551
|
Kálmán J, Palotás A, Bódi N, Kincses TZ, Benedek G, Janka Z, Antal A. Lactate infusion fails to improve semantic categorization in Alzheimer's disease. Brain Res Bull 2005; 65:533-9. [PMID: 15862926 DOI: 10.1016/j.brainresbull.2005.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 03/03/2005] [Accepted: 03/11/2005] [Indexed: 11/20/2022]
Abstract
Impaired neuronal energy metabolism, oxidative changes and microvascular abnormalities lead to altered lactate levels in Alzheimer's dementia. The aim of the present study was to assess whether intravenous sodium-lactate, a metabolic alternative and vasodilator that is thought to improve cognition, advances the cognitive performance of Alzheimer patients. Semantic categorization paradigm was used to present the electrophysiological correlates of natural scene categorization of Alzheimer patients before and after intravenous saline or sodium-lactate infusion. Mean amplitudes of event-related potentials (ERPs) were measured in two time windows before and after the treatments; two negative components (N1 between 150 and 250 ms and N2 between 400 and 600 ms) and one positive component (P2 between 250 and 400 ms) were identified. The negative components were more negative for the non-animal trials than for the animal trials while the positive component was similar for both categories. After the lactate treatment the amplitudes of the negative components became more negative mainly for the non-animal trials while the amplitude of the positive component turned more positive for the animal trials, however these changes were not significant. No changes have been observed after normal saline infusion. These results suggest that, contrary to its anticipated beneficial effects, sodium-lactate fails to significantly improve semantic categorization processes in Alzheimer's disease and this enhancement can be detected by recording ERPs. The effect of sodium-lactate to slightly improve semantic memory might be based on its positive effect on cardio- and cerebro-vascular function and neuronal metabolism.
Collapse
Affiliation(s)
- János Kálmán
- Department of Psychiatry, Albert Szent-Györgyi Medical and Pharmaceutical Center, Faculty of Medicine, University of Szeged, H-6721 Szeged, Semmelweis u. 6, Hungary
| | | | | | | | | | | | | |
Collapse
|
552
|
Affiliation(s)
- Helene Nørrelund
- Medical Department M (Endocrinology and Diabetes), Aarhus University Hospital, Aarhus Sygehus, Norrebrogade 44, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
553
|
Mochel F, DeLonlay P, Touati G, Brunengraber H, Kinman RP, Rabier D, Roe CR, Saudubray JM. Pyruvate carboxylase deficiency: clinical and biochemical response to anaplerotic diet therapy. Mol Genet Metab 2005; 84:305-12. [PMID: 15781190 DOI: 10.1016/j.ymgme.2004.09.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 09/08/2004] [Accepted: 09/08/2004] [Indexed: 11/24/2022]
Abstract
A six-day-old girl was referred for severe hepatic failure, dehydratation, axial hypotonia, and both lactic acidosis and ketoacidosis. Biotin-unresponsive pyruvate carboxylase deficiency type B was diagnosed. Triheptanoin, an odd-carbon triglyceride, was administrated as a source for acetyl-CoA and anaplerotic propionyl-CoA. Although this patient succumbed to a severe infection, during the six months interval of her anaplerotic and biochemical management, the following important observations were documented: (1) the immediate reversal (less than 48 h) of major hepatic failure with full correction of all biochemical abnormalities, (2) on citrate supplementation, the enhanced export from the liver of triheptanoin's metabolites, namely 5 carbon ketone bodies, increasing the availability of these anaplerotic substrates for peripheral organs, (3) the demonstration of the transport of C5 ketone bodies-representing alternative energetic fuel for the brain-across the blood-brain barrier, associated to increased levels of glutamine and free gamma-aminobutyric acid (f-GABA) in the cerebrospinal fluid. Considering that pyruvate carboxylase is a key enzyme for anaplerosis, besides the new perspectives brought by anaplerotic therapies in those rare pyruvate carboxylase deficiencies, this therapeutic trial also emphasizes the possible extended indications of triheptanoin in various diseases where the citric acid cycle is impaired.
Collapse
Affiliation(s)
- Fanny Mochel
- Metabolic Unit, Departments of Pediatrics and Biochemistry, Hospital Necker-Enfants Malades, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
554
|
Abstract
Metabolism cycles daily between the fed and fasted states. The pathways of energy production are reversible and distinct. In the anabolic (fed) state, the liver stores glucose as glycogen, and fatty acid/triglyceride synthesis is active. In the catabolic (fasted) state, the liver becomes a glucose producer, lipogenesis is slowed, and fatty acid oxidation/ketogenesis is activated. The rate-limiting step for the latter is vested in the carnitine/carnitine palmitoyltransferase (CPT) system, and the off/on regulator of this is malonyl CoA. The AMP-induced protein kinase primarily determines the concentration of malonyl CoA. Four other systems have significant influence: two on fatty acid oxidation and two on lipogenesis. Peroxisome proliferator-activated receptor gamma-1 alpha, a master regulator of metabolism, induces hepatic gluconeogenesis and fatty acid oxidation in the catabolic phase. Deficiency of stearoyl CoA desaturase, although having no role in gluconeogenesis, powerfully induces fatty acid oxidation and weight loss despite increased food intake in rodents. Major stimulators of lipogenesis are carbohydrate-responsive element binding protein and the Insig system. The malonyl CoA-regulated CPT system has been firmly established in humans. The other systems have not yet been confirmed in humans, but likely are active there as well. Activation of fatty acid oxidation has considerable clinical promise for the treatment of obesity, type 2 diabetes, steatohepatitis, and lipotoxic damage to the heart.
Collapse
Affiliation(s)
- Daniel W Foster
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9030, USA.
| |
Collapse
|
555
|
Pogozelski W, Arpaia N, Priore S. The metabolic effects of low-carbohydrate diets and incorporation into a biochemistry course. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 33:91-100. [PMID: 21638552 DOI: 10.1002/bmb.2005.494033022445] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
One of the challenges in teaching biochemistry is facilitating students' interest in and mastery of metabolism. The many pathways and modes of regulation can be overwhelming for students to learn and difficult for professors to teach in an engaging manner. We have found it useful to take advantage of prevailing interest in popular yet controversial weight-loss methods, particularly low-carbohydrate diets. The metabolic rationale behind these eating plans can be linked to glycolysis, the citric acid cycle, lipolysis, gluconeogenesis, ketosis, glycogen metabolism, fatty acid oxidation, and hormonal regulation. When this approach was used in undergraduate biochemistry classes at the State University of New York at Geneseo, students were highly motivated to learn the biochemical principles behind these diets. The following provides information about low-carbohydrate diet plans that will enable professors to speak authoritatively on the subject. History and studies regarding efficacy as well as biochemical metabolic effects are included.
Collapse
Affiliation(s)
- Wendy Pogozelski
- Department of Chemistry, State University of New York College at Geneseo, Geneseo, New York 14454.
| | | | | |
Collapse
|
556
|
Pliss L, Pentney RJ, Johnson MT, Patel MS. Biochemical and structural brain alterations in female mice with cerebral pyruvate dehydrogenase deficiency. J Neurochem 2005; 91:1082-91. [PMID: 15569252 DOI: 10.1111/j.1471-4159.2004.02790.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyruvate dehydrogenase complex (PDC) deficiency is an inborn metabolic disorder associated with a variety of neurologic abnormalities. This report describes the development and initial characterization of a novel murine model system in which PDC deficiency has been introduced specifically into the developing nervous system. The absence of liveborn male and a roughly 50% reduction in female offspring following induction of the X-linked mutation indicate that extensive deficiency of PDC in the nervous system leads to pre-natal lethality. Brain tissue from surviving females at post-natal days 15 and 35 was shown to have approximately 75% of wild-type PDC activity, suggesting that a threshold of enzyme activity exists for post-natal survival. Detailed histological analyses of brain tissue revealed structural defects such as disordered neuronal cytoarchitecture and neuropil fibers in grey matter, and reduced size of bundles and disorganization of fibers in white matter. Many of the histologic abnormalities resemble those found in human female patients who carry mutations in the X-linked ortholog. These findings demonstrate a requirement for PDC activity within the nervous system for survival in utero and suggest that impaired pyruvate metabolism in the developing brain can affect neuronal migration, axonal growth and cell-cell interactions.
