peptide. Reductions in markers of dyslipidemia such as elevated levels of triglycerides and free fatty acids have also been observed, as have cardioprotective functions. Larger trials of longer duration will be required to confirm preliminary findings. In large human trials, GLP-1 receptor agonists have been associated with significant reductions in both blood pressure and weight.
Collapse
Affiliation(s)
- Robert Chilton
- Catheterization Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA.
| | | | | | | | | |
Collapse
|
573
|
Abstract
Pre-analytical variables can alter the analysis of blood-derived samples. In particular, sample collection and specimen preparation can alter the validity of results obtained by modern multiplex assays (e.g., LC-MS). Low-molecular weight proteins (peptides) as products of proteolytic cleavage events exhibit a close connection to protease activity and function. Altered proteolytic activity during sample collection, preparation, handling, and storage is mirrored by alterations in abundance of specific peptides. Awareness of clinical practices in medical laboratories allows for the identification of specific variables that may affect the results of a peptidomic study. Knowledge of pre-analytical variables is a prerequisite to understand and control their impact.
Collapse
|
574
|
Nauck MA. Incretin-based therapies for type 2 diabetes mellitus: properties, functions, and clinical implications. Am J Med 2011; 124:S3-18. [PMID: 21194578 DOI: 10.1016/j.amjmed.2010.11.002] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagonlike peptide-1 (GLP-1), which are secreted by cells of the gastrointestinal tract in response to meal ingestion, exercise important glucoregulatory effects, including the glucose-dependent potentiation of insulin secretion by pancreatic β-cells. Research on the defective incretin action in type 2 diabetes mellitus suggests that the observed loss of insulinotropic activity may be due primarily to a decreased responsiveness of β-cells to GIP. GLP-1 does retain efficacy, albeit not at physiologic levels. Accordingly, augmentation of GLP-1 is a logical therapeutic strategy to ameliorate this deficiency, although the short metabolic half-life of the native hormone renders direct infusion impractical. GLP-1 receptor agonists that resist degradation by the enzyme dipeptidyl peptidase-4 (DPP-4) and have protracted-action kinetics have been developed, and DPP-4 inhibitors that slow the enzymatic cleavage of native GLP-1 provide alternative approaches to enhancing incretin-mediated glucose control. However, GLP-1 receptor agonists and DPP-4 inhibitors are premised on highly divergent mechanisms of action. DPP-4 is ubiquitously expressed in many tissues and is involved in a wide range of physiologic processes in addition to its physiologic influence on incretin hormone biological activity. GLP-1 receptor agonists provide a pharmacologic level of GLP-1 receptor stimulation, whereas DPP-4 inhibitors appear to increase levels of circulating GLP-1 to within the physiologic range. This article examines the physiology of the incretin system, mechanistic differences between GLP-1 receptor agonists and DPP-4 inhibitors used as glucose-lowering agents in the treatment of type 2 diabetes, and the implications of these differences for treatment. The results of recent head-to-head trials are reviewed, comparing the effects of incretin-based therapies on a range of clinical parameters, including glycemia, β-cell function, weight, and cardiovascular function.
Collapse
Affiliation(s)
- Michael A Nauck
- Bad Lauterberg Diabetes Center, Bad Lauterberg im Harz, Germany.
| |
Collapse
|
575
|
Kaczanowska K, Wiesmüller KH, Schaffner AP. Design, Synthesis, and in Vitro Evaluation of Novel Aminomethyl-pyridines as DPP-4 Inhibitors. ACS Med Chem Lett 2010; 1:530-5. [PMID: 24900243 DOI: 10.1021/ml100200c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 09/29/2010] [Indexed: 12/27/2022] Open
Abstract
A collection of novel aminomethyl-pyridines was designed, synthesized, and investigated as potential inhibitors of DPP-4. Optimization of the screening hit afforded a number of 5-aminomethyl-pyridines with inhibitory activity in the nanomolar range. Selected DPP-4 inhibitors were further evaluated for their selectivity over the closely related peptidase DPP-8. 5-Aminomethyl-4-(2,4-dichloro-phenyl)-6-methyl-pyridine-2-carboxylic acid cyanomethyl-amide showed high potency and excellent DPP-4 selectivity [IC50: 10 (DPP-4) and 6600 nM (DPP-8)] and no toxicity in mammalian cell culture.
Collapse
|
576
|
Davidson JA. Incorporating incretin-based therapies into clinical practice: differences between glucagon-like Peptide 1 receptor agonists and dipeptidyl peptidase 4 inhibitors. Mayo Clin Proc 2010; 85:S27-37. [PMID: 21106865 PMCID: PMC2996165 DOI: 10.4065/mcp.2010.0469] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Type 2 diabetes mellitus (DM) is a prevalent disorder that affects children, adolescents, and adults worldwide. In addition to risks of microvascular disease, patients with type 2 DM often have multiple risk factors of macrovascular disease; for example, approximately 90% of patients with type 2 DM are overweight/obese. Type 2 DM is a complex disease that involves a variety of pathophysiologic abnormalities, including insulin resistance, increased hepatic glucose production, and abnormalities in the secretion of hormones, such as insulin, glucagon, amylin, and incretins. Incretins are gut-derived peptides with a variety of glucoregulatory functions. Incretin dysfunction can be treated with glucagon-like peptide 1 (GLP-1) receptor agonists (eg, exenatide and liraglutide) or inhibitors of dipeptidyl peptidase 4 (DPP-4) (eg, sitagliptin and saxagliptin), the enzyme that degrades GLP-1. The GLP-1 receptor agonists and DPP-4 inhibitors both elevate GLP-1 activity and substantially improve glycemic control. The GLP-1 receptor agonists are more effective in lowering blood glucose and result in substantial weight loss, whereas therapy with DPP-4 inhibitors lowers blood glucose levels to a lesser degree, and they are weight neutral. Treatment with GLP-1 receptor agonists has demonstrated durable glycemic control and improvement in multiple cardiovascular disease risk factors. In addition, unlike insulin or sulfonylureas, treatment with a GLP-1 receptor agonist or a DPP-4 inhibitor has not been associated with substantial hypoglycemia. These factors should be considered when selecting monotherapy or elements of combination therapy for patients with type 2 DM who are overweight/obese, for patients who have experienced hypoglycemia with other agents, and when achieving glycemic targets is difficult.
