551
|
Srinageshwar B, Dils A, Sturgis J, Wedster A, Kathirvelu B, Baiyasi S, Swanson D, Sharma A, Dunbar GL, Rossignol J. Surface-Modified G4 PAMAM Dendrimers Cross the Blood-Brain Barrier Following Multiple Tail-Vein Injections in C57BL/6J Mice. ACS Chem Neurosci 2019; 10:4145-4150. [PMID: 31390175 DOI: 10.1021/acschemneuro.9b00347] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Intracranial injections are currently used to deliver drugs into the brain, as most drugs cannot cross the blood-brain barrier (BBB) following systemic injections. Moreover, multiple dosing is difficult with invasive techniques. Therefore, viable systemic techniques are necessary to facilitate treatment paradigms that require multiple dosing of therapeutics across the BBB. In this study, we show that mixed-surface fourth-generation poly(amidoamine) (PAMAM) dendrimers containing predominantly biocompatible hydroxyl groups and a few amine groups are taken up by cultured primary cortical neurons derived from mouse embryo. We also show that these dendrimers cross the BBB following their administration to healthy mice in multiple doses via tail-vein injections and are taken up by neurons and the glial cells as evidenced by appropriate staining methods. Besides the brain, the dendrimers were found mostly in the kidneys compared to other peripheral organs, such as liver, lungs, and spleen, implying that they may be readily excreted, thereby preventing potential toxic accumulation in the body. Our findings provide a proof-of-concept that appropriate surface modifications of dendrimers provide safe, biocompatible nanomaterial with the potential to deliver therapeutic cargo across the BBB into the brain via multiple tail-vein injections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gary L. Dunbar
- Field Neurosciences Institute, St. Mary’s of Michigan, Saginaw 48604, Michigan, United States
| | | |
Collapse
|
552
|
Xie J, Shen Z, Anraku Y, Kataoka K, Chen X. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials 2019; 224:119491. [PMID: 31546096 DOI: 10.1016/j.biomaterials.2019.119491] [Citation(s) in RCA: 332] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/31/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022]
Abstract
Increasing attention has been paid to the diseases of central nervous system (CNS). The penetration efficiency of most CNS drugs into the brain parenchyma is rather limited due to the existence of blood-brain barrier (BBB). Thus, BBB crossing for drug delivery to CNS remains a significant challenge in the development of neurological therapeutics. Because of the advantageous properties (e.g., relatively high drug loading content, controllable drug release, excellent passive and active targeting, good stability, biodegradability, biocompatibility, and low toxicity), nanomaterials with BBB-crossability have been widely developed for the treatment of CNS diseases. This review summarizes the current understanding of the physiological structure of BBB, and provides various nanomaterial-based BBB-crossing strategies for brain delivery of theranostic agents, including intranasal delivery, temporary disruption of BBB, local delivery, cell penetrating peptide (CPP) mediated BBB-crossing, receptor mediated BBB-crossing, shuttle peptide mediated BBB-crossing, and cells mediated BBB-crossing. Clinicians, biologists, material scientists and chemists are expected to be interested in this review.
Collapse
Affiliation(s)
- Jinbing Xie
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China; Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Zheyu Shen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Yasutaka Anraku
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan; Policy Alternatives Research Institute, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
553
|
Giacovazzo G, Bisogno T, Piscitelli F, Verde R, Oddi S, Maccarrone M, Coccurello R. Different Routes to Inhibit Fatty Acid Amide Hydrolase: Do All Roads Lead to the Same Place? Int J Mol Sci 2019; 20:ijms20184503. [PMID: 31514437 PMCID: PMC6771131 DOI: 10.3390/ijms20184503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 11/25/2022] Open
Abstract
There is robust evidence indicating that enhancing the endocannabinoid (eCB) tone has therapeutic potential in several brain disorders. The inhibition of eCBs degradation by fatty acid amide hydrolase (FAAH) blockade, is the best-known option to increase N-acyl-ethanolamines-(NAEs)-mediated signaling. Here, we investigated the hypothesis that intranasal delivery is an effective route for different FAAH inhibitors, such as URB597 and PF-04457845. URB597 and PF-04457845 were subchronically administered in C57BL/6 male mice every other day for 20 days for overall 10 drug treatment, and compared for their ability to inhibit FAAH activity by the way of three different routes of administration: intranasal (i.n.), intraperitoneal (i.p.) and oral (p.o.). Lastly, we compared the efficacy of the three routes in terms of URB597-induced increase of NAEs levels in liver and in different brain areas. Results: We show that PF-04457845 potently inhibits FAAH regardless the route selected, and that URB597 was less effective in the brain after p.o. administration while reached similar effects by i.n. and i.p. routes. Intranasal URB597 delivery always increased NAEs levels in brain areas, whereas a parallel increase was not observed in the liver. By showing the efficacy of intranasal FAAH inhibition, we provide evidence that nose-to-brain delivery is a suitable alternative to enhance brain eCB tone for the treatment of neurodegenerative disorders and improve patients’ compliance.
Collapse
Affiliation(s)
- Giacomo Giacovazzo
- Fondazione Santa Lucia IRCCS, Preclinical Neuroscience, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Tiziana Bisogno
- Endocannabinoid Research Group, Institute of Translational Pharmacology, CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Via C. Flegrei 34, 80078 Pozzuoli, Italy
| | - Roberta Verde
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Via C. Flegrei 34, 80078 Pozzuoli, Italy
| | - Sergio Oddi
- Fondazione Santa Lucia IRCCS, Preclinical Neuroscience, Via del Fosso di Fiorano 64, 00143 Rome, Italy
- Faculty of Veterinary Medicine, University of Teramo, via R. Balzarini 1, 64100 Teramo, Italy
| | - Mauro Maccarrone
- Fondazione Santa Lucia IRCCS, Preclinical Neuroscience, Via del Fosso di Fiorano 64, 00143 Rome, Italy.
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy.
| | - Roberto Coccurello
- Fondazione Santa Lucia IRCCS, Preclinical Neuroscience, Via del Fosso di Fiorano 64, 00143 Rome, Italy.
- Institute for Complex Systems (ISC), C.N.R., Via dei Taurini 19, 00185 Rome, Italy.
| |
Collapse
|
554
|
Brain Delivery of a Potent Opioid Receptor Agonist, Biphalin during Ischemic Stroke: Role of Organic Anion Transporting Polypeptide (OATP). Pharmaceutics 2019; 11:pharmaceutics11090467. [PMID: 31509975 PMCID: PMC6781285 DOI: 10.3390/pharmaceutics11090467] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/25/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022] Open
Abstract
Transporters (expressed) at the blood-brain barrier (BBB) can play an essential role in the treatment of brain injury by transporting neuroprotective substance to the central nervous system. The goal of this study was to understand the role of organic anion transporting polypeptide (OATP1; OATP1A2 in humans and oatp1a4 in rodents) in the transport of a potent opioid receptor agonist, biphalin, across the BBB during ischemic stroke. Brain microvascular endothelial cells (BMECs) that were differentiated from human induced pluripotent stem cells (iPSCs) were used in the present study. The effect of oxygen-glucose deprivation (OGD) and reperfusion on the OATP1 expression, uptake, and transport of biphalin was measured in induced pluripotent stem cells differentiated brain microvascular endothelial cells (iPSC–BMECs) in the presence and absence of an OATP1 substrate, estrone-3-sulfate (E3S). Biphalin brain permeability was quantified while using a highly sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. It was found that iPSC-BMECs expressed OATP1. In vitro studies showed that biphalin BBB uptake and transport decreased in the presence of an OATP1 specific substrate. It was also observed that OGD and reperfusion modulate the expression and function of OATP1 in BMECs. This study strongly demonstrates that OATP1 contributes to the transport of biphalin across the BBB and increased expression of OATP1 during OGD-reperfusion could provide a novel target for improving ischemic brain drug delivery of biphalin or other potential neurotherapeutics that have affinity to this BBB transporter.
Collapse
|
555
|
Yang GJ, Liu H, Ma DL, Leung CH. Rebalancing metal dyshomeostasis for Alzheimer's disease therapy. J Biol Inorg Chem 2019; 24:1159-1170. [PMID: 31486954 DOI: 10.1007/s00775-019-01712-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/29/2019] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is a type of neurodegenerative malady that is associated with the accumulation of amyloid plaques. Metal ions are critical for the development and upkeep of brain activity, but metal dyshomeostasis can contribute to the development of neurodegenerative diseases, including AD. This review highlights the association between metal dyshomeostasis and AD pathology, the feasibility of rebalancing metal homeostasis as a therapeutic strategy for AD, and a survey of current drugs that action via rebalancing metal homeostasis. Finally, we discuss the challenges that should be overcome by researchers in the future to enable the practical use of metal homeostasis rebalancing agents for clinical application.
