551
|
Limami AM, Diab H, Lothier J. Nitrogen metabolism in plants under low oxygen stress. PLANTA 2014; 239:531-41. [PMID: 24370634 DOI: 10.1007/s00425-013-2015-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 12/14/2013] [Indexed: 05/22/2023]
Abstract
More frequent flooding and waterlogging events due to more heavy precipitation are expected worldwide in the context of climate change. Accordingly, adaptation of plants to oxygen limitation at both cellular and whole plant levels should be investigated thoroughly, that derived knowledge could be taken into account in breeding programs and agronomical practices for saving plant fitness, growth and development even when oxygen availability is low. In the present review, we highlight current knowledge on essential aspects of low oxygen stress-induced changes in nitrogen metabolism. The involvement of two possible pathways for NO production either via the reaction catalyzed by nitrate reductase or at Complex III or IV of the mitochondrial electron transport chain, thus contributing to ATP synthesis via the so-called nitrite-NO respiration, is discussed. NO is proposed to be scavenged by non-symbiotic hemoglobin (Hb) in a Hb/NO cycle, in which NAD(P)H is oxidized for the conversion of NO into NO3(-). The investigation of an additional adaptation to the decrease in oxygen availability via transcriptional and posttranslational regulation of amino acid synthesis pathways, using publicly available transcriptome and translatome data for Arabidopsis thaliana and rice is also discussed.
Collapse
Affiliation(s)
- Anis M Limami
- University of Angers, UMR 1345 IRHS, SFR 4207 QUASAV, 2 Bd Lavoisier, 49045, Angers, France,
| | | | | |
Collapse
|
552
|
Pons TL, Poorter H. The effect of irradiance on the carbon balance and tissue characteristics of five herbaceous species differing in shade-tolerance. FRONTIERS IN PLANT SCIENCE 2014; 5:12. [PMID: 24550922 PMCID: PMC3912841 DOI: 10.3389/fpls.2014.00012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/08/2013] [Indexed: 05/23/2023]
Abstract
The carbon balance is defined here as the partitioning of daily whole-plant gross CO2 assimilation (A) in C available for growth and C required for respiration (R). A scales positively with growth irradiance and there is evidence for an irradiance dependence of R as well. Here we ask if R as a fraction of A is also irradiance dependent, whether there are systematic differences in C-balance between shade-tolerant and shade-intolerant species, and what the causes could be. Growth, gas exchange, chemical composition and leaf structure were analyzed for two shade-tolerant and three shade-intolerant herbaceous species that were hydroponically grown in a growth room at five irradiances from 20 μmol m(-2) s(-1) (1.2 mol m(-2) day(-1)) to 500 μmol m(-2) s(-1) (30 mol m(-2) day(-1)). Growth analysis showed little difference between species in unit leaf rate (dry mass increase per unit leaf area) at low irradiance, but lower rates for the shade-tolerant species at high irradiance, mainly as a result of their lower light-saturated rate of photosynthesis. This resulted in lower relative growth rates in these conditions. Daily whole-plant R scaled with A in a very tight manner, giving a remarkably constant R/A ratio of around 0.3 for all but the lowest irradiance. Although some shade-intolerant species showed tendencies toward a higher R/A and inefficiencies in terms of carbon and nitrogen investment in their leaves, no conclusive evidence was found for systematic differences in C-balance between the shade-tolerant and intolerant species at the lowest irradiance. Leaf tissue of the shade-tolerant species was characterized by high dry matter percentages, C-concentration and construction costs, which could be associated with a better defense in shade environments where leaf longevity matters. We conclude that shade-intolerant species have a competitive advantage at high irradiance due to superior potential growth rates, but that shade-tolerance is not necessarily associated with a better C-balance at low irradiance. Under those conditions tolerance to other stresses is probably more important for the performance of shade-tolerant species.
Collapse
Affiliation(s)
- Thijs L. Pons
- Plant Ecophysiology, Institute of Environmental Sciences, Utrecht UniversityUtrecht, Netherlands
| | - Hendrik Poorter
- IBG-2 Plant Sciences, Forschungszentrum Jülich GmbHJülich, Germany
| |
Collapse
|
553
|
Manzur ME, Grimoldi AA, Insausti P, Striker GG. Radial oxygen loss and physical barriers in relation to root tissue age in species with different types of aerenchyma. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 42:9-17. [PMID: 32480649 DOI: 10.1071/fp14078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 07/02/2014] [Indexed: 06/11/2023]
Abstract
Plant root aeration relies on aerenchyma and barrier formation in outer cortex influencing the radial oxygen loss (ROL) from roots towards the rhizosphere. Plant species display large variation in strategies for both responses. We investigated the impacts of root-zone hypoxia on aerenchyma formation and development of ROL apoplastic barriers in the outer cortex as a function of root tissue age using three lowland grassland species, each with alternative aerenchyma structure. All species increased root aerenchyma and continued with root elongation after imposing hypoxia. However, ROL barrier development differed: (i) Rumex crispus L. displayed only 'partial' barrier to ROL evidenced at older tissue ages, (ii) Cyperus eragrostis Lam. initiated a 'tighter' barrier to ROL following exposure to hypoxia in tissues older than 3 days, and (iii) Paspalidium geminatum (Forssk.) Stapf demonstrated highly effective inhibition of ROL under aerated and hypoxic conditions at all tissue ages related to constitutive 'tight' apoplastic barriers in outer cortex. Thus, hypoxic conditions affected root elongation and 'tightness' of apoplastic barriers depending on species. The physiological implications of the different ROL responses among species in relation to the differential formation of barriers are discussed.
Collapse
Affiliation(s)
- Milena E Manzur
- IFEVA, CONICET/Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE Buenos Aires, Argentina
| | - Agustín A Grimoldi
- IFEVA, CONICET/Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE Buenos Aires, Argentina
| | - Pedro Insausti
- IFEVA, CONICET/Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE Buenos Aires, Argentina
| | - Gustavo G Striker
- IFEVA, CONICET/Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE Buenos Aires, Argentina
| |
Collapse
|
554
|
Kelliher T, Walbot V. Maize germinal cell initials accommodate hypoxia and precociously express meiotic genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:639-52. [PMID: 24387628 PMCID: PMC3928636 DOI: 10.1111/tpj.12414] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/24/2013] [Accepted: 12/09/2013] [Indexed: 05/20/2023]
Abstract
In flowering plants, anthers are the site of de novo germinal cell specification, male meiosis, and pollen development. Atypically, anthers lack a meristem. Instead, both germinal and somatic cell types differentiate from floral stem cells packed into anther lobes. To better understand anther cell fate specification and to provide a resource for the reproductive biology community, we isolated cohorts of germinal and somatic initials from maize anthers within 36 h of fate acquisition, identifying 815 specific and 1714 significantly enriched germinal transcripts, plus 2439 specific and 2112 significantly enriched somatic transcripts. To clarify transcripts involved in cell differentiation, we contrasted these profiles to anther primordia prior to fate specification and to msca1 anthers arrested in the first step of fate specification and hence lacking normal cell types. The refined cell-specific profiles demonstrated that both germinal and somatic cell populations differentiate quickly and express unique transcription factor sets; a subset of transcript localizations was validated by in situ hybridization. Surprisingly, germinal initials starting 5 days of mitotic divisions were enriched significantly in >100 transcripts classified in meiotic processes that included recombination and synapsis, along with gene sets involved in RNA metabolism, redox homeostasis, and cytoplasmic ATP generation. Enrichment of meiotic-specific genes in germinal initials challenges current dogma that the mitotic to meiotic transition occurs later in development during pre-meiotic S phase. Expression of cytoplasmic energy generation genes suggests that male germinal cells accommodate hypoxia by diverting carbon away from mitochondrial respiration into alternative pathways that avoid producing reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Timothy Kelliher
- Department of Biology, Stanford University, Stanford, CA 94305-5020, U.S.A
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, CA 94305-5020, U.S.A
| |
Collapse
|
555
|
Ghosh D, Xu J. Abiotic stress responses in plant roots: a proteomics perspective. FRONTIERS IN PLANT SCIENCE 2014; 5:6. [PMID: 24478786 PMCID: PMC3900766 DOI: 10.3389/fpls.2014.00006] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/06/2014] [Indexed: 05/18/2023]
Abstract
Abiotic stress conditions adversely affect plant growth, resulting in significant decline in crop productivity. To mitigate and recover from the damaging effects of such adverse environmental conditions, plants have evolved various adaptive strategies at cellular and metabolic levels. Most of these strategies involve dynamic changes in protein abundance that can be best explored through proteomics. This review summarizes comparative proteomic studies conducted with roots of various plant species subjected to different abiotic stresses especially drought, salinity, flood, and cold. The main purpose of this article is to highlight and classify the protein level changes in abiotic stress response pathways specifically in plant roots. Shared as well as stressor-specific proteome signatures and adaptive mechanism(s) are simultaneously described. Such a comprehensive account will facilitate the design of genetic engineering strategies that enable the development of broad-spectrum abiotic stress-tolerant crops.