Collapse
Affiliation(s)
- Lioudmila Pliss
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
557
|
Puchowicz MA, Emancipator DS, Xu K, Magness DL, Ndubuizu OI, Lust WD, LaManna JC. Adaptation to chronic hypoxia during diet-induced ketosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 566:51-7. [PMID: 16594134 DOI: 10.1007/0-387-26206-7_8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
It is recognized that brain oxygen deprivation results in increased glycolysis and lactate accumulation. Moreover, glucose metabolism is altered during starvation or diet, resulting in increased plasma ketones (acetoacetate + beta-hydroxybutyrate; BHB). We investigated glucose and lactate adaptation to hypoxia in concurrence with diet-induced ketosis. Male Wistar rats were fed standard (STD), ketogenic (high fat; KG), or carbohydrate-rich (low fat; CHO) diets for 3 wks and then exposed to hypobaric (0.5 ATM) or normobaric atmosphere for 3 wks while on their diets. Lactate, ketones, and glucose concentrations were measured in plasma (mM) and brain tissue (mmol/g). Plasma and tissue ketone levels were elevated up to 12-fold in the KG fed groups compared with other groups (STD and CHO), with the hypoxic KG group reaching the highest levels (2.6 +/- 1.3 mM and 0.3 +/- 0.1 mmol/g; mean +/- SD). Tissue lactate levels in the hypoxic ketotic rats (4.7 +/- 1.3 mM) were comparable with normoxic STD (5.0 +/- 0.7 mM) and significantly lower (ANOVA P < .05) than the hypoxic STD rats (6.1 +/- 1.0 mM). These data indicate that adaptation to hypoxia did not interfere with ketosis, and that ketosis during hypoxia may lower lactate levels in brain, suggesting decreased glycolysis or increased glucose disposal.
Collapse
|
558
|
Fine EJ, Feinman RD. Thermodynamics of weight loss diets. Nutr Metab (Lond) 2004; 1:15. [PMID: 15588283 PMCID: PMC543577 DOI: 10.1186/1743-7075-1-15] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Accepted: 12/08/2004] [Indexed: 11/24/2022] Open
Abstract
Background It is commonly held that "a calorie is a calorie", i.e. that diets of equal caloric content will result in identical weight change independent of macronutrient composition, and appeal is frequently made to the laws of thermodynamics. We have previously shown that thermodynamics does not support such a view and that diets of different macronutrient content may be expected to induce different changes in body mass. Low carbohydrate diets in particular have claimed a "metabolic advantage" meaning more weight loss than in isocaloric diets of higher carbohydrate content. In this review, for pedagogic clarity, we reframe the theoretical discussion to directly link thermodynamic inefficiency to weight change. The problem in outline: Is metabolic advantage theoretically possible? If so, what biochemical mechanisms might plausibly explain it? Finally, what experimental evidence exists to determine whether it does or does not occur? Results Reduced thermodynamic efficiency will result in increased weight loss. The laws of thermodynamics are silent on the existence of variable thermodynamic efficiency in metabolic processes. Therefore such variability is permitted and can be related to differences in weight lost. The existence of variable efficiency and metabolic advantage is therefore an empiric question rather than a theoretical one, confirmed by many experimental isocaloric studies, pending a properly performed meta-analysis. Mechanisms are as yet unknown, but plausible mechanisms at the metabolic level are proposed. Conclusions Variable thermodynamic efficiency due to dietary manipulation is permitted by physical laws, is supported by much experimental data, and may be reasonably explained by plausible mechanisms.
Collapse
Affiliation(s)
- Eugene J Fine
- Department of Nuclear Medicine, Jacobi Medical Center, Bronx, NY, USA
- Department of Biochemistry, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Richard D Feinman
- Department of Biochemistry, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| |
Collapse
|
559
|
Nonino-Borges CB, Bustamante VCT, Rabito EI, Inuzuka LM, Sakamoto AC, Marchini JS. Dieta cetogênica no tratamento de epilepsias farmacorresistentes. REV NUTR 2004. [DOI: 10.1590/s1415-52732004000400011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A epilepsia é uma condição clínica crônica correspondente a um grupo de doenças que tem em comum crises epilépticas; ela atinge de 0,5% a 1,0% da população dos países desenvolvidos, podendo esta prevalência ser maior nos países em desenvolvimento. Aproximadamente um terço dos pacientes evolui com crises epilépticas intratáveis com medicamentos; em alguns casos, é possível o tratamento cirúrgico. Nos pacientes em que cirurgia não é possível, a dieta cetogênica passa a ser uma opção terapêutica, principalmente em crianças. Espera-se que esta terapia seja eficaz para, pelo menos, um terço dos pacientes, resultando em redução ou controle das crises. No presente trabalho, apresentamos métodos para o preparo e uso a dieta cetogênica. O planejamento da dieta é individualizado, seguindo-se recomendações para o consumo energético e proporções de gorduras, proteínas e carboidratos específicos. Sempre que introduzida a dieta, o paciente deve ser monitorizado, devido à possibilidade de efeitos adversos. A orientação dos pais ou responsáveis sobre a dieta cetogênica, e como ela funciona, proporciona maior aceitação e aderência a esta forma de tratamento da epilepsia.
Collapse
|
560
|
Abstract
The brain uses glucose as its primary fuel. Cerebral metabolism of glucose requires transport through the blood-brain barrier, glycolytic conversion to pyruvate, metabolism via the tricarboxylic acid cycle and ultimately oxidation to carbon dioxide and water for full provision of adenosine triphosphate (ATP) and its high-energy equivalents. When deprived of glucose, the brain becomes dysfunctional or can be even permanently damaged. Glucose is stored as glycogen within astrocytes with potential importance for tolerance of hypoglycemia. Glycogen may also be important for the metabolic response to somatosensory stimulation and coupling of blood flow and cellular metabolism. Uncontrolled diabetes has a variety of adverse effects upon brain metabolism and function. Many aspects of function that affect the brain may be indirectly linked to cerebral glucose metabolism. Neurotransmitter metabolism, cerebral blood flow, blood-brain barrier and microvascular function may all be affected to varying degrees by either hypoglycemia or uncontrolled diabetes mellitus.
Collapse
Affiliation(s)
- Anthony L McCall
- Division of Endocrinology, Department of Internal Medicine, Diabetes and Hormone Center of Excellence, University of Virginia School of Medicine, 450 Ray C. Hunt Drive, Charlottesville, VA 22908, USA.
| |
Collapse
|
561
|
Tyni T, Paetau A, Strauss AW, Middleton B, Kivelä T. Mitochondrial fatty acid beta-oxidation in the human eye and brain: implications for the retinopathy of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Pediatr Res 2004; 56:744-50. [PMID: 15347768 DOI: 10.1203/01.pdr.0000141967.52759.83] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The retinal pigment epithelium (RPE) and the choriocapillaris are affected early in the retinopathy associated with long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency. RPE in culture possesses the machinery needed for mitochondrial fatty acid beta-oxidation in vitro. To further elucidate pathogenesis of LCHAD retinopathy, we performed immunohistochemistry of the human eye and brain with antibodies to beta-oxidation enzymes. Human eye and brain sections were stained with antibodies to medium-chain (MCAD) and very long-chain acyl-CoA dehydrogenase (VLCAD), short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD), and mitochondrial trifunctional protein (MTP) harboring LCHAD. Antibodies to 2-methyl-3-hydroxybutyryl-CoA dehydrogenase (MHBD) and cytochrome c oxidase subunit I (COX I) were used as a reference. VLCAD, MTP, MCAD, SCHAD, MHBD, and COX I antibodies labeled most retinal layers and tissues of the human eye actively involved in oxidative metabolism (extraocular and intraocular muscle, the RPE, the corneal endothelium, and the ciliary epithelium). MTP and COX I antibodies labeled the inner segments of photoreceptors. The choriocapillaris was labeled only with SCHAD and MCAD antibodies. In the brain, the choroid plexus and nuclei of the brain stem were most intensely labeled with beta-oxidation antibodies, whereas COX I antibodies strongly labeled neurons in several regions of the brain. Mitochondrial fatty acid beta-oxidation likely plays a role in ocular energy production in vivo. The RPE rather than the choriocapillaris could be the critical affected cell layer in LCHAD retinopathy. Reduced energy generation in the choroid plexus may contribute to the cerebral edema observed in patients with beta-oxidation defects.