Collapse
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China
| | - Hao Liu
- Department of Chemistry, Hong Kong Baptist University, Kowloon, 999077, Hong Kong SAR, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon, 999077, Hong Kong SAR, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China.
| |
Collapse
|
556
|
Kang YY, Song J, Kim JY, Jung H, Yeo WS, Lim Y, Mok H. Byakangelicin as a modulator for improved distribution and bioactivity of natural compounds and synthetic drugs in the brain. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 62:152963. [PMID: 31128487 DOI: 10.1016/j.phymed.2019.152963] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/08/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The elucidation of the biological roles of individual active compounds in terms of their in vivo bio-distribution and bioactivity could provide crucial information to understand how natural compounds work together as treatments for diseases. PURPOSE We examined the functional roles of Byakangelicin (Byn) to improve the brain accumulation of active compounds, e.g., umbelliferone (Umb), curcumin (Cur), and doxorubicin (Dox), and consequently to enhance their biological activities. METHODS Active compounds were administered intravenously to mice, with or without Byn, after which organs were isolated and visualized for their ex vivo fluorescence imaging to determine the bio-distribution of each active compound in vivo. For the in vivo bioactivity, Cur, either with or without Byn, was administered to a lipopolysaccharide (LPS)-induced neuro-inflammation model for 5 days, and its anti-inflammatory effects were examined by ELISA using a brain homogenate and serum. RESULTS We successfully demonstrated that the levels of active compounds (Umb, Cur, and Dox) in the brain, lung, and pancreas were greatly elevated by the addition of Byn via direct ex vivo fluorescence monitoring. In addition, sufficient accumulation of the active compound, Cur, greatly reduced LPS-induced neuro-inflammation in vivo. CONCLUSION Byn could serve as a modulator to allow improved brain accumulation of diverse active compounds (Umb, Cur, and Dox) and enhanced therapeutic effects.
Collapse
Affiliation(s)
- Yoon Young Kang
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jihyeon Song
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jun Yeong Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Heesun Jung
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Woon-Seok Yeo
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yoongho Lim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyejung Mok
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
557
|
Gothwal A, Singh H, Jain SK, Dutta A, Borah A, Gupta U. Behavioral and Biochemical Implications of Dendrimeric Rivastigmine in Memory-Deficit and Alzheimer's Induced Rodents. ACS Chem Neurosci 2019; 10:3789-3795. [PMID: 31257860 DOI: 10.1021/acschemneuro.9b00286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Exploration of dendrimers for effective drug delivery is giving promising results. The present study was designed and performed to explore the dendrimeric (polyamidoamine-lactoferrin; PAMAM-Lf) formulations for the effective rivastigmine (RIV) delivery against the Alzheimer's induced animal model using lactoferrin as the targeting ligand. RIV delivery through PAMAM-Lf conjugates was highly efficient in the Alzheimer's induced animal model. PAMAM-Lf conjugates also efficiently improved behavioral responses against the chemical memory deficit animal model as well as the Alzheimer's induced animal model, separately. Behavioral responses revealed that motor and spatial memories were significantly improved (p < 0.005) over those from RIV alone. The latency time of PAMAM-Lf-RIV was 1.3 times higher over that of the pure RIV in the rotarod protocol, while it was 2.1-fold reduced in the Morris water maze test. The study also attempted to explore the mechanistic aspect of improved efficacy through biochemical evaluation (AChE histo-enzymology), which reveals that levels of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid were unaffected, but AChE activity was improved for all forms of RIV. Conclusively, PAMAM-Lf conjugates were able to deliver RIV effectively against the Alzheimer's induced animal model. This was further strengthened with the positive results obtained with the behavioral studies of memory-deficit animals and disease-induced animals. The study is among the first studies which report RIV delivery against the Alzheimer's induced animal model using PAMAM dendrimers.
Collapse
Affiliation(s)
- Avinash Gothwal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, India-305817
| | - Harmanpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India-143005
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India-143005
| | - Ankumoni Dutta
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India-788011
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India-788011
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, India-305817
| |
Collapse
|
558
|
Sitia L, Catelani T, Guarnieri D, Pompa PP. In Vitro Blood-Brain Barrier Models for Nanomedicine: Particle-Specific Effects and Methodological Drawbacks. ACS APPLIED BIO MATERIALS 2019; 2:3279-3289. [PMID: 35030770 DOI: 10.1021/acsabm.9b00305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Predicting the therapeutic efficacy of a nanocarrier, in a rapid and cost-effective way, is pivotal for the drug delivery to the central nervous system (CNS). In this context, in vitro testing platforms, like the transwell systems, offer numerous advantages to study the passage through the blood-brain barrier (BBB), such as overcoming ethical and methodological issues of in vivo models. However, the use of different transwell filters and nanocarriers with various physical-chemical features makes it difficult to assess the nanocarrier efficacy and achieve data reproducibility. In this work, we performed a systematic study to elucidate the role of the most widely used transwell filters in affecting the passage of nanocarriers, as a function of filter pore size and density. In particular, the transport of carboxyl- and amine-modified 100 nm polystyrene nanoparticles (NPs), chosen as model nanocarriers, was quantified and compared to the behavior of Lucifer yellow (LY), a molecular marker of paracellular transport. Results indicate that the filter type affects the growth and formation of the confluent endothelial barrier, as well as the transport of NPs. Interestingly, the in situ dispersion of NPs was found to play a key role in governing their passage through the filters, both in absence and in presence of the cellular barrier. By framing the underlying nanobiointeractions, we found that particle-specific effects modulated cellular uptake and barrier intracellular distribution, eventually governing transcytosis through their interplay with "size exclusion effects" by the porous filters. This study highlights the importance of a careful evaluation of the physical-chemical profile of the tested nanocarrier along with filter parameters for a correct methodological approach to test BBB permeability in nanomedicine.
Collapse
Affiliation(s)
- Leopoldo Sitia
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), via Morego 30, Genova 16163, Italy.,Department of Biomedical and Clinical Sciences "L. Sacco″, Università Degli Studi di Milano, via G. B. Grassi 74, Milano 20157, Italy
| | - Tiziano Catelani
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy.,Piattaforma Interdipartimentale di Microscopia, Università Degli Studi di Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy
| | - Daniela Guarnieri
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), via Morego 30, Genova 16163, Italy.,Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, via Giovanni Paolo II 132, Fisciano, Salerno I-84084, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), via Morego 30, Genova 16163, Italy
| |
Collapse
|
559
|
Nanoformulation properties, characterization, and behavior in complex biological matrices: Challenges and opportunities for brain-targeted drug delivery applications and enhanced translational potential. Adv Drug Deliv Rev 2019; 148:146-180. [PMID: 30797956 DOI: 10.1016/j.addr.2019.02.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/08/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
Abstract
Nanocarriers (synthetic/cell-based have attracted enormous interest for various therapeutic indications, including neurodegenerative disorders. A broader understanding of the impact of nanomedicines design is now required to enhance their translational potential. Nanoformulations in vivo journey is significantly affected by their physicochemical properties including the size, shape, hydrophobicity, elasticity, and surface charge/chemistry/morphology, which play a role as an interface with the biological environment. Understanding protein corona formation is crucial in characterizing nanocarriers and evaluating their interactions with biological systems. In this review, the types and properties of the brain-targeted nanocarriers are discussed. The biological factors and nanocarriers properties affecting their in vivo behavior are elaborated. The compositional description of cell culture and biological matrices, including proteins potentially relevant to protein corona built-up on nanoformulation especially for brain administration, is provided. Analytical techniques of characterizing nanocarriers in complex matrices, their advantages, limitations, and implementation challenges in industrial GMP environment are discussed. The uses of orthogonal complementary characterization approaches of nanocarriers are also covered.
Collapse
|
560
|
Kwon S, Yoo KH, Sym SJ, Khang D. Mesenchymal stem cell therapy assisted by nanotechnology: a possible combinational treatment for brain tumor and central nerve regeneration. Int J Nanomedicine 2019; 14:5925-5942. [PMID: 31534331 PMCID: PMC6681156 DOI: 10.2147/ijn.s217923] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) intrinsically possess unique features that not only help in their migration towards the tumor-rich environment but they also secrete versatile types of secretomes to induce nerve regeneration and analgesic effects at inflammatory sites. As a matter of course, engineering MSCs to enhance their intrinsic abilities is growing in interest in the oncology and regenerative field. However, the concern of possible tumorigenesis of genetically modified MSCs prompted the development of non-viral transfected MSCs armed with nanotechnology for more effective cancer and regenerative treatment. Despite the fact that a large number of successful studies have expanded our current knowledge in tumor-specific targeting, targeting damaged brain site remains enigmatic due to the presence of a blood–brain barrier (BBB). A BBB is a barrier that separates blood from brain, but MSCs with intrinsic features of transmigration across the BBB can efficiently deliver desired drugs to target sites. Importantly, MSCs, when mediated by nanoparticles, can further enhance tumor tropism and can regenerate the damaged neurons in the central nervous system through the promotion of axon growth. This review highlights the homing and nerve regenerative abilities of MSCs in order to provide a better understanding of potential cell therapeutic applications of non-genetically engineered MSCs with the aid of nanotechnology.