Collapse
Affiliation(s)
- Dipanjana Ghosh
- Department of Biological Sciences, NUS Centre for BioImaging Sciences, National University of SingaporeSingapore
| | - Jian Xu
- Department of Biological Sciences, NUS Centre for BioImaging Sciences, National University of SingaporeSingapore
| |
Collapse
|
556
|
|
557
|
New Insights into the Metabolic and Molecular Mechanism of Plant Response to Anaerobiosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 311:231-64. [DOI: 10.1016/b978-0-12-800179-0.00005-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
558
|
Steffens B. The role of ethylene and ROS in salinity, heavy metal, and flooding responses in rice. FRONTIERS IN PLANT SCIENCE 2014; 5:685. [PMID: 25538719 PMCID: PMC4255495 DOI: 10.3389/fpls.2014.00685] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/18/2014] [Indexed: 05/18/2023]
Abstract
Plant growth and developmental processes as well as abiotic and biotic stress adaptations are regulated by small endogenous signaling molecules. Among these, phytohormones such as the gaseous alkene ethylene and reactive oxygen species (ROS) play an important role in mediating numerous specific growth or cell death responses. While apoplastic ROS are generated by plasma membrane-located respiratory burst oxidase homolog proteins, intracellular ROS are produced mainly in electron transfer chains of mitochondria and chloroplasts. Ethylene accumulates in plants due to physical entrapment or by enhanced ethylene biosynthesis. A major crop that must endure high salt and heavy metal concentrations upon flooding in regions of Asia is rice. Ethylene and ROS have been identified as the major signals that mediate salinity, chromium, and flooding stress in rice. This mini review focuses on (i) what is known about ethylene and ROS level control during these abiotic stresses in rice, (ii) how the two signals mediate growth or death processes, and (iii) feedback mechanisms that in turn regulate ethylene and ROS signaling.
Collapse
Affiliation(s)
- Bianka Steffens
- *Correspondence: Bianka Steffens, Department of Plant Physiology, Faculty of Biology, Philipps University, Karl-von-Frisch-Strasse 8, 35043 Marburg, Germany e-mail:
| |
Collapse
|
559
|
Mustroph A, Hess N, Sasidharan R. Hypoxic Energy Metabolism and PPi as an Alternative Energy Currency. LOW-OXYGEN STRESS IN PLANTS 2014. [DOI: 10.1007/978-3-7091-1254-0_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
560
|
Oxidative Stress Components Explored in Anoxic and Hypoxic Global Gene Expression Data. LOW-OXYGEN STRESS IN PLANTS 2014. [DOI: 10.1007/978-3-7091-1254-0_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
561
|
Limami AM. Adaptations of Nitrogen Metabolism to Oxygen Deprivation in Plants. LOW-OXYGEN STRESS IN PLANTS 2014. [DOI: 10.1007/978-3-7091-1254-0_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
562
|
Dawood T, Rieu I, Wolters-Arts M, Derksen EB, Mariani C, Visser EJW. Rapid flooding-induced adventitious root development from preformed primordia in Solanum dulcamara. AOB PLANTS 2014; 6:plt058. [PMID: 24790121 PMCID: PMC3922303 DOI: 10.1093/aobpla/plt058] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/15/2013] [Indexed: 05/17/2023]
Abstract
Flooding is a common stress factor in both natural and agricultural systems, and affects plant growth by the slow diffusion rate of gases in water. This results in low oxygen concentrations in submerged tissues, and hence in a decreased respiration rate. Understanding the responses of plants to flooding is essential for the management of wetland ecosystems, and may benefit research to improve the flood tolerance of crop species. This study describes the response to partial submergence of bittersweet (Solanum dulcamara). Bittersweet is a Eurasian species that grows both in dry habitats such as coastal dunes, and in wetlands, and therefore is a suitable model plant for studying responses to a variety of environmental stresses. A further advantage is that the species is closely related to flood-intolerant crops such as tomato and eggplant. The species constitutively develops dormant primordia on the stem, which we show to have a predetermined root identity. We investigated adventitious root growth from these primordia during flooding. The synchronized growth of roots from the primordia was detected after 2-3 days of flooding and was due to a combination of cell division and cell elongation. Gene expression analysis demonstrated that the molecular response to flooding began within 2 h and included activation of hypoxia and ethylene signalling genes. Unexpectedly, these early changes in gene expression were very similar in primordia and adjacent stem tissue, suggesting that there is a dominant general response in tissues during early flooding.
Collapse
Affiliation(s)
- Thikra Dawood
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Ivo Rieu
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Mieke Wolters-Arts
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Emiel B. Derksen
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Celestina Mariani
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Eric J. W. Visser
- Department of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Corresponding author's e-mail address:
| |
Collapse
|
563
|
Colmer TD, Armstrong W, Greenway H, Ismail AM, Kirk GJD, Atwell BJ. Physiological Mechanisms of Flooding Tolerance in Rice: Transient Complete Submergence and Prolonged Standing Water. PROGRESS IN BOTANY 2014. [DOI: 10.1007/978-3-642-38797-5_9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
564
|
Vivian LM, Marshall DJ, Godfree RC. Response of an invasive native wetland plant to environmental flows: implications for managing regulated floodplain ecosystems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2014; 132:268-277. [PMID: 24325821 DOI: 10.1016/j.jenvman.2013.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 11/04/2013] [Accepted: 11/06/2013] [Indexed: 06/03/2023]
Abstract
The natural flow regimes of rivers underpin the health and function of floodplain ecosystems. However, infrastructure development and the over-extraction of water has led to the alteration of natural flow regimes, resulting in the degradation of river and floodplain habitats globally. In many catchments, including Australia's Murray-Darling Basin, environmental flows are seen as a potentially useful tool to restore natural flow regimes and manage the degradation of rivers and their associated floodplains. In this paper, we investigated whether environmental flows can assist in controlling an invasive native floodplain plant in Barmah Forest, south-eastern Australia. We experimentally quantified the effects of different environmental flow scenarios, including a shallow (20 cm) and deeper (50 cm) flood of different durations (12 and 20 weeks), as well as drought and soil-saturated conditions, on the growth and survival of seedlings of Juncus ingens, a native emergent macrophyte that has become invasive in some areas of Barmah Forest following river regulation and alteration of natural flow regimes. Three height classes of J. ingens (33 cm, 17 cm and 12 cm) were included in the experiment to explicitly test for relationships between treatments, plant survival and growth, and plant height. We found that seedling mortality occurred in the drought treatment and in the 20-week flood treatments of both depths; however, mortality rates in the flood treatments depended on initial plant height, with medium and short plants (initial heights of ≤17 cm) exhibiting the highest mortality rates. Both the 20 cm and 50 cm flood treatments of only 12 weeks duration were insufficient to cause mortality in any of the height classes; indeed, shoots of plants in the 20 cm flood treatment were able to elongate through the water surface at rapid rates. Our findings have important implications for management of Barmah Forest and floodplain ecosystems elsewhere, as it demonstrates the potential for using environmental flows to limit the spread of invasive plants by targeting a life-stage that is particularly sensitive to prolonged submergence. However, there may be narrow thresholds between the conditions that provide effective control of an invasive species, and those that instead facilitate growth and may promote further invasion.
Collapse
|
565
|
Juntawong P, Sirikhachornkit A, Pimjan R, Sonthirod C, Sangsrakru D, Yoocha T, Tangphatsornruang S, Srinives P. Elucidation of the molecular responses to waterlogging in Jatropha roots by transcriptome profiling. FRONTIERS IN PLANT SCIENCE 2014; 5:658. [PMID: 25520726 PMCID: PMC4251292 DOI: 10.3389/fpls.2014.00658] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 11/04/2014] [Indexed: 05/06/2023]
Abstract
Jatropha (Jatropha curcas) is a promising oil-seed crop for biodiesel production. However, the species is highly sensitive to waterlogging, which can result in stunted growth and yield loss. To date, the molecular mechanisms underlying the responses to waterlogging in Jatropha remain elusive. Here, the transcriptome adjustment of Jatropha roots to waterlogging was examined by high-throughput RNA-sequencing (RNA-seq). The results indicated that 24 h of waterlogging caused significant changes in mRNA abundance of 1968 genes. Comprehensive gene ontology and functional enrichment analysis of root transcriptome revealed that waterlogging promoted responses to hypoxia and anaerobic respiration. On the other hand, the stress inhibited carbohydrate synthesis, cell wall biogenesis, and growth. The results also highlighted the roles of ethylene, nitrate, and nitric oxide in waterlogging acclimation. In addition, transcriptome profiling identified 85 waterlogging-induced transcription factors including members of AP2/ERF, MYB, and WRKY families implying that reprogramming of gene expression is a vital mechanism for waterlogging acclimation. Comparative analysis of differentially regulated transcripts in response to waterlogging among Arabidopsis, gray poplar, Jatropha, and rice further revealed not only conserved but species-specific regulation. Our findings unraveled the molecular responses to waterlogging in Jatropha and provided new perspectives for developing a waterlogging tolerant cultivar in the future.
Collapse
Affiliation(s)
- Piyada Juntawong
- Special Research Unit in Microalgal Molecular Genetics and Functional Genomics, Department of Genetics, Faculty of Science, Kasetsart UniversityBangkok, Thailand
| | - Anchalee Sirikhachornkit
- Special Research Unit in Microalgal Molecular Genetics and Functional Genomics, Department of Genetics, Faculty of Science, Kasetsart UniversityBangkok, Thailand
| | - Rachaneeporn Pimjan
- Special Research Unit in Microalgal Molecular Genetics and Functional Genomics, Department of Genetics, Faculty of Science, Kasetsart UniversityBangkok, Thailand
| | - Chutima Sonthirod
- National Center for Genetic Engineering and BiotechnologyPathumthani, Thailand
| | - Duangjai Sangsrakru
- National Center for Genetic Engineering and BiotechnologyPathumthani, Thailand
| | - Thippawan Yoocha
- National Center for Genetic Engineering and BiotechnologyPathumthani, Thailand
| | | | - Peerasak Srinives
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart UniversityNakhon Pathom, Thailand
- *Correspondence: Peerasak Srinives, Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand e-mail:
| |
Collapse
|
566
|
Akman M, Bhikharie A, Mustroph A, Sasidharan R. Extreme flooding tolerance in Rorippa. PLANT SIGNALING & BEHAVIOR 2014; 9:e27847. [PMID: 24525961 PMCID: PMC4091424 DOI: 10.4161/psb.27847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Low oxygen stress imposed by floods creates a strong selection force shaping plant ecosystems in flood-prone areas. Plants inhabiting these environments adopt various adaptations and survival strategies to cope with increasing water depths. Two Rorippa species, R. sylvestris and R. amphibia that grow in naturally flooded areas, have high submergence tolerance achieved by the so-called quiescence and escape strategies, respectively. In order to dissect the molecular mechanisms involved in these strategies, we investigated submergence-induced changes in gene expression in flooded roots of Rorippa species. There was a higher induction of glycolysis and fermentation genes and faster carbohydrate reduction in R. amphibia, indicating a higher demand for energy potentially leading to faster mortality by starvation. Moreover, R. sylvestris showed induction of genes improving submergence tolerance, potentially enhancing survival in prolonged floods. Additionally, we compared transcript profiles of these 2 tolerant species to relatively intolerant Arabidopsis and found that only Rorippa species induced various inorganic pyrophosphate dependent genes, alternatives to ATP demanding pathways, thereby conserving energy, and potentially explaining the difference in flooding survival between Rorippa and Arabidopsis.