Collapse
Affiliation(s)
- Tiina Tyni
- Department of Pediatric Neurology, Hospital for Children and Adolescents, Helsinki University Central Hospital, 00029 HUS, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
562
|
Mantis JG, Centeno NA, Todorova MT, McGowan R, Seyfried TN. Management of multifactorial idiopathic epilepsy in EL mice with caloric restriction and the ketogenic diet: role of glucose and ketone bodies. Nutr Metab (Lond) 2004; 1:11. [PMID: 15507133 PMCID: PMC529249 DOI: 10.1186/1743-7075-1-11] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Accepted: 10/19/2004] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND: The high fat, low carbohydrate ketogenic diet (KD) was developed as an alternative to fasting for seizure management. While the mechanisms by which fasting and the KD inhibit seizures remain speculative, alterations in brain energy metabolism are likely involved. We previously showed that caloric restriction (CR) inhibits seizure susceptibility by reducing blood glucose in the epileptic EL mouse, a natural model for human multifactorial idiopathic epilepsy. In this study, we compared the antiepileptic and anticonvulsant efficacy of the KD with that of CR in adult EL mice with active epilepsy. EL mice that experienced at least 15 recurrent complex partial seizures were fed either a standard diet unrestricted (SD-UR) or restricted (SD-R), and either a KD unrestricted (KD-UR) or restricted (KD-R). All mice were fasted for 14 hrs prior to diet initiation. A new experimental design was used where each mouse in the diet-restricted groups served as its own control to achieve a 20-23% body weight reduction. Seizure susceptibility, body weights, and the levels of plasma glucose and beta-hydroxybutyrate were measured once/week over a nine-week treatment period. RESULTS: Body weights and blood glucose levels remained high over the testing period in the SD-UR and the KD-UR groups, but were significantly (p < 0.001) reduced in the SD-R and KD-R groups. Plasma beta-hydroxybutyrate levels were significantly (p < 0.001) increased in the SD-R and KD-R groups compared to their respective UR groups. Seizure susceptibility remained high in both UR-fed groups throughout the study, but was significantly reduced after three weeks in both R-fed groups. CONCLUSIONS: The results indicate that seizure susceptibility in EL mice is dependent on plasma glucose levels and that seizure control is more associated with the amount than with the origin of dietary calories. Also, CR underlies the antiepileptic and anticonvulsant action of the KD in EL mice. A transition from glucose to ketone bodies for energy is predicted to manage EL epileptic seizures through multiple integrated changes of inhibitory and excitatory neural systems.
Collapse
Affiliation(s)
- John G Mantis
- Biology Department, Boston College, Chestnut Hill, MA, USA
| | | | | | | | | |
Collapse
|
563
|
Abstract
A small group of members of the American Society for Clinical Investigation began chatting in 1916 about the possibility of launching a new biomedical research journal. By October 1924, they managed to make the idea a reality with the publication of the first issue of the Journal of Clinical Investigation. Our 80th birthday seems an appropriate time to reflect on the history of biomedical science as it has been played out on our pages.
Collapse
|
564
|
Insel PA, Kornfeld S, Majerus PW, Marks AR, Marks PA, Relman AS, Scharschmidt BF, Stossel TP, Varki AP, Weiss SJ, Wilson JD. Blasts from the past. J Clin Invest 2004; 114:1017-33. [PMID: 15489944 PMCID: PMC522273 DOI: 10.1172/jci23321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
With this issue of the JCI, we celebrate the 80th anniversary of the Journal. While 80 years is not a century, we still feel it is important to honor what the JCI has meant to the biomedical research community for 8 decades. To illustrate why the JCI is the leading general-interest translational research journal edited by and for biomedical researchers, we have asked former JCI editors-in-chief to reflect on some of the major scientific advances reported in the pages of the Journal during their tenures.
Collapse
|
565
|
Matthews DE. Techniques to assess in-vivo tissue metabolism directly in humans without biopsy samples. Curr Opin Clin Nutr Metab Care 2004; 7:513-4. [PMID: 15295270 DOI: 10.1097/00075197-200409000-00002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
566
|
Knudsen GM, Rostrup E, Hasselbalch SG. Quantitative PET for assessment of cerebral blood flow and glucose consumption under varying physiological conditions. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.ics.2004.04.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
567
|
Abstract
A 22-year-old male developed a severe degree of metabolic acidosis (plasma pH 7.20, bicarbonate 8 mmol/l), with a large increase in the plasma anion gap (26 mEq/l). Ketoacidosis was suspected because of the odour of acetone on his breath and a positive qualitative test for acetone in plasma (to a 1:4 dilution). Later, his plasma beta-hydroxybutyrate concentration was found to be 4.5 mmol/l. After receiving an infusion of 1 l of half-isotonic saline and 1 l of 5% dextrose in water over 24 h, as well as curtailing his large oral intake of sweetened beverages, all blood tests became normal. Diabetic ketoacidosis, alcoholic ketoacidosis, starvation ketosis and hypoglycaemic ketoacidosis were all ruled out, and his toxin screen was negative for salicylates. Finding another possible cause for ketoacidosis became the focus of this case.
Collapse
Affiliation(s)
- M R Davids
- Nephrology Unit and Department of Internal Medicine, University of Stellenbosch, Cape Town, South Africa
| | | | | | | |
Collapse
|
568
|
Nehlig A. Brain uptake and metabolism of ketone bodies in animal models. Prostaglandins Leukot Essent Fatty Acids 2004; 70:265-75. [PMID: 14769485 DOI: 10.1016/j.plefa.2003.07.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Accepted: 07/01/2003] [Indexed: 11/20/2022]
Abstract
As a consequence of the high fat content of maternal milk, the brain metabolism of the suckling rat represents a model of naturally occurring ketosis. During the period of lactation, the rate of uptake and metabolism of the two ketone bodies, beta-hydroxybutyrate and acetoacetate is high. The ketone bodies enter the brain via monocarboxylate transporters whose expression and activity is much higher in the brain of the suckling than the mature rat. beta-Hydroxybutyrate and acetoacetate taken up by the brain are efficiently used as substrates for energy metabolism, and for amino acid and lipid biosynthesis, two pathways that are important for this period of active brain growth. Ketone bodies can represent about 30-70% of the total energy metabolism balance of the immature rat brain. The active metabolism of ketone bodies in the immature brain is related to the high activity of the enzymes of ketone body metabolism. Thus, the use of ketone bodies by the immature rodent brain serves to spare glucose for metabolic pathways that cannot be fulfilled by ketones such as the pentose phosphate pathway mainly. The latter pathway leads to the biosynthesis of ribose mandatory for DNA synthesis and NADPH which is not formed during ketone body metabolism and is a key cofactor in lipid biosynthesis. Finally, ketone bodies by serving mainly biosynthetic purposes spare glucose for the emergence of various functions such as audition, vision as well as more integrated and adapted behaviors whose appearance during brain maturation seems to critically relate upon active glucose supply and specific regional increased use.
Collapse
Affiliation(s)
- Astrid Nehlig
- INSERM U 405, Faculty of Medicine, 11, rue Humann, 67085 Strasbourg Cedex, France.
| |
Collapse
|
569
|
Fukao T, Lopaschuk GD, Mitchell GA. Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukot Essent Fatty Acids 2004; 70:243-51. [PMID: 14769483 DOI: 10.1016/j.plefa.2003.11.001] [Citation(s) in RCA: 276] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ketone bodies become major body fuels during fasting and consumption of a high-fat, low-carbohydrate (ketogenic) diet. Hyperketonemia is associated with potential health benefits. Ketone body synthesis (ketogenesis) is the last recognizable step of lipid energy metabolism, a pathway that links dietary lipids and adipose triglycerides to the Krebs cycle and respiratory chain and has three highly regulated control points: (1) adipocyte lipolysis, (2) mitochondrial fatty acids entry, controlled by the inhibition of carnitine palmityl transferase I by malonyl coenzyme A (CoA) and (3) mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase, which catalyzes the irreversible first step of ketone body synthesis. Each step is suppressed by an elevated circulating insulin level or insulin/glucagon ratio. The utilization of ketone bodies (ketolysis) also determines circulating ketone body levels. Consideration of ketone body metabolism reveals the mechanisms underlying the extreme fragility of dietary ketosis to carbohydrate intake and highlights areas for further study.
