601
|
Kamm RD, Bashir R. Creating living cellular machines. Ann Biomed Eng 2013; 42:445-59. [PMID: 24006130 DOI: 10.1007/s10439-013-0902-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/23/2013] [Indexed: 12/16/2022]
Abstract
Development of increasingly complex integrated cellular systems will be a major challenge for the next decade and beyond, as we apply the knowledge gained from the sub-disciplines of regenerative medicine, synthetic biology, micro-fabrication and nanotechnology, systems biology, and developmental biology. In this prospective, we describe the current state-of-the-art in the assembly of source cells, derived from pluripotent cells, into populations of a single cell type to produce the components or building blocks of higher order systems and finally, combining multiple cell types, possibly in combination with scaffolds possessing specific physical or chemical properties, to produce higher level functionality. We also introduce the issue, questions and ample research opportunities to be explored by others in the field. As these "living machines" increase in capabilities, exhibit emergent behavior and potentially reveal the ability for self-assembly, self-repair, and even self-replication, questions arise regarding the ethical implications of this work. Future prospects as well as ways of addressing these complex ethical questions will be discussed.
Collapse
Affiliation(s)
- Roger D Kamm
- Massachusetts Institute of Technology, Cambridge, MA, USA,
| | | |
Collapse
|
602
|
Udan RS, Vadakkan TJ, Dickinson ME. Dynamic responses of endothelial cells to changes in blood flow during vascular remodeling of the mouse yolk sac. Development 2013; 140:4041-50. [PMID: 24004946 DOI: 10.1242/dev.096255] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite extensive work showing the importance of blood flow in angiogenesis and vessel remodeling, very little is known about how changes in vessel diameter are orchestrated at the cellular level in response to mechanical forces. To define the cellular changes necessary for remodeling, we performed live confocal imaging of cultured mouse embryos during vessel remodeling. Our data revealed that vessel diameter increase occurs via two distinct processes that are dependent on normal blood flow: vessel fusions and directed endothelial cell migrations. Vessel fusions resulted in a rapid change in vessel diameter and were restricted to regions that experience the highest flow near the vitelline artery and vein. Directed cell migrations induced by blood flow resulted in the recruitment of endothelial cells to larger vessels from smaller capillaries and were observed in larger artery segments as they expanded. The dynamic and specific endothelial cell behaviors captured in this study reveal how sensitive endothelial cells are to changes in blood flow and how such responses drive vascular remodeling.
Collapse
Affiliation(s)
- Ryan S Udan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
603
|
Scianna M, Bell C, Preziosi L. A review of mathematical models for the formation of vascular networks. J Theor Biol 2013; 333:174-209. [DOI: 10.1016/j.jtbi.2013.04.037] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 02/15/2013] [Accepted: 04/30/2013] [Indexed: 02/08/2023]
|
604
|
Tandon V, Zhang B, Radisic M, Murthy SK. Generation of tissue constructs for cardiovascular regenerative medicine: from cell procurement to scaffold design. Biotechnol Adv 2013; 31:722-35. [PMID: 22951918 PMCID: PMC3527695 DOI: 10.1016/j.biotechadv.2012.08.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 12/17/2022]
Abstract
The ability of the human body to naturally recover from coronary heart disease is limited because cardiac cells are terminally differentiated, have low proliferation rates, and low turn-over rates. Cardiovascular tissue engineering offers the potential for production of cardiac tissue ex vivo, but is currently limited by several challenges: (i) Tissue engineering constructs require pure populations of seed cells, (ii) Fabrication of 3-D geometrical structures with features of the same length scales that exist in native tissue is non-trivial, and (iii) Cells require stimulation from the appropriate biological, electrical and mechanical factors. In this review, we summarize the current state of microfluidic techniques for enrichment of subpopulations of cells required for cardiovascular tissue engineering, which offer unique advantages over traditional plating and FACS/MACS-based enrichment. We then summarize modern techniques for producing tissue engineering scaffolds that mimic native cardiac tissue.
Collapse
Affiliation(s)
- Vishal Tandon
- Department of Chemical Engineering, Northeastern University, 342 Snell Engineering Center, 360 Huntington Avenue, Boston, MA
| | - Boyang Zhang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, WB 368, Toronto, ON
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, WB 368, Toronto, ON
| | - Shashi K. Murthy
- Department of Chemical Engineering, Northeastern University, 342 Snell Engineering Center, 360 Huntington Avenue, Boston, MA
| |
Collapse
|
605
|
Kamei KI, Hirai Y, Tabata O. Body on a Chip: Re-Creation of a Living System In Vitro. IEEE NANOTECHNOLOGY MAGAZINE 2013. [DOI: 10.1109/mnano.2013.2275024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
606
|
Abstract
Vascularization is one of the great challenges that tissue engineering faces in order to achieve sizeable tissue and organ substitutes that contain living cells. There are instances, such as skin replacement, in which a tissue-engineered substitute does not absolutely need a preexisting vascularization. However, tissue or organ substitutes in which any dimension, such as thickness, exceeds 400 μm need to be vascularized to ensure cellular survival. Consistent with the wide spectrum of approaches to tissue engineering itself, which vary from acellular synthetic biomaterials to purely biological living constructs, approaches to tissue-engineered vascularization cover numerous techniques. Those techniques range from micropatterns engineered in biomaterials to microvascular networks created by endothelial cells. In this review, we strive to provide a critical overview of the elements that must be considered in the pursuit of this goal and the major approaches that are investigated in hopes of achieving it.
Collapse
Affiliation(s)
- François A Auger
- Centre LOEX de l'Université Laval, Regenerative Medicine section of the FRQS Research Center of the CHU de Québec, Quebec, QC, Canada.
| | | | | |
Collapse
|
607
|
Morgan JP, Delnero PF, Zheng Y, Verbridge SS, Chen J, Craven M, Choi NW, Diaz-Santana A, Kermani P, Hempstead B, López JA, Corso TN, Fischbach C, Stroock AD. Formation of microvascular networks in vitro. Nat Protoc 2013; 8:1820-36. [PMID: 23989676 DOI: 10.1038/nprot.2013.110] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This protocol describes how to form a 3D cell culture with explicit, endothelialized microvessels. The approach leads to fully enclosed, perfusable vessels in a bioremodelable hydrogel (type I collagen). The protocol uses microfabrication to enable user-defined geometries of the vascular network and microfluidic perfusion to control mass transfer and hemodynamic forces. These microvascular networks (μVNs) allow for multiweek cultures of endothelial cells or cocultures with parenchymal or tissue cells in the extra-lumen space. The platform enables real-time fluorescence imaging of living engineered tissues, in situ confocal fluorescence of fixed cultures and transmission electron microscopy (TEM) imaging of histological sections. This protocol enables studies of basic vascular and blood biology, provides a model for diseases such as tumor angiogenesis or thrombosis and serves as a starting point for constructing prevascularized tissues for regenerative medicine. After one-time microfabrication steps, the system can be assembled in less than 1 d and experiments can run for weeks.