Collapse
Affiliation(s)
- Melis Akman
- Department of Plant Sciences; University of California; Davis, CA USA
| | - Amit Bhikharie
- Experimental Plant Systematics; Institute for Biodiversity and Ecosystem Dynamics; University of Amsterdam; Amsterdam, The Netherlands
| | | | - Rashmi Sasidharan
- Plant Ecophysiology; Institute for Environmental Biology; Utrecht University; Utrecht, The Netherlands
| |
Collapse
|
567
|
|
568
|
Chen Y, Zhou Y, Yin TF, Liu CX, Luo FL. The invasive wetland plant Alternanthera philoxeroides shows a higher tolerance to waterlogging than its native Congener Alternanthera sessilis. PLoS One 2013; 8:e81456. [PMID: 24303048 PMCID: PMC3841148 DOI: 10.1371/journal.pone.0081456] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/21/2013] [Indexed: 11/18/2022] Open
Abstract
Plant invasion is one of the major threats to natural ecosystems. Phenotypic plasticity is considered to be important for promoting plant invasiveness. High tolerance of stress can also increase survival of invasive plants in adverse habitats. Limited growth and conservation of carbohydrate are considered to increase tolerance of flooding in plants. However, few studies have examined whether invasive species shows a higher phenotypic plasticity in response to waterlogging or a higher tolerance of waterlogging (lower plasticity) than native species. We conducted a greenhouse experiment to compare the growth and morphological and physiological responses to waterlogging of the invasive, clonal, wetland species Alternanthera philoxeroides with those of its co-occurring, native, congeneric, clonal species Alternanthera sessilis. Plants of A. philoxeroides and A. sessilis were subjected to three treatments (control, 0 and 60 cm waterlogging). Both A. philoxeroides and A. sessilis survived all treatments. Overall growth was lower in A. philoxeroides than in A. sessilis, but waterlogging negatively affected the growth of A. philoxeroides less strongly than that of A. sessilis. Alternanthera philoxeroides thus showed less sensitivity of growth traits (lower plasticity) and higher waterlogging tolerance. Moreover, the photosynthetic capacity of A. philoxeroides was higher than that of A. sessilis during waterlogging. Alternanthera philoxeroides also had higher total non-structural and non-soluble carbohydrate concentrations than A. sessilis at the end of treatments. Our results suggest that higher tolerance to waterlogging and higher photosynthetic capacity may partly explain the invasion success of A. philoxeroides in wetlands.
Collapse
Affiliation(s)
- Yue Chen
- School of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Ya Zhou
- School of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Tan-Feng Yin
- School of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Chun-Xiang Liu
- School of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Fang-Li Luo
- School of Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
569
|
Yin D, Ni D, Song L, Zhang Z. Isolation of an alcohol dehydrogenase cDNA from and characterization of its expression in chrysanthemum under waterlogging. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 212:48-54. [PMID: 24094053 DOI: 10.1016/j.plantsci.2013.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 05/21/2013] [Accepted: 05/31/2013] [Indexed: 06/02/2023]
Abstract
A PCR strategy was used to isolate a full-length CgADH (alcohol dehydrogenase) cDNA from chrysanthemum. The gene putatively encodes a 378 residue polypeptides, which shares 95% homology with tomato alcohol dehydrogenase class III. Endogenous ethylene generated in waterlogged Chrysanthemum zawadskii was enhanced by exogenous ethylene but decreased by 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action. In waterlogged roots, the transcription of the gene encoding alcohol dehydrogenase (ADH, EC 1.1.1.1) increased rapidly but transiently, peaking at 7.5 fold the non-waterlogged level after 2h of stress. Waterlogging elevated ADH activity after a prolonged episode of stress. The exogenous supply of 40μLL(-1) ethylene suppressed the production of ethanol, while that of 4μLL(-1) 1-MCP enhanced it. Ethylene appeared to suppress an acceleration of both CgADH expression and fermentation, and alleviates ethanolic fermentation probably through by as a signal to acceleration of waterlogging-induced aerenchyma formation. This supports the previously observed phenomenon that the expression level of ADH gene is regulated by the local level of physiologically active ethylene. The relevance of the CgADH gene in relation to chrysanthemum waterlogging was discussed as well.
Collapse
Affiliation(s)
- Dongmei Yin
- School of Ecological Technology and Enginneering, Shanghai Institute of Technology, Shanghai 201418, China
| | | | | | | |
Collapse
|
570
|
Hemschemeier A. Photo-bleaching of Chlamydomonas reinhardtii after dark-anoxic incubation. PLANT SIGNALING & BEHAVIOR 2013; 8:e27263. [PMID: 24300667 PMCID: PMC4092315 DOI: 10.4161/psb.27263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/19/2013] [Accepted: 11/19/2013] [Indexed: 05/21/2023]
Abstract
In aerobes, anoxia impairs mitochondrial energy generation as well as biosynthesis and degradation of essential cell components. In a recent analysis we have shown that the unicellular green alga Chlamydomonas reinhardtii responds to anaerobiosis in the dark by significant changes of the transcriptome, which, in summary, were directed at saving and economizing energy. Several of the transcriptional changes were related to photosynthesis and were accompanied by reduced amounts of chlorophylls and plastid lipids as well as lowered photosystem 2 quantum yields. A further noticeable pattern was a transcriptional upregulation of various genes encoding O 2 dependent enzymes of central biosynthetic pathways. However, cells do not divide in dark-anoxia, indicating that C. reinhardtii cannot compensate for the lack of O 2 and light. Upon return to aeration and light, cultures show severe photo-bleaching, which might be a stress reaction, but also part of an acclimation process or its disturbance.
Collapse
|
571
|
Komatsu S, Han C, Nanjo Y, Altaf-Un-Nahar M, Wang K, He D, Yang P. Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding. J Proteome Res 2013; 12:4769-84. [PMID: 23808807 DOI: 10.1021/pr4001898] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Flooding is a serious problem for soybean cultivation because it markedly reduces growth. To investigate the role of phytohormones in soybean under flooding stress, gel-free proteomic technique was used. When 2-day-old soybeans were flooded, the content of abscisic acid (ABA) did not decrease in the root, though its content decreased in untreated plant. When ABA was added during flooding treatment, survival ratio was improved compared with that of soybeans flooded without ABA. When 2-day-old soybeans were flooded with ABA, the abundance of proteins related to cell organization, vesicle transport and glycolysis decreased compared with those in root of soybeans flooded without ABA. Furthermore, the nuclear proteins were analyzed to identify the transcriptional regulation. The abundance of 34 nuclear proteins such as histone deacetylase and U2 small nuclear ribonucleoprotein increased by ABA supplementation under flooding; however, 35 nuclear proteins such as importin alpha, chromatin remodeling factor, zinc finger protein, transducin, and cell division 5 protein decreased. Of them, the mRNA expression levels of cell division cycle 5 protein, C2H2 zinc finger protein SERRATE, CCCH type zinc finger family protein, and transducin were significantly down-regulated under the ABA treatment. These results suggest that ABA might be involved in the enhancement of flooding tolerance of soybean through the control of energy conservation via glycolytic system and the regulation on zinc finger proteins, cell division cycle 5 protein and transducin.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| | | | | | | | | | | | | |
Collapse
|
572
|
Nanjo Y, Nakamura T, Komatsu S. Identification of indicator proteins associated with flooding injury in soybean seedlings using label-free quantitative proteomics. J Proteome Res 2013; 12:4785-98. [PMID: 23659366 DOI: 10.1021/pr4002349] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Flooding injury is one of the abiotic constraints on soybean growth. An experimental system established for evaluating flooding injury in soybean seedlings indicated that the degree of injury is dependent on seedling density in floodwater. Dissolved oxygen levels in the floodwater were decreased by the seedlings and correlated with the degree of injury. To understand the molecular mechanism responsible for the injury, proteomic alterations in soybean seedlings that correlated with severity of stress were analyzed using label-free quantitative proteomics. The analysis showed that the abundance of proteins involved in cell wall modification, such as polygalacturonase inhibitor-like and expansin-like B1-like proteins, which may be associated with the defense system, increased dependence on stress at both the protein and mRNA levels in all organs during flooding. The manner of alteration in abundance of these proteins was distinct from those of other responsive proteins. Furthermore, proteins also showing specific changes in abundance in the root tip included protein phosphatase 2A subunit-like proteins, which are possibly involved in flooding-induced root tip cell death. Additionally, decreases in abundance of cell wall synthesis-related proteins, such as cinnamyl-alcohol dehydrogenase and cellulose synthase-interactive protein-like proteins, were identified in hypocotyls of seedlings grown for 3 days after flooding, and these proteins may be associated with suppression of growth after flooding. These flooding injury-associated proteins can be defined as indicator proteins for severity of flooding stress in soybean.