Collapse
Affiliation(s)
- Toshiyuki Fukao
- Department of Pediatrics, Gifu University School of Medicine, Gifu 500, Japan
| | | | | |
Collapse
|
570
|
Veech RL. The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fatty Acids 2004; 70:309-19. [PMID: 14769489 DOI: 10.1016/j.plefa.2003.09.007] [Citation(s) in RCA: 537] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2003] [Accepted: 09/01/2003] [Indexed: 12/11/2022]
Abstract
The effects of ketone body metabolism suggests that mild ketosis may offer therapeutic potential in a variety of different common and rare disease states. These inferences follow directly from the metabolic effects of ketosis and the higher inherent energy present in d-beta-hydroxybutyrate relative to pyruvate, the normal mitochondrial fuel produced by glycolysis leading to an increase in the DeltaG' of ATP hydrolysis. The large categories of disease for which ketones may have therapeutic effects are:(1)diseases of substrate insufficiency or insulin resistance,(2)diseases resulting from free radical damage,(3)disease resulting from hypoxia. Current ketogenic diets are all characterized by elevations of free fatty acids, which may lead to metabolic inefficiency by activation of the PPAR system and its associated uncoupling mitochondrial uncoupling proteins. New diets comprised of ketone bodies themselves or their esters may obviate this present difficulty.
Collapse
Affiliation(s)
- Richard L Veech
- Laboratory of Membrane Biochemistry and Biophysics, National Institutes of Alcoholism and Alcohol Abuse, 12501 Washington Ave., Rockville, MD 20850, USA.
| |
Collapse
|
571
|
Yudkoff M, Daikhin Y, Nissim I, Lazarow A, Nissim I. Ketogenic diet, brain glutamate metabolism and seizure control. Prostaglandins Leukot Essent Fatty Acids 2004; 70:277-85. [PMID: 14769486 DOI: 10.1016/j.plefa.2003.07.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2003] [Accepted: 07/01/2003] [Indexed: 11/23/2022]
Abstract
We do not know the mode of action of the ketogenic diet in controlling epilepsy. One possibility is that the diet alters brain handling of glutamate, the major excitatory neurotransmitter and a probable factor in evoking and perpetuating a convulsion. We have found that brain metabolism of ketone bodies can furnish as much as 30% of glutamate and glutamine carbon. Ketone body metabolism also provides acetyl-CoA to the citrate synthetase reaction, in the process consuming oxaloacetate and thereby diminishing the transamination of glutamate to aspartate, a pathway in which oxaloacetate is a reactant. Relatively more glutamate then is available to the glutamate decarboxylase reaction, which increases brain [GABA]. Ketosis also increases brain [GABA] by increasing brain metabolism of acetate, which glia convert to glutamine. GABA-ergic neurons readily take up the latter amino acid and use it as a precursor to GABA. Ketosis also may be associated with altered amino acid transport at the blood-brain barrier. Specifically, ketosis may favor the release from brain of glutamine, which transporters at the blood-brain barrier exchange for blood leucine. Since brain glutamine is formed in astrocytes from glutamate, the overall effect will be to favor the release of glutamate from the nervous system.
Collapse
Affiliation(s)
- Marc Yudkoff
- Department of Pediatrics, University of Pennsylvania School of Medicine, Children's Hospital of Philadelphia, 34th Street and Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
572
|
Seyfried TN, Sanderson TM, El-Abbadi MM, McGowan R, Mukherjee P. Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br J Cancer 2003; 89:1375-82. [PMID: 14520474 PMCID: PMC2394295 DOI: 10.1038/sj.bjc.6601269] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Brain tumours lack metabolic versatility and are dependent largely on glucose for energy. This contrasts with normal brain tissue that can derive energy from both glucose and ketone bodies. We examined for the first time the potential efficacy of dietary therapies that reduce plasma glucose and elevate ketone bodies in the CT-2A syngeneic malignant mouse astrocytoma. C57BL/6J mice were fed either a standard diet unrestricted (SD-UR), a ketogenic diet unrestricted (KD-UR), the SD restricted to 40% (SD-R), or the KD restricted to 40% of the control standard diet (KD-R). Body weights, tumour weights, plasma glucose, beta-hydroxybutyrate (beta-OHB), and insulin-like growth factor 1 (IGF-1) were measured 13 days after tumour implantation. CT-2A growth was rapid in both the SD-UR and KD-UR groups, but was significantly reduced in both the SD-R and KD-R groups by about 80%. The results indicate that plasma glucose predicts CT-2A growth and that growth is dependent more on the amount than on the origin of dietary calories. Also, restriction of either diet significantly reduced the plasma levels of IGF-1, a biomarker for angiogenesis and tumour progression. Owing to a dependence on plasma glucose, IGF-1 was also predictive of CT-2A growth. Ketone bodies are proposed to reduce stromal inflammatory activities, while providing normal brain cells with a nonglycolytic high-energy substrate. Our results in a mouse astrocytoma suggest that malignant brain tumours are potentially manageable with dietary therapies that reduce glucose and elevate ketone bodies.
Collapse
Affiliation(s)
- T N Seyfried
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA.
| | | | | | | | | |
Collapse
|
573
|
Stannard SR, Johnson NA. Insulin resistance and elevated triglyceride in muscle: more important for survival than "thrifty" genes? J Physiol 2003; 554:595-607. [PMID: 14608009 PMCID: PMC1664785 DOI: 10.1113/jphysiol.2003.053926] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Elevated intramyocellular triglyceride (IMTG) is strongly associated with insulin resistance, though a cause and effect relationship has not been fully described. Insulin sensitivity and IMTG content are both dynamic and can alter rapidly in response to dietary variation, physical activity and thermoregulatory response. Physically active humans (athletes) display elevated IMTG content, but in contrast to obese persons, are insulin sensitive. This paradox has created confusion surrounding the role of IMTG in the development of insulin resistance. In this review we consider the modern athlete as the physiological archetype of the Late Palaeolithic hunter-gatherer to whom the selection pressures of food availability, predation and fluctuating environmental conditions applied and to whom the genotype of modern man is virtually identical. As food procurement by the hunter-gatherer required physical activity, "thrifty" genes that encouraged immediate energy storage upon refeeding after food deprivation (Neel, 1962) must have been of secondary importance in survival to genes that preserved physical capacity during food deprivation. Similarly genes that enabled survival during cold exposure whilst starved would be of primary importance. In this context, we discuss the advantage afforded by an elevated IMTG content, and how under these conditions, a concomitant muscle resistance to insulin-mediated glucose uptake would also be advantageous. In sedentary modern man, adiposity is high and skeletal muscle appears to respond as if a state of starvation exists. In this situation, elevated plasma lipids serve to accrue lipid and induce insulin resistance in skeletal muscle. Reversal of this physiological state is primarily dependent on adequate contractile activity, however, in modern Western society, physical inactivity combined with abundant food and warmth has rendered IMTG a redundant muscle substrate.
Collapse
Affiliation(s)
- S R Stannard
- Institute of Food, Nutrition and Human Health, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | | |
Collapse
|
574
|
Westman EC, Mavropoulos J, Yancy WS, Volek JS. A review of low-carbohydrate ketogenic diets. Curr Atheroscler Rep 2003; 5:476-83. [PMID: 14525681 DOI: 10.1007/s11883-003-0038-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In response to the emerging epidemic of obesity in the United States, a renewal of interest in alternative diets has occurred, especially in diets that limit carbohydrate intake. Recent research has demonstrated that low-carbohydrate ketogenic diets can lead to weight loss and favorable changes in serum triglycerides and high-density lipoprotein cholesterol. This review summarizes the physiology and recent clinical studies regarding this type of diet.