Collapse
Affiliation(s)
- Song Kwon
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea
| | - Kwai Han Yoo
- Department of Internal Medicine, Division of Hematology, School of Medicine, Gachon University Gil Medical Center, Incheon, 21565, South Korea
| | - Sun Jin Sym
- Department of Internal Medicine, Division of Hematology, School of Medicine, Gachon University Gil Medical Center, Incheon, 21565, South Korea
| | - Dongwoo Khang
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea.,Department of Gachon Advanced Institute for Health Science & Technology (Gaihst), Gachon University, Incheon 21999, South Korea.,Department of Physiology, School of Medicine, Gachon University, Incheon 21999, South Korea
| |
Collapse
|
561
|
Jojo GM, Kuppusamy G, Selvaraj K, Baruah UK. Prospective of managing impaired brain insulin signalling in late onset Alzheimers disease with excisting diabetic drugs. J Diabetes Metab Disord 2019; 18:229-242. [PMID: 31275894 DOI: 10.1007/s40200-019-00405-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/12/2019] [Indexed: 12/25/2022]
Abstract
Late onset Alzheimer's disease (AD) is the most common cause of dementia among elderly. The exact cause of the disease is until now unknown and there is no complete cure for the disease. Growing evidence suggest that AD is a metabolic disorder associated with impairment in brain insulin signalling. These findings enriched the scope for the repurposing of diabetic drugs in AD management. Even though many of these drugs are moving in a positive direction in the ongoing clinical studies, the extent of the success has seen to influence by several properties of these drugs since they were originally designed to manage the peripheral insulin resistance. In depth understandings of these properties is hence highly significant to optimise the use of diabetic drugs in the clinical management of AD; which is the primary aim of the present review article.
Collapse
Affiliation(s)
- Gifty M Jojo
- Department of Pharmaceutics, JSS College of pharmacy, Ootacamund, JSS Academy of Higher Education & Research, Mysore, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of pharmacy, Ootacamund, JSS Academy of Higher Education & Research, Mysore, India
| | - Kousalya Selvaraj
- Department of Pharmaceutics, JSS College of pharmacy, Ootacamund, JSS Academy of Higher Education & Research, Mysore, India
| | - Uday Krishna Baruah
- Department of Pharmaceutics, JSS College of pharmacy, Ootacamund, JSS Academy of Higher Education & Research, Mysore, India
| |
Collapse
|
562
|
Brown LS, Foster CG, Courtney JM, King NE, Howells DW, Sutherland BA. Pericytes and Neurovascular Function in the Healthy and Diseased Brain. Front Cell Neurosci 2019; 13:282. [PMID: 31316352 PMCID: PMC6611154 DOI: 10.3389/fncel.2019.00282] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
Pericytes are multi-functional cells embedded within the walls of capillaries throughout the body, including the brain. Pericytes were first identified in the 1870s, but little attention was paid to them during the following century. More recently, numerous vascular functions of pericytes have been identified including regulation of cerebral blood flow, maintenance of the blood-brain barrier (BBB), and control of vascular development and angiogenesis. Pericytes can also facilitate neuroinflammatory processes and possess stem cell-like properties. Pericytes form part of the neurovascular unit (NVU), a collection of cells that control interactions between neurons and the cerebral vasculature to meet the energy demands of the brain. Pericyte structure, expression profile, and function in the brain differ depending on their location along the vascular bed. Until recently, it has been difficult to accurately define the sub-types of pericytes, or to specifically target pericytes with pharmaceutical agents, but emerging techniques both in vitro and in vivo will improve investigation of pericytes and allow for the identification of their possible roles in diseases. Pericyte dysfunction is increasingly recognized as a contributor to the progression of vascular diseases such as stroke and neurodegenerative diseases such as Alzheimer's disease. The therapeutic potential of pericytes to repair cerebral blood vessels and promote angiogenesis due to their ability to behave like stem cells has recently been brought to light. Here, we review the history of pericyte research, the present techniques used to study pericytes in the brain, and current research advancements to characterize and therapeutically target pericytes in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Brad A. Sutherland
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
563
|
Singh A, Thotakura N, Singh B, Lohan S, Negi P, Chitkara D, Raza K. Delivery of Docetaxel to Brain Employing Piperine-Tagged PLGA-Aspartic Acid Polymeric Micelles: Improved Cytotoxic and Pharmacokinetic Profiles. AAPS PharmSciTech 2019; 20:220. [PMID: 31201588 DOI: 10.1208/s12249-019-1426-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/21/2019] [Indexed: 12/25/2022] Open
Abstract
In this study, poly-(lactic-co-glycolic) acid (PLGA) was conjugated with aspartic acid and was characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopy. Docetaxel-loaded polymeric micelles were prepared, and piperine was tagged. The neuroblastoma cytotoxicity studies revealed a substantially higher cytotoxic potential of the developed system to that of plain docetaxel, which was further corroborated by cellular uptake employing confocal laser scanning microscopy. The hemocompatible system was able to enhance the pharmacokinetic profile in terms of 6.5-fold increment in bioavailability followed by a 3.5 times increase in the retention time in comparison with the plain drug. The single-point brain bioavailability of docetaxel was amplified by 3.3-folds, signifying a better uptake and distribution to brain employing these carriers. The findings are unique as the physically adsorbed piperine was released before the DTX, increasing the propensity of curbing the CYP3A4 enzyme, which plays a vital role in the degradation of docetaxel. Meanwhile, piperine might have compromised the P-gp efflux mechanism, which can be ascribed to the enhanced retention of the drug at the target site. The elevated target site concentrations and extended residence by a biocompatible nanocarrier supplemented with co-delivery of piperine inherit immense promises to deliver this BCS class IV drug more safely and effectively.
Collapse
|
564
|
Puris E, Gynther M, de Lange EC, Auriola S, Hammarlund-Udenaes M, Huttunen KM, Loryan I. Mechanistic Study on the Use of the l-Type Amino Acid Transporter 1 for Brain Intracellular Delivery of Ketoprofen via Prodrug: A Novel Approach Supporting the Development of Prodrugs for Intracellular Targets. Mol Pharm 2019; 16:3261-3274. [DOI: 10.1021/acs.molpharmaceut.9b00502] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elena Puris
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Mikko Gynther
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Elizabeth C.M. de Lange
- Predictive Pharmacology Group, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, 2311 EZ Leiden, The Netherlands
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Margareta Hammarlund-Udenaes
- Translational PKPD Group, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124 Uppsala, Sweden
| | - Kristiina M. Huttunen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Irena Loryan
- Translational PKPD Group, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124 Uppsala, Sweden
| |
Collapse
|
565
|
LeWitt PA, Lipsman N, Kordower JH. Focused ultrasound opening of the blood–brain barrier for treatment of Parkinson's disease. Mov Disord 2019; 34:1274-1278. [PMID: 31136023 DOI: 10.1002/mds.27722] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Peter A. LeWitt
- Departments of NeurologyHenry Ford Hospital Detroit Michigan USA
- Wayne State University School of Medicine West Bloomfield Michigan
| | - Nir Lipsman
- Sunnybrook Health Sciences Centre and Sunnybrook Research Institute Toronto Ontario Canada
- Department of SurgeryUniversity of Toronto Toronto Ontario Canada
| | - Jeffrey H. Kordower
- Department of Neurological SciencesRush University School of Medicine Chicago Illinois USA
| |
Collapse
|
566
|
Nan X, Wang J, Liu HN, Wong STC, Zhao H. Epithelial-Mesenchymal Plasticity in Organotropism Metastasis and Tumor Immune Escape. J Clin Med 2019; 8:jcm8050747. [PMID: 31130637 PMCID: PMC6571585 DOI: 10.3390/jcm8050747] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
Most cancer deaths are due to metastasis, and almost all cancers have their preferential metastatic organs, known as “organotropism metastasis”. Epithelial-mesenchymal plasticity has been described as heterogeneous and dynamic cellular differentiation states, supported by emerging experimental evidence from both molecular and morphological levels. Many molecular factors regulating epithelial-mesenchymal plasticity have tissue-specific and non-redundant properties. Reciprocally, cellular epithelial-mesenchymal plasticity contributes to shaping organ-specific pre-metastatic niche (PMN) including distinct local immune landscapes, mainly through secreted bioactive molecular factors. Here, we summarize recent progress on the involvement of tumor epithelial-mesenchymal plasticity in driving organotropic metastasis and regulating the function of different immune cells in organ-specific metastasis.
Collapse
Affiliation(s)
- Xiang Nan
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei 230052, China.