Collapse
Affiliation(s)
- John P Morgan
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
608
|
Baker BM, Trappmann B, Stapleton SC, Toro E, Chen CS. Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients. LAB ON A CHIP 2013; 13:3246-52. [PMID: 23787488 PMCID: PMC4082768 DOI: 10.1039/c3lc50493j] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Gradients of diffusive molecules within 3D extracellular matrix (ECM) are essential in guiding many processes such as development, angiogenesis, and cancer. The spatial distribution of factors that guide these processes is complex, dictated by the distribution and architecture of vasculature and presence of surrounding cells, which can serve as sources or sinks of factors. To generate temporally and spatially defined soluble gradients within a 3D cell culture environment, we developed an approach to patterning microfluidically ported microchannels that pass through a 3D ECM. Micromolded networks of sacrificial conduits ensconced within an ECM gel precursor solution are dissolved following ECM gelation to yield functional microfluidic channels. The dimensions and spatial layout of channels are readily dictated using photolithographic methods, and channels are connected to external flow via a gasket that also serves to house the 3D ECM. We demonstrated sustained spatial patterning of diffusive gradients dependent on the architecture of the microfluidic network, as well as the ability to independently populate cells in either the channels or surrounding ECM, enabling the study of 3D morphogenetic processes. To highlight the utility of this approach, we generated model vascular networks by lining the channels with endothelial cells and examined how channel architecture, through its effects on diffusion patterns, can guide the location and morphology of endothelial sprouting from the channels. We show that locations of strongest gradients define positions of angiogenic sprouting, suggesting a mechanism by which angiogenesis is regulated in vivo and a potential means to spatially defining vasculature in tissue engineering applications. This flexible 3D microfluidic approach should have utility in modeling simple tissues and will aid in the screening and identification of soluble factor conditions that drive morphogenetic events such as angiogenesis.
Collapse
Affiliation(s)
- Brendon M. Baker
- Tissue Microfabrication Lab, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Britta Trappmann
- Tissue Microfabrication Lab, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Sarah C. Stapleton
- Tissue Microfabrication Lab, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Esteban Toro
- Tissue Microfabrication Lab, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Christopher S. Chen
- Tissue Microfabrication Lab, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
- Corresponding Author: Christopher S. Chen, M.D., Ph.D., Skirkanich Professor of Innovation in Bioengineering, University of Pennsylvania, 510 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104, Phone: (215) 746-1754, Fax: (215) 746-1752, , Web: http://www.seas.upenn.edu/~chenlab/index.html
| |
Collapse
|
609
|
Andrejecsk JW, Cui J, Chang WG, Devalliere J, Pober JS, Saltzman WM. Paracrine exchanges of molecular signals between alginate-encapsulated pericytes and freely suspended endothelial cells within a 3D protein gel. Biomaterials 2013; 34:8899-908. [PMID: 23973174 DOI: 10.1016/j.biomaterials.2013.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 08/02/2013] [Indexed: 12/12/2022]
Abstract
Paracrine signals, essential for the proper survival and functioning of tissues, may be mimicked by delivery of therapeutic proteins within engineered tissue constructs. Conventional delivery methods are of limited duration and are unresponsive to the local environment. We developed a system for sustained and regulated delivery of paracrine signals by encapsulating living cells of one type in alginate beads and co-suspending these cell-loaded particles along with unencapsulated cells of a second type within a 3D protein gel. This system was applied to vascular tissue engineering by placing human placental microvascular pericytes (PCs) in the particulate alginate phase and human umbilical vein endothelial cells (HUVECs) in the protein gel phase. Particle characteristics were optimized to keep the encapsulated PCs viable for at least two weeks. Encapsulated PCs were bioactive in vitro, secreting hepatocyte growth factor, an angiogenic protein, and responding to externally applied HUVEC-derived signals. Encapsulated PCs influenced HUVEC behavior in the surrounding gel by enhancing the formation of vessel-like structures when compared to empty alginate bead controls. In vivo, encapsulated PCs modulated the process of vascular self-assembly by HUVECs in 3D gels following implantation into immunodeficient mice. We conclude that alginate encapsulated cells can provide functional paracrine signals within engineered tissues.
Collapse
|
610
|
Iwase M, Yamada M, Yamada E, Seki M. Formation of Cell Aggregates Using Microfabricated Hydrogel Chambers for Assembly into Larger Tissues. JOURNAL OF ROBOTICS AND MECHATRONICS 2013. [DOI: 10.20965/jrm.2013.p0682] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper presents a fabrication process for cell aggregates with controlled shapes that can be used as building units for constructing relatively large tissue models. Microfabricated hydrogel-based chambers with non-adhesive surface characteristics were prepared via a micromolding process. Alginate was used as the hydrogel matrix, which facilitated the efficient formation of aggregates from cells retained inside the microchamber. We employed several types of toroidal and lattice-shaped hydrogel microchambers with different geometries. We examined the effect of cell type on the aggregate formation process using NIH-3T3, C2C12, and HepG2 cells and clearly observed that aggregation behavior is highly dependent on cell type. In addition, we tried to construct 2-layered capillarylike tissues by stacking heterotypic toroidal cell aggregates, which mimic blood vessels. The presented cell aggregate-based tissue fabrication process could become a versatile approach for preparing complex and scaffold-free 3D tissue models.
Collapse
|
611
|
Morin KT, Smith AO, Davis GE, Tranquillo RT. Aligned human microvessels formed in 3D fibrin gel by constraint of gel contraction. Microvasc Res 2013; 90:12-22. [PMID: 23938272 DOI: 10.1016/j.mvr.2013.07.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 07/15/2013] [Accepted: 07/29/2013] [Indexed: 01/14/2023]
Abstract
This study aimed to form microvessels in fibrin gels, which is of interest both for studying the fundamental cell-matrix interactions as well as for tissue engineering purposes, and to align the microvessels, which would provide natural inlet and outlet sides for perfusion. The data reported here demonstrate the formation of highly interconnected microvessels in fibrin gel under defined medium conditions and the ability to align them using two methods, both of which involved anchoring the gel at both ends to constrain the cell-induced compaction. The first method used only defined medium and resulted in moderate alignment. The second method used defined and serum-containing media sequentially to achieve high levels of microvessel alignment.
Collapse
Affiliation(s)
- Kristen T Morin
- Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
612
|
He J, Mao M, Liu Y, Shao J, Jin Z, Li D. Fabrication of nature-inspired microfluidic network for perfusable tissue constructs. Adv Healthc Mater 2013; 2:1108-13. [PMID: 23554383 DOI: 10.1002/adhm.201200404] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/13/2012] [Indexed: 11/11/2022]
Abstract
A microreplication method is presented to transfer nature optimized vascular network of leaf venation into various synthetic matrixes. The biomaterial hydrogel with these microfluidic networks is proven to facilitate the growth of endothelial cells and simultaneously function as convection pathways to transport nutrients and oxygen in a pump-free bioreactor setup, which is crucial for the long-term viability of encapsulated cells.