Collapse
Affiliation(s)
- Jaime A Davidson
- Division of Endocrinology, University of Texas, Southwestern Medical Center, Dallas, USA.
| |
Collapse
|
577
|
Byrd JB, Woodard-Grice A, Stone E, Lucisano A, Schaefer H, Yu C, Eyler AE, Salloum NE, Brown NJ. Association of angiotensin-converting enzyme inhibitor-associated angioedema with transplant and immunosuppressant use. Allergy 2010; 65:1381-7. [PMID: 20557296 DOI: 10.1111/j.1398-9995.2010.02398.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Immunosuppressants decrease circulating dipeptidyl peptidase IV (DPPIV) activity in transplant patients, and decreased DPPIV activity has been associated with angiotensin-converting enzyme (ACE) inhibitor-associated angioedema. One study has reported an increased incidence of ACE inhibitor-associated angioedema among transplant patients compared to published rates, while several case series report angioedema in patients taking specific immunosuppressant agents. OBJECTIVE To test the hypothesis that transplant patients are at increased risk of ACE inhibitor-associated angioedema. METHODS We assessed the proportion of transplant patients in 145 cases with ACE inhibitor-associated angioedema and 280 ACE inhibitor-exposed controls. We measured the relationship between case-control status, transplant status, and immunosuppressant use and circulating DPPIV activity. We also assessed the incidence of angioedema among consecutive patients who underwent renal or cardiac transplant and were treated with an ACE inhibitor. RESULTS Transplant patients were significantly overrepresented among ACE inhibitor-associated angioedema cases compared to controls (odds ratio 18.5, 95% CI 2.3-147.2, P = 0.0004). Immunosuppressant use, chronic renal failure, seasonal allergies and smoking were also associated with ACE inhibitor-associated angioedema in univariate analysis. The association of transplant status with ACE inhibitor-associated angioedema was no longer significant after inclusion of immunosuppressant therapy in a multivariate analysis. Dipeptidyl peptidase IV activity was significantly decreased in sera from cases compared to ACE inhibitor-exposed controls, as well as in individuals taking immunosuppressants. Two of 47 ACE inhibitor-treated renal transplant patients and one of 36 ACE inhibitor-treated cardiac transplant patients developed angioedema. CONCLUSION Transplant patients are at increased risk of ACE inhibitor-associated angioedema possibly because of the effects of immunosuppressants on the activity of DPPIV.
Collapse
Affiliation(s)
- J B Byrd
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
578
|
Greischel A, Binder R, Baierl J. The dipeptidyl peptidase-4 inhibitor linagliptin exhibits time- and dose-dependent localization in kidney, liver, and intestine after intravenous dosing: results from high resolution autoradiography in rats. Drug Metab Dispos 2010; 38:1443-8. [PMID: 20538719 DOI: 10.1124/dmd.110.034199] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Linagliptin is an orally active dipeptidyl peptidase-4 (DPP-4) inhibitor that is under development for the treatment of type 2 diabetes and shows dose-dependent pharmacokinetics in rats and humans. With microscopic autoradiography, the dose dependence of cellular distribution of [(3)H]linagliptin-related radioactivity was investigated in kidney at 3 h after intravenous injection of 7.4, 100, and 2000 microg/kg [(3)H]linagliptin. Furthermore, distribution of radioactivity in kidney, liver, and small intestine was investigated in relation to time (2 min, 3 h, and 192 h) after intravenous injection of 7.4 microg/kg [(3)H]linagliptin. The localization of radioactivity in the kidney at 3 h after administration of 7.4, 100, and 2000 microg/kg [(3)H]linagliptin changed with increasing dose from cortical glomeruli and parts of proximal tubule parts to parts of medullar proximal tubule. In addition, the compound distribution in the kidney shifted with time after administration of 7.4 microg/kg [(3)H]linagliptin from glomeruli (2 min) to the lower parts of proximal tubules (192 h). The radioactivity within proximal tubules was located primarily in the brush border. In the liver, the radioactivity persisted mainly around the portal triads and in the bile duct from 2 min to 192 h. In the small intestine, the radioactivity shifted from the lamina propria (2 min) to the surface of the villi and/or intestinal lumen (192 h). In conclusion, the cellular distribution pattern of [(3)H]linagliptin-related radioactivity reflected the known distribution of DPP-4. Together with the persistence of binding, this result supports the high relevance of DPP-4 binding of linagliptin for its pharmacokinetics and pharmacodynamics.
