601
|
Weidberg H, Elazar Z. TBK1 mediates crosstalk between the innate immune response and autophagy. Sci Signal 2011; 4:pe39. [PMID: 21868362 DOI: 10.1126/scisignal.2002355] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The autophagic pathway participates in many physiological and pathophysiological processes. Autophagy plays an important role, as part of the innate immune response, in the first line of defense against intruding pathogens. Recognition of pathogens by the autophagic machinery is mainly mediated by autophagic adaptors, proteins that simultaneously interact with specific cargos and components of the autophagic machinery. However, the exact mechanisms and signaling pathways regulating this step are largely unknown. TANK-binding kinase 1 (TBK1) has been implicated recently in the autophagic clearance of the bacterium Salmonella enterica. After its activation by the invading bacteria, TBK1 directly phosphorylated the autophagic adaptor optineurin (OPTN). This modification led to enhanced interaction of OPTN with the family of mammalian Atg8 proteins, which are ubiquitin-like and essential for autophagy. Such interaction allows the autophagic machinery to be recruited to the intracellular loci of the bacteria, resulting in elimination of the bacteria by lysosomes. This study provides an example by which the innate immune response directly regulates cargo recruitment into autophagosomes.
Collapse
Affiliation(s)
- Hilla Weidberg
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | |
Collapse
|
602
|
Okamoto K, Kondo-Okamoto N. Mitochondria and autophagy: critical interplay between the two homeostats. Biochim Biophys Acta Gen Subj 2011; 1820:595-600. [PMID: 21846491 DOI: 10.1016/j.bbagen.2011.08.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/01/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND Mitochondria are dynamic organelles that frequently change their number, size, shape, and distribution in response to intra- and extracellular cues. After proliferated from pre-existing ones, fresh mitochondria enter constant cycles of fission and fusion that organize them into two distinct states - "individual state" and "network state". When compromised with various injuries, solitary mitochondria are subjected to organelle degradation. This clearance pathway relies on autophagy, a self-eating process that plays key roles in manifold cell activities. Recent studies reveal that defects in autophagic degradation selective for mitochondria (mitophagy) are associated with neurodegenerative diseases, highlighting the physiological relevance to cellular functions. SCOPE OF REVIEW Here we review recent progress regarding a link between mitochondria and autophagy in yeast and multicellular eukaryotes. In particular, fundamental principles underlying mitophagy, and mitochondrial quality control are emphasized. Accumulating evidence also implicates nonselective autophagy in the management of mitochondrial fitness. Conversely, mitochondria are suggested to serve as signaling platforms vital for regulating autophagy. These interdependent relationships are likely to coordinate metabolic plasticity in the cell. MAJOR CONCLUSIONS Mitochondria and autophagy are elaborately linked homeostatic elements that act in response to changes in cellular environment such as energy, nutrient, and stress. How cells integrate these double membrane-bound systems still remains elusive. GENERAL SIGNIFICANCE Interplay between mitochondria and autophagy seems to be evolutionarily conserved. Defects in one of these elements could simultaneously impair the other, resulting in risk increments for various human diseases. This article is part of a Special Issue entitled Biochemistry of Mitochondria.
Collapse
|
603
|
Dargemont C, Ossareh-Nazari B. Cdc48/p97, a key actor in the interplay between autophagy and ubiquitin/proteasome catabolic pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:138-44. [PMID: 21807033 DOI: 10.1016/j.bbamcr.2011.07.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/11/2011] [Accepted: 07/18/2011] [Indexed: 01/12/2023]
Abstract
The AAA-ATPase Cdc48/p97 controls a large array of cellular functions including protein degradation, cell division, membrane fusion through its ability to interact with and control the fate of ubiquitylated proteins. More recently, Cdc48/p97 also appeared to be involved in autophagy, a catabolic cell response that has long been viewed as completely distinct from the Ubiquitine/Proteasome System. In particular, conjugation by ubiquitin or ubiquitin-like proteins as well as ubiquitin binding proteins such as Cdc48/p97 and its cofactors can target degradation by both catabolic pathways. This review will focus on the recently described functions of Cdc48/p97 in autophagosome biogenesis as well as selective autophagy.
Collapse
Affiliation(s)
- Catherine Dargemont
- CNRS, UMR7592, Institut Jacques Monod, Univ Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | | |
Collapse
|
604
|
Mao K, Wang K, Zhao M, Xu T, Klionsky DJ. Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2011; 193:755-67. [PMID: 21576396 PMCID: PMC3166859 DOI: 10.1083/jcb.201102092] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The MAP kinase Slt2 is required for both mitophagy and pexophagy, whereas the MAP kinase Hog1 acts specifically in mitophagy. Macroautophagy (hereafter referred to simply as autophagy) is a catabolic pathway that mediates the degradation of long-lived proteins and organelles in eukaryotic cells. The regulation of mitochondrial degradation through autophagy plays an essential role in the maintenance and quality control of this organelle. Compared with our understanding of the essential function of mitochondria in many aspects of cellular metabolism such as energy production and of the role of dysfunctional mitochondria in cell death, little is known regarding their degradation and especially how upstream signaling pathways control this process. Here, we report that two mitogen-activated protein kinases (MAPKs), Slt2 and Hog1, are required for mitophagy in Saccharomyces cerevisiae. Slt2 is required for the degradation of both mitochondria and peroxisomes (via pexophagy), whereas Hog1 functions specifically in mitophagy. Slt2 also affects the recruitment of mitochondria to the phagophore assembly site (PAS), a critical step in the packaging of cargo for selective degradation.
Collapse
Affiliation(s)
- Kai Mao
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
605
|
Abstract
Macroautophagy is mediated by a unique organelle, the autophagosome, which encloses a portion of cytoplasm for delivery to the lysosome. Autophagosome formation is dynamically regulated by starvation and other stresses and involves complicated membrane reorganization. Since the discovery of yeast Atg-related proteins, autophagosome formation has been dissected at the molecular level. In this review we describe the molecular mechanism of autophagosome formation with particular focus on the function of Atg proteins and the long-standing discussion regarding the origin of the autophagosome membrane.
Collapse
Affiliation(s)
- Noboru Mizushima
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.
| | | | | |
Collapse
|
606
|
Aoki Y, Kanki T, Hirota Y, Kurihara Y, Saigusa T, Uchiumi T, Kang D. Phosphorylation of Serine 114 on Atg32 mediates mitophagy. Mol Biol Cell 2011; 22:3206-17. [PMID: 21757540 PMCID: PMC3164466 DOI: 10.1091/mbc.e11-02-0145] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mitophagy, which selectively degrades mitochondria via autophagy, has a significant role in mitochondrial quality control. When mitophagy is induced in yeast, mitochondrial residential protein Atg32 binds Atg11, an adaptor protein for selective types of autophagy, and it is recruited into the vacuole along with mitochondria. The Atg11-Atg32 interaction is believed to be the initial molecular step in which the autophagic machinery recognizes mitochondria as a cargo, although how this interaction is mediated is poorly understood. Therefore, we studied the Atg11-Atg32 interaction in detail. We found that the C-terminus region of Atg11, which included the fourth coiled-coil domain, interacted with the N-terminus region of Atg32 (residues 100-120). When mitophagy was induced, Ser-114 and Ser-119 on Atg32 were phosphorylated, and then the phosphorylation of Atg32, especially phosphorylation of Ser-114 on Atg32, mediated the Atg11-Atg32 interaction and mitophagy. These findings suggest that cells can regulate the amount of mitochondria, or select specific mitochondria (damaged or aged) that are degraded by mitophagy, by controlling the activity and/or localization of the kinase that phosphorylates Atg32. We also found that Hog1 and Pbs2, which are involved in the osmoregulatory signal transduction cascade, are related to Atg32 phosphorylation and mitophagy.
Collapse
Affiliation(s)
- Yoshimasa Aoki
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
607
|
Yamamoto A, Simonsen A. The elimination of accumulated and aggregated proteins: a role for aggrephagy in neurodegeneration. Neurobiol Dis 2011; 43:17-28. [PMID: 20732422 PMCID: PMC2998573 DOI: 10.1016/j.nbd.2010.08.015] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 08/11/2010] [Accepted: 08/16/2010] [Indexed: 12/21/2022] Open
Abstract
The presence of ubiquitinated protein inclusions is a hallmark of most adult onset neurodegenerative disorders. Although the toxicity of these structures remains controversial, their prolonged presence in neurons is indicative of some failure in fundamental cellular processes. It therefore may be possible that driving the elimination of inclusions can help re-establish normal cellular function. There is growing evidence that macroautophagy has two roles; first, as a non-selective degradative response to cellular stress such as starvation, and the other as a highly selective quality control mechanism whose basal levels are important to maintain cellular health. One particular form of macroautophagy, aggrephagy, may have particular relevance in neurodegeneration, as it is responsible for the selective elimination of accumulated and aggregated ubiquitinated proteins. In this review, we will discuss the molecular mechanisms and role of protein aggregation in neurodegeneration, as well as the molecular mechanism of aggrephagy and how it may impact disease. This article is part of a Special Issue entitled "Autophagy and protein degradation in neurological diseases."