- Department of Systems Medicine and Bioengineering, Houston Methodist Cancer Center, Weill Cornell Medicine, Houston, TX 77030, USA.
| | - Jiang Wang
- Department of Orthopedics, Tongji Hospital, Wuhan 430050, China.
| | - Haowen Nikola Liu
- Department of Systems Medicine and Bioengineering, Houston Methodist Cancer Center, Weill Cornell Medicine, Houston, TX 77030, USA.
| | - Stephen T C Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Cancer Center, Weill Cornell Medicine, Houston, TX 77030, USA.
| | - Hong Zhao
- Department of Systems Medicine and Bioengineering, Houston Methodist Cancer Center, Weill Cornell Medicine, Houston, TX 77030, USA.
| |
Collapse
|
567
|
Kim J, Ahn SI, Kim Y. Nanotherapeutics Engineered to Cross the Blood-Brain Barrier for Advanced Drug Delivery to the Central Nervous System. J IND ENG CHEM 2019; 73:8-18. [PMID: 31588177 PMCID: PMC6777578 DOI: 10.1016/j.jiec.2019.01.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Drug delivery to the brain remains challenging mainly due to the blood-brain barrier (BBB) that regulates the entrance of substances to the brain. Advances in nanotechnology have enabled the engineering of nanomedicines for biomedical applications including enhanced drug delivery into the brain. In this review, we describe strategies of nanomedicines engineered to traverse the BBB and deliver therapeutic molecules to target brain sites. We highlight the representative applications with materials including polymers, lipids, and inorganic elements for brain drug delivery. We finalize this review with the current challenges and future perspective of nanotherapeutics for advanced drug delivery to the brain.
Collapse
Affiliation(s)
- Jinhwan Kim
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Institute for Electronics and Nanotechnology (IEN), Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Song Ih Ahn
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Institute for Electronics and Nanotechnology (IEN), Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - YongTae Kim
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Institute for Electronics and Nanotechnology (IEN), Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
568
|
Jafari B, Pourseif MM, Barar J, Rafi MA, Omidi Y. Peptide-mediated drug delivery across the blood-brain barrier for targeting brain tumors. Expert Opin Drug Deliv 2019; 16:583-605. [DOI: 10.1080/17425247.2019.1614911] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Behzad Jafari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz,
Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia,
Iran
| | - Mohammad M. Pourseif
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz,
Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz,
Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz,
Iran
| | - Mohammad A. Rafi
- Department of Neurology, College of Medicine, Thomas Jefferson University, Philadelphia,
PA, USA
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz,
Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz,
Iran
| |
Collapse
|
569
|
Hanna J, Hossain GS, Kocerha J. The Potential for microRNA Therapeutics and Clinical Research. Front Genet 2019; 10:478. [PMID: 31156715 PMCID: PMC6532434 DOI: 10.3389/fgene.2019.00478] [Citation(s) in RCA: 547] [Impact Index Per Article: 91.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/03/2019] [Indexed: 12/15/2022] Open
Abstract
As FDA-approved small RNA drugs start to enter clinical medicine, ongoing studies for the microRNA (miRNA) class of small RNAs expand its preclinical and clinical research applications. A growing number of reports suggest a significant utility of miRNAs as biomarkers for pathogenic conditions, modulators of drug resistance, and/or as drugs for medical intervention in almost all human health conditions. The pleiotropic nature of this class of nonprotein-coding RNAs makes them particularly attractive drug targets for diseases with a multifactorial origin and no current effective treatments. As candidate miRNAs begin to proceed toward initiation and completion of potential phase 3 and 4 trials in the future, the landscape of both diagnostic and interventional medicine will arguably continue to evolve. In this mini-review, we discuss miRNA drug discovery development and their current status in clinical trials.
Collapse
Affiliation(s)
- Johora Hanna
- Nova Clinical Research, LLC, Bradenton, FL, United States
| | - Gazi S Hossain
- Nova Clinical Research, LLC, Bradenton, FL, United States
| | - Jannet Kocerha
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, GA, United States
| |
Collapse
|
570
|
Liu Y, Li L, Qiu M, Tan L, Zhang M, Li J, Zhu H, Jiang S, Su X, Li A. Renal and cerebral RAS interaction contributes to diabetic kidney disease. Am J Transl Res 2019; 11:2925-2939. [PMID: 31217864 PMCID: PMC6556645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
The diabetes mellitus has posed a grave threat on human health, and is bound to result in renal trauma by uncertain mechanisms. Increasing evidences indicated that the activation of the renin-angiotensin system plays a pivotal role during the progression of diabetic kidney disease. In streptozotocin (STZ)-induced type 1 diabetic rat model, the losartan (a selective angiotensin II type 1 (AT1) receptor antagonist) and tempol (4-Hydroxy-TEMPO, reactive oxygen species scavenger) were administrated through intracerebroventricular injection or intragastric gavage. Intracerebroventricular administration of clonidine or renal denervation was carried out to block sympathetic nerve traffic. Compared with non-diabetic rats, the reno-cerebral axis was over-activated, including activity of renin-angiotensin system (RAS), oxidative stress, and sympathetic activity in diabetic rats. Central blockade of RAS inhibited the central oxidative stress and sympathetic activity, which led to decrease of intrarenal RAS activity and oxidative stress. Meanwhile, central administration of tempol reduced brain RAS, thus downregulated renal RAS activity and oxidative stress. Importantly, oral administration by intragastric gavage of high dose of losartan and tempol achieved the same effect. The results suggested that there is a cross-talk between renal and cerebral RAS/reactive oxygen species, contributing to the progression of diabetic kidney disease. The subfornical organ, paraventricular nucleus, and supraoptic nucleus in the forebrain also play a key role in development and progression of renal trauma through reno-cerebral reflex axis.
Collapse
Affiliation(s)
- Yufeng Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
- Nephropathy Department, Tungwah Hospital of Sun Yat-sen UniversityDongguan 523110, China
| | - Lanying Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Minzi Qiu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Lishan Tan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Mengbi Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Jiawen Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Hongguo Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Shaoling Jiang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| | - Xiaoyan Su
- Nephropathy Department, Tungwah Hospital of Sun Yat-sen UniversityDongguan 523110, China
| | - Aiqing Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| |
Collapse
|
571
|
Thorat ND, Townely H, Brennan G, Parchur AK, Silien C, Bauer J, Tofail SA. Progress in Remotely Triggered Hybrid Nanostructures for Next-Generation Brain Cancer Theranostics. ACS Biomater Sci Eng 2019; 5:2669-2687. [DOI: 10.1021/acsbiomaterials.8b01173] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nanasaheb D. Thorat
- Modelling Simulation and Innovative Characterisation (MOSAIC), Department of Physics and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, wybrzeże Stanisława Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Helen Townely
- Nuffield Department of Obstetrics and Gynaecology, Medical Science Division, John Radcliffe Hospital University of Oxford, Oxford OX3 9DU United Kingdom
| | - Grace Brennan
- Modelling Simulation and Innovative Characterisation (MOSAIC), Department of Physics and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Abdul K. Parchur
- Department of Radiology, Medical College of Wisconsin, 9200 W Wisconsin Avenue, Milwaukee, Wisconsin 53226, United States
| | - Christophe Silien
- Modelling Simulation and Innovative Characterisation (MOSAIC), Department of Physics and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Joanna Bauer
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, wybrzeże Stanisława Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Syed A.M. Tofail
- Modelling Simulation and Innovative Characterisation (MOSAIC), Department of Physics and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| |
Collapse
|
572
|
Wu VM, Huynh E, Tang S, Uskoković V. Brain and bone cancer targeting by a ferrofluid composed of superparamagnetic iron-oxide/silica/carbon nanoparticles (earthicles). Acta Biomater 2019; 88:422-447. [PMID: 30711662 DOI: 10.1016/j.actbio.2019.01.064] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/11/2019] [Accepted: 01/30/2019] [Indexed: 01/02/2023]
Abstract
Despite the advances in molecularly targeted therapies, delivery across the blood-brain barrier (BBB) and the targeting of brain tumors remains a challenge. Like brain, bone is a common site of metastasis and requires therapies capable of discerning the tumor from its healthy cellular milieu. To tackle these challenges, we made a variation on the previously proposed concept of the earthicle and fabricated an aqueous, surfactant-free ferrofluid containing superparamagnetic iron oxide nanoparticles (SPIONs) coated with silicate mesolayers and carbon shells, having 13 nm in size on average. Nanoparticles were synthesized hydrothermally and characterized using a range of spectroscopic, diffractometric, hydrodynamic and electron microscopy techniques. The double coating on SPIONs affected a number of physicochemical and biological properties, including colloidal stability and cancer targeting efficacy. Nanoparticles decreased the viability of glioblastoma and osteosarcoma cells and tumors more than that of their primary and non-transformed analogues. They showed a greater preference for cancer cells because of a higher rate of uptake by these cells and a pronounced adherence to cancer cell membrane. Even in an ultralow alternate magnetic field, nanoparticles generated sufficient heat to cause tumor death. Nanoparticles in MDCK-MDR1 BBB model caused mislocalization of claudin-1 at the tight junctions, underexpression of ZO-1 and no effect on occludin-1 and transepithelial resistance. Nanoparticles were detected in the basolateral compartments and examination of LAMP1 demonstrated that nanoparticles escaped the lysosome, traversed the BBB transcellularly and localized to the optic lobes of the third instar larval brains of Drosophila melanogaster. The passage was noninvasive and caused no adverse systemic effects to the animals. In conclusion, these nanoparticulate ferrofluids preferentially bind to cancer cells and, hence, exhibit a greater toxicity in these cells compared to the primary cells. They are also effective against solid tumors in vitro, can cross the BBB in Drosophila, and are nontoxic based on the developmental studies of flies raised in ferrofluid-infused media. STATEMENT OF SIGNIFICANCE: We demonstrate that a novel, hydrothermally synthesized composite nanoparticle-based ferrofluid is effective in reducing the viability of osteosarcoma and glioblastoma cells in vitro, while having minimal effects on primary cell lines. In 3D tumor spheroids, nanoparticles greatly reduced the metastatic migration of cancer cells, while the tumor viability was reduced compared to the control group by applying magnetic hyperthermia to nanoparticle-treated spheroids. Both in vitro and in vivo models of the blood-brain barrier evidence the ability of nanoparticles to cross the barrier and localize to the brain tissue. These composite nanoparticles show great promise as an anticancer biomaterial for the treatment of different types of cancer and may serve as an alternative or addendum to traditional chemotherapies.