Collapse
Affiliation(s)
- Andreas Greischel
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, Biberach an der Riss, Germany.
| | | | | |
Collapse
|
579
|
Lusardi TA. Adenosine neuromodulation and traumatic brain injury. Curr Neuropharmacol 2010; 7:228-37. [PMID: 20190964 PMCID: PMC2769006 DOI: 10.2174/157015909789152137] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 05/18/2009] [Accepted: 05/20/2009] [Indexed: 12/17/2022] Open
Abstract
Adenosine is a ubiquitous signaling molecule, with widespread activity across all organ systems. There is evidence that adenosine regulation is a significant factor in traumatic brain injury (TBI) onset, recovery, and outcome, and a growing body of experimental work examining the therapeutic potential of adenosine neuromodulation in the treatment of TBI. In the central nervous system (CNS), adenosine (dys)regulation has been demonstrated following TBI, and correlated to several TBI pathologies, including impaired cerebral hemodynamics, anaerobic metabolism, and inflammation. In addition to acute pathologies, adenosine function has been implicated in TBI comorbidities, such as cognitive deficits, psychiatric function, and post-traumatic epilepsy. This review presents studies in TBI as well as adenosine-related mechanisms in co-morbidities of and unfavorable outcomes resulting from TBI. While the exact role of the adenosine system following TBI remains unclear, there is increasing evidence that a thorough understanding of adenosine signaling will be critical to the development of diagnostic and therapeutic tools for the treatment of TBI.
Collapse
Affiliation(s)
- T A Lusardi
- R. S. Dow Neurobiology Laboratory, Portland OR, USA.
| |
Collapse
|
580
|
Vanderheyden M, Vrints C, Verstreken S, Bartunek J, Beunk J, Goethals M. B-type natriuretic peptide as a marker of heart failure: new insights from biochemistry and clinical implications. Biomark Med 2010; 4:315-20. [PMID: 20406072 DOI: 10.2217/bmm.10.5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mature, biologically active 32-amino acid long B-type natriuretic peptide (BNP(1-32)), is cleaved by corin from the BNP prohormone. Recent data demonstrated that BNP(1-32) might be an ideal substrate for the endogenous aminopeptidase, dipeptidyl-peptidase (DPP) IV. DPP IV removes the two amino-terminal amino acids (Ser and Pro) from BNP(1-32) to produce BNP(3-32), which has been detected in plasma of patients with heart failure. In a canine model, intravenous BNP(3-32) infusion resulted in less natriuresis, diuresis and vasodilation compared to intravenous infusion of BNP(1-32). The clinical relevance of these observations may be important for patients with high plasma BNP concentrations, which can be measured by commercially available immunoassays. Further studies are needed to explore whether DPP IV inhibitors increase the bioavailability of BNP(1-32), delay the progression of heart failure and increase the efficacy of exogenously administered BNP(1-32) in decompensated heart failure.
Collapse
Affiliation(s)
- Marc Vanderheyden
- Department of Cardiology, Onze Lieve Vrouwe Ziekenhuis, Moorselbaan 164, B-9300, Aalst, Belgium.
| | | | | | | | | | | |
Collapse
|
581
|
Sebokova E, Christ AD, Wang H, Sewing S, Dong JZ, Taylor J, Cawthorne MA, Culler MD. Taspoglutide, an analog of human glucagon-like Peptide-1 with enhanced stability and in vivo potency. Endocrinology 2010; 151:2474-82. [PMID: 20382695 DOI: 10.1210/en.2009-1459] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Taspoglutide is a novel analog of human glucagon-like peptide-1 [hGLP-1(7-36)NH2] in clinical development for the treatment of type 2 diabetes. Taspoglutide contains alpha-aminoisobutyric acid substitutions replacing Ala(8) and Gly(35) of hGLP-1(7-36)NH2. The binding affinity [radioligand binding assay using [(125)I]hGLP-1(7-36)NH2], potency (cAMP production in CHO cells stably overexpressing hGLP-1 receptor), and in vitro plasma stability of taspoglutide compared with hGLP-1(7-36)NH2 have been evaluated. Effects on basal and glucose-stimulated insulin secretion were determined in vitro in INS-1E cells and in vivo in normal rats. Taspoglutide has comparable affinity (affinity constant 1.1 +/- 0.2 nm) to the natural ligand (affinity constant 1.5 +/- 0.3 nm) for the hGLP-1 receptor and exhibits comparable potency in stimulating cAMP production (EC(50) Taspo 0.06 nm and EC(50) hGLP-1(7-36)NH2 0.08 nm). Taspoglutide exerts insulinotropic action in vitro and in vivo and retains the glucoincretin property of hGLP-1(7-36)NH2. Stimulation of insulin secretion is concentration dependent and evident in the presence of high-glucose concentrations (16.7 mm) with a taspoglutide concentration as low as 0.001 nm. Taspoglutide is fully resistant to dipeptidyl peptidase-4 cleavage (during 1 h incubation at room temperature with purified enzyme) and has an extended in vitro plasma half-life relative to hGLP-1(7-36)NH2 (9.8 h vs. 50 min). In vitro, taspoglutide does not inhibit dipeptidyl peptidase-4 activity. This study provides the biochemical and pharmacological basis for the sustained plasma drug levels and prolonged therapeutic activity seen in early clinical trials of taspoglutide. Excellent stability and potency with substantial glucoincretin effects position taspoglutide as a promising new agent for treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Elena Sebokova
- F. Hoffmann-La Roche AG, PRDM, Building 68/310 Grenzacherstrasse 124, CH-4070 Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
582
|
Epoetin delta reduces oxidative stress in primary human renal tubular cells. J Biomed Biotechnol 2010; 2010:395785. [PMID: 20454536 PMCID: PMC2864893 DOI: 10.1155/2010/395785] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 02/17/2010] [Accepted: 02/17/2010] [Indexed: 02/07/2023] Open
Abstract
Erythropoietin (EPO) exerts (renal) tissue protective effects. Since it is unclear whether this is a direct effect of EPO on the kidney or not, we investigated whether EPO is able to protect human renal tubular epithelial cells (hTECs) from oxidative stress and if so which pathways are involved. EPO (epoetin delta) could protect hTECs against oxidative stress by a dose-dependent inhibition of reactive oxygen species formation. This protective effect is possibly related to the membranous expression of the EPO receptor (EPOR) since our data point to the membranous EPOR expression as a prerequisite for this protective effect. Oxidative stress reduction went along with the upregulation of renoprotective genes. Whilst three of these, heme oxygenase-1 (HO-1), aquaporin-1 (AQP-1), and B-cell CLL/lymphoma 2 (Bcl-2) have already been associated with EPO-induced renoprotection, this study for the first time suggests carboxypeptidase M (CPM), dipeptidyl peptidase IV (DPPIV), and cytoglobin (Cygb) to play a role in this process.