Collapse
Affiliation(s)
- Ai Yamamoto
- Dept of Neurology, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
608
|
Batlevi Y, La Spada AR. Mitochondrial autophagy in neural function, neurodegenerative disease, neuron cell death, and aging. Neurobiol Dis 2011; 43:46-51. [PMID: 20887789 PMCID: PMC3096708 DOI: 10.1016/j.nbd.2010.09.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 09/08/2010] [Accepted: 09/19/2010] [Indexed: 11/26/2022] Open
Abstract
Macroautophagy is a cellular process by which cytosolic components and organelles are degraded in double-membrane bound structures upon fusion with lysosomes. A pathway for selective degradation of mitochondria by autophagy, known as mitophagy, has been described, and is of particular importance to neurons, because of the constant need for high levels of energy production in this cell type. Although much remains to be learned about mitophagy, it appears that the regulation of mitophagy shares key steps with the macroautophagy pathway, while exhibiting distinct regulatory steps specific for mitochondrial autophagic turnover. Mitophagy is emerging as an important pathway in neurodegenerative disease, and has been linked to the pathogenesis of Parkinson's disease through the study of recessively inherited forms of this disorder, involving PINK1 and Parkin. Recent work indicates that PINK1 and Parkin together maintain mitochondrial quality control by regulating mitophagy. In the Purkinje cell degeneration (pcd) mouse, altered mitophagy may contribute to the dramatic neuron cell death observed in the cerebellum, suggesting that over-active mitophagy or insufficient mitophagy can both be deleterious. Finally, mitophagy has been linked to aging, as impaired macroautophagy over time promotes mitochondrial dysfunction associated with the aging process. Understanding the role of mitophagy in neural function, neurodegenerative disease, and aging represents an essential goal for future research in the autophagy field. This article is part of a Special Issue entitled "Autophagy and protein degradation in neurological diseases."
Collapse
Affiliation(s)
- Yakup Batlevi
- Division of Genetics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0642, USA
| | | |
Collapse
|
609
|
Tang D, Kang R, Livesey KM, Kroemer G, Billiar TR, Van Houten B, Zeh HJ, Lotze MT. High-mobility group box 1 is essential for mitochondrial quality control. Cell Metab 2011; 13:701-11. [PMID: 21641551 PMCID: PMC3293110 DOI: 10.1016/j.cmet.2011.04.008] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 01/10/2011] [Accepted: 04/01/2011] [Indexed: 01/16/2023]
Abstract
Mitochondria are organelles centrally important for bioenergetics as well as regulation of apoptotic death in eukaryotic cells. High-mobility group box 1 (HMGB1), an evolutionarily conserved chromatin-associated protein which maintains nuclear homeostasis, is also a critical regulator of mitochondrial function and morphology. We show that heat shock protein beta-1 (HSPB1 or HSP27) is the downstream mediator of this effect. Disruption of the HSPB1 gene in embryonic fibroblasts with wild-type HMGB1 recapitulates the mitochondrial fragmentation, deficits in mitochondrial respiration, and adenosine triphosphate (ATP) synthesis observed with targeted deletion of HMGB1. Forced expression of HSPB1 reverses this phenotype in HMGB1 knockout cells. Mitochondrial effects mediated by HMGB1 regulation of HSPB1 expression serve as a defense against mitochondrial abnormality, enabling clearance and autophagy in the setting of cellular stress. Our findings reveal an essential role for HMGB1 in autophagic surveillance with important effects on mitochondrial quality control.
Collapse
Affiliation(s)
- Daolin Tang
- Departments of Surgery, Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15219, USA
| | - Rui Kang
- Departments of Surgery, Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15219, USA
| | - Kristen M. Livesey
- Departments of Surgery, Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15219, USA
| | - Guido Kroemer
- INSERM, U848, Villejuif, France; Metabolomics Platform, Institut Gustave Roussy, Villejuif, France; Centre de Recherche des Cordeliers, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Université Paris Descartes, Paris 5, Paris, France
| | - Timothy R. Billiar
- Departments of Surgery, Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15219, USA
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology, Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15219, USA
| | - Herbert J. Zeh
- Departments of Surgery, Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15219, USA
| | - Michael T. Lotze
- Departments of Surgery, Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15219, USA
| |
Collapse
|
610
|
Czaja MJ. Functions of autophagy in hepatic and pancreatic physiology and disease. Gastroenterology 2011; 140:1895-908. [PMID: 21530520 PMCID: PMC3690365 DOI: 10.1053/j.gastro.2011.04.038] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 03/18/2011] [Indexed: 12/13/2022]
Abstract
Autophagy is a lysosomal pathway that degrades and recycles intracellular organelles and proteins to maintain energy homeostasis during times of nutrient deprivation and to remove damaged cell components. Recent studies have identified new functions for autophagy under basal and stressed conditions. In the liver and pancreas, autophagy performs the standard functions of degrading mitochondria and aggregated proteins and regulating cell death. In addition, autophagy functions in these organs to regulate lipid accumulation in hepatic steatosis, trypsinogen activation in pancreatitis, and hepatitis virus replication. This review discusses the effects of autophagy on hepatic and pancreatic physiology and the contribution of this degradative process to diseases of these organs. The discovery of novel functions for this lysosomal pathway has increased our understanding of the pathophysiology of diseases in the liver and pancreas and suggested new possibilities for their treatment.
Collapse
Affiliation(s)
- Mark J Czaja
- Department of Medicine and Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| |
Collapse
|
611
|
Abstract
Autophagy is a degradative pathway that involves delivery of cytoplasmic components, including proteins, organelles, and invaded microbes to the lysosome for digestion. Autophagy is implicated in the pathology of various human diseases. The association of autophagy to inflammatory bowel diseases is consistent with recent discoveries of its role in immunity. A complex of signaling pathways control the induction of autophagy in different cellular contexts. Reactive oxygen species (ROS) are highly reactive oxygen free radicals or non-radical molecules that are generated by multiple mechanisms in cells, with the nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and mitochondria as major cellular sources. These ROS are important signaling molecules that regulate many signal-transduction pathways and play critical roles in cell survival, death, and immune defenses. ROS were recently shown to activate starvation-induced autophagy, antibacterial autophagy, and autophagic cell death. Current findings implicate ROS in the regulation of autophagy through distinct mechanisms, depending on cell types and stimulation conditions. Conversely, autophagy can also suppress ROS production. Understanding the mechanisms behind ROS-induced autophagy will provide significant therapeutic implications for related diseases.