Collapse
Affiliation(s)
- Eric C Westman
- Department of Medicine, Duke University Medical Center, Box 50, Suite 200-B Wing, 2200 West Main Street, Durham, NC 27705, USA.
| | | | | | | |
Collapse
|
575
|
Massieu L, Haces ML, Montiel T, Hernández-Fonseca K. Acetoacetate protects hippocampal neurons against glutamate-mediated neuronal damage during glycolysis inhibition. Neuroscience 2003; 120:365-78. [PMID: 12890508 DOI: 10.1016/s0306-4522(03)00266-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glucose is the main substrate that fulfills energy brain demands. However, in some circumstances, such as diabetes, starvation, during the suckling period and the ketogenic diet, brain uses the ketone bodies, acetoacetate and beta-hydroxybutyrate, as energy sources. Ketone body utilization in brain depends directly on its blood concentration, which is normally very low, but increases substantially during the conditions mentioned above. Glutamate neurotoxicity has been implicated in neurodegeneration associated with brain ischemia, hypoglycemia and cerebral trauma, conditions related to energy failure, and to elevation of glutamate extracellular levels in brain. In recent years substantial evidence favoring a close relation between glutamate neurotoxic potentiality and cellular energy levels, has been compiled. We have previously demonstrated that accumulation of extracellular glutamate after inhibition of its transporters, induces neuronal death in vivo during energy impairment induced by glycolysis inhibition. In the present study we have assessed the protective potentiality of the ketone body, acetoacetate, against glutamate-mediated neuronal damage in the hippocampus of rats chronically treated with the glycolysis inhibitor, iodoacetate, and in hippocampal cultured neurons exposed to a toxic concentration of iodoacetate. Results show that acetoacetate efficiently protects against glutamate neurotoxicity both in vivo and in vitro probably by a mechanism involving its role as an energy substrate.
Collapse
Affiliation(s)
- L Massieu
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CP 04510, AP 70-253, Mexico D.F., Mexico.
| | | | | | | |
Collapse
|
576
|
Tieu K, Perier C, Caspersen C, Teismann P, Wu DC, Yan SD, Naini A, Vila M, Jackson-Lewis V, Ramasamy R, Przedborski S. D-beta-hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. J Clin Invest 2003; 112:892-901. [PMID: 12975474 PMCID: PMC193668 DOI: 10.1172/jci18797] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Parkinson disease (PD) is a neurodegenerative disorder characterized by a loss of the nigrostriatal dopaminergic neurons accompanied by a deficit in mitochondrial respiration. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin that causes dopaminergic neurodegeneration and a mitochondrial deficit reminiscent of PD. Here we show that the infusion of the ketone body d-beta-hydroxybutyrate (DbetaHB) in mice confers partial protection against dopaminergic neurodegeneration and motor deficits induced by MPTP. These effects appear to be mediated by a complex II-dependent mechanism that leads to improved mitochondrial respiration and ATP production. Because of the safety record of ketone bodies in the treatment of epilepsy and their ability to penetrate the blood-brain barrier, DbetaHB may be a novel neuroprotective therapy for PD.
Collapse
Affiliation(s)
- Kim Tieu
- Department of Neurology, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
577
|
Tieu K, Perier C, Caspersen C, Teismann P, Wu DC, Yan SD, Naini A, Vila M, Jackson-Lewis V, Ramasamy R, Przedborski S. D-β-Hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. J Clin Invest 2003. [DOI: 10.1172/jci200318797] [Citation(s) in RCA: 302] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
578
|
Feillet F, Steinmann G, Vianey-Saban C, de Chillou C, Sadoul N, Lefebvre E, Vidailhet M, Bollaert PE. Adult presentation of MCAD deficiency revealed by coma and severe arrythmias. Intensive Care Med 2003; 29:1594-7. [PMID: 12897989 DOI: 10.1007/s00134-003-1871-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2003] [Accepted: 05/23/2003] [Indexed: 10/26/2022]
Abstract
We report the case of a 33-year-old man who presented with headaches and vomiting. Soon after admission he became drowsy and agitated, developed ventricular tachycardia and his neurological state worsened (Glasgow coma score 6). Blood analysis showed respiratory alkalosis, hyperlactacidemia (8 mmol/l), hyperammonemia (390 micro mol/l) and hypoglycaemia (2.4 mmol/l). Subsequently, he developed supraventricular tachycardia, ventricular tachycardia and ultimately ventricular fibrillation resulting in cardiac arrest, which was successfully treated. A CT scan of the head revealed cerebral oedema. Whilst in the intensive care unit, he developed renal failure and rhabdomyolysis. The metabolic abnormalities seen at the time of admission normalised within 48 h with IV glucose infusion. Biological investigations, including urinary organic acids and plasma acylcarnitines, showed results compatible with MCAD deficiency. Mutation analysis revealed the patient was homozygous for the classical mutation A985G. This is one of only a few reports of severe cardiac arrhythmia in an adult due to MCAD deficiency. This condition is probably under-diagnosed in adult patients with acute neurological and/or cardiac presentations.
Collapse
Affiliation(s)
- F Feillet
- Service de Réanimation Médicale Pédiatrique, Hôpital d'Enfants, CHU Brabois, Allée du Morvan, Vandoeuvre les Nancy, 54500 Nancy, France.
| | | | | | | | | | | | | | | |
Collapse
|
579
|
Nybo L, Møller K, Pedersen BK, Nielsen B, Secher NH. Association between fatigue and failure to preserve cerebral energy turnover during prolonged exercise. ACTA PHYSIOLOGICA SCANDINAVICA 2003; 179:67-74. [PMID: 12940940 DOI: 10.1046/j.1365-201x.2003.01175.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM This study evaluated if the fatigue and apathy arising during exercise with hypoglycaemia could relate to a lowering of the cerebral metabolic rates of glucose and oxygen. METHODS AND RESULTS Six males completed 3 h of cycling with or without glucose supplementation in random order. Cerebral blood flow, metabolism and interleukin-6 (IL-6) release were evaluated with the Kety-Schmidt technique. Blood glucose was maintained during the glucose trial, while it decreased from 5.2 +/- 0.1 to 2.9 +/- 0.3 mmol L-1 (mean +/- SE) after 180 min of exercise in the placebo trial with a concomitant increase in perceived exertion (P < 0.05). During hypoglycaemia, the cerebral glucose uptake was reduced from 0.34 +/- 0.05 to 0.28 +/- 0.04 micromol g(-1) min(-1), while the cerebral uptake of beta-hydroxybutyrate increased to 5 +/- 1 pmol g(-1) min(-1) (P < 0.05). The reduced glucose uptake was accompanied by a lowering of the cerebral metabolic rate of oxygen from 1.84 +/- 0.19 mmol g(-1) min(-)1 during exercise with glucose supplementation to 1.60 +/- 0.16 mmol g(-1) min(-1) during hypoglycaemia (P < 0.05). In addition, the cerebral IL-6 release was reduced from 0.4 +/- 0.1 to 0.0 +/- 0.1 pg g(-1) min(-1) (P < 0.05). CONCLUSIONS Exercise-induced hypoglycaemia limits the cerebral uptake of glucose, exacerbates exercise, reduces the cerebral metabolic rate of oxygen and attenuates the release of IL-6 from the brain.
Collapse
Affiliation(s)
- L Nybo
- Department of Human Physiology, Institute of Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
580
|
Greene AE, Todorova MT, Seyfried TN. Perspectives on the metabolic management of epilepsy through dietary reduction of glucose and elevation of ketone bodies. J Neurochem 2003; 86:529-37. [PMID: 12859666 DOI: 10.1046/j.1471-4159.2003.01862.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brain cells are metabolically flexible because they can derive energy from both glucose and ketone bodies (acetoacetate and beta-hydroxybutyrate). Metabolic control theory applies principles of bioenergetics and genome flexibility to the management of complex phenotypic traits. Epilepsy is a complex brain disorder involving excessive, synchronous, abnormal electrical firing patterns of neurons. We propose that many epilepsies with varied etiologies may ultimately involve disruptions of brain energy homeostasis and are potentially manageable through principles of metabolic control theory. This control involves moderate shifts in the availability of brain energy metabolites (glucose and ketone bodies) that alter energy metabolism through glycolysis and the tricarboxylic acid cycle, respectively. These shifts produce adjustments in gene-linked metabolic networks that manage or control the seizure disorder despite the continued presence of the inherited or acquired factors responsible for the epilepsy. This hypothesis is supported by information on the management of seizures with diets including fasting, the ketogenic diet and caloric restriction. A better understanding of the compensatory genetic and neurochemical networks of brain energy metabolism may produce novel antiepileptic therapies that are more effective and biologically friendly than those currently available.