Collapse
|
583
|
Stulc T, Sedo A. Inhibition of multifunctional dipeptidyl peptidase-IV: is there a risk of oncological and immunological adverse effects? Diabetes Res Clin Pract 2010; 88:125-31. [PMID: 20303610 DOI: 10.1016/j.diabres.2010.02.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 02/20/2010] [Accepted: 02/25/2010] [Indexed: 12/12/2022]
Abstract
Inhibitors of dipeptidyl peptidase-IV (DPP-IV) are a novel class of anti-diabetes drugs; inhibiting the breakdown of incretins, they increase their biological availability and decrease thus blood glucose levels. However, in addition to regulating glucose homeostasis, DPP-IV has many diverse functions, such as modulating cell growth, differentiation and transformation and immune function. Within the immune system, DPP-IV exerts mainly stimulating effects, while its relation to malignancies is highly variable. Therefore, long-term inhibition of this enzyme could have serious side effects including immune dysregulation or increased risk of cancer. Although the data on the effects of DPP-IV inhibitors in humans are scarce, the increased risk of infections and the tendency towards a higher incidence of some tumours fall in line with experimental evidence suggesting the possibility of their adverse immunological and oncological effects. Further research is obviously needed to clarify the effector mechanisms of DPP-IV inhibitors on immune function and tumour biology. Most important, however, is obtaining reassuring safety data from adequately powered, long-term trials of DPP-IV inhibitors in humans. In the meantime, all the potential risks of DPP-IV inhibitors should be kept in mind, and this class of drugs needs to be regarded with some degree of caution.
Collapse
Affiliation(s)
- Tomas Stulc
- 3rd Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | |
Collapse
|
584
|
Jungraithmayr W, De Meester I, Matheeussen V, Inci I, Augustyns K, Scharpé S, Weder W, Korom S. Inhibition of CD26/DPP IV attenuates ischemia/reperfusion injury in orthotopic mouse lung transplants: the pivotal role of vasoactive intestinal peptide. Peptides 2010; 31:585-91. [PMID: 20018218 DOI: 10.1016/j.peptides.2009.12.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/07/2009] [Accepted: 12/07/2009] [Indexed: 11/17/2022]
Abstract
The T cell activation Ag CD26/dipeptidylpeptidase IV (DPP IV) combines co-stimulatory and enzymatic properties. Catalytically, it functions as an exopeptidase, modulating biological activity of key chemokines and peptides. Here we investigated the effect of organ-specific inhibition of DPP IV catalytic activity on ischemia/reperfusion injury after extended ischemia in the mouse model of orthotopic single lung transplantation. C57BL/6 mice were syngeneically, transplanted, grafts were perfused and stored in Perfadex with (treated) or without (control) a DPP IV enzymatic activity inhibitor (AB192). Transplantation was performed after 18h cold ischemia time; following 2-h reperfusion, grafts were analyzed for oxygenation, thiobarbituric acid-reactive substances, histomorphology, and immunohistochemistry was performed for leukocyte Ag 6, myeloperoxidase, hemoxygenase 1, vasoactive intestinal protein (VIP), and real-time PCR for VIP. Treatment with the DPP IV inhibitor AB192 resulted in significant improvement of gas exchange, less lipid oxidation, preservation of parenchymal ultrastructure, reduced neutrophil infiltration, reduced myeloperoxidase expression, increased hemoxygenase 1 expression, pronounced expression of VIP in alveolar macrophages and increased mRNA expression of VIP. Inhibition of intragraft DPP IV catalytic activity with AB192 strikingly ameliorates ischemia/reperfusion injury after extended ischemia. Furthermore, preservation of endogenous intragraft VIP levels correlate with maintaining lung function and structural integrity.
Collapse
Affiliation(s)
- Wolfgang Jungraithmayr
- Division of Thoracic Surgery, University Hospital of Zurich, Raemistr 100, 8091 Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
585
|
Docking study of the precursor peptide of mastoparan onto its putative processing enzyme, dipeptidyl peptidase IV: a revisit to molecular ticketing. J Comput Aided Mol Des 2010; 24:213-24. [PMID: 20306218 DOI: 10.1007/s10822-010-9327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 03/08/2010] [Indexed: 10/19/2022]
Abstract
Stepwise-cleavage process of promastoparans to reach maturity was investigated theoretically by combining ab initio folding and unbounded docking. The comparison between the structures of the promastoparans both before and after docking were examined along with the hydrogen bonding interaction pattern between the dipetidyl peptidase IV (DPPIV) and promastoparans to reveal how the endpoint of this stepwise cleavage is recognized among these promastoparans with highly resemble amino acid sequences. The current approach of folding and docking study provides structural insight on the stepwise cleavage process.