Collapse
Affiliation(s)
- Ju Huang
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|
612
|
Kaminskyy V, Zhivotovsky B. Proteases in autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:44-50. [PMID: 21640203 DOI: 10.1016/j.bbapap.2011.05.013] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 02/07/2023]
Abstract
Autophagy is a process involved in the proteolytic degradation of cellular macromolecules in lysosomes, which requires the activity of proteases, enzymes that hydrolyse peptide bonds and play a critical role in the initiation and execution of autophagy. Importantly, proteases also inhibit autophagy in certain cases. The initial steps of macroautophagy depend on the proteolytic processing of a particular protein, Atg8, by a cysteine protease, Atg4. This processing step is essential for conjugation of Atg8 with phosphatidylethanolamine and, subsequently, autophagosome formation. Lysosomal hydrolases, known as cathepsins, can be divided into several groups based on the catalitic residue in the active site, namely, cysteine, serine and aspartic cathepsins, which catalyse the cleavage of peptide bonds of autophagy substrates and, together with other factors, dispose of the autophagic flux. Whilst most cathepsins degrade autophagosomal content, some, such as cathepsin L, also degrade lysosomal membrane components, GABARAP-II and LC3-II. In contrast, cathepsin A, a serine protease, is involved in inhibition of chaperon-mediated autophagy through proteolytic processing of LAMP-2A. In addition, other families of calcium-dependent non-lysosomal cysteine proteases, such as calpains, and cysteine aspartate-specific proteases, such as caspases, may cleave autophagy-related proteins, negatively influencing the execution of autophagic processes. Here we discuss the current state of knowledge concerning protein degradation by autophagy and outline the role of proteases in autophagic processes. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- Vitaliy Kaminskyy
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Instituet, Stockholm, Sweden
| | | |
Collapse
|
613
|
Zhang J, Ney PA. Mechanisms and biology of B-cell leukemia/lymphoma 2/adenovirus E1B interacting protein 3 and Nip-like protein X. Antioxid Redox Signal 2011; 14:1959-69. [PMID: 21126215 PMCID: PMC3078493 DOI: 10.1089/ars.2010.3772] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
B-cell leukemia/lymphoma 2 (BCL-2)/adenovirus E1B interacting protein 3 (BNIP3) and Nip-like protein X (NIX) are atypical BCL-2 homology domain 3-only proteins involved in cell death, autophagy, and programmed mitochondrial clearance. BNIP3 and NIX cause cell death by targeting mitochondria, directly through BCL-2-associated X protein- or BCL-2-antagonist/killer-dependent mechanisms, or indirectly through an effect on calcium stores in the endoplasmic reticulum. BNIP3 and NIX also induce autophagy through an effect on mitochondrial reactive oxygen species production, or by releasing Beclin 1 from inhibitory interactions with antiapoptotic BCL-2 family proteins. BNIP3 downregulates mitochondrial mass in hypoxic cells, whereas NIX is required for mitochondrial elimination during erythroid development. BNIP3 and NIX have an emerging role in human health. Cell death mediated by BNIP3 and NIX is implicated in heart disease and ischemic injury. Cancer progression is linked to loss of the prodeath function of BNIP3, but also to induction of its prosurvival activity. Finally, BNIP3 and NIX are implicated in mitochondrial quality control, which is important in aging and degenerative disease. Elucidation of the mechanisms by which BNIP3 and NIX regulate cell death, autophagy, and mitochondrial clearance may lead to treatments for these conditions.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
614
|
Abstract
The mitochondrion is an organelle that carries out a number of important metabolic processes such as fatty acid oxidation, the citric acid cycle, and oxidative phosphorylation. However, this multitasking organelle also generates reactive oxygen species (ROS), which can cause oxidative stress resulting in self-damage. This type of mitochondrial damage can lead to the further production of ROS and a resulting downward spiral with regard to mitochondrial capability. This is extremely problematic because the accumulation of dysfunctional mitochondria is related to aging, cancer, and neurodegenerative diseases. Accordingly, appropriate quality control of this organelle is important to maintain proper cellular homeostasis. It has been thought that selective mitochondria autophagy (mitophagy) contributes to the maintenance of mitochondrial quality by eliminating damaged or excess mitochondria, although little is known about the mechanism. Recent studies in yeast identified several mitophagy-related proteins, which have been characterized with regard to their function and regulation. In this article, we review recent advances in the physiology and molecular mechanism of mitophagy and discuss the similarities and differences of this degradation process between yeast and mammalian cells.
Collapse
Affiliation(s)
- Tomotake Kanki
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | | |
Collapse
|
615
|
Abstract
The clearance of malfunctioning mitochondria is an important housekeeping function in respiring eukaryotic cells and plays a role in physiological homeostasis as well as in the progression of late-onset diseases. This clearance is thought to occur by a specific form of autophagic degradation called mitophagy. Although the mechanism of nonspecific macroautophagy is relatively well established, the selective autophagic degradation of mitochondria has only recently begun to receive significant attention. An important step toward elucidating the mechanism by which defective mitochondria are selected and degraded is the establishment of conditions under which mitophagy is induced. This review covers our current understanding of mitophagy in the model organism Saccharomyces cerevisiae and its modes of activation, with a focus on stationary-phase mitophagy-a form of mitophagy that holds promise as a potential quality control mechanism.
Collapse
Affiliation(s)
- Hagai Abeliovich
- Department of Biochemistry and Food Science, Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
616
|
Kim I, Lemasters JJ. Mitophagy selectively degrades individual damaged mitochondria after photoirradiation. Antioxid Redox Signal 2011; 14:1919-28. [PMID: 21126216 PMCID: PMC3078512 DOI: 10.1089/ars.2010.3768] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 12/02/2010] [Indexed: 11/13/2022]
Abstract
Damaged and dysfunctional mitochondria are proposed to be removed by autophagy. However, selective degradation of damaged mitochondria by autophagy (mitophagy) has yet to be experimentally verified. In this study, we investigated the cellular fate of individual mitochondria damaged by photoirradiation in hepatocytes isolated from transgenic mice expressing green fluorescent protein fused to microtubule-associated protein 1 light chain 3, a marker of forming and newly formed autophagosomes. Photoirradiation with 488-nm light induced mitochondrial depolarization (release of tetramethylrhodamine methylester [TMRM]) in a dose-dependent fashion. At lower doses of light, mitochondria depolarized transiently with re-polarization within 3 min. With greater light, mitochondrial depolarization became irreversible. Irreversible, but not reversible, photodamage induced autophagosome formation after 32±5 min. Photodamage-induced mitophagy was independent of TMRM, as photodamage also induced mitophagy in the absence of TMRM. Photoirradiation with 543-nm light did not induce mitophagy. As revealed by uptake of LysoTracker Red, mitochondria weakly acidified after photodamage before a much stronger acidification after autophagosome formation. Photodamage-induced mitophagy was not blocked by phosphatidylinositol 3-kinase inhibition with 3-methyladenine (10 mM) or wortmannin (100 nM). In conclusion, individual damaged mitochondria become selectively degraded by mitophagy, but photodamage-induced mitophagic sequestration occurs independently of the phosphatidylinositol 3-kinase signaling pathway, the classical upstream signaling pathway of nutrient deprivation-induced autophagy.
Collapse
Affiliation(s)
- Insil Kim
- Center for Cell Death, Injury, and Regeneration, Departments of Pharmaceutical and Biomedical Sciences and Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John J. Lemasters
- Center for Cell Death, Injury, and Regeneration, Departments of Pharmaceutical and Biomedical Sciences and Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
617
|
Abstract
PURPOSE OF REVIEW To discuss the involvement of lysosomes in the control of muscle mass. RECENT FINDINGS Lysosomes control the half-life of long-lived proteins and the turnover of organelles and therefore, are critical for cellular homeostasis. Skeletal muscle contraction is a potential source of metabolic, mechanical, and thermal stressors. Therefore, the quality control of proteins and of organelles is particularly active in this tissue. Recent findings have shown that impairment of the degradation systems leads to accumulation of unfolded/misfolded proteins and altered organelles which turns into toxicity for the muscle cells. Conversely, excessive activation of proteolytic machinery, including lysosomal-dependent degradation, contributes to muscle loss, weakness, and finally to death. This article reviews the rapid progress made in the past few years regarding the role of lysosomal-dependent degradation in the homeostasis of adult muscle fibers. SUMMARY These findings will help to define the role of the lysosomal system in muscle homeostasis during physiological or pathological conditions.
Collapse
Affiliation(s)
- Marco Sandri
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
618
|
Izumi M, Ishida H. The changes of leaf carbohydrate contents as a regulator of autophagic degradation of chloroplasts via Rubisco-containing bodies during leaf senescence. PLANT SIGNALING & BEHAVIOR 2011; 6:685-7. [PMID: 21499029 PMCID: PMC3172836 DOI: 10.4161/psb.6.5.14949] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 01/25/2011] [Indexed: 05/24/2023]
Abstract
Autophagy is an intracellular process for the vacuolar degradation of cytoplasmic components and is important for nutrient recycling during starvation. Chloroplasts can be partially mobilized to the vacuole by autophagy via spherical bodies named Rubisco-containing bodies (RCBs). Although chloroplasts contain approximately 80% of total leaf nitrogen and represent a major carbon and nitrogen source for recycling, the relationship between leaf nutrient status and RCB production remains unclear. We analyzed the effects of nutrient factors on the appearance of RCBs in Arabidopsis leaves and postulated that a close relationship exists between the autophagic degradation of chloroplasts via RCBs and leaf carbon status but not nitrogen status in autophagy. The importance of carbohydrates in RCB production during leaf senescence can be further argued. During nitrogen-limited senescence, as leaf carbohydrates were accumulated, RCB production was strongly suppressed. During the life span of leaves, RCB production increased with the progression of leaf expansion and senescence, while the production declined in late senescent leaves with a remarkable accumulation of carbohydrates, glucose and fructose. These results suggest that RCB production may be controlled by leaf carbon status during both induced and natural senescence.