Collapse
Affiliation(s)
- Victoria M Wu
- Advanced Materials and Nanobiotechnology Laboratory, Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA 92618-1908, USA
| | - Eric Huynh
- Advanced Materials and Nanobiotechnology Laboratory, Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA 92618-1908, USA
| | - Sean Tang
- Advanced Materials and Nanobiotechnology Laboratory, Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA 92618-1908, USA
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA 92618-1908, USA; Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, IL 60607-7052, USA.
| |
Collapse
|
573
|
Chaturvedi S, Rashid M, Malik MY, Agarwal A, Singh SK, Gayen JR, Wahajuddin M. Neuropharmacokinetics: a bridging tool between CNS drug development and therapeutic outcome. Drug Discov Today 2019; 24:1166-1175. [PMID: 30898661 DOI: 10.1016/j.drudis.2019.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/11/2019] [Accepted: 02/19/2019] [Indexed: 12/27/2022]
Abstract
WHO classified neurological disorders to be among 6.3% of the global disease burden. Among the most central aspects of CNS drug development is the ability of novel molecules to cross the blood-brain barrier (BBB) to reach the target site over a desired time period for therapeutic action. Based on various aspects, brain pharmacokinetics is considered to be one of the foremost perspectives for the higher attrition rate of CNS biologics. Although drug traits are important, the BBB and blood-cerebrospinal fluid barrier together with transporters become the mechanistic approach behind CNS drug delivery. The present review emphasizes neuropharmacokinetic parameters, their importance, an assessment approach and the vast effect of transporters to brain drug distribution for CNS drug discovery.
Collapse
Affiliation(s)
- Swati Chaturvedi
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmaceutics and Pharmacokinetics Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Mamunur Rashid
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Mohd Yaseen Malik
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmaceutics and Pharmacokinetics Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Arun Agarwal
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmaceutics and Pharmacokinetics Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sandeep K Singh
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmaceutics and Pharmacokinetics Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Jiaur R Gayen
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmaceutics and Pharmacokinetics Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Muhammad Wahajuddin
- Academy of Scientific and Innovative Research, New Delhi, India; Pharmaceutics and Pharmacokinetics Division, CSIR - Central Drug Research Institute, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
574
|
Weber L, Wang X, Ren R, Wei X, Zhao G, Yang J, Yuan H, Pang H, Wang H, Wang D. The Development of a Macromolecular Analgesic for Arthritic Pain. Mol Pharm 2019; 16:1234-1244. [PMID: 30702897 PMCID: PMC6413733 DOI: 10.1021/acs.molpharmaceut.8b01197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The addictive potential of clinically used opioids as a result of their direct action on the dopaminergic reward system in the brain has limited their application. In an attempt to reduce negative side effects as well as to improve the overall effectiveness of these analgesics, we have designed, synthesized, and evaluated an N-(2-hydroxypropyl)methacrylamide (HPMA)-based macromolecular prodrug of hydromorphone (HMP), a commonly used opioid. To this end, P-HMP was synthesized via RAFT polymerization and a subsequent polymer analogous reaction. Its interaction with inflammatory cells in arthritic joints was evaluated in vitro using a RAW 264.7 cell culture, and subsequent confocal microscopy analysis confirmed that P-HMP could be internalized by the cells via endocytosis. In vivo imaging studies indicated that the prodrug can passively target the arthritic joint after systemic administration in a rodent model of monoarticular adjuvant-induced arthritis (MAA). The inflammatory pain-alleviating properties of the prodrug were assessed in MAA rats using the incapacitance test and were observed to be similar to dose-equivalent HMP. Analgesia through mechanisms at the spinal cord level was further measured using the tail flick test, and it was determined that the prodrug significantly reduced spinal cord analgesia versus free HMP, further validating the peripheral restriction of the macromolecular prodrug. Immunohistochemical analysis of cellular uptake of the P-HMP within the MAA knee joint proved the internalization of the prodrug by phagocytic synoviocytes, colocalized with HMP's target receptor as well as with pain-modulating ion channels. Therefore, it can be concluded that the novel inflammation-targeting polymeric prodrug of HMP (P-HMP) has the potential to be developed as an effective and safe analgesic agent for musculoskeletal pain.
Collapse
Affiliation(s)
- Laura Weber
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xiaobei Wang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rungguo Ren
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xin Wei
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gang Zhao
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Junxiao Yang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Hongjiang Yuan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Huiling Pang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Hanjun Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Dong Wang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
575
|
Vanden-Hehir S, Tipping WJ, Lee M, Brunton VG, Williams A, Hulme AN. Raman Imaging of Nanocarriers for Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E341. [PMID: 30832394 PMCID: PMC6474004 DOI: 10.3390/nano9030341] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/31/2022]
Abstract
The efficacy of pharmaceutical agents can be greatly improved through nanocarrier delivery. Encapsulation of pharmaceutical agents into a nanocarrier can enhance their bioavailability and biocompatibility, whilst also facilitating targeted drug delivery to specific locations within the body. However, detailed understanding of the in vivo activity of the nanocarrier-drug conjugate is required prior to regulatory approval as a safe and effective treatment strategy. A comprehensive understanding of how nanocarriers travel to, and interact with, the intended target is required in order to optimize the dosing strategy, reduce potential off-target effects, and unwanted toxic effects. Raman spectroscopy has received much interest as a mechanism for label-free, non-invasive imaging of nanocarrier modes of action in vivo. Advanced Raman imaging techniques, including coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS), are paving the way for rigorous evaluation of nanocarrier activity at the single-cell level. This review focuses on the development of Raman imaging techniques to study organic nanocarrier delivery in cells and tissues.
Collapse
Affiliation(s)
- Sally Vanden-Hehir
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | - William J Tipping
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | - Martin Lee
- Edinburgh Cancer Research UK Centre, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK.
| | - Valerie G Brunton
- Edinburgh Cancer Research UK Centre, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK.
| | - Anna Williams
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| | - Alison N Hulme
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK.
| |
Collapse
|
576
|
Teleanu DM, Chircov C, Grumezescu AM, Teleanu RI. Neuronanomedicine: An Up-to-Date Overview. Pharmaceutics 2019; 11:E101. [PMID: 30813646 PMCID: PMC6471564 DOI: 10.3390/pharmaceutics11030101] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/31/2022] Open
Abstract
The field of neuronanomedicine has recently emerged as the bridge between neurological sciences and nanotechnology. The possibilities of this novel perspective are promising for the diagnosis and treatment strategies of severe central nervous system disorders. Therefore, the development of nano-vehicles capable of permeating the blood⁻brain barrier (BBB) and reaching the brain parenchyma may lead to breakthrough therapies that could improve life expectancy and quality of the patients diagnosed with brain disorders. The aim of this review is to summarize the recently developed organic, inorganic, and biological nanocarriers that could be used for the delivery of imaging and therapeutic agents to the brain, as well as the latest studies on the use of nanomaterials in brain cancer, neurodegenerative diseases, and stroke. Additionally, the main challenges and limitations associated with the use of these nanocarriers are briefly presented.
Collapse
Affiliation(s)
- Daniel Mihai Teleanu
- Emergency University Hospital, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Cristina Chircov
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 060042 Bucharest, Romania.
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 060042Bucharest, Romania.
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 060042Bucharest, Romania.