Collapse
|
586
|
Abstract
Rates of type 2 diabetes, obesity and their associated detrimental cardiovascular effects are rapidly increasing. Despite the availability of several treatment options for type 2 diabetes and the use of intensive regimens combining several antidiabetic drugs, less than one-half of all patients reach a target glycosylated hemoglobin level of less than 7%. Disease progression due to ongoing deterioration of pancreatic islet cell health and beta-cell function is likely responsible. Therefore, there is a need to identify new pharmacological compounds that may not only treat hyperglycemia, but may also correct impaired glucose homeostasis and preserve endogenous beta-cell function. Identification and characterization of the incretin system and its effect on glucose homeostasis have resulted in the development of new antidiabetic agents that target these concerns. The current review examines the incretin effect and the pharmacological agents that have been developed based on the understanding of this physiological system. The influence of incretins on the cardiovascular system beyond the proatherogenic effect of type 2 diabetes will also be discussed.
Collapse
Affiliation(s)
- Paul E Szmitko
- Division of General Internal Medicine, St. Michael's Hospital, University of Toronto, 30 Bond Street, Toronto, Ontario, Canada
| | | | | |
Collapse
|
587
|
Sena CM, Bento CF, Pereira P, Seiça R. Diabetes mellitus: new challenges and innovative therapies. EPMA J 2010; 1:138-163. [PMID: 23199048 PMCID: PMC3405309 DOI: 10.1007/s13167-010-0010-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 02/04/2010] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus is a widespread disease prevalence and incidence of which increases worldwide. The introduction of insulin therapy represented a major breakthrough in type 1 diabetes; however, frequent hyper- and hypoglycemia seriously affects the quality of life of these patients. New therapeutic approaches, such as whole pancreas transplant or pancreatic islet transplant, stem cell, gene therapy and islets encapsulation are discussed in this review. Regarding type 2 diabetes, therapy has been based on drugs that stimulate insulin secretion (sulphonylureas and rapid-acting secretagogues), reduce hepatic glucose production (biguanides), delay digestion and absorption of intestinal carbohydrate (alpha-glucosidase inhibitors) or improve insulin action (thiazolidinediones). This review is also focused on the newer therapeutically approaches such as incretin-based therapies, bariatric surgery, stem cells and other emerging therapies that promise to further extend the options available. Gene-based therapies are among the most promising emerging alternatives to conventional treatments. Some of these therapies rely on genetic modification of non-differentiated cells to express pancreatic endocrine developmental factors, promoting differentiation of non-endocrine cells into β-cells, enabling synthesis and secretion of insulin in a glucose-regulated manner. Alternative therapies based on gene silencing using vector systems to deliver interference RNA to cells (i.e. against VEGF in diabetic retinopathy) are also a promising therapeutic option for the treatment of several diabetic complications. In conclusion, treatment of diabetes faces now a new era that is characterized by a variety of innovative therapeutic approaches that will improve quality-life and allow personalized therapy-planning in the near future.
Collapse
Affiliation(s)
- Cristina M. Sena
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-354 Coimbra, Portugal
- IBILI, University of Coimbra, Coimbra, Portugal
| | - Carla F. Bento
- IBILI, University of Coimbra, Coimbra, Portugal
- Centre of Ophthalmology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Paulo Pereira
- IBILI, University of Coimbra, Coimbra, Portugal
- Centre of Ophthalmology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Raquel Seiça
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-354 Coimbra, Portugal
- IBILI, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
588
|
Bain SC. Treatment of type 2 diabetes mellitus with orally administered agents: advances in combination therapy. Endocr Pract 2010; 15:750-62. [PMID: 19625236 DOI: 10.4158/ep08317.rar] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To discuss the effects and clinical benefit provided by combining various orally administered antidiabetic drugs (OADs) for the treatment of type 2 diabetes and to examine the advantages of single-tablet combinations with respect to targeting hyperglycemia and adherence. METHODS A review of randomized controlled trials that studied OAD combinations for the treatment of type 2 diabetes was conducted by using search terms in PubMed. RESULTS Reported data have documented that OAD combination therapies have additional benefits over monotherapy in terms of glycemic efficacy. Results from randomized controlled trials on a range of OAD combinations have demonstrated differences in safety and efficacy. The use of single-tablet OAD combinations has been shown to improve adherence in patients. CONCLUSION The development of single-tablet OAD combinations that can address all aspects of glycemia with a favorable tolerability profile has the potential to help patients manage their glycemic control more effectively and to minimize the risk of long-term diabetes-related complications. In addition, single-tablet combinations of agents offer improved convenience for patients as well as potential cost benefits. Thus, they represent an important treatment option for type 2 diabetes.
Collapse
Affiliation(s)
- Stephen C Bain
- Institute of Life Sciences, Swansea University and Abertawe Bro Morgannwg University NHS Trust, Swansea, United Kingdom.
| |
Collapse
|
589
|
Russell-Jones D. Current developments in the treatment of diabetes: the incretin therapies. ACTA ACUST UNITED AC 2010. [DOI: 10.1177/1474651409357266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The prevalence of type 2 diabetes in the UK has increased enormously over recent years and is closely associated with obesity and other risk factors for cardiovascular disease. The incretin system, which contributes significantly to the insulin response in healthy individuals, but is impaired in individuals with diabetes, offers a target for the development of agents that address many aspects of diabetes. These agents are broadly split into two categories — the glucagon-like polypeptide-1 (GLP-1) receptor agonists and the dipeptidyl peptidase-4 (DPP-4) inhibitors. The DPP-4 inhibitors sitagliptin and vildagliptin, along with the GLP-1 receptor agonists exenatide and liraglutide are currently approved for use and offer effective glycaemic control with a low risk of hypoglycaemia. GLP-1 receptor agonists may offer further benefits over both DPP-4 inhibitors and conventional therapies, such as reductions in body weight and blood pressure. Here we review the incretin system (with particular reference to GLP-1) and consider the development of these two classes of antidiabetic therapy, discussing the safety and efficacy of some of the latest available GLP-1 receptor agonists and DPP-4 inhibitors.