Collapse
Affiliation(s)
- Amanda E Greene
- Boston College Biology Department, Chestnut Hill, Massachusetts, USA
| | | | | |
Collapse
|
581
|
Leegsma-Vogt G, Venema K, Korf J. Evidence for a lactate pool in the rat brain that is not used as an energy supply under normoglycemic conditions. J Cereb Blood Flow Metab 2003; 23:933-41. [PMID: 12902837 DOI: 10.1097/01.wcb.0000080650.64357.8f] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lactate derived from glucose can serve as an energy source in the brain. However, it is not certain how much lactate, directly taken from the blood circulation, may replace glucose as an energy source. This study aimed to estimate the uptake, release, and utilization of lactate entering the brain from the blood circulation. The change in cerebral venous-arterial glucose and lactate differences after lactate infusions in the anesthetized rat were measured. Ultrafiltration probes were placed in the aorta and in the jugular vein, and connected to a flow injection analysis system with biosensors for glucose and lactate. Measurements were taken every minute. Lactate efflux was observed at baseline, whereas an influx of lactate was seen during lactate infusion. Immediately after the infusion there was a net efflux of lactate from the brain. The results suggest that the majority of lactate moving into the brain is not used as an energy substrate, and that lactate does not replace glucose as an energy source. Instead, the authors propose the concept of a lactate pool in the brain that can be filled and emptied in accordance with the blood lactate concentration, but which is not used as an energy supply for cerebral metabolism.
Collapse
Affiliation(s)
- Gea Leegsma-Vogt
- Department of Psychiatry, Section of Biological Psychiatry, University of Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
582
|
Stafstrom CE, Bough KJ. The ketogenic diet for the treatment of epilepsy: a challenge for nutritional neuroscientists. Nutr Neurosci 2003; 6:67-79. [PMID: 12722982 DOI: 10.1080/1028415031000084427] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The ketogenic diet (KD) is a high-fat, low-carbohydrate, adequate-protein diet that has been used for more than eight decades for the treatment of refractory epilepsy in children. Despite this long history, the mechanisms by which the KD exerts its anti-seizure action are not fully understood. Questions remain regarding several aspects of KD action, including its effects on brain biochemistry and energetics, neuronal membrane function and cellular network behavior. With the explosion of the KD use in the last 10 years, it is now imperative that we understand these factors in greater detail, in order to optimize the formulation, administration and fine-tuning of the diet. This review discusses what is known and what remains to be learned about the KD, with emphasis on clinical questions that can be approached in the laboratory. We encourage scientists with a primary interest in nutritional neuroscience to join with those of us in the epilepsy research community to address these urgent questions, for the benefit of children ravaged by intractable seizures.
Collapse
Affiliation(s)
- Carl E Stafstrom
- Department of Neurology and the Neuroscience Training Program, University of Wisconsin, Madison, WI 53792, USA
| | | |
Collapse
|
583
|
Eagles DA, Boyd SJ, Kotak A, Allan F. Calorie restriction of a high-carbohydrate diet elevates the threshold of PTZ-induced seizures to values equal to those seen with a ketogenic diet. Epilepsy Res 2003; 54:41-52. [PMID: 12742595 DOI: 10.1016/s0920-1211(03)00041-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to evaluate the contributions of ketonemia, caloric restriction, and carbohydrates to seizure protection in rats fed selected diets. Male Sprague-Dawley rats were fed experimental diets of two basic types, one high in carbohydrates and restricted to 90, 65, or 50% of the normal daily caloric requirement and the other a normal rodent chow diet restricted to 90 or 65% of the daily caloric requirement. After consuming their respective diets for 20 days, animals were subjected to tail-vein infusion of pentylenetetrazole (PTZ) to determine seizure threshold, taken as the dose required to evoke the first clonic reaction. Seizure thresholds were compared to those of rats fed control diets of either normal rodent chow fed ad libitum or a standard high-fat (ketogenic) diet calorie-restricted to 90% of daily caloric requirement, all animals age- and weight-matched at the time of diet onset. All diets were balanced for vitamins and minerals and contained at least 10% protein (by weight). Seizure threshold and ketonemia were elevated in both experimental diets in approximate proportion to the degree of calorie restriction. Animals fed the most severely restricted high-carbohydrate diet (50%) had seizure thresholds equal to those fed the ketogenic diet but had significantly lower ketonemia.
Collapse
Affiliation(s)
- Douglas A Eagles
- Department of Biology, Georgetown University, Box 571229, Washington, DC 20057-1229, USA.
| | | | | | | |
Collapse
|
584
|
De Vivo DC, Wang D, Pascual JM, Ho YY. Glucose transporter protein syndromes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 51:259-88. [PMID: 12420362 DOI: 10.1016/s0074-7742(02)51008-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Darryl C De Vivo
- Department of Neurology, Colleen Giblin Research Laboratories for Pediatric Neurology, Columbia University, New York 10032, USA
| | | | | | | |
Collapse
|
585
|
Heininger K. The cerebral glucose-fatty acid cycle: evolutionary roots, regulation, and (patho)physiological importance. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 51:103-58. [PMID: 12420358 DOI: 10.1016/s0074-7742(02)51004-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kurt Heininger
- Department of Neurology, Heinrich Heine University, D-40597 Düsseldorf, Germany
| |
Collapse
|
586
|
Cahill GF, Veech RL. Ketoacids? Good medicine? TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2003; 114:149-163. [PMID: 12813917 PMCID: PMC2194504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
D-beta-hydroxybutyrate, the principal "ketone" body in starving man, displaces glucose as the predominating fuel for brain, decreasing the need for glucose synthesis in liver (and kidney) and accordingly spares its precursor, muscle-derived amino acids. Thus normal 70 kg. man survives 2-3 months of starvation instead of several weeks, and obese man many months to over a year. Without this metabolic adaptation, H. sapiens could not have evolved such a large brain. Recent studies have shown that D-beta-hydroxybutyrate, the principal "ketone", is not just a fuel, but a "superfuel" more efficiently producing ATP energy than glucose or fatty acid. In a perfused rat heart preparation, it increased contractility and decreased oxygen consumption. It has also protected neuronal cells in tissue culture against exposure to toxins associated with Alzheimer's or Parkinson's. In a rodent model it decreased the death of lung cells induced by hemorrhagic shock. Also, mice exposed to hypoxia survived longer. These and other data suggest a potential use of beta-hydroxybutyrate in a number of medical and non-medical conditions where oxygen supply or substrate utilization may be limited. Efforts are underway to prepare esters of beta-hydroxybutyrate which can be taken orally or parenterally to study its potential therapeutic applications.
Collapse
|
587
|
Griffin JL, Muller D, Woograsingh R, Jowatt V, Hindmarsh A, Nicholson JK, Martin JE. Vitamin E deficiency and metabolic deficits in neuronal ceroid lipofuscinosis described by bioinformatics. Physiol Genomics 2002; 11:195-203. [PMID: 12388797 DOI: 10.1152/physiolgenomics.00100.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mnd mouse, a model of neuronal ceroid lipofusinosis (NCL), has a profound vitamin E deficiency in sera and brain, associated with cerebral deterioration characteristic of NCL. In this study, the vitamin E deficiency is corrected using dietary supplementation. However, the histopathological features associated with NCL remained. With use of a bioinformatics approach based on high-resolution solid and solution state 1H-NMR spectroscopy and principal component analysis (PCA), the deficits associated with NCL are defined in terms of a metabolic phenotype. Although vitamin E supplementation reversed some of the metabolic abnormalities, in particular the concentration of phenylalanine in extracts of cerebral tissue, PCA demonstrated that metabolic deficits associated with NCL were greater than any effects produced from vitamin E supplementation. These deficits included increased glutamate and N-acetyl-L-aspartate and decreased creatine and glutamine concentrations in aqueous extracts of the cortex, as well as profound accumulation of lipid in intact cerebral tissue. This is discussed in terms of faulty production of mitochondrial-associated membranes, thought to be central to the deficits in mnd mice.