Collapse
Affiliation(s)
- Masanori Izumi
- Department of Applied Plant Science, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Japan
| | | |
Collapse
|
619
|
Abstract
PURPOSE OF REVIEW Reticulocyte remodeling has emerged as an important model for the understanding of vesicular trafficking and selective autophagy in mammalian cells. This review covers recent advances in our understanding of these processes in reticulocytes and the role of these processes in erythroid development. RECENT FINDINGS Enucleation is caused by the coalescence of vesicles at the nuclear-cytoplasmic junction and microfilament contraction. Mitochondrial elimination is achieved through selective autophagy, in which mitochondria are targeted to autophagosomes, and undergo subsequent degradation and exocytosis. The mechanism involves an integral mitochondrial outer membrane protein and general autophagy pathways. Plasma membrane remodeling, and the elimination of certain intracellular organelles occur through the exosomal pathway. SUMMARY Vesicular trafficking and selective autophagy have emerged as central processes in cellular remodeling. In reticulocytes, this includes enucleation and the elimination of all membrane-bound organelles and ribosomes. Ubiquitin-like conjugation pathways, which are required for autophagy in yeast, are not essential for mitochondrial clearance in reticulocytes. Thus, in higher eukaryotes, there appears to be redundancy between these pathways and other processes, such as vesicular nucleation. Future studies will address the relationship between autophagy and vesicular trafficking, and the significance of both for cellular remodeling.
Collapse
Affiliation(s)
- Paul A Ney
- Department of Biochemistry, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
620
|
Abstract
Autophagy is an intracellular lysosomal (vacuolar) degradation process that is characterized by the formation of double-membrane vesicles, known as autophagosomes, which sequester cytoplasm. As autophagy is involved in cell growth, survival, development and death, the levels of autophagy must be properly regulated, as indicated by the fact that dysregulated autophagy has been linked to many human pathophysiologies, such as cancer, myopathies, neurodegeneration, heart and liver diseases, and gastrointestinal disorders. Substantial progress has recently been made in understanding the molecular mechanisms of the autophagy machinery, and in the regulation of autophagy. However, many unanswered questions remain, such as how the Atg1 complex is activated and the function of PtdIns3K is regulated, how the ubiquitin-like conjugation systems participate in autophagy and the mechanisms of phagophore expansion and autophagosome formation, how the network of TOR signaling pathways regulating autophagy are controlled, and what the underlying mechanisms are for the pro-cell survival and the pro-cell death effects of autophagy. As several recent reviews have comprehensively summarized the recent progress in the regulation of autophagy, we focus in this Commentary on the main unresolved questions in this field.
Collapse
Affiliation(s)
- Yongqiang Chen
- Life Sciences Institute and Department of Molecular, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | | |
Collapse
|
621
|
Graef M, Nunnari J. Mitochondria regulate autophagy by conserved signalling pathways. EMBO J 2011; 30:2101-14. [PMID: 21468027 DOI: 10.1038/emboj.2011.104] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 03/16/2011] [Indexed: 11/10/2022] Open
Abstract
Autophagy is a conserved degradative process that is crucial for cellular homeostasis and cellular quality control via the selective removal of subcellular structures such as mitochondria. We demonstrate that a regulatory link exists between mitochondrial function and autophagy in Saccharomyces cerevisiae. During amino-acid starvation, the autophagic response consists of two independent regulatory arms-autophagy gene induction and autophagic flux-and our analysis indicates that mitochondrial respiratory deficiency severely compromises both. We show that the evolutionarily conserved protein kinases Atg1, target of rapamycin kinase complex I, and protein kinase A (PKA) regulate autophagic flux, whereas autophagy gene induction depends solely on PKA. Within this regulatory network, mitochondrial respiratory deficiency suppresses autophagic flux, autophagy gene induction, and recruitment of the Atg1-Atg13 kinase complex to the pre-autophagosomal structure by stimulating PKA activity. Our findings indicate an interrelation of two common risk factors-mitochondrial dysfunction and autophagy inhibition-for ageing, cancerogenesis, and neurodegeneration.
Collapse
Affiliation(s)
- Martin Graef
- Department of Molecular and Cellular Biology, Davis University of California, Davis, CA, USA
| | | |
Collapse
|
622
|
Deas E, Wood NW, Plun-Favreau H. Mitophagy and Parkinson's disease: the PINK1-parkin link. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:623-33. [PMID: 20736035 PMCID: PMC3925795 DOI: 10.1016/j.bbamcr.2010.08.007] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 08/10/2010] [Accepted: 08/16/2010] [Indexed: 12/12/2022]
Abstract
The study of rare, inherited mutations underlying familial forms of Parkinson's disease has provided insight into the molecular mechanisms of disease pathogenesis. Mutations in these genes have been functionally linked to several key molecular pathways implicated in other neurodegenerative disorders, including mitochondrial dysfunction, protein accumulation and the autophagic-lysosomal pathway. In particular, the mitochondrial kinase PINK1 and the cytosolic E3 ubiquitin ligase parkin act in a common pathway to regulate mitochondrial function. In this review we discuss the recent evidence suggesting that the PINK1/parkin pathway also plays a critical role in the autophagic removal of damaged mitochondria-mitophagy. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
Collapse
Affiliation(s)
- Emma Deas
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Nicholas W. Wood
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Hélène Plun-Favreau
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
623
|
Fujitani Y, Uchida T, Komiya K, Abe H, Kawamori R, Watada H. Roles of autophagy in pancreatic β-cell function and type 2 diabetes. Diabetol Int 2011. [DOI: 10.1007/s13340-011-0020-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
624
|
Fujita N, Yoshimori T. Ubiquitination-mediated autophagy against invading bacteria. Curr Opin Cell Biol 2011; 23:492-7. [PMID: 21450448 DOI: 10.1016/j.ceb.2011.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 03/06/2011] [Indexed: 01/30/2023]
Abstract
Autophagy is primarily a non-selective intracellular bulk degradation process. However, it was recently shown that ubiquitin-positive substrates, such as protein aggregates, mitochondria, peroxisomes, and invading bacteria, are selectively targeted to lysosomes via autophagy. Thus, ubiquitination seems to function as a general tag for selective autophagy in mammalian cells. This review discusses the present model of how autophagy sequesters invading bacteria through ubiquitination.
Collapse
Affiliation(s)
- Naonobu Fujita
- Department of Genetics, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
625
|
Mendl N, Occhipinti A, Müller M, Wild P, Dikic I, Reichert AS. Mitophagy in yeast is independent of mitochondrial fission and requires the stress response gene WHI2. J Cell Sci 2011; 124:1339-50. [PMID: 21429936 DOI: 10.1242/jcs.076406] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Dysfunctional mitochondria show a reduced capacity for fusion and, as mitochondrial fission is maintained, become spatially separated from the intact network. By that mechanism, dysfunctional mitochondria have been proposed to be targeted for selective degradation by mitophagy, thereby providing a quality control system for mitochondria. In yeast, conflicting results concerning the role of mitochondrial dynamics in mitophagy have been reported. Here, we investigate the effects on mitophagy of altering mitochondrial fission and fusion, using biochemical, as well as fluorescence-based, assays. Rapamycin-induced mitophagy was shown to depend upon the autophagy-related proteins Atg11, Atg20 and Atg24, confirming that a selective type of autophagy occurred. Both fragmentation of mitochondria and inhibition of oxidative phosphorylation were not sufficient to trigger mitophagy, and neither deletion of the fission factors Dnm1, Fis1, Mdv1 or Caf4 nor expression of dominant-negative variants of Dnm1 impaired mitophagy. The diminished mitophagy initially observed in a Δfis1 mutant was not due to the absence of Fis1 but rather due to a secondary mutation in WHI2, which encodes a factor reported to function in the general stress response and the Ras-protein kinase A (PKA) signaling pathway. We propose that, in yeast, mitochondrial fission is not a prerequisite for the selective degradation of mitochondria, and that mitophagy is linked to the general stress response and the Ras-PKA signaling pathway.
Collapse
Affiliation(s)
- Nadine Mendl
- Adolf-Butenandt-Institut für Physiologische Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377 München, Germany
| | | | | | | | | | | |
Collapse
|
626
|
Decuypere JP, Monaco G, Missiaen L, De Smedt H, Parys JB, Bultynck G. IP(3) Receptors, Mitochondria, and Ca Signaling: Implications for Aging. J Aging Res 2011; 2011:920178. [PMID: 21423550 PMCID: PMC3056293 DOI: 10.4061/2011/920178] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/23/2010] [Accepted: 01/05/2011] [Indexed: 12/21/2022] Open
Abstract
The tight interplay between endoplasmic-reticulum-(ER-) and mitochondria-mediated Ca(2+) signaling is a key determinant of cellular health and cellular fate through the control of apoptosis and autophagy. Proteins that prevent or promote apoptosis and autophagy can affect intracellular Ca(2+) dynamics and homeostasis through binding and modulation of the intracellular Ca(2+)-release and Ca(2+)-uptake mechanisms. During aging, oxidative stress becomes an additional factor that affects ER and mitochondrial function and thus their role in Ca(2+) signaling. Importantly, mitochondrial dysfunction and sustained mitochondrial damage are likely to underlie part of the aging process. In this paper, we will discuss the different mechanisms that control intracellular Ca(2+) signaling with respect to apoptosis and autophagy and review how these processes are affected during aging through accumulation of reactive oxygen species.