Collapse
Affiliation(s)
- David Russell-Jones
- Diabetes and Endocrinology, , Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK,
| |
Collapse
|
590
|
Retlich S, Duval V, Graefe-Mody U, Jaehde U, Staab A. Impact of target-mediated drug disposition on Linagliptin pharmacokinetics and DPP-4 inhibition in type 2 diabetic patients. J Clin Pharmacol 2010; 50:873-85. [PMID: 20160157 DOI: 10.1177/0091270009356444] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The pharmacokinetics of the novel dipeptidyl-peptidase 4 (DPP-4) inhibitor linagliptin is nonlinear. Based on in vitro experiments, concentration-dependent binding to DPP-4 is the most likely cause for the nonlinearity. Population pharmacokinetic/pharmacodynamic modeling was performed using linagliptin plasma concentrations and plasma DPP-4 activities from 2 phase 2a studies. In these studies, type 2 diabetic patients received either 1, 2.5, 5, or 10 mg of linagliptin once daily over 12 days (study 1) or 2.5, 5, or 10 mg of linagliptin once daily over 28 days (study 2). The modeling results supported the hypothesis that linagliptin exhibits target-mediated drug disposition. The linagliptin plasma concentrations were best described by a 2-compartment model including concentration-dependent protein binding in the central and peripheral compartment. The plasma DPP-4 activity was included in the model in a semi-mechanistic way by relating it to the model-calculated plasma DPP-4 occupancy with linagliptin. The target binding has a major impact on linagliptin pharmacokinetics. Although unbound linagliptin is cleared efficiently (CL/F 220 L/h), the concentration-dependent binding is responsible for the long terminal half-life (approximatelly 120 hours) of linagliptin and its nonlinear pharmacokinetics. The model allowed a comprehensive understanding of the impact of target-mediated drug disposition and provides a useful tool to support clinical development.
Collapse
Affiliation(s)
- Silke Retlich
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, D-88397 Biberach, Germany.
| | | | | | | | | |
Collapse
|
591
|
Cox ME, Rowell J, Corsino L, Green JB. Dipeptidyl peptidase-4 inhibitors in the management of type 2 diabetes: safety, tolerability, and efficacy. Drug Healthc Patient Saf 2010; 2:7-19. [PMID: 21701614 PMCID: PMC3108711 DOI: 10.2147/dhps.s6270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Indexed: 12/21/2022] Open
Abstract
Although glycemic control is an important and effective way to prevent and minimize the worsening of diabetes-related complications, type 2 diabetes is a progressive disease which often proves difficult to manage. Most affected patients will eventually require therapy with multiple medications in order to reach appropriate glycemic targets. The dipeptidyl peptidase-4 (DPP-4) inhibitors constitute a relatively new class of oral medications for the treatment of type 2 diabetes, which has become widely incorporated into clinical practice. This review summarizes the available data on the efficacy, safety, and tolerability of these medications.
Collapse
Affiliation(s)
- Mary Elizabeth Cox
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition. Duke University Medical Center, Durham, NC, USA
| | | | | | | |
Collapse
|
592
|
Wong PTY, Wong CK, Tam LS, Li EK, Chen DP, Lam CWK. Decreased expression of T lymphocyte co-stimulatory molecule CD26 on invariant natural killer T cells in systemic lupus erythematosus. Immunol Invest 2009; 38:350-64. [PMID: 19811413 DOI: 10.1080/08820130902770003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CD26, a T cell co-stimulatory molecule and dipeptidyl peptidase IV for the degradation of interferon-gamma-induced chemokine, participates in multiple immunopathological roles in leukocyte homing and inflammation. Decreased circulating concentration of soluble (s)CD26 in patients with systemic lupus erythematosus (SLE), rheumatoid arthritis and murine model of arthritis and encephalomyelitis have been reported. In the present study, the plasma concentration of sCD26 and chemokines, and cell surface expression of CD26 on monocytes, CD4+T lymphocytes, CD8+T lymphocytes, CD19+B lymphocytes and invariant natural killer T (iNKT) lymphocytes were analyzed using ELISA and flow cytometry, respectively, in 23 SLE patients and 14 sex- and age-matched control subjects. Although there was no significant difference between plasma concentrations of soluble CD26 in SLE patients with controls (p > 0.05), there was significant elevated Th1 chemokines CXCL10 and CXCL9 but not Th2 chemokine CCL2, and down-regulation in iNKT lymphocytes number and cell surface expression of CD26 on CD4+T and iNKT lymphocytes of SLE patients compared with controls (all p < 0.05). Decreased circulating number of iNKT cells and CD26 on iNKT cells can be important for the immunopathogenesis by exacerbating Th1-related inflammation in SLE.