Collapse
Affiliation(s)
- Yohei Nanjo
- NARO Institute of Crop Science , Tsukuba 305-8518, Japan
| | | | | |
Collapse
|
573
|
Pompeiano A, Fanucchi F, Guglielminetti L. Amylolytic activity and carbohydrate levels in relation to coleoptile anoxic elongation in Oryza sativa genotypes. JOURNAL OF PLANT RESEARCH 2013; 126:787-94. [PMID: 23748354 DOI: 10.1007/s10265-013-0567-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 04/15/2013] [Indexed: 05/08/2023]
Abstract
Among starchy seeds, rice has the unique capacity to germinate successfully under complete anaerobiosis. In this conditions, starch degradation is supported by a complete set of starch-degrading enzymes that are absent or inactive in cereals except rice. A characterization of carbohydrate metabolism and starch-degrading enzyme activity across twenty-nine genotypes of Oryza sativa L. is presented here. The zymogram of amylolytic activities present in rice embryos and endosperms under anaerobic conditions seven days after sowing (DAS) revealed marked differences among cultivars. Coleoptile elongation was positively correlated with total amylolytic activities and α-amylase activity in embryos, and negatively correlated with α-amylase activity in endosperm. Moreover, carbohydrate content in embryos was found to be positively correlated with total amylolytic activities under anaerobic conditions, while a negative relationship was recorded in the endosperm. Carbohydrate status in rice seedlings has a primary importance in sustaining coleoptile elongation towards the surface. The relationship between carbohydrate level in embryo and anoxic germination, as well as with total amylolytic activities present in rice embryo under anaerobic condition 7 DAS, is consistent with the role of sugar metabolism to support rice germination under oxygen-deprived environment.
Collapse
Affiliation(s)
- Antonio Pompeiano
- Department of Agriculture, Food and Environment, University of Pisa, Via Mariscoglio 34, 56124, Pisa, PI, Italy
| | | | | |
Collapse
|
574
|
Hossain Z, Khatoon A, Komatsu S. Soybean proteomics for unraveling abiotic stress response mechanism. J Proteome Res 2013; 12:4670-84. [PMID: 24016329 DOI: 10.1021/pr400604b] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Plant response to abiotic stresses depends upon the fast activation of molecular cascades involving stress perception, signal transduction, changes in gene and protein expression and post-translational modification of stress-induced proteins. Legumes are extremely sensitive to flooding, drought, salinity and heavy metal stresses, and soybean is not an exception of that. Invention of immobilized pH gradient strips followed by advancement in mass spectrometry has made proteomics a fast, sensitive and reliable technique for separation, identification and characterization of stress-induced proteins. As the functional translated portion of the genome plays an essential role in plant stress response, proteomic studies provide us a finer picture of protein networks and metabolic pathways primarily involved in stress tolerance mechanism. Identifying master regulator proteins that play key roles in the abiotic stress response pathway is fundamental in providing opportunities for developing genetically engineered stress-tolerant crop plants. This review highlights recent contributions in the field of soybean biology to comprehend the complex mechanism of abiotic stress acclimation. Furthermore, strengths and weaknesses of different proteomic methodologies of extracting complete proteome and challenges and future prospects of soybean proteome study both at organ and whole plant levels are discussed in detail to get new insights into the plant abiotic stress response mechanism.
Collapse
Affiliation(s)
- Zahed Hossain
- Plant Stress Biology Lab, Department of Botany, West Bengal State University , Kolkata 700126, West Bengal, India
| | | | | |
Collapse
|
575
|
Rossmann M, Matos AT, Abreu EC, Silva FF, Borges AC. Effect of influent aeration on removal of organic matter from coffee processing wastewater in constructed wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 128:912-919. [PMID: 23892132 DOI: 10.1016/j.jenvman.2013.06.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 06/21/2013] [Accepted: 06/28/2013] [Indexed: 06/02/2023]
Abstract
The aim of the present study was to evaluate the influence of aeration and vegetation on the removal of organic matter in coffee processing wastewater (CPW) treated in 4 constructed wetlands (CWs), characterized as follows: (i) ryegrass (Lolium multiflorum) cultivated system operating with an aerated influent; (ii) non-cultivated system operating with an aerated influent, (iii) ryegrass cultivated system operating with a non-aerated influent; and (iv) non-cultivated system operating with a non-aerated influent. The lowest average chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of 87, 84 and 73%, respectively, were obtained in the ryegrass cultivated system operating with a non-aerated influent. However, ryegrass cultivation did not influence the removal efficiency of organic matter. Artificial aeration of the CPW, prior to its injection in the CW, did not improve the removal efficiencies of organic matter. On other hand it did contribute to increase the instantaneous rate at which the maximum COD removal efficiency was reached. Although aeration did not result in greater organic matter removal efficiencies, it is important to consider the benefits of aeration on the removal of the other compounds.
Collapse
Affiliation(s)
- Maike Rossmann
- Universidade Federal de Viçosa, Departamento de Engenharia Agrícola, Av. Peter Henry Rolfs, s/n, Campus Universitário, CEP 36570-000 Viçosa, Minas Gerais, Brazil.
| | | | | | | | | |
Collapse
|
576
|
Tan S, Huang H, Zhu M, Zhang K, Xu H, Wang Z, Wu X, Zhang Q. The negative effects of cadmium on Bermuda grass growth might be offset by submergence. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:7433-7440. [PMID: 23657718 DOI: 10.1007/s11356-013-1765-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 04/23/2013] [Indexed: 06/02/2023]
Abstract
Revegetation in the water-level-fluctuation zone (WLFZ) could stabilize riverbanks, maintain local biodiversity, and improve reservoir water quality in the Three Gorges Reservoir Region (TGRR). However, submergence and cadmium (Cd) may seriously affect the survival of transplantations. Bermuda grass (Cynodon dactylon) is a stoloniferous and rhizomatous prostrate weed displaying high growth rate. A previous study has demonstrated that Bermuda grass can tolerate deep submergence and Cd stress, respectively. In the present study, we further analyzed physiological responses of Bermuda grass induced by Cd-and-submergence stress. The ultimate goal was to explore the possibility of using Bermuda grass for revegetation in the WLFZ of China's TGRR and other riparian areas. The Cd-and-submergence-treated plants had higher malondialdehyde contents and peroxidase than control, and both increased with the Cd concentration increase. All treated plants catalase activity increased with the experimental duration increases, and their superoxide dismutase also gradually increased with the Cd concentration from 1 day to 15 days. Total biomass of the same Cd-and-submergence plants increased along the experimental duration as well. Plants exposed to Cd-and-submergence stress showed shoot elongation. The heights of all treated plants were taller than those of the control. Leaf chlorophyll contents, maximum leaf length, and soluble sugars contents of all the Cd-and-submergence-treated plants were more than those of the untreated control. Although Cd inhibits plants growth, decreases chlorophyll and biomass content, and with the submergence induced the leaf and shoot elongation, more part of the Cd-and-submergence stress plants appeared in the air, exhibited fast growth with maintenance of leaf color, which guaranteed the plants' photosynthesis, and ensured the total biomass and carbohydrate sustainability, further promoting Cd-and-submergence tolerance. The results imply that the negative effects of cadmium on Bermuda grass growth might be offset by submergence.
Collapse
Affiliation(s)
- Shuduan Tan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
577
|
Voesenek LACJ, Bailey-Serres J. Flooding tolerance: O2 sensing and survival strategies. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:647-653. [PMID: 23830867 DOI: 10.1016/j.pbi.2013.06.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 05/28/2023]
Abstract
The investigation of flooding survival strategies in model, crop and wild plant species has yielded insights into molecular, physiological and developmental mechanisms of soil flooding (waterlogging) and submergence survival. The antithetical flooding escape and quiescence strategies of deepwater and submergence tolerant rice (Oryza sativa), respectively, are regulated by members of a clade of ethylene responsive factor transcriptional activators. This knowledge paved the way for the discovery that these proteins are targets of a highly conserved O2-sensing protein turnover mechanism in Arabidopsis thaliana. Further examples of genes that regulate transcription, root and shoot metabolism or development during floods have emerged. With the rapid advancement of genomic technologies, the mining of natural genetic variation in flooding tolerant wild species may ultimately benefit crop production.
Collapse
Affiliation(s)
- L A C J Voesenek
- Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
578
|
Hemschemeier A, Casero D, Liu B, Benning C, Pellegrini M, Happe T, Merchant SS. Copper response regulator1-dependent and -independent responses of the Chlamydomonas reinhardtii transcriptome to dark anoxia. THE PLANT CELL 2013; 25:3186-211. [PMID: 24014546 PMCID: PMC3809527 DOI: 10.1105/tpc.113.115741] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Anaerobiosis is a stress condition for aerobic organisms and requires extensive acclimation responses. We used RNA-Seq for a whole-genome view of the acclimation of Chlamydomonas reinhardtii to anoxic conditions imposed simultaneously with transfer to the dark. Nearly 1.4 × 10(3) genes were affected by hypoxia. Comparing transcript profiles from early (hypoxic) with those from late (anoxic) time points indicated that cells activate oxidative energy generation pathways before employing fermentation. Probable substrates include amino acids and fatty acids (FAs). Lipid profiling of the C. reinhardtii cells revealed that they degraded FAs but also accumulated triacylglycerols (TAGs). In contrast with N-deprived cells, the TAGs in hypoxic cells were enriched in desaturated FAs, suggesting a distinct pathway for TAG accumulation. To distinguish transcriptional responses dependent on copper response regulator1 (CRR1), which is also involved in hypoxic gene regulation, we compared the transcriptomes of crr1 mutants and complemented strains. In crr1 mutants, ~40 genes were aberrantly regulated, reaffirming the importance of CRR1 for the hypoxic response, but indicating also the contribution of additional signaling strategies to account for the remaining differentially regulated transcripts. Based on transcript patterns and previous results, we conclude that nitric oxide-dependent signaling cascades operate in anoxic C. reinhardtii cells.