Collapse
Affiliation(s)
- Jean-Paul Decuypere
- Laboratory of Molecular and Cellular Signaling, Department of Molecular and Cellular Biology, K.U.Leuven, Campus Gasthuisberg O/N-1, Herestraat 49, Bus 802, 3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
627
|
Zanchetta LM, Garcia A, Lyng F, Walsh J, Murphy JEJ. Mitophagy and mitochondrial morphology in human melanoma-derived cells post exposure to simulated sunlight. Int J Radiat Biol 2011; 87:506-17. [PMID: 21381890 DOI: 10.3109/09553002.2011.556175] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE To assess changes in mitochondrial morphology and mitophagy induced by simulated sunlight irradiation (SSI) and how these changes are modulated by mitochondrial activity and energy source. MATERIALS AND METHODS Human malignant amelanotic melanoma A375 cells were pre-treated with either a mitochondrial activity enhancer, uncoupler or were either melanin or glutamine supplemented/starved for 4 hours pre-exposure to sunlight. A Q-Sun Solar Simulator (Q-Lab, Homestead, FL, USA) was employed to expose cells to simulated sunlight. Confocal microscopy imaging of A375 cells co-loaded with mitochondria and lysosome-specific fluorescent dyes was used to identify these organelles and predict mitophagic events. RESULTS SSI induces pronounced changes in mitochondrial dynamics and mitophagy in exposed skin cells compared to control and these effects were modified by both glutamine and melanin. CONCLUSIONS Mitochondrial dynamics and rate of mitophagy in melanoma cells are sensitive to even short bursts of environmentally relevant SSI. Mitochondrial dynamics, and its modulation, may also play a role in mitophagy regulation, cell survival and proliferation post SSI.
Collapse
Affiliation(s)
- Luciene M Zanchetta
- Mitochondrial Biology & Radiation Research, School of Science, Institute of Technology Sligo, Ash Lane, Sligo, Ireland.
| | | | | | | | | |
Collapse
|
628
|
Khandelwal PJ, Herman AM, Hoe HS, Rebeck GW, Moussa CEH. Parkin mediates beclin-dependent autophagic clearance of defective mitochondria and ubiquitinated Abeta in AD models. Hum Mol Genet 2011; 20:2091-102. [PMID: 21378096 DOI: 10.1093/hmg/ddr091] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Intraneuronal amyloid-β (Aβ) may contribute to extracellular plaque deposition, the characteristic pathology of Alzheimer's disease (AD). The E3-ubiquitin ligase parkin ubiquitinates intracellular proteins and induces mitophagy. We previously demonstrated that parkin reduces Aβ levels in lentiviral models of intracellular Aβ. Here we used a triple transgenic AD (3xTg-AD) mouse, which over-expresses APP(Swe), Tau(P301L) and harbor the PS1(M146V) knock-in mutation and found that lentiviral parkin ubiquitinated intracellular Aβ in vivo, stimulated beclin-dependent molecular cascade of autophagy and facilitated clearance of vesicles containing debris and defective mitochondria. Parkin expression decreased intracellular Aβ levels and extracellular plaque deposition. Parkin expression also attenuated caspase activity, prevented mitochondrial dysfunction and oxidative stress and restored neurotransmitter synthesis. Restoration of glutamate synthesis, which was independent of glial-neuronal recycling, depended on mitochondrial activity and led to an increase in γ-amino butyric acid levels. These data indicate that parkin may be used as an alternative strategy to reduce Aβ levels and enhance autophagic clearance of Aβ-induced defects in AD. Parkin-mediated clearance of ubiquitinated Aβ may act in parallel with autophagy to clear molecular debris and defective mitochondria and restore neurotransmitter balance.
Collapse
Affiliation(s)
- Preeti J Khandelwal
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | |
Collapse
|
629
|
Abstract
Recent discoveries of autophagy receptors, which specifically recognize different cellular cargo destined for degradation, have opened a new chapter in the autophagy field. Selective cargo recognition by autophagic machinery is important in the context of cellular homeostasis and survival. One of the crucial homeostasis events involving autophagy is the removal of damaged or excessive mitochondria through mitophagy. Future studies on mitochondrial receptors and proteins associated with mitochondrial clearance will help us better understand the role of mitophagy in normal physiological processes as well as in diverse pathological conditions.
Collapse
Affiliation(s)
- Ivana Novak
- School of Medicine, University of Split, Split, Croatia.
| | | |
Collapse
|
630
|
Suzuki SW, Onodera J, Ohsumi Y. Starvation induced cell death in autophagy-defective yeast mutants is caused by mitochondria dysfunction. PLoS One 2011; 6:e17412. [PMID: 21364763 PMCID: PMC3045454 DOI: 10.1371/journal.pone.0017412] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 01/30/2011] [Indexed: 12/25/2022] Open
Abstract
Autophagy is a highly-conserved cellular degradation and recycling system that is essential for cell survival during nutrient starvation. The loss of viability had been used as an initial screen to identify autophagy-defective (atg) mutants of the yeast Saccharomyces cerevisiae, but the mechanism of cell death in these mutants has remained unclear. When cells grown in a rich medium were transferred to a synthetic nitrogen starvation media, secreted metabolites lowered the extracellular pH below 3.0 and autophagy-defective mutants mostly died. We found that buffering of the starvation medium dramatically restored the viability of atg mutants. In response to starvation, wild-type (WT) cells were able to upregulate components of the respiratory pathway and ROS (reactive oxygen species) scavenging enzymes, but atg mutants lacked this synthetic capacity. Consequently, autophagy-defective mutants accumulated the high level of ROS, leading to deficient respiratory function, resulting in the loss of mitochondria DNA (mtDNA). We also showed that mtDNA deficient cells are subject to cell death under low pH starvation conditions. Taken together, under starvation conditions non-selective autophagy, rather than mitophagy, plays an essential role in preventing ROS accumulation, and thus in maintaining mitochondria function. The failure of response to starvation is the major cause of cell death in atg mutants.
Collapse
Affiliation(s)
- Sho W. Suzuki
- Frontier Research Center, Tokyo Institute of Technology, Yokohama, Japan
- Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama, Japan
| | - Jun Onodera
- Department of Cell Biology, Division of Molecular Cell Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Yoshinori Ohsumi
- Frontier Research Center, Tokyo Institute of Technology, Yokohama, Japan
- Department of Cell Biology, Division of Molecular Cell Biology, National Institute for Basic Biology, Okazaki, Japan
- * E-mail:
| |
Collapse
|
631
|
How ubiquitination and autophagy participate in the regulation of the cell response to bacterial infection. Biol Cell 2011; 102:621-34. [PMID: 21077843 PMCID: PMC2975374 DOI: 10.1042/bc20100101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bacterial infection relies on the micro-organism's ability to orchestrate the host's cell signalling such that the immune response is not activated. Conversely, the host cell has dedicated signalling pathways for coping with intrusions by pathogens. The autophagy of foreign micro-organisms (known as xenophagy) has emerged as one of the most powerful of these pathways, although the triggering mode remains largely unknown. In the present paper, we discuss the role that certain post-translational modifications (primarily ubiquitination) may play in the activation of xenophagy and how some bacteria have evolved mechanisms to subvert or hijack this process. In particular, we address the role played by P62/SQSTM1 (sequestosome 1). Finally, we discuss how autophagy can be subverted to eliminate bacteria-induced danger signals.
Collapse
|
632
|
Abstract
Mitochondria are essential for oxidative energy production in aerobic eukaryotic cells, where they are also required for multiple biosynthetic pathways to take place. Mitochondria also monitor and evaluate complex information from the environment and intracellular milieu, including the presence or absence of growth factors, oxygen, reactive oxygen species, and DNA damage. It follows that disturbances of the integrity of mitochondrial function lead to the disruption of cell function, expressed as disease, aging, or cell death. It has been assumed that the degradation of damaged mitochondria by an autophagy-related pathway specific to mitochondria (mitophagy), recently found to be strictly regulated, is a fundamental process essential for cell homeostasis. Until now, the main role of mitophagy has been tentatively defined as a 'house-cleaning' pathway that allows to eliminate altered mitochondria, but mitophagy may also play a role in the adaptation of the number and quality of mitochondria to new environmental conditions. In yeast, recent data defined two categories of mitophagy actors: ones constitutively required for mitophagy and those with mitophagy-regulatory functions. Situations were also uncovered in normal physiology in which cells utilize mitophagy to eliminate damaged, dysfunctional, and superfluous mitochondria to adjust to changing physiological demands.