- ICUB-Research Institute of University of Bucharest, University of Bucharest, 36-46 M. Kogalniceanu Blvd., 050107 Bucharest, Romania.
| | - Raluca Ioana Teleanu
- "Dr. Victor Gomoiu" Clinical Children's Hospital, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|
577
|
Veldhuijzen van Zanten SEM, De Witt Hamer PC, van Dongen GAMS. Brain Access of Monoclonal Antibodies as Imaged and Quantified by 89Zr-Antibody PET: Perspectives for Treatment of Brain Diseases. J Nucl Med 2019; 60:615-616. [PMID: 30737301 DOI: 10.2967/jnumed.118.220939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/13/2019] [Indexed: 01/10/2023] Open
Affiliation(s)
- Sophie E M Veldhuijzen van Zanten
- Department of Pediatrics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Philip C De Witt Hamer
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; and
| | - Guus A M S van Dongen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
578
|
Rusiecka I, Ruczyński J, Kozłowska A, Backtrog E, Mucha P, Kocić I, Rekowski P. TP10-Dopamine Conjugate as a Potential Therapeutic Agent in the Treatment of Parkinson's Disease. Bioconjug Chem 2019; 30:760-774. [PMID: 30653302 DOI: 10.1021/acs.bioconjchem.8b00894] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Parkinson's disease (PD) is a common progressive neurodegenerative disorder for which the current treatment is not fully satisfactory. One of the major drawbacks of current PD therapy is poor penetration of drugs across the blood-brain barrier (BBB). In recent years, cell-penetrating peptides (CPPs) such as Tat, SynB, or TP10 have gained great interest due to their ability to penetrate cell membranes and to deliver different cargos to their targets including the central nervous system (CNS). However, there is no data with respect to the use of CPPs as drug carriers to the brain for the treatment of PD. In the presented research, the covalent TP10-dopamine conjugate was synthesized and its pharmacological properties were characterized in terms of its ability to penetrate the BBB and anti-parkinsonian activity. The results showed that dopamine (DA) in the form of a conjugate with TP10 evidently gained access to the brain tissue, exhibited low susceptibility to O-methylation reaction by catechol- O-methyltransferase (lower than that of DA), possessed a relatively high affinity to both dopamine D1 and D2 receptors (in the case of D1, a much higher than that of DA), and showed anti-parkinsonian activity (higher than that of l-DOPA) in the MPTP-induced preclinical animal model of PD. The presented results prove that the conjugation of TP10 with DA may be a good starting point for the development of a new strategy for the treatment of PD.
Collapse
Affiliation(s)
- Izabela Rusiecka
- Department of Pharmacology , Medical University of Gdańsk , Dębowa 23 , 80-204 Gdańsk , Poland
| | - Jarosław Ruczyński
- Faculty of Chemistry , University of Gdańsk , Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Agnieszka Kozłowska
- Faculty of Chemistry , University of Gdańsk , Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Ewelina Backtrog
- Faculty of Chemistry , University of Gdańsk , Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Piotr Mucha
- Faculty of Chemistry , University of Gdańsk , Wita Stwosza 63 , 80-308 Gdańsk , Poland
| | - Ivan Kocić
- Department of Pharmacology , Medical University of Gdańsk , Dębowa 23 , 80-204 Gdańsk , Poland
| | - Piotr Rekowski
- Faculty of Chemistry , University of Gdańsk , Wita Stwosza 63 , 80-308 Gdańsk , Poland
| |
Collapse
|
579
|
Guan J, Jiang Z, Wang M, Liu Y, Liu J, Yang Y, Ding T, Lu W, Gao C, Qian J, Zhan C. Short Peptide-Mediated Brain-Targeted Drug Delivery with Enhanced Immunocompatibility. Mol Pharm 2019; 16:907-913. [PMID: 30666875 DOI: 10.1021/acs.molpharmaceut.8b01216] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Peptide ligands have been exploited as versatile tools to facilitate targeted delivery of nanocarriers. However, the effects of peptide ligands on immunocompatibility and therapeutic efficacy of liposomes remain intricate. Here, a short and stable brain targeted peptide ligand D8 was modified on the surface of doxorubicin-loaded liposomes (D8-sLip/DOX), demonstrating prolonged blood circulation and lower liver distribution in comparison to the long and stable D-peptide ligand DCDX-modified doxorubicin-loaded liposomes (DCDX-sLip/DOX) by mitigating natural IgM absorption. Despite the improved pharmacokinetic profiles, D8-sLip/DOX exhibited comparable brain targeting capacity in ICR mice and antiglioblastoma efficacy to DCDX-sLip/DOX in nude mice bearing intracranial glioblastoma. However, dramatic accumulation of DCDX-sLip/DOX in liver (especially during the first 8 h after intravenous injection) resulted in pathological symptoms, including nuclei swelling, necrosis of liver cells, and inflammation. These results suggest that short peptide ligand-mediated brain-targeted drug delivery systems possessing enhanced immunocompatibility are promising to facilitate efficient brain transport with improved biosafety.
Collapse
Affiliation(s)
- Juan Guan
- Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 200032 , P.R. China
| | - Zhuxuan Jiang
- Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 200032 , P.R. China
| | - Mengke Wang
- School of Pharmacy, Ministry of Education, Key Laboratory of Smart Drug Delivery , Fudan University , Shanghai 201203 , P.R. China
| | - Ying Liu
- Department of Pathology, School of Basic Medical Sciences , Fudan University , Shanghai 200032 , P.R. China
| | - Jican Liu
- Department of Pathology, Affiliated Zhongshan Hospital Qingpu Branch , Fudan University , Shanghai 201700 , P.R. China
| | - Yang Yang
- Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 200032 , P.R. China
| | - Tianhao Ding
- Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 200032 , P.R. China
| | - Weiyue Lu
- School of Pharmacy, Ministry of Education, Key Laboratory of Smart Drug Delivery , Fudan University , Shanghai 201203 , P.R. China
| | - Chunli Gao
- Department of Otolaryngology-Head and Neck Surgery, Eye and ENT Hospital , Fudan University , Shanghai 200032 , P.R. China
| | - Jun Qian
- School of Pharmacy, Ministry of Education, Key Laboratory of Smart Drug Delivery , Fudan University , Shanghai 201203 , P.R. China
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 200032 , P.R. China.,School of Pharmacy, Ministry of Education, Key Laboratory of Smart Drug Delivery , Fudan University , Shanghai 201203 , P.R. China
| |
Collapse
|
580
|
Sadegh Malvajerd S, Azadi A, Izadi Z, Kurd M, Dara T, Dibaei M, Sharif Zadeh M, Akbari Javar H, Hamidi M. Brain Delivery of Curcumin Using Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Preparation, Optimization, and Pharmacokinetic Evaluation. ACS Chem Neurosci 2019; 10:728-739. [PMID: 30335941 DOI: 10.1021/acschemneuro.8b00510] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Curcumin is a multitherapeutic agent with great therapeutic potential in central nervous system (CNS) diseases. In the current study, curcumin was encapsulated in solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) for the purpose of increasing brain accumulation. The preparation processes have been optimized using experimental design and multiobjective optimization methods. Entrapment efficiency of curcumin in SLNs and NLCs was found to be 82% ± 0.49 and 94% ± 0.74, respectively. The pharmacokinetic studies showed that the amount of curcumin available in the brain was significantly higher in curcumin-loaded NLCs (AUC0-t = 505.76 ng/g h) compared to free curcumin (AUC0-t = 0.00 ng/g h) and curcumin-loaded SLNs (AUC0-t = 116.31 ng/g h) ( P < 0.005), after intravenous (IV) administration of 4 mg/kg dose of curcumin in rat. The results of differential scanning calorimetry and X-ray diffraction showed that curcumin has been dispersed as amorphous in the nanocarriers. Scanning electron microscopy images confirmed the nanoscale size and spherical shape of the nanoparticles. The DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging study indicated that preparation processes do not have any significant effect on the antioxidant activity of curcumin. The results of this study are promising for the use of curcumin-loaded NLCs in more studies and using curcumin in the treatment of CNS diseases.
Collapse
Affiliation(s)
- Soroor Sadegh Malvajerd
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174, Iran
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 45139-56184, Iran
| | - Zhila Izadi
- Pharmacutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah 451354, Iran
| | - Masoumeh Kurd
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Tahereh Dara
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169, Iran
| | - Maryam Dibaei
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169, Iran
| | - Mohammad Sharif Zadeh
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, 13169-43551 Tehran, Iran
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169, Iran
- Tehran Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, 13169-43551 Tehran, Iran
| | - Mehrdad Hamidi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
- Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| |
Collapse
|
581
|
Kefayat A, Ghahremani F, Motaghi H, Amouheidari A. Ultra-small but ultra-effective: Folic acid-targeted gold nanoclusters for enhancement of intracranial glioma tumors' radiation therapy efficacy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 16:173-184. [PMID: 30594659 DOI: 10.1016/j.nano.2018.12.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 12/31/2022]
Abstract
The aim of the present study is to investigate folic acid and BSA decorated gold nanoclusters (FA-AuNCs) effect on the enhancement of intracranial C6 glioma tumors radiation therapy (RT) efficacy. Inductively coupled plasma optical emission spectrometry (ICP-OES) measurements exhibited about 2.5 times more FA-AuNCs uptake by C6 cancer cells (32.8 ng/106 cells) than the normal cells. FA-AuNCs had significantly higher concentration in the brain tumors (8.1 μg/mg) in comparison with surrounding normal brain tissue (4.3 μg/mg). Moreover, FA-AuNCs exhibited dose enhancement factor (DEF) of 1.6. The glioma-bearing rats' survival times were almost doubled at radiation therapy + FA-AuNCs (25.0 ± 1.5 days) in comparison with no-treatment group (12.8 ± 0.7 days). The Ki-67 labeling index was 48.89% ± 9.93 for control, 29.98% ± 8.32 for RT, and 11.53% ± 7.65 for RT + FA-AuNCs. Therefore, FA-AuNCs can be effective radiosensitizers for intracranial glioma tumors RT.