Collapse
Affiliation(s)
- Anja Hemschemeier
- Ruhr Universität Bochum, Fakultät für Biologie und Biotechnologie, Arbeitsgruppe Photobiotechnologie, 44801 Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
579
|
Verboven P, Herremans E, Borisjuk L, Helfen L, Ho QT, Tschiersch H, Fuchs J, Nicolaï BM, Rolletschek H. Void space inside the developing seed of Brassica napus and the modelling of its function. THE NEW PHYTOLOGIST 2013; 199:936-947. [PMID: 23692271 PMCID: PMC3784975 DOI: 10.1111/nph.12342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/23/2013] [Indexed: 05/04/2023]
Abstract
The developing seed essentially relies on external oxygen to fuel aerobic respiration, but it is currently unknown how oxygen diffuses into and within the seed, which structural pathways are used and what finally limits gas exchange. By applying synchrotron X-ray computed tomography to developing oilseed rape seeds we uncovered void spaces, and analysed their three-dimensional assembly. Both the testa and the hypocotyl are well endowed with void space, but in the cotyledons, spaces were small and poorly inter-connected. In silico modelling revealed a three orders of magnitude range in oxygen diffusivity from tissue to tissue, and identified major barriers to gas exchange. The oxygen pool stored in the voids is consumed about once per minute. The function of the void space was related to the tissue-specific distribution of storage oils, storage protein and starch, as well as oxygen, water, sugars, amino acids and the level of respiratory activity, analysed using a combination of magnetic resonance imaging, specific oxygen sensors, laser micro-dissection, biochemical and histological methods. We conclude that the size and inter-connectivity of void spaces are major determinants of gas exchange potential, and locally affect the respiratory activity of a developing seed.
Collapse
Affiliation(s)
- Pieter Verboven
- BIOSYST- MeBioS, Faculty of Bioscience Engineering, University of LeuvenW. de Croylaan 42, 3001, Leuven, Belgium
| | - Els Herremans
- BIOSYST- MeBioS, Faculty of Bioscience Engineering, University of LeuvenW. de Croylaan 42, 3001, Leuven, Belgium
| | - Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Lukas Helfen
- IPS/ANKA, Karlsruhe Institute of TechnologyPO Box 3640, 76021, Karlsruhe, Germany
- ESRF6 rue Jules Horowitz, BP220, 38043, Grenoble Cedex, France
| | - Quang Tri Ho
- BIOSYST- MeBioS, Faculty of Bioscience Engineering, University of LeuvenW. de Croylaan 42, 3001, Leuven, Belgium
| | - Henning Tschiersch
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Johannes Fuchs
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Bart M Nicolaï
- BIOSYST- MeBioS, Faculty of Bioscience Engineering, University of LeuvenW. de Croylaan 42, 3001, Leuven, Belgium
| | - Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstrasse 3, 06466, Gatersleben, Germany
| |
Collapse
|
580
|
Chaturvedi P, Taguchi M, Burrs SL, Hauser BA, Salim WWAW, Claussen JC, McLamore ES. Emerging technologies for non-invasive quantification of physiological oxygen transport in plants. PLANTA 2013; 238:599-614. [PMID: 23846103 DOI: 10.1007/s00425-013-1926-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/26/2013] [Indexed: 06/02/2023]
Abstract
Oxygen plays a critical role in plant metabolism, stress response/signaling, and adaptation to environmental changes (Lambers and Colmer, Plant Soil 274:7-15, 2005; Pitzschke et al., Antioxid Redox Signal 8:1757-1764, 2006; Van Breusegem et al., Plant Sci 161:405-414, 2001). Reactive oxygen species (ROS), by-products of various metabolic pathways in which oxygen is a key molecule, are produced during adaptation responses to environmental stress. While much is known about plant adaptation to stress (e.g., detoxifying enzymes, antioxidant production), the link between ROS metabolism, O2 transport, and stress response mechanisms is unknown. Thus, non-invasive technologies for measuring O2 are critical for understanding the link between physiological O2 transport and ROS signaling. New non-invasive technologies allow real-time measurement of O2 at the single cell and even organelle levels. This review briefly summarizes currently available (i.e., mainstream) technologies for measuring O2 and then introduces emerging technologies for measuring O2. Advanced techniques that provide the ability to non-invasively (i.e., non-destructively) measure O2 are highlighted. In the near future, these non-invasive sensors will facilitate novel experimentation that will allow plant physiologists to ask new hypothesis-driven research questions aimed at improving our understanding of physiological O2 transport.
Collapse
Affiliation(s)
- P Chaturvedi
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, USA
| | | | | | | | | | | | | |
Collapse
|
581
|
Cheng W, Zhang L, Jiao C, Su M, Yang T, Zhou L, Peng R, Wang R, Wang C. Hydrogen sulfide alleviates hypoxia-induced root tip death in Pisum sativum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:278-86. [PMID: 23800663 DOI: 10.1016/j.plaphy.2013.05.042] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/24/2013] [Indexed: 05/07/2023]
Abstract
Flooding of soils often results in hypoxic conditions surrounding plant roots, which is a harmful abiotic stress to crops. Hydrogen sulfide (H2S) is a highly diffusible, gaseous molecule that modulates cell signaling and is involved in hypoxia signaling in animal cells. However, there have been no previous studies of H2S in plant cells in response to hypoxia. The effects of H2S on hypoxia-induced root tip death were studied in pea (Pisum sativum) via analysis of endogenous H2S and reactive oxygen species (ROS) levels. The activities of key enzymes involved in antioxidative and H2S metabolic pathways were determined using spectrophotometric assays. Ethylene was measured by gas chromatography. We found that exogenous H2S pretreatment dramatically alleviated hypoxia-induced root tip death by protecting root tip cell membranes from ROS damage induced by hypoxia and by stimulating a quiescence strategy through inhibiting ethylene production. Conversely, root tip death induced by hypoxia was strongly enhanced by inhibition of the key enzymes responsible for endogenous H2S biosynthesis. Our results demonstrated that exogenous H2S pretreatment significantly alleviates hypoxia-induced root tip death in pea seedlings and, therefore, enhances the tolerance of the plant to hypoxic stress.
Collapse
Affiliation(s)
- Wei Cheng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
582
|
Zeng F, Shabala L, Zhou M, Zhang G, Shabala S. Barley responses to combined waterlogging and salinity stress: separating effects of oxygen deprivation and elemental toxicity. FRONTIERS IN PLANT SCIENCE 2013; 4:313. [PMID: 23967003 PMCID: PMC3743405 DOI: 10.3389/fpls.2013.00313] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 07/25/2013] [Indexed: 05/19/2023]
Abstract
Salinity and waterlogging are two major factors affecting crop production around the world and often occur together (e.g., salt brought to the surface by rising water tables). While the physiological and molecular mechanisms of plant responses to each of these environmental constraints are studied in detail, the mechanisms underlying plant tolerance to their combined stress are much less understood. In this study, whole-plant physiological responses to individual/combined salinity and waterlogging stresses were studied using two barley varieties grown in either vermiculite (semi-hydroponics) or sandy loam. Two weeks of combined salinity and waterlogging treatment significantly decreased plant biomass, chlorophyll content, maximal quantum efficiency of PSII and water content (WC) in both varieties, while the percentage of chlorotic and necrotic leaves and leaf sap osmolality increased. The adverse effects of the combined stresses were much stronger in the waterlogging-sensitive variety Naso Nijo. Compared with salinity stress alone, the combined stress resulted in a 2-fold increase in leaf Na(+), but a 40% decrease in leaf K(+) content. Importantly, the effects of the combined stress were more pronounced in sandy loam compared with vermiculite and correlated with changes in the soil redox potential and accumulation of Mn and Fe in the waterlogged soils. It is concluded that hypoxia alone is not a major factor determining differential plant growth under adverse stress conditions, and that elemental toxicities resulting from changes in soil redox potential have a major impact on genotypic differences in plant physiological and agronomical responses. These results are further discussed in the context of plant breeding for waterlogging stress tolerance.
Collapse
Affiliation(s)
- Fanrong Zeng
- School of Agricultural Science and Tasmanian Institute of Agriculture, University of TasmaniaHobart, TAS, Australia
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Lana Shabala
- School of Agricultural Science and Tasmanian Institute of Agriculture, University of TasmaniaHobart, TAS, Australia
| | - Meixue Zhou
- School of Agricultural Science and Tasmanian Institute of Agriculture, University of TasmaniaHobart, TAS, Australia
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhou, China
| | - Sergey Shabala
- School of Agricultural Science and Tasmanian Institute of Agriculture, University of TasmaniaHobart, TAS, Australia
| |
Collapse
|
583
|
Miro B, Ismail AM. Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2013; 4:269. [PMID: 23888162 PMCID: PMC3719019 DOI: 10.3389/fpls.2013.00269] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/02/2013] [Indexed: 05/20/2023]
Abstract
Rice is semi-aquatic, adapted to a wide range of hydrologies, from aerobic soils in uplands to anaerobic and flooded fields in waterlogged lowlands, to even deeply submerged soils in flood-prone areas. Considerable diversity is present in native rice landraces selected by farmers over centuries. Our understanding of the adaptive features of these landraces to native ecosystems has improved considerably over the recent past. In some cases, major genes associated with tolerance have been cloned, such as SUB1A that confers tolerance of complete submergence and SNORKEL genes that control plant elongation to escape deepwater. Modern rice varieties are sensitive to flooding during germination and early growth, a problem commonly encountered in rainfed areas, but few landraces capable of germination under these conditions have recently been identified, enabling research into tolerance mechanisms. Major QTLs were also identified, and are being targeted for molecular breeding and for cloning. Nevertheless, limited progress has been made in identifying regulatory processes for traits that are unique to tolerant genotypes, including faster germination and coleoptile elongation, formation of roots and leaves under hypoxia, ability to catabolize starch into simple sugars for subsequent use in glycolysis and fermentative pathways to generate energy. Here we discuss the state of knowledge on the role of the PDC-ALDH-ACS bypass and the ALDH enzyme as the likely candidates effective in tolerant rice genotypes. Potential involvement of factors such as cytoplasmic pH regulation, phytohormones, reactive oxygen species scavenging and other metabolites is also discussed. Further characterization of contrasting genotypes would help in elucidating the genetic and biochemical regulatory and signaling mechanisms associated with tolerance. This could facilitate breeding rice varieties suitable for direct seeding systems and guide efforts for improving waterlogging tolerance in other crops.