Collapse
Affiliation(s)
- Jiankang He
- State key laboratory for manufacturing, systems engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | | | | | | | | | | |
Collapse
|
613
|
Garvin KA, Dalecki D, Yousefhussien M, Helguera M, Hocking DC. Spatial patterning of endothelial cells and vascular network formation using ultrasound standing wave fields. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:1483-90. [PMID: 23927188 PMCID: PMC3745485 DOI: 10.1121/1.4812867] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 05/22/2023]
Abstract
The spatial organization of cells is essential for proper tissue assembly and organ function. Thus, successful engineering of complex tissues and organs requires methods to control cell organization in three dimensions. In particular, technologies that facilitate endothelial cell alignment and vascular network formation in three-dimensional tissue constructs would provide a means to supply essential oxygen and nutrients to newly forming tissue. Acoustic radiation forces associated with ultrasound standing wave fields can rapidly and non-invasively organize cells into distinct multicellular planar bands within three-dimensional collagen gels. Results presented herein demonstrate that the spatial pattern of endothelial cells within three-dimensional collagen gels can be controlled by design of acoustic parameters of the sound field. Different ultrasound standing wave field exposure parameters were used to organize endothelial cells into either loosely aggregated or densely packed planar bands. The rate of vessel formation and the morphology of the resulting endothelial cell networks were affected by the initial density of the ultrasound-induced planar bands of cells. Ultrasound standing wave fields provide a rapid, non-invasive approach to pattern cells in three-dimensions and direct vascular network formation and morphology within engineered tissue constructs.
Collapse
Affiliation(s)
- Kelley A Garvin
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, USA
| | | | | | | | | |
Collapse
|
614
|
DelNero P, Song YH, Fischbach C. Microengineered tumor models: insights & opportunities from a physical sciences-oncology perspective. Biomed Microdevices 2013; 15:583-593. [PMID: 23559404 PMCID: PMC3714360 DOI: 10.1007/s10544-013-9763-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Prevailing evidence has established the fundamental role of microenvironmental conditions in tumorigenesis. However, the ability to identify, interrupt, and translate the underlying cellular and molecular mechanisms into meaningful therapies remains limited, due in part to a lack of organotypic culture systems that accurately recapitulate tumor physiology. Integration of tissue engineering with microfabrication technologies has the potential to address this challenge and mimic tumor heterogeneity with pathological fidelity. Specifically, this approach allows recapitulating global changes of tissue-level phenomena, while also controlling microscale variability of various conditions including spatiotemporal presentation of soluble signals, biochemical and physical characteristics of the extracellular matrix, and cellular composition. Such platforms have continued to elucidate the role of the microenvironment in cancer pathogenesis and significantly improve drug discovery and screening, particularly for therapies that target tumor-enabling stromal components. This review discusses some of the landmark efforts in the field of micro-tumor engineering with a particular emphasis on deregulated tissue organization and mass transport phenomena in the tumor microenvironment.
Collapse
Affiliation(s)
- Peter DelNero
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Young Hye Song
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14853, USA.
- , 157 Weill Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
615
|
Abstract
Regenerative Medicine (RM) has the promise to revolutionize the treatment of many debilitating diseases for which the current therapies are inadequate. To realize the full potential of RM, a pragmatic approach needs to be taken by all stakeholders keeping in mind the lessons learnt from recombinant protein manufacturing, gene therapy trials, etc., to develop novel service delivery models for economic viability and regulatory processes in the absence of long-term data. In this chapter, we focus on the three main drivers of RM field and discuss the potential pitfalls and possible ways to mitigate them in order to move the field closer to clinical implementation.
Collapse
|
616
|
Buchanan CF, Voigt EE, Szot CS, Freeman JW, Vlachos PP, Rylander MN. Three-dimensional microfluidic collagen hydrogels for investigating flow-mediated tumor-endothelial signaling and vascular organization. Tissue Eng Part C Methods 2013; 20:64-75. [PMID: 23730946 DOI: 10.1089/ten.tec.2012.0731] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hyperpermeable tumor vessels are responsible for elevated interstitial fluid pressure and altered flow patterns within the tumor microenvironment. These aberrant hydrodynamic stresses may enhance tumor development by stimulating the angiogenic activity of endothelial cells lining the tumor vasculature. However, it is currently not known to what extent shear forces affect endothelial organization or paracrine signaling during tumor angiogenesis. The objective of this study was to develop a three-dimensional (3D), in vitro microfluidic tumor vascular model for coculture of tumor and endothelial cells under varying flow shear stress conditions. A central microchannel embedded within a collagen hydrogel functions as a single neovessel through which tumor-relevant hydrodynamic stresses are introduced and quantified using microparticle image velocimetry (μ-PIV). This is the first use of μ-PIV in a tumor representative, 3D collagen matrix comprised of cylindrical microchannels, rather than planar geometries, to experimentally measure flow velocity and shear stress. Results demonstrate that endothelial cells develop a confluent endothelium on the microchannel lumen that maintains integrity under physiological flow shear stresses. Furthermore, this system provides downstream molecular analysis capability, as demonstrated by quantitative RT-PCR, in which, tumor cells significantly increase expression of proangiogenic genes in response to coculture with endothelial cells under low flow conditions. This work demonstrates that the microfluidic in vitro cell culture model can withstand a range of physiological flow rates and permit quantitative measurement of wall shear stress at the fluid-collagen interface using μ-PIV optical flow diagnostics, ultimately serving as a versatile platform for elucidating the role of fluid forces on tumor-endothelial cross talk.
Collapse
Affiliation(s)
- Cara F Buchanan
- 1 School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University , Blacksburg, Virginia
| | | | | | | | | | | |
Collapse
|
617
|
Waters JP, Kluger MS, Graham M, Chang WG, Bradley JR, Pober JS. In vitro self-assembly of human pericyte-supported endothelial microvessels in three-dimensional coculture: a simple model for interrogating endothelial-pericyte interactions. J Vasc Res 2013; 50:324-31. [PMID: 23860328 DOI: 10.1159/000353303] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/16/2013] [Indexed: 01/10/2023] Open
Abstract
We describe a method for coculture of macro- or microvascular human endothelial cells (ECs) and pericytes (PCs) within a 3-dimensional (3-D) protein matrix resulting in lumenized EC cords invested by PCs. To prevent apoptotic cell death of ECs in 3-D culture, human umbilical vein or dermal microvascular ECs were transduced to express the antiapoptotic protein Bcl-2. To prevent PC-mediated gel contraction, the collagen-fibronectin gel was polymerized within a polyglycolic acid nonwoven matrix. Over the first 24-48 h, EC-only gels spontaneously formed cords that developed lumens via vacuolization; such vascular networks were maintained for up to 7 days. In EC-PC cocultures, PCs were recruited to the EC networks. PC investment of EC cords both limited the lumen diameter and increased the degree of vascular network arborization. Peg and socket junctions formed between ECs and PCs in this system, but dye transfer, indicative of gap junction formation, was not observed. This simple system can be used to analyze bidirectional signals between ECs and PCs in a 3-D geometry.