Collapse
Affiliation(s)
- Amirhosein Kefayat
- Department of Oncology, Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Ghahremani
- Department of Medical Physics and Radiotherapy, Arak University of Medical Sciences, Arak, Iran..
| | - Hasan Motaghi
- Department of Science, Farhangian University, Tehran, Iran
| | | |
Collapse
|
582
|
Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI. Blood-Brain Delivery Methods Using Nanotechnology. Pharmaceutics 2018; 10:E269. [PMID: 30544966 PMCID: PMC6321434 DOI: 10.3390/pharmaceutics10040269] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/29/2018] [Accepted: 12/07/2018] [Indexed: 12/20/2022] Open
Abstract
Pathologies of the brain, of which brain cancer, Alzheimer's disease, Parkinson's disease, stroke, and multiple sclerosis, are some of the most prevalent, and that presently are poorly treated due to the difficulties associated with drug development, administration, and targeting to the brain. The existence of the blood-brain barrier, a selective permeability system which acts as a local gateway against circulating foreign substances, represents the key challenge for the delivery of therapeutic agents to the brain. However, the development of nanotechnology-based approaches for brain delivery, such as nanoparticles, liposomes, dendrimers, micelles, and carbon nanotubes, might be the solution for improved brain therapies.
Collapse
Affiliation(s)
- Daniel Mihai Teleanu
- Emergency University Hospital, Bucharest, Romania, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Cristina Chircov
- Faculty of Engineering in Foreign Languages, Politehnica University of Bucharest, 060042 București, Romania.
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 060042 București, Romania.
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 060042 București, Romania.
- ICUB-Research Institute of University of Bucharest, University of Bucharest, 36-46 M. Kogalniceanu Blvd., 050107 Bucharest, Romania.
| | - Adrian Volceanov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 060042 București, Romania.
| | - Raluca Ioana Teleanu
- Emergency University Hospital, Bucharest, Romania, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|
583
|
Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI. Impact of Nanoparticles on Brain Health: An Up to Date Overview. J Clin Med 2018; 7:E490. [PMID: 30486404 PMCID: PMC6306759 DOI: 10.3390/jcm7120490] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles are zero-dimensional nanomaterials and, based on their nature, they can be categorized into organic, inorganic, and composites nanoparticles. Due to their unique physical and chemical properties, nanoparticles are extensively used in a variety of fields, including medicine, pharmaceutics, and food industry. Although they have the potential to improve the diagnosis and treatment of brain diseases, it is fundamentally important to develop standardized toxicological studies, which can prevent the induction of neurotoxic effects. The focus of this review is to emphasize both the beneficial and negative effects of nanoparticles on brain health.
Collapse
Affiliation(s)
- Daniel Mihai Teleanu
- Emergency University Hospital, Bucharest, Romania, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Cristina Chircov
- Faculty of Engineering in Foreign Languages, 060042 Bucharest, Romania.
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
- ICUB-Research Institute of University of Bucharest, University of Bucharest, 36-46 M. Kogalniceanu Blvd., 050107 Bucharest, Romania.
| | - Adrian Volceanov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Raluca Ioana Teleanu
- Emergency University Hospital, Bucharest, Romania, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|
584
|
Kydd J, Jadia R, Rai P. Co-Administered Polymeric Nano-Antidotes for Improved Photo-Triggered Response in Glioblastoma. Pharmaceutics 2018; 10:pharmaceutics10040226. [PMID: 30423822 PMCID: PMC6321570 DOI: 10.3390/pharmaceutics10040226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/03/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Polymer-based nanoparticles (NPs) are useful vehicles in treating glioblastoma because of their favorable characteristics such as small size and ability to cross the blood–brain barrier, as well as reduced immunogenicity and side effects. The use of a photosensitizer drug such as Verteporfin (BPD), in combination with a pan-vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor (TKI), Cediranib (CED), encapsulated in NPs will provide the medical field with new research on the possible ways to treat glioblastoma. Concomitant administration of BPD and CED NPs have the potential to induce dual photocytotoxic and cytostatic effects in U87 MG cells by (1) remotely triggering BPD through photodynamic therapy by irradiating laser at 690 nm and subsequent production of reactive oxygen species and (2) inhibiting cell proliferation by VEGFR interference and growth factor signaling mechanisms which may allow for longer progression free survival in patients and fewer systemic side effects. The specific aims of this research were to synthesize, characterize and assess cell viability and drug interactions for polyethylene-glycolated (PEGylated) polymeric based CED and BPD NPs which were less than 100 nm in size for enhanced permeation and retention effects. Synergistic effects were found using the co-administered therapies compared to the individual drugs. The major goal of this research was to investigate a new combination of photodynamic-chemotherapy drugs in nano-formulation for increased efficacy in glioblastoma treatment at reduced concentrations of therapeutics for enhanced drug delivery in vitro.
Collapse
Affiliation(s)
- Janel Kydd
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, 1 University Ave, Lowell, MA 01854, USA.
| | - Rahul Jadia
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, 1 University Ave, Lowell, MA 01854, USA.
| | - Prakash Rai
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, 1 University Ave, Lowell, MA 01854, USA.
- Department of Chemical Engineering, University of Massachusetts Lowell, 1 University Ave, Lowell, MA 01854, USA.
| |
Collapse
|
585
|
Goutal S, Gerstenmayer M, Auvity S, Caillé F, Mériaux S, Buvat I, Larrat B, Tournier N. Physical blood-brain barrier disruption induced by focused ultrasound does not overcome the transporter-mediated efflux of erlotinib. J Control Release 2018; 292:210-220. [PMID: 30415015 DOI: 10.1016/j.jconrel.2018.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022]
Abstract
Overcoming the efflux mediated by ATP-binding cassette (ABC) transporters at the blood-brain barrier (BBB) remains a challenge for the delivery of small molecule tyrosine kinase inhibitors (TKIs) such as erlotinib to the brain. Inhibition of ABCB1 and ABCG2 at the mouse BBB improved the BBB permeation of erlotinib but could not be achieved in humans. BBB disruption induced by focused ultrasound (FUS) was investigated as a strategy to overcome the efflux transport of erlotinib in vivo. In rats, FUS combined with microbubbles allowed for a large and spatially controlled disruption of the BBB in the left hemisphere. ABCB1/ABCG2 inhibition was performed using elacridar (10 mg/kg i.v). The brain kinetics of erlotinib was studied using 11C-erlotinib Positron Emission Tomography (PET) imaging in 5 groups (n = 4-5 rats per group) including a baseline group, immediately after sonication (FUS), 48 h after FUS (FUS + 48 h), elacridar (ELA) and their combination (FUS + ELA). BBB integrity was assessed using the Evan's Blue (EB) extravasation test. Brain exposure to 11C-erlotinib was measured as the area under the curve (AUC) of the brain kinetics (% injected dose (%ID) versus time (min)) in volumes corresponding to the disrupted (left) and the intact (right) hemispheres, respectively. EB extravasation highlighted BBB disruption in the left hemisphere of animals of the FUS and FUS + ELA groups but not in the control and ELA groups. EB extravasation was not observed 48 h after FUS suggesting recovery of BBB integrity. Compared with the control group (AUCBaseline = 1.4 ± 0.5%ID.min), physical BBB disruption did not impact the brain kinetics of 11C-erlotinib in the left hemisphere (p > .05) either immediately (AUCFUS = 1.2 ± 0.1%ID.min) or 48 h after FUS (AUCFUS+48h = 1.1 ± 0.3%ID.min). Elacridar similarly increased 11C-erlotinib brain exposure to the left hemisphere in the absence (AUCELA = 2.2 ± 0.5%ID.min, p < .001) and in the presence of BBB disruption (AUCFUS+ELA = 2.1 ± 0.5%ID.min, p < .001). AUCleft was never significantly different from AUCright (p > .05), in any of the tested conditions. BBB integrity is not the rate limiting step for erlotinib delivery to the brain which is mainly governed by ABC-mediated efflux. Efflux transport of erlotinib persisted despite BBB disruption.