Collapse
Affiliation(s)
| | - Abdelbagi M. Ismail
- Crop and Environmental Sciences Division, International Rice Research InstituteManila, Philippines
| |
Collapse
|
584
|
Schlüter U, Colmsee C, Scholz U, Bräutigam A, Weber APM, Zellerhoff N, Bucher M, Fahnenstich H, Sonnewald U. Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance. BMC Genomics 2013; 14:442. [PMID: 23822863 PMCID: PMC3716532 DOI: 10.1186/1471-2164-14-442] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/21/2013] [Indexed: 12/01/2022] Open
Abstract
Background Abiotic stress causes disturbances in the cellular homeostasis. Re-adjustment of balance in carbon, nitrogen and phosphorus metabolism therefore plays a central role in stress adaptation. However, it is currently unknown which parts of the primary cell metabolism follow common patterns under different stress conditions and which represent specific responses. Results To address these questions, changes in transcriptome, metabolome and ionome were analyzed in maize source leaves from plants suffering low temperature, low nitrogen (N) and low phosphorus (P) stress. The selection of maize as study object provided data directly from an important crop species and the so far underexplored C4 metabolism. Growth retardation was comparable under all tested stress conditions. The only primary metabolic pathway responding similar to all stresses was nitrate assimilation, which was down-regulated. The largest group of commonly regulated transcripts followed the expression pattern: down under low temperature and low N, but up under low P. Several members of this transcript cluster could be connected to P metabolism and correlated negatively to different phosphate concentration in the leaf tissue. Accumulation of starch under low temperature and low N stress, but decrease in starch levels under low P conditions indicated that only low P treated leaves suffered carbon starvation. Conclusions Maize employs very different strategies to manage N and P metabolism under stress. While nitrate assimilation was regulated depending on demand by growth processes, phosphate concentrations changed depending on availability, thus building up reserves under excess conditions. Carbon and energy metabolism of the C4 maize leaves were particularly sensitive to P starvation.
Collapse
Affiliation(s)
- Urte Schlüter
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstr, 5, 91058, Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
585
|
Luhua S, Hegie A, Suzuki N, Shulaev E, Luo X, Cenariu D, Ma V, Kao S, Lim J, Gunay MB, Oosumi T, Lee SC, Harper J, Cushman J, Gollery M, Girke T, Bailey-Serres J, Stevenson RA, Zhu JK, Mittler R. Linking genes of unknown function with abiotic stress responses by high-throughput phenotype screening. PHYSIOLOGIA PLANTARUM 2013; 148:322-33. [PMID: 23517122 DOI: 10.1111/ppl.12013] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 11/08/2012] [Accepted: 11/12/2012] [Indexed: 05/18/2023]
Abstract
Over 13% of all genes in the Arabidopsis thaliana genome encode for proteins classified as having a completely unknown function, with the function of >30% of the Arabidopsis proteome poorly characterized. Although empirical data in the form of mRNA and proteome profiling experiments suggest that many of these proteins play an important role in different biological processes, their functional characterization remains one of the major challenges in modern biology. To expand the annotation of genes with unknown function involved in the response of Arabidopsis to different environmental stress conditions, we selected 1007 such genes and tested the response of their corresponding homozygous T-DNA insertional mutants to salinity, oxidative, osmotic, heat, cold and hypoxia stresses. Depending on the specific abiotic stresses tested, 12-31% of mutants had an altered stress-response phenotype. Interestingly, 832 out of 1007 mutants showed tolerance or sensitivity to more than one abiotic stress treatment, suggesting that genes of unknown function could play an important role in abiotic stress-response signaling, or general acclimation mechanisms. Further analysis of multiple stress-response phenotypes within different populations of mutants revealed interesting links between acclimation to heat, cold and oxidative stresses, as well as between sensitivity to ABA, osmotic, salinity, oxidative and hypoxia stresses. Our findings provide a significant contribution to the biological characterization of genes with unknown function in Arabidopsis and demonstrate that many of these genes play a key role in the response of plants to abiotic stresses.
Collapse
MESH Headings
- Abscisic Acid/pharmacology
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Arabidopsis/genetics
- Arabidopsis/physiology
- DNA, Bacterial/genetics
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant/genetics
- High-Throughput Screening Assays
- Mutagenesis, Insertional/drug effects
- Mutagenesis, Insertional/genetics
- Mutation/genetics
- Phenotype
- Plant Roots/drug effects
- Plant Roots/genetics
- Plant Roots/growth & development
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reactive Oxygen Species/metabolism
- Seedlings/drug effects
- Seedlings/genetics
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
Collapse
Affiliation(s)
- Song Luhua
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, 1155 Union Circle, #305220, Denton, TX 76203-5017, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
586
|
Pucciariello C, Perata P. Quiescence in rice submergence tolerance: an evolutionary hypothesis. TRENDS IN PLANT SCIENCE 2013; 18:377-81. [PMID: 23706591 DOI: 10.1016/j.tplants.2013.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 04/22/2013] [Indexed: 05/22/2023]
Abstract
Rice (Oryza sativa) varieties differ considerably in their tolerance to submergence, a trait that has been associated with the SUB1A gene. Recently, this gene was found in some wild rice species and landraces, which along with O. sativa, belong to the AA genome type group. On the basis of geographical and historical data, we hypothesize that SUB1A-1 from wild species may have been introgressed into domesticated rice. This introgression probably occurred in the Ganges Basin, with the subsequent spread of the SUB1A-1 to other areas of South Asia due to human migration. The lack of the SUB1A gene in diploid CC genome type wild rice showing submergence-tolerant traits suggests the presence of a different survival mechanism in this genetic group.
Collapse
Affiliation(s)
- Chiara Pucciariello
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | | |
Collapse
|
587
|
Cheng L, Li S, Yin J, Li L, Chen X. Genome-Wide Analysis of Differentially Expressed Genes Relevant to Rhizome Formation in Lotus Root (Nelumbo nucifera Gaertn). PLoS One 2013; 8:e67116. [PMID: 23840598 PMCID: PMC3694149 DOI: 10.1371/journal.pone.0067116] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/14/2013] [Indexed: 01/03/2023] Open
Abstract
Lotus root is a popular wetland vegetable which produces edible rhizome. At the molecular level, the regulation of rhizome formation is very complex, which has not been sufficiently addressed in research. In this study, to identify differentially expressed genes (DEGs) in lotus root, four libraries (L1 library: stolon stage, L2 library: initial swelling stage, L3 library: middle swelling stage, L4: later swelling stage) were constructed from the rhizome development stages. High-throughput tag-sequencing technique was used which is based on Solexa Genome Analyzer Platform. Approximately 5.0 million tags were sequenced, and 4542104, 4474755, 4777919, and 4750348 clean tags including 151282, 137476, 215872, and 166005 distinct tags were obtained after removal of low quality tags from each library respectively. More than 43% distinct tags were unambiguous tags mapping to the reference genes, and 40% were unambiguous tag-mapped genes. From L1, L2, L3, and L4, total 20471, 18785, 23448, and 21778 genes were annotated, after mapping their functions in existing databases. Profiling of gene expression in L1/L2, L2/L3, and L3/L4 libraries were different among most of the selected 20 DEGs. Most of the DEGs in L1/L2 libraries were relevant to fiber development and stress response, while in L2/L3 and L3/L4 libraries, major of the DEGs were involved in metabolism of energy and storage. All up-regulated transcriptional factors in four libraries and 14 important rhizome formation-related genes in four libraries were also identified. In addition, the expression of 9 genes from identified DEGs was performed by qRT-PCR method. In a summary, this study provides a comprehensive understanding of gene expression during the rhizome formation in lotus root.
Collapse
Affiliation(s)
- Libao Cheng
- School of Horticulture and Plant Protection of Yangzhou University, Yangzhou Jiangsu, People’s Republic of China
| | - Shuyan Li
- School of Horticulture and Plant Protection of Yangzhou University, Yangzhou Jiangsu, People’s Republic of China
| | - Jingjing Yin
- School of Horticulture and Plant Protection of Yangzhou University, Yangzhou Jiangsu, People’s Republic of China
| | - Liangjun Li
- School of Horticulture and Plant Protection of Yangzhou University, Yangzhou Jiangsu, People’s Republic of China
| | - Xuehao Chen
- School of Horticulture and Plant Protection of Yangzhou University, Yangzhou Jiangsu, People’s Republic of China
| |
Collapse
|
588
|
Komatsu S, Makino T, Yasue H. Proteomic and biochemical analyses of the cotyledon and root of flooding-stressed soybean plants. PLoS One 2013; 8:e65301. [PMID: 23799004 PMCID: PMC3683008 DOI: 10.1371/journal.pone.0065301] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/25/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Flooding significantly reduces the growth and grain yield of soybean plants. Proteomic and biochemical techniques were used to determine whether the function of cotyledon and root is altered in soybean under flooding stress. RESULTS Two-day-old soybean plants were flooded for 2 days, after which the proteins from root and cotyledon were extracted for proteomic analysis. In response to flooding stress, the abundance of 73 and 28 proteins was significantly altered in the root and cotyledon, respectively. The accumulation of only one protein, 70 kDa heat shock protein (HSP70) (Glyma17g08020.1), increased in both organs following flooding. The ratio of protein abundance of HSP70 and biophoton emission in the cotyledon was higher than those detected in the root under flooding stress. Computed tomography and elemental analyses revealed that flooding stress decreases the number of calcium oxalate crystal the cotyledon, indicating calcium ion was elevated in the cotyledon under flooding stress. CONCLUSION These results suggest that calcium might play one role through HSP70 in the cotyledon under flooding stress.