Collapse
Affiliation(s)
- J P Waters
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| | | | | | | | | | | |
Collapse
|
618
|
In vitro models of angiogenesis and vasculogenesis in fibrin gel. Exp Cell Res 2013; 319:2409-17. [PMID: 23800466 DOI: 10.1016/j.yexcr.2013.06.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/07/2013] [Accepted: 06/10/2013] [Indexed: 01/13/2023]
Abstract
In vitro models of endothelial assembly into microvessels are useful for the study of angiogenesis and vasculogenesis. In addition, such models may be used to provide the microvasculature required to sustain engineered tissues. A large range of in vitro models of both angiogenesis and vasculogenesis have utilized fibrin gel as a scaffold. Although fibrin gel is conducive to endothelial assembly, its ultrastructure varies substantially based on the gel formulation and gelation conditions, making it challenging to compare between models. This work reviews existing models of endothelial assembly in fibrin gel and posits that differerences between models are partially caused by microstructural differences in fibrin gel.
Collapse
|
619
|
Buchanan C, Rylander MN. Microfluidic culture models to study the hydrodynamics of tumor progression and therapeutic response. Biotechnol Bioeng 2013; 110:2063-72. [PMID: 23616255 DOI: 10.1002/bit.24944] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/12/2013] [Accepted: 04/17/2013] [Indexed: 02/03/2023]
Abstract
The integration of tissue engineering strategies with microfluidic technologies has enabled the design of in vitro microfluidic culture models that better adapt to morphological changes in tissue structure and function over time. These biomimetic microfluidic scaffolds accurately mimic native 3D microenvironments, as well as permit precise and simultaneous control of chemical gradients, hydrodynamic stresses, and cellular niches within the system. The recent application of microfluidic in vitro culture models to cancer research offers enormous potential to aid in the development of improved therapeutic strategies by supporting the investigation of tumor angiogenesis and metastasis under physiologically relevant flow conditions. The intrinsic material properties and fluid mechanics of microfluidic culture models enable high-throughput anti-cancer drug screening, permit well-defined and controllable input parameters to monitor tumor cell response to various hydrodynamic conditions or treatment modalities, as well as provide a platform for elucidating fundamental mechanisms of tumor physiology. This review highlights recent developments and future applications of microfluidic culture models to study tumor progression and therapeutic targeting under conditions of hydrodynamic stress relevant to the complex tumor microenvironment.
Collapse
Affiliation(s)
- Cara Buchanan
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Lab 340 ICTAS Building I, Stanger Street, Blacksburg, Virginia 24061, USA.
| | | |
Collapse
|
620
|
|
621
|
López JA, Zheng Y. Synthetic microvessels. J Thromb Haemost 2013; 11 Suppl 1:67-74. [PMID: 23809111 DOI: 10.1111/jth.12245] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 03/25/2013] [Indexed: 01/02/2023]
Abstract
The microvasculature is an immense organ that defines the environmental conditions within tissues in both health and disease, and is vital for the proper functions of all tissues. Here, we describe existing tools to study vascular cell function and our work using one platform of in vitro microvessels, which we employed to study vessel structure and remodeling, endothelial barrier function, angiogenesis, interactions between endothelial cells and perivascular cells, interactions between blood cells and the endothelium, and microvascular thrombosis. We also briefly discuss the potential future applications of these platforms in biology and medicine.
Collapse
Affiliation(s)
- J A López
- Puget Sound Blood Center Research Institute, Seattle, WA 98104, USA.
| | | |
Collapse
|
622
|
ABACI HASANE, DRAZER GERMAN, GERECHT SHARON. RECAPITULATING THE VASCULAR MICROENVIRONMENT IN MICROFLUIDIC PLATFORMS. ACTA ACUST UNITED AC 2013. [DOI: 10.1142/s1793984413400011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The vasculature is regulated by various chemical and mechanical factors. Reproducing these factors in vitro is crucial for the understanding of the mechanisms underlying vascular diseases and the development of new therapeutics and delivery techniques. Microfluidic technology offers opportunities to precisely control the level, duration and extent of various cues, providing unprecedented capabilities to recapitulate the vascular microenvironment. In the first part of this article, we review existing microfluidic technology that is capable of controlling both chemical and mechanical factors regulating the vascular microenvironment. In particular, we focus on micro-systems developed for controlling key parameters such as oxygen tension, co-culture, shear stress, cyclic stretch and flow patterns. In the second part of this article, we highlight recent advances that resulted from the use of these microfluidic devices for vascular research.
Collapse
Affiliation(s)
- HASAN E. ABACI
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences — Oncology Center and the Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA
| | - GERMAN DRAZER
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, 98 Brett Rd, Piscataway, NJ 08854, USA
| | - SHARON GERECHT
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences — Oncology Center and the Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
623
|
Gleghorn JP, Manivannan S, Nelson CM. Quantitative approaches to uncover physical mechanisms of tissue morphogenesis. Curr Opin Biotechnol 2013; 24:954-61. [PMID: 23647971 DOI: 10.1016/j.copbio.2013.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 04/12/2013] [Indexed: 12/30/2022]
Abstract
Morphogenesis, the creation of tissue and organ architecture, is a series of complex and dynamic processes driven by genetic programs, microenvironmental cues, and intercellular interactions. Elucidating the physical mechanisms that generate tissue form is key to understanding development, disease, and the strategies needed for regenerative therapies. Advancements in imaging technologies, genetic recombination techniques, laser ablation, and microfabricated tissue models have enabled quantitative descriptions of the cellular motions and tissue deformations and stresses with unprecedented temporal and spatial resolution. Using these data synergistically with increasingly more sophisticated physical, mathematical, and computational models will unveil the physical mechanisms that drive morphogenesis.
Collapse
Affiliation(s)
- Jason P Gleghorn
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | | | | |
Collapse
|
624
|
Abstract
The study of blood ex vivo can occur in closed or open systems, with or without flow. Microfluidic devices, which constrain fluids to a small (typically submillimeter) scale, facilitate analysis of platelet function, coagulation biology, cellular biorheology, adhesion dynamics, and pharmacology and, as a result, can be an invaluable tool for clinical diagnostics. An experimental session can accommodate hundreds to thousands of unique clotting, or thrombotic, events. Using microfluidics, thrombotic events can be studied on defined surfaces of biopolymers, matrix proteins, and tissue factor, under constant flow rate or constant pressure drop conditions. Distinct shear rates can be generated on a device using a single perfusion pump. Microfluidics facilitated both the determination of intraluminal thrombus permeability and the discovery that platelet contractility can be activated by a sudden decrease in flow. Microfluidic devices are ideal for multicolor imaging of platelets, fibrin, and phosphatidylserine and provide a human blood analog to mouse injury models. Overall, microfluidic advances offer many opportunities for research, drug testing under relevant hemodynamic conditions, and clinical diagnostics.