Collapse
Affiliation(s)
- Sébastien Goutal
- Imagerie Moléculaire In Vivo, IMIV, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France; Molecular Imaging Research Center, MIRCen, Institut de Biologie François Jacob, Direction de la Recherche Fondamentale, CEA, Fontenay-Aux-Roses, France
| | - Matthieu Gerstenmayer
- Neurospin, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Université Paris Saclay, Gif sur Yvette, France
| | - Sylvain Auvity
- Imagerie Moléculaire In Vivo, IMIV, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France
| | - Fabien Caillé
- Imagerie Moléculaire In Vivo, IMIV, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France
| | - Sébastien Mériaux
- Neurospin, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Université Paris Saclay, Gif sur Yvette, France
| | - Irène Buvat
- Imagerie Moléculaire In Vivo, IMIV, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France
| | - Benoit Larrat
- Neurospin, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Université Paris Saclay, Gif sur Yvette, France
| | - Nicolas Tournier
- Imagerie Moléculaire In Vivo, IMIV, Institut des sciences du vivant Frédéric Joliot, Direction de la Recherche Fondamentale, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France.
| |
Collapse
|
586
|
Zhang C, Feng W, Vodovozova E, Tretiakova D, Boldyrevd I, Li Y, Kürths J, Yu T, Semyachkina-Glushkovskaya O, Zhu D. Photodynamic opening of the blood-brain barrier to high weight molecules and liposomes through an optical clearing skull window. BIOMEDICAL OPTICS EXPRESS 2018; 9:4850-4862. [PMID: 30319907 PMCID: PMC6179416 DOI: 10.1364/boe.9.004850] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/16/2018] [Accepted: 09/10/2018] [Indexed: 05/03/2023]
Abstract
The photodynamic (PD) effect has been reported to be efficient for the opening of the blood-brain barrier (BBB), which provides a new informative platform for developing perspective strategies towards brain disease therapy and drug delivery. However, this method is usually performed via craniotomy due to high scattering of the turbid skull. In this work, we employed a newly-developed optical clearing skull window for investigating non-invasive PD-induced BBB opening to high weight molecules and 100-nm fluid-phase liposomes containing ganglioside GM1. The results demonstrated that the BBB permeability to the Evans blue albumin complex is related to laser doses. By in vivo two-photon imaging and ex vivo confocal imaging with specific markers of the BBB, we noticed PD-related extravasation of rhodamine-dextran and liposomes from the vessels into the brain parenchyma. The PD induced an increase in oxidative stress associated with mild hypoxia and changes in the expression of tight junction (CLND-5 and ZO-1) and adherens junction (VE-cadherin) proteins, which might be one of the mechanisms underlying the PD-related BBB opening for liposomes. Our experiments indicate that optical clearing skull window will be a promising tool for non-invasive PD-related BBB opening for high weight molecules and liposomes that provides a novel useful tool for brain drug delivery and treatment of brain diseases.
Collapse
Affiliation(s)
- Chao Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wei Feng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Elena Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Daria Tretiakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Ivan Boldyrevd
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Yusha Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jurgen Kürths
- Saratov State University, Interdisciplinary Center of Critical Technologies in Medicine, Department of Physiology of Human and Animals, Astrakhanskaya Str. 83, Saratov 410012, Russia
- Humboldt University, Physics Department, Newtonstrasse 15, Berlin, Germany
- Potsdam Institute for Climate Impact Research, Telegrafenberg A31, Potsdam, Germany
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Oxana Semyachkina-Glushkovskaya
- Saratov State University, Interdisciplinary Center of Critical Technologies in Medicine, Department of Physiology of Human and Animals, Astrakhanskaya Str. 83, Saratov 410012, Russia
- Co-corresponding authors
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Co-corresponding authors
| |
Collapse
|
587
|
Liang J, Gao C, Zhu Y, Ling C, Wang Q, Huang Y, Qin J, Wang J, Lu W, Wang J. Natural Brain Penetration Enhancer-Modified Albumin Nanoparticles for Glioma Targeting Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30201-30213. [PMID: 30113810 DOI: 10.1021/acsami.8b11782] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The unsatisfactory therapeutic outcome for glioma is mainly due to the poor blood-brain barrier (BBB) permeability and inefficient accumulation in the glioma area of chemotherapeutic agents. The existing drug delivery strategies can increase drug transport to the brain but are restricted by side effects and/or poor delivery efficiency. In this study, potent brain penetration enhancers were screened from the active components of aromatic resuscitation drugs used in traditional Chinese medicine. A novel glioma-targeting system based on enhancer-modified albumin nanoparticles was developed to safely and efficiently deliver drugs to the glioma regions in the brain. The nanoparticles improved the transport of nanoparticles across brain capillary endothelial cell (BCEC) monolayer by increasing endocytosis in endothelial cells and causing BBB disruption. In vivo imaging studies demonstrated that the systems could enter the brain and subsequently accumulate in glioma cells with a much higher targeting efficiency than that of transferrin-modified albumin nanoparticles. Of note, the nanoparticles could be captured and penetrate through endothelial cells fenestrae in pineal gland, which is suggestive of an effective way to deliver a nanosystem to the brain by bypassing the BBB. The nanoparticles showed good biocompatibility and negligible cytotoxicity. The results reveal an efficient and safe strategy for brain drug delivery in glioma therapy.
Collapse
Affiliation(s)
- Jianming Liang
- Guangzhou University of Chinese Medicine , Guangzhou 510006 , PR China
- Department of Pharmaceutics, School of Pharmacy , Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai 201203 , PR China
- Shanghai Institute of Pharmaceutical Industry , China State Institute of Pharmaceutical Industry , Shanghai 201203 , PR China
| | - Caifang Gao
- Department of Pharmaceutics, School of Pharmacy , Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai 201203 , PR China
- Shanghai Institute of Pharmaceutical Industry , China State Institute of Pharmaceutical Industry , Shanghai 201203 , PR China
| | - Ying Zhu
- Guangzhou University of Chinese Medicine , Guangzhou 510006 , PR China
| | - Chengli Ling
- School of Pharmacy , Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , PR China
| | - Qi Wang
- Guangzhou University of Chinese Medicine , Guangzhou 510006 , PR China
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , PR China
| | - Jing Qin
- Department of Pharmaceutics, School of Pharmacy , Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai 201203 , PR China
| | - Jue Wang
- Department of Pharmaceutics, School of Pharmacy , Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai 201203 , PR China
| | - Weigen Lu
- Shanghai Institute of Pharmaceutical Industry , China State Institute of Pharmaceutical Industry , Shanghai 201203 , PR China
| | - Jianxin Wang
- Guangzhou University of Chinese Medicine , Guangzhou 510006 , PR China
- Department of Pharmaceutics, School of Pharmacy , Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai 201203 , PR China
| |
Collapse
|
588
|
Jiang S, Li T, Ji T, Yi W, Yang Z, Wang S, Yang Y, Gu C. AMPK: Potential Therapeutic Target for Ischemic Stroke. Theranostics 2018; 8:4535-4551. [PMID: 30214637 PMCID: PMC6134933 DOI: 10.7150/thno.25674] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023] Open
Abstract
5'-AMP-activated protein kinase (AMPK), a member of the serine/threonine (Ser/Thr) kinase group, is universally distributed in various cells and organs. It is a significant endogenous defensive molecule that responds to harmful stimuli, such as cerebral ischemia, cerebral hemorrhage, and, neurodegenerative diseases (NDD). Cerebral ischemia, which results from insufficient blood flow or the blockage of blood vessels, is a major cause of ischemic stroke. Ischemic stroke has received increased attention due to its '3H' effects, namely high mortality, high morbidity, and high disability. Numerous studies have revealed that activation of AMPK plays a protective role in the brain, whereas its action in ischemic stroke remains elusive and poorly understood. Based on existing evidence, we introduce the basic structure, upstream regulators, and biological roles of AMPK. Second, we analyze the relationship between AMPK and the neurovascular unit (NVU). Third, the actions of AMPK in different phases of ischemia and current therapeutic methods are discussed. Finally, we evaluate existing controversy and provide a detailed analysis, followed by ethical issues, potential directions, and further prospects of AMPK. The information complied here may aid in clinical and basic research of AMPK, which may be a potent drug candidate for ischemic stroke treatment in the future.
Collapse
Affiliation(s)
- Shuai Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Ting Ji
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Simeng Wang
- Center for Human Nutrition, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Chunhu Gu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| |
Collapse
|
589
|
Ceña V, Játiva P. Nanoparticle crossing of blood–brain barrier: a road to new therapeutic approaches to central nervous system diseases. Nanomedicine (Lond) 2018; 13:1513-1516. [DOI: 10.2217/nnm-2018-0139] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Valentín Ceña
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Albacete, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Játiva
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Albacete, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
590
|
Gorick CM, Sheybani ND, Curley CT, Price RJ. Listening in on the Microbubble Crowd: Advanced Acoustic Monitoring for Improved Control of Blood-Brain Barrier Opening with Focused Ultrasound. Theranostics 2018; 8:2988-2991. [PMID: 29897053 PMCID: PMC5996352 DOI: 10.7150/thno.26025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 01/21/2023] Open
Abstract
Non-invasive drug and gene delivery to the brain to treat central nervous system pathologies has long been inhibited by the blood-brain barrier. The activation of microbubbles with focused ultrasound has emerged as a promising non-invasive approach to circumvent this obstacle, by transiently disrupting the blood-brain barrier and permitting passage of systemically administered therapeutics into the tissue. Clinical trials are underway to evaluate the safety of this technique; however, concerns remain regarding the potential for the treatment to induce sterile inflammation or petechiae. In this issue of Theranostics, Jones et al.[1] address these concerns through the development of an advanced three-dimensional imaging system for monitoring acoustic emissions from oscillating microbubbles. When subharmonic emissions are detected with this system, focused ultrasound pressure is reduced by 50% for the remainder of the treatment. This serves to transiently open the blood-brain barrier without generating adverse effects. While the ideal configuration of the transducer array for treatment and monitoring still presents an area for further optimization, the approach indicates that the acoustic signature of microbubble behavior within the skull can be used to ensure safe and effective blood-brain barrier opening using focused ultrasound.
Collapse
Affiliation(s)
| | | | | | - Richard J. Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| |
Collapse
|