Collapse
|
589
|
Sauter M. Root responses to flooding. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:282-6. [PMID: 23608517 DOI: 10.1016/j.pbi.2013.03.013] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 05/04/2023]
Abstract
Soil water-logging and submergence pose a severe threat to plants. Roots are most prone to flooding and the first to suffer from oxygen shortage. Roots are vital for plant function, however, and maintenance of a functional root system upon flooding is essential. Flooding-resistant plants possess a number of adaptations that help maintain oxygen supply to the root. Plants are also capable of initiating organogenesis to replace their original root system with adventitious roots if oxygen supply becomes impossible. This review summarizes current findings on root development and de novo root genesis in response to flooding.
Collapse
Affiliation(s)
- Margret Sauter
- Plant Developmental Biology and Plant Physiology, Kiel University, Am Botanischen Garten 5, 24118 Kiel, Germany.
| |
Collapse
|
590
|
Pedersen O, Colmer TD, Sand-Jensen K. Underwater photosynthesis of submerged plants - recent advances and methods. FRONTIERS IN PLANT SCIENCE 2013; 4:140. [PMID: 23734154 PMCID: PMC3659369 DOI: 10.3389/fpls.2013.00140] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 04/24/2013] [Indexed: 05/04/2023]
Abstract
We describe the general background and the recent advances in research on underwater photosynthesis of leaf segments, whole communities, and plant dominated aquatic ecosystems and present contemporary methods tailor made to quantify photosynthesis and carbon fixation under water. The majority of studies of aquatic photosynthesis have been carried out with detached leaves or thalli and this selectiveness influences the perception of the regulation of aquatic photosynthesis. We thus recommend assessing the influence of inorganic carbon and temperature on natural aquatic communities of variable density in addition to studying detached leaves in the scenarios of rising CO2 and temperature. Moreover, a growing number of researchers are interested in tolerance of terrestrial plants during flooding as torrential rains sometimes result in overland floods that inundate terrestrial plants. We propose to undertake studies to elucidate the importance of leaf acclimation of terrestrial plants to facilitate gas exchange and light utilization under water as these acclimations influence underwater photosynthesis as well as internal aeration of plant tissues during submergence.
Collapse
Affiliation(s)
- Ole Pedersen
- The Freshwater Biological Laboratory, Department of Biology, University of CopenhagenHillerød, Denmark
- Institute of Advanced Studies, The University of Western AustraliaCrawley, WA, Australia
- School of Plant Biology, The University of Western AustraliaCrawley, WA, Australia
| | - Timothy D. Colmer
- School of Plant Biology, The University of Western AustraliaCrawley, WA, Australia
| | - Kaj Sand-Jensen
- The Freshwater Biological Laboratory, Department of Biology, University of CopenhagenHillerød, Denmark
| |
Collapse
|
591
|
Mustroph A, Stock J, Hess N, Aldous S, Dreilich A, Grimm B. Characterization of the phosphofructokinase gene family in rice and its expression under oxygen deficiency stress. FRONTIERS IN PLANT SCIENCE 2013; 4:125. [PMID: 23717315 PMCID: PMC3653104 DOI: 10.3389/fpls.2013.00125] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/17/2013] [Indexed: 05/18/2023]
Abstract
Plants possess two types of phosphofructokinase proteins for phosphorylation of fructose-6-phosphate, the ATP-dependent phosphofructokinase (PFK) and the pyrophosphate-(PPi) dependent pyrophosphate-fructose-6-phosphate-phosphotransferase (PFP). During oxygen deficiency ATP levels in rice seedlings are severely reduced, and it is hypothesized that PPi is used as an alternative energy source for the phosphorylation of fructose-6-phosphate during glycolysis. In this study, we analyzed the expression of 15 phosphofructokinase-encoding genes in roots and aerial tissues of anoxia-tolerant rice seedlings in response to anoxic stress and compared our data with transcript profiles obtained from microarray analyses. Furthermore, the intracellular localization of rice PFK proteins was determined, and the PFK and PFP isoforms were grouped in a phylogenetic tree. Two PFK and two PFP transcripts accumulated during anoxic stress, whereas mRNA levels of four PFK and three PFP genes were decreased. The total specific activity of both PFK and PFP changed only slightly during a 24-h anoxia treatment. It is assumed that expression of different isoforms and their catalytic properties differ during normoxic and anoxic conditions and contribute to balanced glycolytic activity during the low-oxygen stress. These characterizations of phosphofructokinase genes and the comparison to other plant species allowed us to suggest candidate rice genes for adaptation to anoxic stress.
Collapse
Affiliation(s)
- Angelika Mustroph
- Department of Plant Physiology, University of BayreuthBayreuth, Germany
| | - Johanna Stock
- Department of Plant Physiology, University of BayreuthBayreuth, Germany
| | - Natalia Hess
- Department of Plant Physiology, University of BayreuthBayreuth, Germany
| | - Sophia Aldous
- Department of Plant Physiology, Institute of Biology, Humboldt-University BerlinBerlin, Germany
| | - Anika Dreilich
- Department of Plant Physiology, Institute of Biology, Humboldt-University BerlinBerlin, Germany
| | - Bernhard Grimm
- Department of Plant Physiology, Institute of Biology, Humboldt-University BerlinBerlin, Germany
| |
Collapse
|
592
|
Licausi F. Molecular elements of low-oxygen signaling in plants. PHYSIOLOGIA PLANTARUM 2013; 148:1-8. [PMID: 23167298 DOI: 10.1111/ppl.12011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 10/28/2012] [Accepted: 11/05/2012] [Indexed: 05/07/2023]
Abstract
Oxygen and its limitation are emerging as a crucial factor in plant fitness, growth and development. Recent studies revealed the mechanisms by which oxygen is perceived by plant cells. This sensory system partly relies on an oxygen-mediated branch of the N-end rule pathway for protein degradation acting on a specific clade of ethylene responsive transcription factors (ERF-VII). A complementary regulative step is provided by aerobic sequestration of an ERF-VII protein at the plasma membrane and its timely release when hypoxia occurs. Complete absence of oxygen triggers the transient accumulation of reactive hydrogen peroxide and induces an additional set of reactive oxygen species-related genes involved in both signaling and attenuation of oxidative stress. Moreover, temporary hypoxic environments that are built up as consequence of dense cell packing have been demonstrated to trigger cell-fate determination in maize anthers. Similarly, limited oxygen delivery in bulky fruit or tuber tissues growing in aerobic conditions were shown to stimulate anaerobic-like responses. These advances in low-oxygen signaling and its effect on cell development highlight the importance of taking hypoxia into account in agronomical practices as well as in breeding programs.
Collapse
|
593
|
Fukao T, Xiong L. Genetic mechanisms conferring adaptation to submergence and drought in rice: simple or complex? CURRENT OPINION IN PLANT BIOLOGY 2013; 16:196-204. [PMID: 23453780 DOI: 10.1016/j.pbi.2013.02.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 05/22/2023]
Abstract
Both high and low extremes in precipitation increasingly impact agricultural productivity and sustainability as a consequence of global climate change. Elucidation of the genetic basis underlying stress tolerance facilitates development of new rice varieties with enhanced tolerance. Submergence tolerance is conferred by a single master regulator that orchestrates various acclimation responses, whereas drought tolerance is regulated by a number of small-effect loci that are largely influenced by genetic background and environment. Detailed molecular studies have uncovered the functional importance of genes and signaling components which coordinate various morphological and physiological responses to submergence and drought, providing new insight into understanding the complex regulatory mechanisms of stress tolerance in rice.
Collapse
Affiliation(s)
- Takeshi Fukao
- Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | | |
Collapse
|
594
|
Dubois M, Skirycz A, Claeys H, Maleux K, Dhondt S, De Bodt S, Vanden Bossche R, De Milde L, Yoshizumi T, Matsui M, Inzé D. Ethylene Response Factor6 acts as a central regulator of leaf growth under water-limiting conditions in Arabidopsis. PLANT PHYSIOLOGY 2013; 162:319-32. [PMID: 23553636 PMCID: PMC3641212 DOI: 10.1104/pp.113.216341] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 03/31/2013] [Indexed: 05/20/2023]
Abstract
Leaf growth is a complex developmental process that is continuously fine-tuned by the environment. Various abiotic stresses, including mild drought stress, have been shown to inhibit leaf growth in Arabidopsis (Arabidopsis thaliana), but the underlying mechanisms remain largely unknown. Here, we identify the redundant Arabidopsis transcription factors ETHYLENE RESPONSE FACTOR5 (ERF5) and ERF6 as master regulators that adapt leaf growth to environmental changes. ERF5 and ERF6 gene expression is induced very rapidly and specifically in actively growing leaves after sudden exposure to osmotic stress that mimics mild drought. Subsequently, enhanced ERF6 expression inhibits cell proliferation and leaf growth by a process involving gibberellin and DELLA signaling. Using an ERF6-inducible overexpression line, we demonstrate that the gibberellin-degrading enzyme GIBBERELLIN 2-OXIDASE6 is transcriptionally induced by ERF6 and that, consequently, DELLA proteins are stabilized. As a result, ERF6 gain-of-function lines are dwarfed and hypersensitive to osmotic stress, while the growth of erf5erf6 loss-of-function mutants is less affected by stress. Besides its role in plant growth under stress, ERF6 also activates the expression of a plethora of osmotic stress-responsive genes, including the well-known stress tolerance genes STZ, MYB51, and WRKY33. Interestingly, activation of the stress tolerance genes by ERF6 occurs independently from the ERF6-mediated growth inhibition. Together, these data fit into a leaf growth regulatory model in which ERF5 and ERF6 form a missing link between the previously observed stress-induced 1-aminocyclopropane-1-carboxylic acid accumulation and DELLA-mediated cell cycle exit and execute a dual role by regulating both stress tolerance and growth inhibition.