Collapse
Affiliation(s)
- P T Y Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | | | | | | | | | | |
Collapse
|
593
|
Diez-Torrubia A, García-Aparicio C, Cabrera S, De Meester I, Balzarini J, Camarasa MJ, Velázquez S. Application of the Dipeptidyl Peptidase IV (DPPIV/CD26) Based Prodrug Approach to Different Amine-Containing Drugs. J Med Chem 2009; 53:559-72. [DOI: 10.1021/jm901590f] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Silvia Cabrera
- Instituto de Química Médica (C.S.I.C.), Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Jan Balzarini
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - María-José Camarasa
- Instituto de Química Médica (C.S.I.C.), Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Sonsoles Velázquez
- Instituto de Química Médica (C.S.I.C.), Juan de la Cierva 3, E-28006 Madrid, Spain
| |
Collapse
|
594
|
Carraro-Lacroix LR, Malnic G, Girardi ACC. Regulation of Na+/H+ exchanger NHE3 by glucagon-like peptide 1 receptor agonist exendin-4 in renal proximal tubule cells. Am J Physiol Renal Physiol 2009; 297:F1647-55. [DOI: 10.1152/ajprenal.00082.2009] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The gut incretin hormone glucagon-like peptide 1 (GLP-1) is released in response to ingested nutrients and enhances insulin secretion. In addition to its insulinotropic properties, GLP-1 has been shown to have natriuretic actions paralleled by a diminished proton secretion. We therefore studied the role of the GLP-1 receptor agonist exendin-4 in modulating the activity of Na+/H+ exchanger NHE3 in LLC-PK1 cells. We found that NHE3-mediated Na+-dependent intracellular pH (pHi) recovery decreased ∼50% after 30-min treatment with 1 nM exendin-4. Pharmacological inhibitors and cAMP analogs that selectively activate protein kinase A (PKA) or the exchange protein directly activated by cAMP (EPAC) demonstrated that regulation of NHE3 activity by exendin-4 requires activation of both cAMP downstream effectors. This conclusion was based on the following observations: 1) the PKA antagonist H-89 completely prevented the effect of the PKA activator but only partially blocked the exendin-4-induced NHE3 inhibition; 2) the MEK1/2 inhibitor U-0126 abolished the effect of the EPAC activator but only diminished the exendin-4-induced NHE3 inhibition; 3) combination of H-89 and U-0126 fully prevented the effect of exendin-4 on NHE3; 4) no additive effect in the inhibition of NHE3 activity was observed when exendin-4, PKA, and EPAC activators were used together. Mechanistically, the inhibitory effect of exendin-4 on pHi recovery was associated with an increase of NHE3 phosphorylation. Conversely, this inhibition took place without changes in the surface expression of the transporter. We conclude that GLP-1 receptor agonists modulate sodium homeostasis in the kidney, most likely by affecting NHE3 activity.
Collapse
Affiliation(s)
- Luciene R. Carraro-Lacroix
- Department of Physiology and Biophysics, Institute of Biomedical Sciences
- Department of Physiology, Federal University of São Paulo, São Paulo, Brazil
| | - Gerhard Malnic
- Department of Physiology and Biophysics, Institute of Biomedical Sciences
| | - Adriana C. C. Girardi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences
- Heart Institute (InCor), Medical School, University of São Paulo, and
| |
Collapse
|
595
|
Retlich S, Withopf B, Greischel A, Staab A, Jaehde U, Fuchs H. Binding to dipeptidyl peptidase-4 determines the disposition of linagliptin (BI 1356) - investigations in DPP-4 deficient and wildtype rats. Biopharm Drug Dispos 2009; 30:422-36. [DOI: 10.1002/bdd.676] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
596
|
Cordero OJ, Salgado FJ, Nogueira M. On the origin of serum CD26 and its altered concentration in cancer patients. Cancer Immunol Immunother 2009; 58:1723-47. [PMID: 19557413 PMCID: PMC11031058 DOI: 10.1007/s00262-009-0728-1] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 06/02/2009] [Indexed: 12/23/2022]
Abstract
Dipeptidyl peptidase IV (DPP-IV), assigned to the CD26 cluster, is expressed on epithelial cells and lymphocytes and is a multifunctional or pleiotropic protein. Its peptidase activity causes degradation of many biologically active peptides, e.g. some incretins secreted by the enteroendocrine system. DPP-IV has, therefore, become a novel therapeutic target for inhibitors that extend endogenously produced insulin half-life in diabetics, and several reviews have appeared in recent months concerning the clinical significance of CD26/DPP-IV. Biological fluids contain relatively high levels of soluble CD26 (sCD26). The physiological role of sCD26 and its relation, if any, to CD26 functions, remain poorly understood because whether the process for CD26 secretion and/or shedding from cell membranes is regulated or not is not known. Liver epithelium and lymphocytes are often cited as the most likely source of sCD26. It is important to establish which tissue or organ is the protein source as well as the circumstances that can provoke an abnormal presence/absence or altered levels in many diseases including cancer, so that sCD26 can be validated as a clinical marker or a therapeutic target. For example, we have previously reported low levels of sCD26 in the blood of colorectal cancer patients, which indicated the potential usefulness of the protein as a biomarker for this cancer in early diagnosis, monitoring and prognosis. Through this review, we envisage a role for sCD26 and the alteration of normal peptidase capacity (in clipping enteroendocrine or other peptides) in the complex crosstalk between the lymphoid lineage and, at least, some malignant tumours.