Collapse
Affiliation(s)
- Thomas V Colace
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
625
|
Sekiya S, Shimizu T, Okano T. Vascularization in 3D tissue using cell sheet technology. Regen Med 2013; 8:371-7. [DOI: 10.2217/rme.13.16] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
626
|
Bae H, Puranik AS, Gauvin R, Edalat F, Carrillo-Conde B, Peppas NA, Khademhosseini A. Building vascular networks. Sci Transl Med 2013; 4:160ps23. [PMID: 23152325 DOI: 10.1126/scitranslmed.3003688] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Only a few engineered tissues-skin, cartilage, bladder-have achieved clinical success, and biomaterials designed to replace more complex organs are still far from commercial availability. This gap exists in part because biomaterials lack a vascular network to transfer the oxygen and nutrients necessary for survival and integration after transplantation. Thus, generation of a functional vasculature is essential to the clinical success of engineered tissue constructs and remains a key challenge for regenerative medicine. In this Perspective, we discuss recent advances in vascularization of biomaterials through the use of biochemical modification, exogenous cells, or microengineering technology.
Collapse
Affiliation(s)
- Hojae Bae
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
627
|
Mu X, Zheng W, Xiao L, Zhang W, Jiang X. Engineering a 3D vascular network in hydrogel for mimicking a nephron. LAB ON A CHIP 2013; 13:1612-1618. [PMID: 23455642 DOI: 10.1039/c3lc41342j] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Engineering functional vascular networks in vitro is critical for tissue engineering and a variety of applications. There is still a general lack of straightforward approaches for recapitulating specific structures and functions of vasculature. This report describes a microfluidic method that utilizes fibrillogenesis of collagen and a liquid mold to engineer three-dimensional vascular networks in hydrogel. The well-controlled vascular network demonstrates both mechanical stability for perfusing solutions and biocompatibility for cell adhesion and coverage. This technique enables the mimicry of passive diffusion in a nephron one of the main routes transferring soluble organic molecules. This approach could be used for in vitro modelling of mass transfer-involved physiology in vasculature-rich tissues and organs for regeneration and drug screening.
Collapse
Affiliation(s)
- Xuan Mu
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, 11 Beiyitiao, ZhongGuanCun, Beijing 100190, PR China
| | | | | | | | | |
Collapse
|
628
|
Kim S, Lee H, Chung M, Jeon NL. Engineering of functional, perfusable 3D microvascular networks on a chip. LAB ON A CHIP 2013; 13:1489-500. [PMID: 23440068 DOI: 10.1039/c3lc41320a] [Citation(s) in RCA: 614] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Generating perfusable 3D microvessels in vitro is an important goal for tissue engineering, as well as for reliable modelling of blood vessel function. To date, in vitro blood vessel models have not been able to accurately reproduce the dynamics and responses of endothelial cells to grow perfusable and functional 3D vascular networks. Here we describe a microfluidic-based platform whereby we model natural cellular programs found during normal development and angiogenesis to form perfusable networks of intact 3D microvessels as well as tumor vasculatures based on the spatially controlled co-culture of endothelial cells with stromal fibroblasts, pericytes or cancer cells. The microvessels possess the characteristic morphological and biochemical markers of in vivo blood vessels, and exhibit strong barrier function and long-term stability. An open, unobstructed microvasculature allows the delivery of nutrients, chemical compounds, biomolecules and cell suspensions, as well as flow-induced mechanical stimuli into the luminal space of the endothelium, and exhibits faithful responses to physiological shear stress as demonstrated by cytoskeleton rearrangement and increased nitric oxide synthesis. This simple and versatile platform provides a wide range of applications in vascular physiology studies as well as in developing vascularized organ-on-a-chip and human disease models for pharmaceutical screening.
Collapse
Affiliation(s)
- Sudong Kim
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 151-744, Korea
| | | | | | | |
Collapse
|
629
|
Abstract
This review surveys selected methods of manufacture and applications of microdevices-miniaturized functional devices capable of handling cell and tissue cultures or producing particles-and discusses their potential relevance to nanomedicine. Many characteristics of microdevices such as miniaturization, increased throughput, and the ability to mimic organ-specific microenvironments are promising for the rapid, low-cost evaluation of the efficacy and toxicity of nanomaterials. Their potential to accurately reproduce the physiological environments that occur in vivo could reduce dependence on animal models in pharmacological testing. Technologies in microfabrications and microfluidics are widely applicable for nanomaterial synthesis and for the development of diagnostic devices. Although the use of microdevices in nanomedicine is still in its infancy, these technologies show promise for enhancing fundamental and applied research in nanomedicine.
Collapse
Affiliation(s)
- Michinao Hashimoto
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
630
|
Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro. Proc Natl Acad Sci U S A 2013; 110:6712-7. [PMID: 23569284 DOI: 10.1073/pnas.1221526110] [Citation(s) in RCA: 369] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is a complex morphogenetic process whereby endothelial cells from existing vessels invade as multicellular sprouts to form new vessels. Here, we have engineered a unique organotypic model of angiogenic sprouting and neovessel formation that originates from preformed artificial vessels fully encapsulated within a 3D extracellular matrix. Using this model, we screened the effects of angiogenic factors and identified two distinct cocktails that promoted robust multicellular endothelial sprouting. The angiogenic sprouts in our system exhibited hallmark structural features of in vivo angiogenesis, including directed invasion of leading cells that developed filopodia-like protrusions characteristic of tip cells, following stalk cells exhibiting apical-basal polarity, and lumens and branches connecting back to the parent vessels. Ultimately, sprouts bridged between preformed channels and formed perfusable neovessels. Using this model, we investigated the effects of angiogenic inhibitors on sprouting morphogenesis. Interestingly, the ability of VEGF receptor 2 inhibition to antagonize filopodia formation in tip cells was context-dependent, suggesting a mechanism by which vessels might be able to toggle between VEGF-dependent and VEGF-independent modes of angiogenesis. Like VEGF, sphingosine-1-phosphate also seemed to exert its proangiogenic effects by stimulating directional filopodial extension, whereas matrix metalloproteinase inhibitors prevented sprout extension but had no impact on filopodial formation. Together, these results demonstrate an in vitro 3D biomimetic model that reconstitutes the morphogenetic steps of angiogenic sprouting and highlight the potential utility of the model to elucidate the molecular mechanisms that coordinate the complex series of events involved in neovascularization.
Collapse
|
631
|
Sung JH, Esch MB, Prot JM, Long CJ, Smith A, Hickman JJ, Shuler ML. Microfabricated mammalian organ systems and their integration into models of whole animals and humans. LAB ON A CHIP 2013; 13:1201-12. [PMID: 23388858 PMCID: PMC3593746 DOI: 10.1039/c3lc41017j] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
While in vitro cell based systems have been an invaluable tool in biology, they often suffer from a lack of physiological relevance. The discrepancy between the in vitro and in vivo systems has been a bottleneck in drug development process and biological sciences. The recent progress in microtechnology has enabled manipulation of cellular environment at a physiologically relevant length scale, which has led to the development of novel in vitro organ systems, often termed 'organ-on-a-chip' systems. By mimicking the cellular environment of in vivo tissues, various organ-on-a-chip systems have been reported to reproduce target organ functions better than conventional in vitro model systems. Ultimately, these organ-on-a-chip systems will converge into multi-organ 'body-on-a-chip' systems composed of functional tissues that reproduce the dynamics of the whole-body response. Such microscale in vitro systems will open up new possibilities in medical science and in the pharmaceutical industry.