Collapse
|
595
|
Huang J, Kim CM, Xuan YH, Liu J, Kim TH, Kim BK, Han CD. Formin homology 1 (OsFH1) regulates root-hair elongation in rice (Oryza sativa). PLANTA 2013; 237:1227-39. [PMID: 23334469 DOI: 10.1007/s00425-013-1838-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 01/02/2013] [Indexed: 05/22/2023]
Abstract
The outgrowth of root hairs from the epidermal cell layer is regulated by a strict genetic regulatory system and external growth conditions. Rice plants cultivated in water-logged paddy land are exposed to a soil ecology that differs from the environment surrounding upland plants, such as Arabidopsis and maize. To identify genes that play important roles in root-hair growth, a forward genetics approach was used to screen for short-root-hair mutants. A short-root-hair mutant was identified, and the gene was isolated using map-based cloning and sequencing. The mutant harbored a point mutation at a splicing acceptor site, which led to truncation of OsFH1 (rice formin homology 1). Subsequent analysis of two additional T-DNA mutants verified that OsFH1 is important for root-hair elongation. Further studies revealed that the action of OsFH1 on root-hair growth is dependent on growth conditions. The mutant Osfh1 exhibited root-hair defects when roots were grown submerged in solution, and mutant roots produced normal root hairs in the air. However, root-hair phenotypes of mutants were not influenced by the external supply of hormones or carbohydrates, a deficiency of nutrients, such as Fe or P i , or aeration. This study shows that OsFH1 plays a significant role in root-hair elongation in a growth condition-dependent manner.
Collapse
Affiliation(s)
- Jin Huang
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, 660-701, Korea
| | | | | | | | | | | | | |
Collapse
|
596
|
Voesenek LACJ, Sasidharan R. Ethylene--and oxygen signalling--drive plant survival during flooding. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:426-35. [PMID: 23574304 DOI: 10.1111/plb.12014] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/12/2013] [Indexed: 05/20/2023]
Abstract
Flooding is a widely occurring environmental stress both for natural and cultivated plant species. The primary problems associated with flooding arise due to restricted gas diffusion underwater. This hampers gas exchange needed for the critical processes of photosynthesis and respiration. Plant acclimation to flooding includes the adaptation of a suite of traits that helps alleviate or avoid these stressful conditions and improves or restores exchange of O2 and CO2 . The manifestation of these traits is, however, reliant on the timely perception of signals that convey the underwater status. Flooding-associated reduced gas diffusion imposes a drastic change in the internal gas composition within submerged plant organs. One of the earliest changes is an increase in the levels of the gaseous plant hormone ethylene. Depending on the species, organ, flooding conditions and time of the day, plants will also subsequently experience a reduction in oxygen levels. This review provides a comprehensive overview on the roles of ethylene and oxygen as critical signals of flooding stress. It includes a discussion of the dynamics of these gases in plants when underwater, their interaction, current knowledge of their perception mechanisms and the resulting downstream changes that mediate important acclimative processes that allow endurance and survival under flooded conditions.
Collapse
Affiliation(s)
- L A C J Voesenek
- Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands.
| | | |
Collapse
|
597
|
Herrera A. Responses to flooding of plant water relations and leaf gas exchange in tropical tolerant trees of a black-water wetland. FRONTIERS IN PLANT SCIENCE 2013; 4:106. [PMID: 23641246 PMCID: PMC3640197 DOI: 10.3389/fpls.2013.00106] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 04/08/2013] [Indexed: 05/17/2023]
Abstract
This review summarizes the research on physiological responses to flooding of trees in the seasonal black-water wetland of the Mapire River in Venezuela. Inter-annual variability was found during 8 years of sampling, in spite of which a general picture emerged of increased stomatal conductance (gs) and photosynthetic rate (PN) during the flooded period to values as high as or higher than in plants in drained wet soil. Models explaining the initial inhibitory responses and the acclimation to flooding are proposed. In the inhibitory phase of flooding, hypoxia generated by flooding causes a decrease in root water absorption and stomatal closure. An increase with flooding in xylem water potential (ψ) suggests that flooding does not cause water deficit. The PN decreases due to changes in relative stomatal and non-stomatal limitations to photosynthesis; an increase in the latter is due to reduced chlorophyll and total soluble protein content. Total non-structural carbohydrates (TNC) accumulate in leaves but their content begins to decrease during the acclimatized phase at full flooding, coinciding with the resumption of high gs and PN. The reversal of the diminution in gs is associated, in some but not all species, to the growth of adventitious roots. The occurrence of morpho-anatomical and biochemical adaptations which improve oxygen supply would cause the acclimation, including increased water absorption by the roots, increased rubisco and chlorophyll contents and ultimately increased PN. Therefore, trees would perform as if flooding did not signify a stress to their physiology.
Collapse
Affiliation(s)
- A. Herrera
- Centro de Botánica Tropical, Instituto de Biología Experimental, Universidad Central de VenezuelaCaracas, Venezuela
| |
Collapse
|
598
|
Oliveira HC, Freschi L, Sodek L. Nitrogen metabolism and translocation in soybean plants subjected to root oxygen deficiency. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 66:141-9. [PMID: 23500717 DOI: 10.1016/j.plaphy.2013.02.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/19/2013] [Indexed: 05/20/2023]
Abstract
Although nitrate (NO3(-)) but not ammonium (NH4(+)) improves plant tolerance to oxygen deficiency, the mechanisms involved in this phenomenon are just beginning to be understood. By using gas chromatography-mass spectrometry, we investigated the metabolic fate of (15)NO3(-) and (15)NH4(+) in soybean plants (Glycine max L. Merril cv. IAC-23) subjected to root hypoxia. This stress reduced the uptake of (15)NO3(-) and (15)NH4(+) from the medium and decreased the overall assimilation of these nitrogen sources into amino acids in roots and leaves. Root (15)NO3(-) assimilation was more affected by hypoxia than that of (15)NH4(+), resulting in enhanced nitrite and nitric oxide release in the solution. However, (15)NO3(-) was translocated in substantial amounts by xylem sap and considerable (15)NO3(-) assimilation into amino acids also occurred in the leaves, both under hypoxia and normoxia. By contrast, (15)NH4(+) assimilation occurred predominantly in roots, resulting in accumulation of mainly (15)N-alanine in this tissue during hypoxia. Analysis of lactate levels suggested higher fermentation in roots from NH4(+)-treated plants compared to the NO3(-) treatment. Thus, foliar NO3(-) assimilation may be relevant to plant tolerance to oxygen deficiency, since it would economize energy expenditure by hypoxic roots. Additionally, the involvement of nitric oxide synthesis from nitrite in the beneficial effect of NO3(-) is discussed.
Collapse
Affiliation(s)
- Halley C Oliveira
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil.
| | | | | |
Collapse
|
599
|
Wang M, Zheng Q, Shen Q, Guo S. The critical role of potassium in plant stress response. Int J Mol Sci 2013; 14:7370-90. [PMID: 23549270 PMCID: PMC3645691 DOI: 10.3390/ijms14047370] [Citation(s) in RCA: 480] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/23/2013] [Accepted: 03/21/2013] [Indexed: 02/02/2023] Open
Abstract
Agricultural production continues to be constrained by a number of biotic and abiotic factors that can reduce crop yield quantity and quality. Potassium (K) is an essential nutrient that affects most of the biochemical and physiological processes that influence plant growth and metabolism. It also contributes to the survival of plants exposed to various biotic and abiotic stresses. The following review focuses on the emerging role of K in defending against a number of biotic and abiotic stresses, including diseases, pests, drought, salinity, cold and frost and waterlogging. The availability of K and its effects on plant growth, anatomy, morphology and plant metabolism are discussed. The physiological and molecular mechanisms of K function in plant stress resistance are reviewed. This article also evaluates the potential for improving plant stress resistance by modifying K fertilizer inputs and highlights the future needs for research about the role of K in agriculture.
Collapse
Affiliation(s)
- Min Wang
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China; E-Mails: (M.W.); (Q.Z.); (Q.S.)
| | - Qingsong Zheng
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China; E-Mails: (M.W.); (Q.Z.); (Q.S.)
| | - Qirong Shen
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China; E-Mails: (M.W.); (Q.Z.); (Q.S.)
| | - Shiwei Guo
- Agricultural Ministry Key Lab of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China; E-Mails: (M.W.); (Q.Z.); (Q.S.)
| |
Collapse
|
600
|
Hoang HH, Bailly C, Corbineau F, Leymarie J. Induction of secondary dormancy by hypoxia in barley grains and its hormonal regulation. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2017-25. [PMID: 23519728 PMCID: PMC3638829 DOI: 10.1093/jxb/ert062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In barley, primary dormant grains did not germinate at 30 °C in air and at 15 °C in an atmosphere containing less than 10% O2, while they germinated easily at 15 °C in air. O2 tension in embryos measured with microsensors was 15.8% at 15 °C but only 0.3% at 30 °C. Incubation of grains at 30 °C is known to induce secondary dormancy in barley, and it was shown here that secondary dormancy was also induced by a 3 d treatment in O2 tensions lower than 10% at 15 °C. After such treatments, the grains lost their ability to germinate subsequently at 15 °C in air. During seed treatment in 5% O2, embryo abscisic acid (ABA) content decreased more slowly than in air and was not altered after transfer into air. Hypoxia did not alter the expression of ABA metabolism genes after 1 d, and induction of HvNCED2 occurred only after 3 d in hypoxia. Embryo sensitivity to ABA was similar in both primary and hypoxia-induced secondary dormant grains. Gibberellic acid (GA) metabolism genes were highly regulated and regulated earlier by the hypoxia treatment, with major changes in HvGA2ox3, HvGA3ox2 and HvGA20ox1 expression after 1 d, resulting in reduced GA signalling. Although a high temperature has an indirect effect on O2 availability, the data showed that it did not affect expression of prolyl-4-hydroxylases and that induction of secondary dormancy by hypoxia at 15 °C or by high temperature in air involved separate signalling pathways. Induction by hypoxia at 15 °C appears to be more regulated by GA and less by ABA than the induction by high temperature.
Collapse
|