Collapse
|
633
|
Itakura E, Mizushima N. p62 Targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding. ACTA ACUST UNITED AC 2011; 192:17-27. [PMID: 21220506 PMCID: PMC3019556 DOI: 10.1083/jcb.201009067] [Citation(s) in RCA: 354] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
p62 is recruited to the ER at an early-stage autophagosome formation independently of most Atg proteins. Autophagy is an intracellular degradation process by which cytoplasmic contents are degraded in the lysosome. In addition to nonselective engulfment of cytoplasmic materials, the autophagosomal membrane can selectively recognize specific proteins and organelles. It is generally believed that the major selective substrate (or cargo receptor) p62 is recruited to the autophagosomal membrane through interaction with LC3. In this study, we analyzed loading of p62 and its related protein NBR1 and found that they localize to the endoplasmic reticulum (ER)–associated autophagosome formation site independently of LC3 localization to membranes. p62 colocalizes with upstream autophagy factors such as ULK1 and VMP1 even when autophagosome formation is blocked by wortmannin or FIP200 knockout. Self-oligomerization of p62 is essential for its localization to the autophagosome formation site. These results suggest that p62 localizes to the autophagosome formation site on the ER, where autophagosomes are nucleated. This process is similar to the yeast cytoplasm to vacuole targeting pathway.
Collapse
Affiliation(s)
- Eisuke Itakura
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | | |
Collapse
|
634
|
Manjithaya R, Subramani S. Autophagy: a broad role in unconventional protein secretion? Trends Cell Biol 2011; 21:67-73. [PMID: 20961762 PMCID: PMC3025270 DOI: 10.1016/j.tcb.2010.09.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/15/2010] [Accepted: 09/22/2010] [Indexed: 01/06/2023]
Abstract
Autophagy, a cellular 'self-eating' process in eukaryotic cells, exists in both a basal and in an activated state that is induced in response to starvation. Basal and induced autophagy are associated with the packaging of cellular components, including damaged and/or redundant organelles, into double-membrane vesicles called autophagosomes, followed by autophagosome fusion with lysosomes, in which their contents are degraded and recycled. Recent results highlight a novel role for autophagy that does not involve lysosomal degradation of autophagosomal contents, but instead involves their redirection towards the extracellular delivery of an unconventionally secreted protein. Here, we discuss these findings, evaluate the strength of evidence, consider their implications for the field of protein trafficking, and suggest the next steps required to probe this interesting pathway.
Collapse
Affiliation(s)
- Ravi Manjithaya
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093-0322, USA
| | - Suresh Subramani
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093-0322, USA
| |
Collapse
|
635
|
Kim I, Lemasters JJ. Mitochondrial degradation by autophagy (mitophagy) in GFP-LC3 transgenic hepatocytes during nutrient deprivation. Am J Physiol Cell Physiol 2011; 300:C308-17. [PMID: 21106691 PMCID: PMC3043636 DOI: 10.1152/ajpcell.00056.2010] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 11/23/2010] [Indexed: 11/22/2022]
Abstract
Fasting in vivo and nutrient deprivation in vitro enhance sequestration of mitochondria and other organelles by autophagy for recycling of essential nutrients. Here our goal was to use a transgenic mouse strain expressing green fluorescent protein (GFP) fused to rat microtubule-associated protein-1 light chain 3 (LC3), a marker protein for autophagy, to characterize the dynamics of mitochondrial turnover by autophagy (mitophagy) in hepatocytes during nutrient deprivation. In complete growth medium, GFP-LC3 fluorescence was distributed diffusely in the cytosol and incorporated in mostly small (0.2-0.3 μm) patches in proximity to mitochondria, which likely represent preautophagic structures (PAS). After nutrient deprivation plus 1 μM glucagon to simulate fasting, PAS grew into green cups (phagophores) and then rings (autophagosomes) that enveloped individual mitochondria, a process that was blocked by 3-methyladenine. Autophagic sequestration of mitochondria took place in 6.5 ± 0.4 min and often occurred coordinately with mitochondrial fission. After ring formation and apparent sequestration, mitochondria depolarized in 11.8 ± 1.4 min, as indicated by loss of tetramethylrhodamine methylester fluorescence. After ring formation, LysoTracker Red uptake, a marker of acidification, occurred gradually, becoming fully evident at 9.9 ± 1.9 min of ring formation. After acidification, GFP-LC3 fluorescence dispersed. PicoGreen labeling of mitochondrial DNA (mtDNA) showed that mtDNA was also sequestered and degraded in autophagosomes. Overall, the results indicate that PAS serve as nucleation sites for mitophagy in hepatocytes during nutrient deprivation. After autophagosome formation, mitochondrial depolarization and vesicular acidification occur, and mitochondrial contents, including mtDNA, are degraded.
Collapse
Affiliation(s)
- Insil Kim
- Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, QF308 Quadrangle Bldg., 280 Calhoun St., P. O Box 250140, Charleston, SC 29425, USA
| | | |
Collapse
|
636
|
Ni HM, Bockus A, Wozniak AL, Jones K, Weinman S, Yin XM, Ding WX. Dissecting the dynamic turnover of GFP-LC3 in the autolysosome. Autophagy 2011; 7:188-204. [PMID: 21107021 PMCID: PMC3039769 DOI: 10.4161/auto.7.2.14181] [Citation(s) in RCA: 296] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 11/08/2010] [Accepted: 11/10/2010] [Indexed: 02/07/2023] Open
Abstract
Determination of autophagic flux is essential to assess and differentiate between the induction or suppression of autophagy. Western blot analysis for free GFP fragments resulting from the degradation of GFP-LC3 within the autolysosome has been proposed as one of the autophagic flux assays. However, the exact dynamics of GFP-LC3 during the autophagy process are not clear. Moreover, the characterization of this assay in mammalian cells is limited. Here we found that lysosomal acidity is an important regulating factor for the step-wise degradation of GFP-LC3, in which the free GFP fragments are first generated but accumulate only when the lysosomal acidity is moderate, such as during rapamycin treatment. When the lysosomal acidity is high, such as during starvation in Earle's balanced salt solution (EBSS), the GFP fragments are further degraded and thus do not accumulate. Much to our surprise, we found that the level of free GFP fragments increased in the presence of several late stage autophagy inhibitors, such as chloroquine or E64D plus pepstatin A. Furthermore, the amount of free GFP fragments depends on the concentrations of these inhibitors. Unsaturating concentrations of chloroquine or bafilomycin A1 increased the level of free GFP fragments while saturating concentrations did not. Data from the present study demonstrate that GFP-LC3 is degraded in a step-wise fashion in the autolysosome, in which the LC3 portion of the fusion protein appears to be more rapidly degraded than GFP. However, the amount of free GFP fragments does not necessarily correlate with autophagic flux if the lysosomal enzyme activity and pH are changed. Therefore, caution must be used when conducting the GFP-LC3 cleavage assay as a determinant of autophagic flux. In order to accurately assess autophagy, it is more appropriate to assess GFP-LC3 cleavage in the presence or absence of saturating or unsaturating concentrations of chloroquine or bafilomycin A1 together with other autophagy markers, such as levels of p62 and endogenous LC3-II.
Collapse
Affiliation(s)
- Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics; University of Kansas Medical Center; Kansas City, KS USA
| | - Abigail Bockus
- Department of Pharmacology, Toxicology and Therapeutics; University of Kansas Medical Center; Kansas City, KS USA
| | - Ann L Wozniak
- Department of Internal Medicine; University of Kansas Medical Center; Kansas City, KS USA
| | - Kellyann Jones
- Department of Internal Medicine; University of Kansas Medical Center; Kansas City, KS USA
| | - Steven Weinman
- Department of Internal Medicine; University of Kansas Medical Center; Kansas City, KS USA
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine; Indiana University School of Medicine; Indianapolis, IN USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics; University of Kansas Medical Center; Kansas City, KS USA
| |
Collapse
|
637
|
Duszenko M, Ginger ML, Brennand A, Gualdrón-López M, Colombo MI, Coombs GH, Coppens I, Jayabalasingham B, Langsley G, de Castro SL, Menna-Barreto R, Mottram JC, Navarro M, Rigden DJ, Romano PS, Stoka V, Turk B, Michels PAM. Autophagy in protists. Autophagy 2011; 7:127-58. [PMID: 20962583 DOI: 10.4161/auto.7.2.13310] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autophagy is the degradative process by which eukaryotic cells digest their own components using acid hydrolases within the lysosome. Originally thought to function almost exclusively in providing starving cells with nutrients taken from their own cellular constituents, autophagy is in fact involved in numerous cellular events including differentiation, turnover of macromolecules and organelles, and defense against parasitic invaders. During the last 10-20 years, molecular components of the autophagic machinery have been discovered, revealing a complex interactome of proteins and lipids, which, in a concerted way, induce membrane formation to engulf cellular material and target it for lysosomal degradation. Here, our emphasis is autophagy in protists. We discuss experimental and genomic data indicating that the canonical autophagy machinery characterized in animals and fungi appeared prior to the radiation of major eukaryotic lineages. Moreover, we describe how comparative bioinformatics revealed that this canonical machinery has been subject to moderation, outright loss or elaboration on multiple occasions in protist lineages, most probably as a consequence of diverse lifestyle adaptations. We also review experimental studies illustrating how several pathogenic protists either utilize autophagy mechanisms or manipulate host-cell autophagy in order to establish or maintain infection within a host. The essentiality of autophagy for the pathogenicity of many parasites, and the unique features of some of the autophagy-related proteins involved, suggest possible new targets for drug discovery. Further studies of the molecular details of autophagy in protists will undoubtedly enhance our understanding of the diversity and complexity of this cellular phenomenon and the opportunities it offers as a drug target.