Collapse
Affiliation(s)
- J L Griffin
- Biological Chemistry, Biomedical Sciences, Faculty of Medicine, Imperial College of Science, Technology and Medicine, London SW7 2AZ.
| | | | | | | | | | | | | |
Collapse
|
588
|
Davids MR, Edoute Y, Jungas RL, Cheema-Dhadli S, Halperin ML. Facilitating an understanding of integrative physiology: emphasis on the composition of body fluid compartments. Can J Physiol Pharmacol 2002; 80:835-50. [PMID: 12430978 DOI: 10.1139/y02-114] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As a teaching exercise, we used deductive reasoning and a quantitative analysis to convert a number of facts into a series of concepts to facilitate an understanding of integrative physiology and shed light on the composition of the different body fluid compartments. The starting point was the central need to regenerate ATP to perform biologic work. Because a large quantity of O2 must be delivered to cells at a sufficiently high concentration to aid its diffusion into mitochondria, approximately one third of the O2 in inspired air was extracted; this led to a P(CO2) in arterial blood of 40 mmHg (1 mmHg = 133.322 Pa). Blood flow to individual organs must be adjusted precisely to avoid having too low or too high a P(O2) in mitochondria--the latter augments the formation of reactive O2 species. The extracellular fluid (ECF) bicarbonate concentration (E(HCO3)) must be high to minimize H+ buffering by proteins. This high E(HCO3) sets the ECF concentrations of ionized calcium (Ca2+) and inorganic phosphate (HPO4(2-)) because of solubility issues. Three features defined the intracellular fluid (ICF) volume and composition. First, expelling monovalent anions minimized its mass (volume). Second, controlling the tissue P(CO2) ensured a relatively constant net valence on intracellular proteins. Third, the range of ICF Ca2+ concentrations must both induce regulatory signals and avoid Ca3(PO4)2 formation. All the above were incorporated into the integrated response that optimized the capacity for vigorous exercise.
Collapse
|
589
|
Abstract
The metabolic response to dietary restriction involves a series of hormonal and metabolic adaptations leading to protein conservation. An increase in the serum level of growth hormone (GH) during fasting has been well substantiated. GH has potent protein anabolic actions, as evidenced by a significant decrease in lean body mass and muscle mass in chronic GH deficiency, and vice versa in patients with acromegaly. The present review outlines current knowledge about the role of GH in the metabolic response to fasting, with particular reference to the effects on protein metabolism. Physiological bursts of GH secretion seem to be of seminal importance for the regulation of protein conservation during fasting. Apart from the possible direct effects of GH on protein dynamics, a number of additional anabolic agents, such as insulin, insulin-like growth factor-I, and free fatty acids (FFAs), are activated. Taken together the effects of GH on protein metabolism seem to include both stimulation of protein synthesis and inhibition of breakdown, depending on the nature of GH administration, which tissues are being studied, and on the physiological conditions of the subjects.
Collapse
Affiliation(s)
- Helene Nørrelund
- Medical Department M (Endocrinology and Diabetes), Aarhus Kommunehospital, Aarhus, Denmark.
| | | | | |
Collapse
|
590
|
Plecko B, Stoeckler-Ipsiroglu S, Schober E, Harrer G, Mlynarik V, Gruber S, Moser E, Moeslinger D, Silgoner H, Ipsiroglu O. Oral beta-hydroxybutyrate supplementation in two patients with hyperinsulinemic hypoglycemia: monitoring of beta-hydroxybutyrate levels in blood and cerebrospinal fluid, and in the brain by in vivo magnetic resonance spectroscopy. Pediatr Res 2002; 52:301-6. [PMID: 12149510 DOI: 10.1203/00006450-200208000-00025] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In persistent hyperinsulinemic hypoglycemia of infancy, ketone body concentrations are abnormally low at times of hypoglycemia, depriving the brain of its most important alternative fuel. The neuroprotective effect of endogenous ketone bodies is evidenced by animal and human studies, but knowledge about exogenous supply is limited. Assuming that exogenous ketone body compounds as a dietetic food might replace this alternative energy source for the brain, we have monitored the fate of orally supplemented DL sodium beta-hydroxybutyrate (beta-OHB) in two 6-mo-old infants with persistent hyperinsulinemic hypoglycemia for 5 and 7 mo, while on frequent tube-feedings and treatment with octreotide. Near total (95%) pancreatectomy had been ineffective in one patient and was refused in the other. In blood, concentrations of beta-OHB increased to levels comparable to a 16- to 24-h fast while on DL sodium beta-OHB 880 to 1000 mg/kg per day. In cerebrospinal fluid, concentrations of beta-OHB increased to levels comparable to a 24- to 40-h fast, after single dosages of 4 and 8 g, respectively. High ratios of beta-OHB to acetoacetate indicated exogenous origin of beta-OHB. An increase of intracerebral concentrations of beta-OHB could be demonstrated by repetitive single-voxel proton magnetic resonance spectroscopy by a clear doublet at 1.25 ppm. Oral DL sodium beta-OHB was tolerated without side effects. This first report on oral supplementation of DL sodium beta-OHB in two patients with persistent hyperinsulinemic hypoglycemia demonstrates effective uptake across the blood-brain barrier and could provide the basis for further evaluation of the neuroprotective effect of beta-OHB in conditions with hypoketotic hypoglycemia.
Collapse
Affiliation(s)
- Barbara Plecko
- Division of Metabolism and Pediatric Neurology, Department of Pediatrics, University Hospital of Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
591
|
|
592
|
Pan JW, de Graaf RA, Petersen KF, Shulman GI, Hetherington HP, Rothman DL. [2,4-13 C2 ]-beta-Hydroxybutyrate metabolism in human brain. J Cereb Blood Flow Metab 2002; 22:890-8. [PMID: 12142574 PMCID: PMC2995543 DOI: 10.1097/00004647-200207000-00014] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Infusions of [2,4-13C2]-beta-hydroxybutyrate and 1H-13C polarization transfer spectroscopy were used in normal human subjects to detect the entry and metabolism of beta-hydroxybutyrate in the brain. During the 2-hour infusion study, 13C label was detectable in the beta-hydroxybutyrate resonance positions and in the amino acid pools of glutamate, glutamine, and aspartate. With a plasma concentration of 2.25 +/- 0.24 mmol/L (four volunteers), the apparent tissue beta-hydroxybutyrate concentration reached 0.18 +/- 0.06 mmol/L during the last 20 minutes of the study. The relative fractional enrichment of 13C-4-glutamate labeling was 6.78 +/- 1.71%, whereas 13C-4-glutamine was 5.68 +/- 1.84%. Steady-state modeling of the 13C label distribution in glutamate and glutamine suggests that, under these conditions, the consumption of the beta-hydroxybutyrate is predominantly neuronal, used at a rate of 0.032 +/- 0.009 mmol. kg-1. min-1, and accounts for 6.4 +/- 1.6% of total acetyl coenzyme A oxidation. These results are consistent with minimal accumulation of cerebral ketones with rapid utilization, implying blood-brain barrier control of ketone oxidation in the nonfasted adult human brain.
Collapse
Affiliation(s)
- Jullie W Pan
- Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | | | |
Collapse
|
593
|
Müller MJ, Bosy-Westphal A, Kutzner D, Heller M. Metabolically active components of fat-free mass and resting energy expenditure in humans: recent lessons from imaging technologies. Obes Rev 2002; 3:113-22. [PMID: 12120418 DOI: 10.1046/j.1467-789x.2002.00057.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Imaging technologies, i.e. magnetic resonance imaging (MRI), computer tomography (CT) and dual-energy X-ray absorptiometry (DEXA), are precise and accurate techniques used to study lean body mass and adipose tissue distribution. CT and MRI can also be used to assess metabolically active components of fat-free mass (FFM). (Throughout this article, metabolic activity is defined with respect to oxidative metabolism.) To date a total of 116 in vivo measurements of organ masses (OM), in combination with the measurement of resting energy expenditure (REE), have been reported. These data suggest that MRI- or CT-derived OM explains part (approximately 5-10%) of the interindividual variance in REE. The data also suggest that REE can be reconstructed from detailed body composition analysis. Calculating REE from the sum of individual OM multiplied by a constant organ tissue-respiration rate showed a high correlation between calculated and measured REE, with only small and non-significant differences of 83-96 kJ d-1. In addition to CT- and MRI-derived OM, data are available of 244 obese and non-obese subjects regarding the association between regional components of lean body mass (LBM, assessed by DEXA) and REE. These results suggest that measurement of LBM distribution also provides the opportunity to adjust for the non-linearity of REE on body mass. Assessment of metabolically active components of FFM or LBM may also add to our understanding of malnutrition-, obesity- and disease states-related variance in REE. There is need for (1) standardization of imaging technology in body composition research; (2) reference data on detailed body composition, also including more recent autopsy data; (3) reducing the number of assumptions in model-based predictions; and (4) a combination of imaging technologies with in vivo measurements of individual OM respiration.