Collapse
Affiliation(s)
- Jong H Sung
- Chemical Engineering, Hongik University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
632
|
Verbridge SS, Chakrabarti A, DelNero P, Kwee B, Varner JD, Stroock AD, Fischbach C. Physicochemical regulation of endothelial sprouting in a 3D microfluidic angiogenesis model. J Biomed Mater Res A 2013; 101:2948-56. [PMID: 23559519 DOI: 10.1002/jbm.a.34587] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 01/07/2023]
Abstract
Both physiological and pathological tissue remodeling (e.g., during wound healing and cancer, respectively) require new blood vessel formation via angiogenesis, but the underlying microenvironmental mechanisms remain poorly defined due in part to the lack of biologically relevant in vitro models. Here, we present a biomaterials-based microfluidic 3D platform for analysis of endothelial sprouting in response to morphogen gradients. This system consists of three lithographically defined channels embedded in type I collagen hydrogels. A central channel is coated with endothelial cells, and two parallel side channels serve as a source and a sink for the steady-state generation of biochemical gradients. Gradients of vascular endothelial growth factor (VEGF) promoted sprouting, whereby endothelial cell responsiveness was markedly dependent on cell density and vessel geometry regardless of treatment conditions. These results point toward mechanical and/or autocrine mechanisms that may overwhelm pro-angiogenic paracrine signaling under certain conditions. To date, neither geometrical effects nor cell density have been considered critical determinants of angiogenesis in health and disease. This biomimetic vessel platform demonstrated utility for delineating hitherto underappreciated contributors of angiogenesis, and future studies may enable important new mechanistic insights that will inform anti-angiogenic cancer therapy.
Collapse
Affiliation(s)
- Scott S Verbridge
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | | | | | | | | | | | | |
Collapse
|
633
|
Moya ML, Hsu YH, Lee AP, Hughes CCW, George SC. In vitro perfused human capillary networks. Tissue Eng Part C Methods 2013; 19:730-7. [PMID: 23320912 DOI: 10.1089/ten.tec.2012.0430] [Citation(s) in RCA: 322] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Replicating in vitro the complex in vivo tissue microenvironment has the potential to transform our approach to medicine and also our understanding of biology. In order to accurately model the 3D arrangement and interaction of cells and extracellular matrix, new microphysiological systems must include a vascular supply. The vasculature not only provides the necessary convective transport of oxygen, nutrients, and waste in 3D culture, but also couples and integrates the responses of organ systems. Here we combine tissue engineering and microfluidic technology to create an in vitro 3D metabolically active stroma (∼1 mm(3)) that, for the first time, contains a perfused, living, dynamic, interconnected human capillary network. The range of flow rate (μm/s) and shear rate (s(-1)) within the network was 0-4000 and 0-1000, respectively, and thus included the normal physiological range. Infusion of FITC dextran demonstrated microvessels (15-50 μm) to be largely impermeable to 70 kDa. Our high-throughput biology-directed platform has the potential to impact a broad range of fields that intersect with the microcirculation, including tumor metastasis, drug discovery, vascular disease, and environmental chemical toxicity.
Collapse
Affiliation(s)
- Monica L Moya
- Department of Biomedical Engineering, University of California, Irvine, California, USA
| | | | | | | | | |
Collapse
|
634
|
Kang TY, Hong JM, Jung JW, Yoo JJ, Cho DW. Design and assessment of a microfluidic network system for oxygen transport in engineered tissue. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:701-709. [PMID: 23234496 DOI: 10.1021/la303552m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Oxygen and nutrients cannot be delivered to cells residing in the interior of large-volume scaffolds via diffusion alone. Several efforts have been made to meet the metabolic needs of cells in a scaffold by constructing mass transport channels, particularly in the form of bifurcated networks. In contrast to progress in fabrication technologies, however, an approach to designing an optimal network based on experimental evaluation has not been actively reported. The main objective of this study was to establish a procedure for designing an effective microfluidic network system for a cell-seeded scaffold and to develop an experimental model to evaluate the design. We proposed a process to design a microfluidic network by combining an oxygen transport simulation with biomimetic principles governing biological vascular trees. The simulation was performed with the effective diffusion coefficient (D(e,s)), which was experimentally measured in our previous study. Porous scaffolds containing an embedded microfluidic network were fabricated using the lost mold shape-forming process and salt leaching method. The reliability of the procedure was demonstrated by experiments using the scaffolds. This approach established a practical basis for designing an effective microfluidic network in a cell-seeded scaffold.
Collapse
Affiliation(s)
- Tae-Yun Kang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk 790-784, Korea
| | | | | | | | | |
Collapse
|
635
|
Kovarik ML, Ornoff DM, Melvin AT, Dobes NC, Wang Y, Dickinson AJ, Gach PC, Shah PK, Allbritton NL. Micro total analysis systems: fundamental advances and applications in the laboratory, clinic, and field. Anal Chem 2013; 85:451-72. [PMID: 23140554 PMCID: PMC3546124 DOI: 10.1021/ac3031543] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Michelle L. Kovarik
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Douglas M. Ornoff
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Adam T. Melvin
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Nicholas C. Dobes
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Alexandra J. Dickinson
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Philip C. Gach
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Pavak K. Shah
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC 27695
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
636
|
Kang TY, Hong JM, Kim BJ, Cha HJ, Cho DW. Enhanced endothelialization for developing artificial vascular networks with a natural vessel mimicking the luminal surface in scaffolds. Acta Biomater 2013; 9:4716-25. [PMID: 22947325 DOI: 10.1016/j.actbio.2012.08.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 08/22/2012] [Accepted: 08/26/2012] [Indexed: 12/19/2022]
Abstract
Large tissue regeneration remains problematic because of a lack of oxygen and nutrient supply. An attempt to meet the metabolic needs of cells has been made by preforming branched vascular networks within a scaffold to act as channels for mass transport. When constructing functional vascular networks with channel patency, emphasis should be placed on anti-thrombogenic surface issues. The aim of this study was to develop a rapid endothelialization method for creating an anti-thrombogenic surface mimicking the natural vessel wall in the artificial vascular networks. Shear stress preconditioning and scaffold surface modification were investigated as effective approaches for promoting biomaterial endothelialization. We found that a transient increase in shear stress at the appropriate time is key to enhancing endothelialization. Moreover, surface modification with bioactive materials such as collagen and recombinant mussel adhesive protein fused with arginine-glycine-aspartic acid peptide (MAP-RGD) showed a synergetic effect with shear stress preconditioning. Platelet adhesion tests demonstrated the anti-thrombogenic potential of MAP-RGD itself without endothelialization. The rapid endothelialization method established in this study can be easily applied to preformed artificial vascular networks in porous scaffolds. Development of artificial vascular networks with an anti-thrombogenic luminal surface will open up a new chapter in tissue engineering and regenerative medicine.