Collapse
Affiliation(s)
- Oscar J Cordero
- Department of Biochemistry and Molecular Biology, CIBUS, University of Santiago de Compostela, r/Lopez de Marzoa s/n, Campus Sur, 15782 Santiago de Compostela, Spain.
| | | | | |
Collapse
|
597
|
Aemaimanan P, Sattayasai N, Wara-aswapati N, Pitiphat W, Suwannarong W, Prajaneh S, Taweechaisupapong S. Alanine Aminopeptidase and Dipeptidyl Peptidase IV in Saliva of Chronic Periodontitis Patients. J Periodontol 2009; 80:1809-14. [DOI: 10.1902/jop.2009.090233] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
598
|
The Effect of Organ-Specific CD26/DPP IV Enzymatic Activity Inhibitor-Preconditioning on Acute Pulmonary Allograft Rejection. Transplantation 2009; 88:478-85. [DOI: 10.1097/tp.0b013e3181b08e77] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
599
|
Ansorge S, Bank U, Heimburg A, Helmuth M, Koch G, Tadje J, Lendeckel U, Wolke C, Neubert K, Faust J, Fuchs P, Reinhold D, Thielitz A, Täger M. Recent insights into the role of dipeptidyl aminopeptidase IV (DPIV) and aminopeptidase N (APN) families in immune functions. Clin Chem Lab Med 2009; 47:253-61. [PMID: 19327105 DOI: 10.1515/cclm.2009.063] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND In the past, different research groups could show that treatment of immune cells with inhibitors of post-proline splitting dipeptidyl aminopeptidases leads to functional changes in the immune system consistent with immunosuppression. This is due to the inhibition of proliferation of lymphocytes and the production of inflammatory cytokines of the TH1, TH2, and TH17, cells as well as the induction of immunosuppressive cytokines, such as transforming growth factor-beta1 (TGF-beta1) and interleukin (IL)-1RA. Until recently, most of the effects of these inhibitors on immune functions were attributed to the inhibition of dipeptidyl aminopeptidase IV (DPIV/CD26). With the identification of new peptidases of the DPIV family (DASH) with the same or similar substrate specificity [fibroblast activation protein (FAP), DP8/9], the question arose whether and to what extent the inhibition of intracellularly localized enzymes, DP8 and DP9, contribute to the observed immunosuppression. In addition, members of the aminopeptidase N (APN) family are also involved in the regulation of immune functions. Hence, the concept of a combined targeting of both families of peptidases for treatment of inflammatory diseases is a promising strategy. RESULTS/CONCLUSIONS Summarizing data obtained from the usage of different non-selective and selective inhibitors of DPIV, DP8/9, FAP, and DPII, this review provides evidence that in addition to DPIV, DP8/9 also regulate the immune response via modulation of cell cycle progression and cytokine production. The strongest and most consistent effects in vitro were, however, observed with non-selective inhibitors for the suppression of DNA synthesis and cytokine production. Similar effects were provoked by APN inhibitors, which were also found to suppress DNA synthesis and the production of inflammatory cytokines in vitro. However, different mechanisms and signaling pathways appear to mediate the cellular effects resulting from the inhibition of either APN or DPIV family members. In particular, members of the APN family uniquely influence the function of CD4+CD25+ regulatory T-cells. Consequently, the concomitant inhibition of both APN and DPIV enzyme families by means of two separate inhibitors or by binary inhibitors with specificity for both enzyme families (PETIR, peptidase targeted immunoregulation) synergistically affects immune cells on the level of cell cycle regulation, suppression of TH1, TH2, and TH17 cytokines as well as the activation of regulatory T-cells. Besides leukocytes, dermal cells as sebocytes, keratinocytes, and fibroblasts are also targeted by these inhibitors. This strongly suggests a broad potential of the multiple anti-inflammatory effects of PETIR in treatment of chronic inflammatory diseases, such as autoimmune diseases, allergies, and transplant rejections, as well as of inflammatory skin diseases, such as acne, psoriasis, rosacea or atopic dermatitis. The first active dual inhibitor, IP10.C8, has been developed by IMTM for the treatment of inflammatory skin diseases and has just entered the first phase II study.
Collapse
|
600
|
Reinhold D, Goihl A, Wrenger S, Reinhold A, Kühlmann UC, Faust J, Neubert K, Thielitz A, Brocke S, Täger M, Ansorge S, Bank U. Role of dipeptidyl peptidase IV (DP IV)-like enzymes in T lymphocyte activation: investigations in DP IV/CD26-knockout mice. Clin Chem Lab Med 2009; 47:268-74. [PMID: 19676138 DOI: 10.1515/cclm.2009.062] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Dipeptidyl peptidase IV (DP IV, CD26) and DP IV-like enzymes, such as dipeptidyl peptidase II (DP II), dipeptidyl peptidase 8 (DP8), and dipeptidyl peptidase 9 (DP9), have been recognized to regulate T lymphocyte activation. Lys[Z(NO2)]-thiazolidide (LZNT) and Lys[Z(NO2)]-pyrrolidide (LZNP), non-selective inhibitors of DP IV-like activity known to target DP IV as well as DP II, DP8, and DP9, suppress T lymphocyte proliferation in vitro. Moreover, these inhibitors are capable of attenuating the severity of autoimmune diseases, such as experimental autoimmune encephalomyelitis, the animal model of multiple sclerosis, and experimental arthritis, a model of human rheumatoid arthritis, in vivo, particularly in combination with inhibitors of aminopeptidase N (APN, CD13) enzymatic activity. METHODS Here, we studied the influence of non-selective and selective inhibitors of DP IV-like enzymes on DNA synthesis in mitogen-stimulated splenocytes from wild-type C57BL/6 mice and DP IV/CD26-knockout (DP IV/CD26-KO) mice. RESULTS LZNT and LZNP, the non-selective inhibitors of DP IV-like activity, suppressed the DNA synthesis in stimulated splenocytes from wild-type and DP IV/ CD26-KO mice to a comparable extent. Further, a selective inhibitor of DP8/DP9 activity was capable of suppressing DNA synthesis in mitogen-stimulated splenocytes of both wild-type and knockout mice to the same extent. In contrast, selective inhibitors of DP IV and DP II lacked this suppressive activity. CONCLUSIONS Our data support the hypothesis that DP8 and/or DP9 represent additional pharmacological targets for the suppression of T cell proliferation and for anti-inflammatory therapy.
Collapse
Affiliation(s)
- Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|