Collapse
Affiliation(s)
- M J Müller
- Institut für Humanernährung und Lebensmittelkunde, Agrar- und Ernährungswissenschaftliche Fakultät, Christian-Albrechts-Universität zu Kiel, Düsternbrooker Weg 17-19, D-24105 Kiel, Germany.
| | | | | | | |
Collapse
|
594
|
Affiliation(s)
- Fereidoun Azizi
- Department of Medicine and the Endocrine Research Center, Shaheed Behesti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
595
|
Rotta LN, Valle SC, Schweigert I, Ricardi LD, Ferronatto ME, da SL, Souza DO, Perry MLS. Utilization of energy nutrients by cerebellar slices. Neurochem Res 2002; 27:201-6. [PMID: 11958517 DOI: 10.1023/a:1014828419900] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We performed an ontogenetic study about the utilization of glycine, glutamine, beta-hydroxybutyrate and glycerol as energy nutrients by rat cerebellum slices. Production of CO2 from glycerol and glutamine increased with the animals' age and glutamine was the most used nutrient for CO2 production. In adult age, glutamine oxidation to CO2 was 15 to 35 times higher than all other nutrients studied. CO2 production from glycine decreased markedly with age and 10 day-old rats showed an oxidation 7.5 times higher than that of adult rats. At fetal age and at 10 postnatal days, glycine oxidation to CO2 was only 2 times lower than glutamine oxidation to CO2. Lipid synthesis from beta-hydroxybutyrate was highest in adult rats. We did not observe any difference in the utilization of beta-hydroxybutyrate between slices of cerebral cortex and cerebellum at the ages of 10 days and adult. The main nutrients used for lipid synthesis were glycerol and beta-hydroxybutyrate.
Collapse
Affiliation(s)
- Liane N Rotta
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul-Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
596
|
Franz MJ, Bantle JP, Beebe CA, Brunzell JD, Chiasson JL, Garg A, Holzmeister LA, Hoogwerf B, Mayer-Davis E, Mooradian AD, Purnell JQ, Wheeler M. Evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes and related complications. Diabetes Care 2002; 25:148-98. [PMID: 11772915 DOI: 10.2337/diacare.25.1.148] [Citation(s) in RCA: 382] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Marion J Franz
- Nutrition Concepts by Franz, Inc., Minneapolis, Minnesota 55439, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
597
|
Corvi MM, Soltys CL, Berthiaume LG. Regulation of mitochondrial carbamoyl-phosphate synthetase 1 activity by active site fatty acylation. J Biol Chem 2001; 276:45704-12. [PMID: 11577071 DOI: 10.1074/jbc.m102766200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In addition to its role in reversible membrane localization of signal-transducing proteins, protein fatty acylation could play a role in the regulation of mitochondrial metabolism. Previous studies have shown that several acylated proteins exist in mitochondria isolated from COS-7 cells and rat liver. Here, a prominent fatty-acylated 165-kDa protein from rat liver mitochondria was identified as carbamoyl-phosphate synthetase 1 (CPS 1). Covalently attached palmitate was linked to CPS 1 via a thioester bond resulting in an inhibition of CPS 1 activity at physiological concentrations of palmitoyl-CoA. This inhibition corresponds to irreversible inactivation of CPS 1 and occurred in a time- and concentration-dependent manner. Fatty acylation of CPS 1 was prevented by preincubation with N-ethylmaleimide and 5'-p-fluorosulfonylbenzoyladenosine, an ATP analog that reacts with CPS 1 active site cysteine residues. Our results suggest that fatty acylation of CPS 1 is specific for long-chain fatty acyl-CoA and very likely occurs on at least one of the essential cysteine residues inhibiting the catalytic activity of CPS 1. Inhibition of CPS 1 by long-chain fatty acyl-CoAs could reduce amino acid degradation and urea secretion, thereby contributing to nitrogen sparing during starvation.
Collapse
Affiliation(s)
- M M Corvi
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | |
Collapse
|
598
|
Yudkoff M, Daikhin Y, Nissim I, Lazarow A, Nissim I. Ketogenic diet, amino acid metabolism, and seizure control. J Neurosci Res 2001; 66:931-40. [PMID: 11746421 DOI: 10.1002/jnr.10083] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The ketogenic diet has been utilized for many years as an adjunctive therapy in the management of epilepsy, especially in those children for whom antiepileptic drugs have not permitted complete relief. The biochemical basis of the dietary effect is unclear. One possibility is that the diet leads to alterations in the metabolism of brain amino acids, most importantly glutamic acid, the major excitatory neurotransmitter. In this review, we explore the theme. We present evidence that ketosis can lead to the following: 1) a diminution in the rate of glutamate transamination to aspartate that occurs because of reduced availability of oxaloacetate, the ketoacid precursor to aspartate; 2) enhanced conversion of glutamate to GABA; and 3) increased uptake of neutral amino acids into the brain. Transport of these compounds involves an uptake system that exchanges the neutral amino acid for glutamine. The result is increased release from the brain of glutamate, particularly glutamate that had been resident in the synaptic space, in the form of glutamine. These putative adaptations of amino acid metabolism occur as the system evolves from a glucose-based fuel economy to one that utilizes ketone bodies as metabolic substrates. We consider mechanisms by which such changes might lead to the antiepileptic effect.
Collapse
Affiliation(s)
- M Yudkoff
- Division of Child Development and Rehabilitation, Children's Hospital of Philadelphia, 34th St. and Civic Center Blvd., Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
599
|
Pan JW, Telang FW, Lee JH, de Graaf RA, Rothman DL, Stein DT, Hetherington HP. Measurement of beta-hydroxybutyrate in acute hyperketonemia in human brain. J Neurochem 2001; 79:539-44. [PMID: 11701757 DOI: 10.1046/j.1471-4159.2001.00575.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the measurement of D-beta-hydroxybutyrate (BHB) in the brains of six normal adult subjects during acute infusions of BHB. We used high field in vivo (1)H magnetic resonance (MR) spectroscopy in the occipital lobe in conjunction with an acute infusion protocol to elevate plasma BHB levels from overnight fasted levels (0.20 +/- 0.10 mM) to a steady state value of 2.12 +/- 0.30 mM. At this level of hyperketonemia, we determined a tissue BHB level of 0.24 +/- 0.04 mM. No increases in brain lactate levels were seen in these data. The concentrations of BHB and lactate were both considerably lower in comparison with previous data acquired in fasted adult subjects. This suggests that up-regulation of the monocarboxylic acid transporter occurs with fasting.
Collapse
Affiliation(s)
- J W Pan
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | | | | | |
Collapse
|
600
|
Yudkoff M, Daikhin Y, Nissim I, Lazarow A, Nissim I. Brain amino acid metabolism and ketosis. J Neurosci Res 2001; 66:272-81. [PMID: 11592124 DOI: 10.1002/jnr.1221] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The relationship between ketosis and brain amino acid metabolism was studied in mice that consumed a ketogenic diet (>90% of calories as lipid). After 3 days on the diet the blood concentration of 3-OH-butyrate was approximately 5 mmol/l (control = 0.06-0.1 mmol/l). In forebrain and cerebellum the concentration of 3-OH-butyrate was approximately 10-fold higher than control. Brain [citrate] and [lactate] were greater in the ketotic animals. The concentration of whole brain free coenzyme A was lower in ketotic mice. Brain [aspartate] was reduced in forebrain and cerebellum, but [glutamate] and [glutamine] were unchanged. When [(15)N]leucine was administered to follow N metabolism, this labeled amino acid accumulated to a greater extent in the blood and brain of ketotic mice. Total brain aspartate ((14)N + (15)N) was reduced in the ketotic group. The [(15)N]aspartate/[(15)N]glutamate ratio was lower in ketotic animals, consistent with a shift in the equilibrium of the aspartate aminotransferase reaction away from aspartate. Label in [(15)N]GABA and total [(15)N]GABA was increased in ketotic animals. When the ketotic animals were injected with glucose, there was a partial blunting of ketoacidemia within 40 min as well as an increase of brain [aspartate], which was similar to control. When [U-(13)C(6)]glucose was injected, the (13)C label appeared rapidly in brain lactate and in amino acids. Label in brain [U-(13)C(3)]lactate was greater in the ketotic group. The ratio of brain (13)C-amino acid/(13)C-lactate, which reflects the fraction of amino acid carbon that is derived from glucose, was much lower in ketosis, indicating that another carbon source, i.e., ketone bodies, were precursor to aspartate, glutamate, glutamine and GABA.
Collapse
Affiliation(s)
- M Yudkoff
- Division of Child Development and Rehabilitation, Children's Hospital of Philadelphia, 34th Street and Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|