Collapse
|
637
|
Zhang B, Peticone C, Murthy SK, Radisic M. A standalone perfusion platform for drug testing and target validation in micro-vessel networks. BIOMICROFLUIDICS 2013; 7:44125. [PMID: 24404058 PMCID: PMC3772900 DOI: 10.1063/1.4818837] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/31/2013] [Indexed: 05/05/2023]
Abstract
Studying the effects of pharmacological agents on human endothelium includes the routine use of cell monolayers cultivated in multi-well plates. This configuration fails to recapitulate the complex architecture of vascular networks in vivo and does not capture the relationship between shear stress (i.e. flow) experienced by the cells and dose of the applied pharmacological agents. Microfluidic platforms have been applied extensively to create vascular systems in vitro; however, they rely on bulky external hardware to operate, which hinders the wide application of microfluidic chips by non-microfluidic experts. Here, we have developed a standalone perfusion platform where multiple devices were perfused at a time with a single miniaturized peristaltic pump. Using the platform, multiple micro-vessel networks, that contained three levels of branching structures, were created by culturing endothelial cells within circular micro-channel networks mimicking the geometrical configuration of natural blood vessels. To demonstrate the feasibility of our platform for drug testing and validation assays, a drug induced nitric oxide assay was performed on the engineered micro-vessel network using a panel of vaso-active drugs (acetylcholine, phenylephrine, atorvastatin, and sildenafil), showing both flow and drug dose dependent responses. The interactive effects between flow and drug dose for sildenafil could not be captured by a simple straight rectangular channel coated with endothelial cells, but it was captured in a more physiological branching circular network. A monocyte adhesion assay was also demonstrated with and without stimulation by an inflammatory cytokine, tumor necrosis factor-α.
Collapse
Affiliation(s)
- Boyang Zhang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada ; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Carlotta Peticone
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Shashi K Murthy
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, USA ; Barnett Institute of Chemical & Biological Analysis, Northeastern University, Boston, Massachusetts 02115, USA
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada ; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| |
Collapse
|
638
|
Wong KHK, Truslow JG, Khankhel AH, Chan KLS, Tien J. Artificial lymphatic drainage systems for vascularized microfluidic scaffolds. J Biomed Mater Res A 2012; 101:2181-90. [PMID: 23281125 DOI: 10.1002/jbm.a.34524] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 11/09/2012] [Indexed: 11/08/2022]
Abstract
The formation of a stably perfused microvasculature continues to be a major challenge in tissue engineering. Previous work has suggested the importance of a sufficiently large transmural pressure in maintaining vascular stability and perfusion. Here we show that a system of empty channels that provides a drainage function analogous to that of lymphatic microvasculature in vivo can stabilize vascular adhesion and maintain perfusion rate in dense, hydraulically resistive fibrin scaffolds in vitro. In the absence of drainage, endothelial delamination increased as scaffold density increased from 6 to 30 mg/mL and scaffold hydraulic conductivity decreased by a factor of 20. Single drainage channels exerted only localized vascular stabilization, the extent of which depended on the distance between vessel and drainage as well as scaffold density. Computational modeling of these experiments yielded an estimate of 0.40-1.36 cm H2O for the minimum transmural pressure required for vascular stability. We further designed and constructed fibrin patches (0.8 × 0.9 cm(2)) that were perfused by a parallel array of vessels and drained by an orthogonal array of drainage channels; only with the drainage did the vessels display long-term stability and perfusion. This work underscores the importance of drainage in vascularization, especially when a dense, hydraulically resistive scaffold is used.
Collapse
Affiliation(s)
- Keith H K Wong
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
639
|
Chan JM, Zervantonakis IK, Rimchala T, Polacheck WJ, Whisler J, Kamm RD. Engineering of in vitro 3D capillary beds by self-directed angiogenic sprouting. PLoS One 2012; 7:e50582. [PMID: 23226527 PMCID: PMC3514279 DOI: 10.1371/journal.pone.0050582] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 10/23/2012] [Indexed: 12/15/2022] Open
Abstract
In recent years, microfluidic systems have been used to study fundamental aspects of angiogenesis through the patterning of single-layered, linear or geometric vascular channels. In vivo, however, capillaries exist in complex, three-dimensional (3D) networks, and angiogenic sprouting occurs with a degree of unpredictability in all x,y,z planes. The ability to generate capillary beds in vitro that can support thick, biological tissues remains a key challenge to the regeneration of vital organs. Here, we report the engineering of 3D capillary beds in an in vitro microfluidic platform that is comprised of a biocompatible collagen I gel supported by a mechanical framework of alginate beads. The engineered vessels have patent lumens, form robust ∼1.5 mm capillary networks across the devices, and support the perfusion of 1 µm fluorescent beads through them. In addition, the alginate beads offer a modular method to encapsulate and co-culture cells that either promote angiogenesis or require perfusion for cell viability in engineered tissue constructs. This laboratory-constructed vascular supply may be clinically significant for the engineering of capillary beds and higher order biological tissues in a scalable and modular manner.
Collapse
Affiliation(s)
- Juliana M. Chan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Molecular Engineering Laboratory, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ioannis K. Zervantonakis
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Tharathorn Rimchala
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - William J. Polacheck
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Jordan Whisler
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Roger D. Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
640
|
Abstract
Individual cells in their native physiological states face a dynamic multi-factorial environment. This is true of both single-celled and multi-cellular organisms. A key challenge in cell biology is the design of experimental methods and specific assays to disentangle the contribution of each of the parameters governing cell behavior. After decades of studying cells cultured in Petri dishes or on glass coverslips, researchers can now benefit from a range of recent technological developments that allow them to study cells in a variety of contexts, with different levels of complexity and control over a range of environmental parameters. These technologies include new types of microscopy for detailed imaging of large cell aggregates or even whole tissues, and the development of cell culture substrates, such as 3D matrices. Here we will review the contribution of a third type of tool, collectively known as microfabricated tools. Derived from techniques originally developed for microelectronics, these tools range in size from hundreds of microns to hundreds of nanometers.
Collapse
|
641
|
Abstract
The study of angiogenesis is important to understanding a variety of human pathologies including cancer, cardiovascular and inflammatory diseases. In vivo angiogenesis assays can be costly and time-consuming, limiting their application in high-throughput studies. While traditional in vitro assays may overcome these limitations, they lack the ability to accurately recapitulate the main elements of the tissue microenvironment found in vivo, thereby limiting our ability to draw physiologically relevant biological conclusions. To bridge the gap between in vivo and in vitro angiogenesis assays, several microfluidic methods have been developed to generate in vitro assays that incorporate blood vessel models with physiologically relevant three-dimensional (3D) lumen structures. However, these models have not seen widespread adoption, which can be partially attributed to the difficulty in fabricating these structures. Here, we present a simple, accessible method that takes advantage of basic fluidic principles to create 3D lumens with circular cross-sectional geometries through ECM hydrogels that are lined with endothelial monolayers to mimic the structure of blood vessels in vitro. This technique can be used to pattern endothelial cell-lined lumens in different microchannel geometries, enabling increased flexibility for a variety of studies. We demonstrate the implementation and application of this technique to the study of angiogenesis in a physiologically relevant in vitro setting.