Collapse
Affiliation(s)
- Michael Duszenko
- Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
638
|
Mieap, a p53-inducible protein, controls mitochondrial quality by repairing or eliminating unhealthy mitochondria. PLoS One 2011; 6:e16060. [PMID: 21264228 PMCID: PMC3022033 DOI: 10.1371/journal.pone.0016060] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 12/04/2010] [Indexed: 01/07/2023] Open
Abstract
Maintenance of healthy mitochondria prevents aging, cancer, and a variety of degenerative diseases that are due to the result of defective mitochondrial quality control (MQC). Recently, we discovered a novel mechanism for MQC, in which Mieap induces intramitochondrial lysosome-like organella that plays a critical role in the elimination of oxidized mitochondrial proteins (designated MALM for Mieap-induced accumulation of lysosome-like organelles within mitochondria). However, a large part of the mechanisms for MQC remains unknown. Here, we report additional mechanisms for Mieap-regulated MQC. Reactive oxygen species (ROS) scavengers completely inhibited MALM. A mitochondrial outer membrane protein NIX interacted with Mieap in a ROS-dependent manner via the BH3 domain of NIX and the coiled-coil domain of Mieap. Deficiency of NIX also completely impaired MALM. When MALM was inhibited, Mieap induced vacuole-like structures (designated as MIV for Mieap-induced vacuole), which engulfed and degraded the unhealthy mitochondria by accumulating lysosomes. The inactivation of p53 severely impaired both MALM and MIV generation, leading to accumulation of unhealthy mitochondria. These results suggest that (1) mitochondrial ROS and NIX are essential factors for MALM, (2) MIV is a novel mechanism for lysosomal degradation of mitochondria, and (3) the p53-Mieap pathway plays a pivotal role in MQC by repairing or eliminating unhealthy mitochondria via MALM or MIV generation, respectively.
Collapse
|
639
|
Kario E, Amar N, Elazar Z, Navon A. A new autophagy-related checkpoint in the degradation of an ERAD-M target. J Biol Chem 2011; 286:11479-91. [PMID: 21228276 DOI: 10.1074/jbc.m110.177618] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum (ER) harbors elaborate quality control mechanisms to ensure proper folding and post-translational modifications of polypeptides targeted to this organelle. Once an aberrant protein is detected, it is dislocated from the ER and routed to the proteasome for destruction. Autophagy has been recently implicated in the elevation of the ER stress response; however, the involvement of this pathway in selective removal of ER-associated degradation (ERAD) substrates has not been demonstrated. In the present study, we show that an ER membrane lesion, associated with the accumulation of the yeast ERAD-M substrate 6Myc-Hmg2p elicits the recruitment of Atg8 and elements of the cytosol to vacuole targeting (CVT) to the membrane, leading to attenuation in the degradation process. Deletion of peptide:N-glycanase (PNG1) stabilizes this association, a process accompanied by slowdown of 6Myc-Hmg2p degradation. Truncation of the unstructured C-terminal 23 amino acids of 6Myc-Hmg2p rendered its degradation PNG1-independent and allowed its partial delivery to the vacuole in an autophagy-dependent manner. These findings demonstrate a new conduit for the selective vacuolar/lysosomal removal of ERAD misfolded proteins by an autophagy-related machinery acting concomitantly with the proteasome.
Collapse
Affiliation(s)
- Edith Kario
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
640
|
Abstract
Autophagy is a major catabolic pathway in eukaryotes, which is required for the lysosomal/vacuolar degradation of cytoplasmic proteins and organelles. Interest in the autophagy pathway has recently gained momentum largely owing to identification of multiple autophagy-related genes and recognition of its involvement in various physiological conditions. Here we review current knowledge of the molecular mechanisms regulating autophagy in mammals and yeast, specifically the biogenesis of autophagosomes and the selectivity of their cargo recruitment. We discuss the different steps of autophagy, from the signal transduction events that regulate it to the completion of this pathway by fusion with the lysosome/vacuole. We also review research on the origin of the autophagic membrane, the molecular mechanism of autophagosome formation, and the roles of two ubiquitin-like protein families and other structural elements that are essential for this process. Finally, we discuss the various modes of autophagy and highlight their functional relevance for selective degradation of specific cargos.
Collapse
Affiliation(s)
- Hilla Weidberg
- Department of Biological Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | |
Collapse
|
641
|
Abstract
Autophagy not only recycles intracellular components to compensate for nutrient deprivation but also selectively eliminates organelles to regulate their number and maintain quality control. Mitophagy, the specific autophagic elimination of mitochondria, has been identified in yeast, mediated by autophagy-related 32 (Atg32), and in mammals during red blood cell differentiation, mediated by NIP3-like protein X (NIX; also known as BNIP3L). Moreover, mitophagy is regulated in many metazoan cell types by parkin and PTEN-induced putative kinase protein 1 (PINK1), and mutations in the genes encoding these proteins have been linked to forms of Parkinson's disease.
Collapse
Affiliation(s)
- Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, 2C-917, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
642
|
Aris JP, Fishwick LK, Marraffini ML, Seo AY, Leeuwenburgh C, Dunn WA. Amino acid homeostasis and chronological longevity in Saccharomyces cerevisiae. Subcell Biochem 2011; 57:161-86. [PMID: 22094422 DOI: 10.1007/978-94-007-2561-4_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Understanding how non-dividing cells remain viable over long periods of time, which may be decades in humans, is of central importance in understanding mechanisms of aging and longevity. The long-term viability of non-dividing cells, known as chronological longevity, relies on cellular processes that degrade old components and replace them with new ones. Key among these processes is amino acid homeostasis. Amino acid homeostasis requires three principal functions: amino acid uptake, de novo synthesis, and recycling. Autophagy plays a key role in recycling amino acids and other metabolic building blocks, while at the same time removing damaged cellular components such as mitochondria and other organelles. Regulation of amino acid homeostasis and autophagy is accomplished by a complex web of pathways that interact because of the functional overlap at the level of recycling. It is becoming increasingly clear that amino acid homeostasis and autophagy play important roles in chronological longevity in yeast and higher organisms. Our goal in this chapter is to focus on mechanisms and pathways that link amino acid homeostasis, autophagy, and chronological longevity in yeast, and explore their relevance to aging and longevity in higher eukaryotes.
Collapse
Affiliation(s)
- John P Aris
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL, 32610-0235, USA,
| | | | | | | | | | | |
Collapse
|
643
|
Vives-Bauza C, Przedborski S. Mitophagy: the latest problem for Parkinson's disease. Trends Mol Med 2010; 17:158-65. [PMID: 21146459 DOI: 10.1016/j.molmed.2010.11.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 11/09/2010] [Accepted: 11/11/2010] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder of unknown cause. Some familial forms of PD are provoked by mutations in the genes encoding for the PTEN (phosphatase and tensin homolog)-induced putative kinase-1 (PINK1) and Parkin. Mounting evidence indicates that PINK1 and Parkin might function in concert to modulate mitochondrial degradation, termed mitophagy. However, the molecular mechanisms by which PINK1/Parkin affect mitophagy are just beginning to be elucidated. Herein, we review the main advances in our understanding of the PINK1/Parkin pathway. Because of the phenotypic similarities among the different forms of PD, a better understanding of PINK1/Parkin biology might have far-reaching pathogenic and therapeutic implications for both the inherited and the sporadic forms of PD.
Collapse
|
644
|
Abstract
Autophagy is a process of self-cannibalization. Cells capture their own cytoplasm and organelles and consume them in lysosomes. The resulting breakdown products are inputs to cellular metabolism, through which they are used to generate energy and to build new proteins and membranes. Autophagy preserves the health of cells and tissues by replacing outdated and damaged cellular components with fresh ones. In starvation, it provides an internal source of nutrients for energy generation and, thus, survival. A powerful promoter of metabolic homeostasis at both the cellular and whole-animal level, autophagy prevents degenerative diseases. It does have a downside, however--cancer cells exploit it to survive in nutrient-poor tumors.