Collapse
|
642
|
Abstract
Vascularization is critical for the survival of engineered tissues in vitro and in vivo. In vivo, angiogenesis involves endothelial cell proliferation and sprouting followed by connection of extended cellular processes and subsequent lumen propagation through vacuole fusion. We mimicked this process in engineering an organized capillary network anchored by an artery and a vein. The network was generated by inducing directed capillary sprouting from vascular explants on micropatterned substrates containing thymosin β4-hydrogel. The capillary outgrowths connected between the parent explants by day 21, a process that was accelerated to 14 d by application of soluble VEGF and hepatocyte growth factor. Confocal microscopy and transmission electron microscopy indicated the presence of tubules with lumens formed by endothelial cells expressing CD31, VE-cadherin, and von Willebrand factor. Cardiac tissues engineered around the resulting vasculature exhibited improved functional properties, cell striations, and cell-cell junctions compared with tissues without prevascularization. This approach uniquely allows easy removal of the vasculature from the microfabricated substrate and easy seeding of the tissue specific cell types in the parenchymal space.
Collapse
|
643
|
Hielscher AC, Gerecht S. Engineering approaches for investigating tumor angiogenesis: exploiting the role of the extracellular matrix. Cancer Res 2012; 72:6089-96. [PMID: 23172313 DOI: 10.1158/0008-5472.can-12-2773] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A major paradigm shift in cancer research is the emergence of multidisciplinary approaches to investigate complex cell behaviors, to elucidate regulatory mechanisms and to identify therapeutic targets. Recently, efforts are focused on the engineering of complex in vitro models, which more accurately recapitulate the growth and progression of cancer. These strategies have proven vital for investigating and targeting the events that control tumor angiogenesis. In this review, we explore how the emerging engineering approaches are being used to unlock the complex mechanisms regulating tumor angiogenesis. Emphasis is placed on models using natural and synthetic biomaterials to generate scaffolds mimicking the extracellular matrix, which is known to play a critical role in angiogenesis. While the models presented in this review are revolutionary, improvements are still necessary and concepts for advancing and perfecting engineering approaches for modeling tumor angiogenesis are proposed. Overall, the marriage between disparate scientific fields is expected to yield significant improvements in our understanding and treatment of cancer.
Collapse
Affiliation(s)
- Abigail C Hielscher
- Department of Chemical and Biomolecular Engineering, and Johns Hopkins Physical Sciences-Oncology Center and the Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
644
|
Cupedo T, Stroock A, Coles M. Application of tissue engineering to the immune system: development of artificial lymph nodes. Front Immunol 2012; 3:343. [PMID: 23162557 PMCID: PMC3499788 DOI: 10.3389/fimmu.2012.00343] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/28/2012] [Indexed: 01/05/2023] Open
Abstract
The goal of tissue engineering and regenerative medicine is to develop synthetic versions of human organs for transplantation, in vitro toxicology testing and to understand basic mechanisms of organ function. A variety of different approaches have been utilized to replicate the microenvironments found in lymph nodes including the use of a variety of different bio-materials, culture systems, and the application of different cell types to replicate stromal networks found in vivo. Although no system engineered so far can fully replicate lymph node function, progress has been made in the development of microenvironments that can promote the initiation of protective immune responses. In this review we will explore the different approaches utilized to recreate lymph node microenvironments and the technical challenges required to recreate a fully functional immune system in vitro.
Collapse
Affiliation(s)
- Tom Cupedo
- Department of Hematology, Erasmus University Medical Center Rotterdam, Netherlands
| | | | | |
Collapse
|
645
|
Chakrabarti A, Verbridge S, Stroock AD, Fischbach C, Varner JD. Multiscale models of breast cancer progression. Ann Biomed Eng 2012; 40:2488-500. [PMID: 23008097 DOI: 10.1007/s10439-012-0655-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 09/04/2012] [Indexed: 12/13/2022]
Abstract
Breast cancer initiation, invasion and metastasis span multiple length and time scales. Molecular events at short length scales lead to an initial tumorigenic population, which left unchecked by immune action, acts at increasingly longer length scales until eventually the cancer cells escape from the primary tumor site. This series of events is highly complex, involving multiple cell types interacting with (and shaping) the microenvironment. Multiscale mathematical models have emerged as a powerful tool to quantitatively integrate the convective-diffusion-reaction processes occurring on the systemic scale, with the molecular signaling processes occurring on the cellular and subcellular scales. In this study, we reviewed the current state of the art in cancer modeling across multiple length scales, with an emphasis on the integration of intracellular signal transduction models with pro-tumorigenic chemical and mechanical microenvironmental cues. First, we reviewed the underlying biomolecular origin of breast cancer, with a special emphasis on angiogenesis. Then, we summarized the development of tissue engineering platforms which could provide high-fidelity ex vivo experimental models to identify and validate multiscale simulations. Lastly, we reviewed top-down and bottom-up multiscale strategies that integrate subcellular networks with the microenvironment. We present models of a variety of cancers, in addition to breast cancer specific models. Taken together, we expect as the sophistication of the simulations increase, that multiscale modeling and bottom-up agent-based models in particular will become an increasingly important platform technology for basic scientific discovery, as well as the identification and validation of potentially novel therapeutic targets.
Collapse
Affiliation(s)
- Anirikh Chakrabarti
- School of Chemical and Biomolecular Engineering, 244 Olin Hall, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
646
|
Nikkhah M, Eshak N, Zorlutuna P, Annabi N, Castello M, Kim K, Dolatshahi-Pirouz A, Edalat F, Bae H, Yang Y, Khademhosseini A. Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials 2012; 33:9009-18. [PMID: 23018132 DOI: 10.1016/j.biomaterials.2012.08.068] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 08/29/2012] [Indexed: 12/23/2022]
Abstract
Engineering of organized vasculature is a crucial step in the development of functional and clinically relevant tissue constructs. A number of previous techniques have been proposed to spatially regulate the distribution of angiogenic biomolecules and vascular cells within biomaterial matrices to promote vascularization. Most of these approaches have been limited to two-dimensional (2D) micropatterned features or have resulted in formation of random vasculature within three-dimensional (3D) microenvironments. In this study, we investigate 3D endothelial cord formation within micropatterned gelatin methacrylate (GelMA) hydrogels with varying geometrical features (50-150 μm height). We demonstrated the significant dependence of endothelial cells proliferation, alignment and cord formation on geometrical dimensions of the patterned features. The cells were able to align and organize within the micropatterned constructs and assemble to form cord structures with organized actin fibers and circular/elliptical cross-sections. The inner layer of the cord structure was filled with gel showing that the micropatterned hydrogel constructs guided the assembly of endothelial cells into cord structures. Notably, the endothelial cords were retained within the hydrogel microconstructs for all geometries after two weeks of culture; however, only the 100 μm-high constructs provided the optimal microenvironment for the formation of circular and stable cord structures. Our findings suggest that endothelial cord formation is a preceding step to tubulogenesis and the proposed system can be used to develop organized vasculature for engineered tissue constructs.
Collapse
Affiliation(s)
- Mehdi Nikkhah
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
647
|
|