Collapse
Affiliation(s)
- Joshua D. Rabinowitz
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, 241 Carl Icahn Laboratory, Washington Road, Princeton University, Princeton, NJ 08544, USA
- Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Eileen White
- Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
- Department of Molecular Biology and Biochemistry, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
- Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| |
Collapse
|
645
|
Reumann S, Voitsekhovskaja O, Lillo C. From signal transduction to autophagy of plant cell organelles: lessons from yeast and mammals and plant-specific features. PROTOPLASMA 2010; 247:233-56. [PMID: 20734094 DOI: 10.1007/s00709-010-0190-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Accepted: 07/28/2010] [Indexed: 05/08/2023]
Abstract
Autophagy is an evolutionarily conserved intracellular process for the vacuolar degradation of cytoplasmic constituents. The central structures of this pathway are newly formed double-membrane vesicles (autophagosomes) that deliver excess or damaged cell components into the vacuole or lysosome for proteolytic degradation and monomer recycling. Cellular remodeling by autophagy allows organisms to survive extensive phases of nutrient starvation and exposure to abiotic and biotic stress. Autophagy was initially studied by electron microscopy in diverse organisms, followed by molecular and genetic analyses first in yeast and subsequently in mammals and plants. Experimental data demonstrate that the basic principles, mechanisms, and components characterized in yeast are conserved in mammals and plants to a large extent. However, distinct autophagy pathways appear to differ between kingdoms. Even though direct information remains scarce particularly for plants, the picture is emerging that the signal transduction cascades triggering autophagy and the mechanisms of organelle turnover evolved further in higher eukaryotes for optimization of nutrient recycling. Here, we summarize new research data on nitrogen starvation-induced signal transduction and organelle autophagy and integrate this knowledge into plant physiology.
Collapse
Affiliation(s)
- Sigrun Reumann
- Centre for Organelle Research, University of Stavanger, 4021 Stavanger, Norway.
| | | | | |
Collapse
|
646
|
Heo JM, Livnat-Levanon N, Taylor EB, Jones KT, Dephoure N, Ring J, Xie J, Brodsky JL, Madeo F, Gygi SP, Ashrafi K, Glickman MH, Rutter J. A stress-responsive system for mitochondrial protein degradation. Mol Cell 2010; 40:465-80. [PMID: 21070972 PMCID: PMC2998070 DOI: 10.1016/j.molcel.2010.10.021] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 07/21/2010] [Accepted: 08/18/2010] [Indexed: 01/03/2023]
Abstract
We show that Ydr049 (renamed VCP/Cdc48-associated mitochondrial stress-responsive--Vms1), a member of an unstudied pan-eukaryotic protein family, translocates from the cytosol to mitochondria upon mitochondrial stress. Cells lacking Vms1 show progressive mitochondrial failure, hypersensitivity to oxidative stress, and decreased chronological life span. Both yeast and mammalian Vms1 stably interact with Cdc48/VCP/p97, a component of the ubiquitin/proteasome system with a well-defined role in endoplasmic reticulum-associated protein degradation (ERAD), wherein misfolded ER proteins are degraded in the cytosol. We show that oxidative stress triggers mitochondrial localization of Cdc48 and this is dependent on Vms1. When this system is impaired by mutation of Vms1, ubiquitin-dependent mitochondrial protein degradation, mitochondrial respiratory function, and cell viability are compromised. We demonstrate that Vms1 is a required component of an evolutionarily conserved system for mitochondrial protein degradation, which is necessary to maintain mitochondrial, cellular, and organismal viability.
Collapse
Affiliation(s)
- Jin-Mi Heo
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112
| | - Nurit Livnat-Levanon
- Department of Biology and The Russell Berrie Nanotechnology Institute, Technion, Israel Institute of Technology, 32000 Haifa, Israel
| | - Eric B. Taylor
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112
| | - Kevin T. Jones
- Department of Physiology and UCSF Diabetes Center, University of California, San Francisco, CA 94158-2517
| | - Noah Dephoure
- Department of Cell Biology, Harvard University Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Julia Ring
- Institute of Molecular Biosciences, Department of Microbiology, Karl-Franzens-University of Graz, Graz, Austria
| | - Jianxin Xie
- Cell Signaling Technology, Inc., Danvers, MA01923
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Frank Madeo
- Institute of Molecular Biosciences, Department of Microbiology, Karl-Franzens-University of Graz, Graz, Austria
| | - Steven P. Gygi
- Department of Cell Biology, Harvard University Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Kaveh Ashrafi
- Department of Physiology and UCSF Diabetes Center, University of California, San Francisco, CA 94158-2517
| | - Michael H. Glickman
- Department of Biology and The Russell Berrie Nanotechnology Institute, Technion, Israel Institute of Technology, 32000 Haifa, Israel
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112
| |
Collapse
|
647
|
Baltzer C, Tiefenböck SK, Frei C. Mitochondria in response to nutrients and nutrient-sensitive pathways. Mitochondrion 2010; 10:589-97. [DOI: 10.1016/j.mito.2010.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 07/16/2010] [Accepted: 07/23/2010] [Indexed: 11/30/2022]
|
648
|
Abstract
Macroautophagy (hereafter autophagy), or 'self-eating', is a conserved cellular pathway that controls protein and organelle degradation, and has essential roles in survival, development and homeostasis. Autophagy is also integral to human health and is involved in physiology, development, lifespan and a wide range of diseases, including cancer, neurodegeneration and microbial infection. Although research on this topic began in the late 1950s, substantial progress in the molecular study of autophagy has taken place during only the past 15 years. This review traces the key findings that led to our current molecular understanding of this complex process.
Collapse
Affiliation(s)
- Zhifen Yang
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216, USA
| | | |
Collapse
|
649
|
Kraft C, Peter M, Hofmann K. Selective autophagy: ubiquitin-mediated recognition and beyond. Nat Cell Biol 2010; 12:836-41. [PMID: 20811356 DOI: 10.1038/ncb0910-836] [Citation(s) in RCA: 511] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Eukaryotic cells use autophagy and the ubiquitin-proteasome system as their major protein degradation pathways. Whereas the ubiquitin-proteasome system is involved in the rapid degradation of proteins, autophagy pathways can selectively remove protein aggregates and damaged or excess organelles. Proteasome-mediated degradation requires previous ubiquitylation of the cargo, which is then recognized by ubiquitin receptors directing it to 26S proteasomes. Although autophagy has long been viewed as a random cytoplasmic degradation system, the involvement of ubiquitin as a specificity factor for selective autophagy is rapidly emerging. Recent evidence also suggests active crosstalk between proteasome-mediated degradation and selective autophagy. Here, we discuss the molecular mechanisms that link autophagy and the proteasome system, as well as the emerging roles of ubiquitin and ubiquitin-binding proteins in selective autophagy. On the basis of the evolutionary history of autophagic ubiquitin receptors, we propose a common origin for metazoan ubiquitin-dependent autophagy and the cytoplasm-to-vacuole targeting pathway of yeast.
Collapse
Affiliation(s)
- Claudine Kraft
- Institute of Biochemistry, ETH Zürich, Schafmattstrasse 18, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
650
|
Abstract
Type 2 diabetes (T2D) is characterized by decreased insulin secretion and action. Decreased insulin secretion results from a reduction in pancreatic β-cell mass and/or function. Apoptosis, oxidative stress, mitochondrial dysfunction and endoplasmic reticulum (ER) stress responses including JNK activation have been suggested as mechanisms for the changes of pancreatic β-cells in T2D; however, the underlying causes were not clearly elucidated. Autophagy is an intracellular process that plays crucial roles in cellular homeostasis through degradation and recycling of organelles. We have reported increased apoptosis and decreased proliferation of β-cells with resultant reduction in the β-cell mass in β-cell-specific autophagy-deficient mice. Morphological analysis of β-cells revealed accumulation of ubiquitinated proteins, swollen mitochondria and distended ER. Insulin secretory function ex vivo was also impaired. As a result, β-cell-specific autophagy-deficient mice showed hypoinsulinaemia and hyperglycaemia. These results suggested that autophagy is necessary to maintain the structure, mass and function of pancreatic β-cells. In addition, as autophagy may play a protective role against ER stress and rejuvenates organelle function, impaired autophagy may lead to mitochondrial dysfunction and ER stress, which have been implicated as potential causes of insulin resistance. Therefore, in addition to β-cell homeostasis, dysregulated autophagy may possibly be involved in diverse aspects of the pathogenesis of diabetes.
Collapse
Affiliation(s)
- K Y Hur
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | |
Collapse
|