601
|
Delineation of six species of the primitive algal genus Glaucocystis based on in situ ultrastructural characteristics. Sci Rep 2016; 6:29209. [PMID: 27383831 PMCID: PMC4935853 DOI: 10.1038/srep29209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/13/2016] [Indexed: 12/31/2022] Open
Abstract
The field of microbiology was established in the 17th century upon the discovery of microorganisms by Antonie van Leeuwenhoek using a single-lens microscope. Now, the detailed ultrastructures of microorganisms can be elucidated in situ using three-dimensional electron microscopy. Since the availability of electron microscopy, the taxonomy of microscopic organisms has entered a new era. Here, we established a new taxonomic system of the primitive algal genus Glaucocystis (Glaucophyta) using a new-generation electron microscopic methodology: ultra-high-voltage electron microscopy (UHVEM) and field-emission scanning electron microscopy (FE-SEM). Various globally distributed Glaucocystis strains were delineated into six species, based on differences in in situ ultrastructural features of the protoplast periphery under UHVEM tomography and in the mother cell wall by FE-SEM, as well as differences in the light microscopic characteristics and molecular phylogenetic results. The present work on Glaucocystis provides a model case of new-generation taxonomy.
Collapse
|
602
|
Drini S, Criscuolo A, Lechat P, Imamura H, Skalický T, Rachidi N, Lukeš J, Dujardin JC, Späth GF. Species- and Strain-Specific Adaptation of the HSP70 Super Family in Pathogenic Trypanosomatids. Genome Biol Evol 2016; 8:1980-95. [PMID: 27371955 PMCID: PMC4943205 DOI: 10.1093/gbe/evw140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
All eukaryotic genomes encode multiple members of the heat shock protein 70 (HSP70) family, which evolved distinctive structural and functional features in response to specific environmental constraints. Phylogenetic analysis of this protein family thus can inform on genetic and molecular mechanisms that drive species-specific environmental adaptation. Here we use the eukaryotic pathogen Leishmania spp. as a model system to investigate the evolution of the HSP70 protein family in an early-branching eukaryote that is prone to gene amplification and adapts to cytotoxic host environments by stress-induced and chaperone-dependent stage differentiation. Combining phylogenetic and comparative analyses of trypanosomatid genomes, draft genome of Paratrypanosoma and recently published genome sequences of 204 L. donovani field isolates, we gained unique insight into the evolutionary dynamics of the Leishmania HSP70 protein family. We provide evidence for (i) significant evolutionary expansion of this protein family in Leishmania through gene amplification and functional specialization of highly conserved canonical HSP70 members, (ii) evolution of trypanosomatid-specific, non-canonical family members that likely gained ATPase-independent functions, and (iii) loss of one atypical HSP70 member in the Trypanosoma genus. Finally, we reveal considerable copy number variation of canonical cytoplasmic HSP70 in highly related L. donovani field isolates, thus identifying this locus as a potential hot spot of environment–genotype interaction. Our data draw a complex picture of the genetic history of HSP70 in trypanosomatids that is driven by the remarkable plasticity of the Leishmania genome to undergo massive intra-chromosomal gene amplification to compensate for the absence of regulated transcriptional control in these parasites.
Collapse
Affiliation(s)
- Sima Drini
- Unité de Parasitologie moléculaire et Signalisation, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201, Paris, France
| | - Alexis Criscuolo
- Institut Pasteur - Hub Bioinformatique et Biostatistique - C3BI, Department of Genomes & Genetics, USR 3756 IP CNRS - Paris, France
| | - Pierre Lechat
- Institut Pasteur - Hub Bioinformatique et Biostatistique - C3BI, Department of Genomes & Genetics, USR 3756 IP CNRS - Paris, France
| | - Hideo Imamura
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Tomáš Skalický
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Najma Rachidi
- Unité de Parasitologie moléculaire et Signalisation, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201, Paris, France
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic Canadian Institute for Advanced Research, Toronto, Canada
| | - Jean-Claude Dujardin
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Gerald F Späth
- Unité de Parasitologie moléculaire et Signalisation, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201, Paris, France
| |
Collapse
|
603
|
Manera M, Borreca C, Dezfuli BS. Cutaneous myxidiosis in European eel, Anguilla anguilla (Linnaeus, 1758): histopathology, histochemistry and laminin immunohistochemistry. JOURNAL OF FISH DISEASES 2016; 39:845-851. [PMID: 26525491 DOI: 10.1111/jfd.12418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/14/2015] [Accepted: 08/14/2015] [Indexed: 06/05/2023]
Abstract
Histopathology, histochemistry and immunohistochemistry of the integument of European eel, Anguilla anguilla (Linnaeus, 1758), infected by Myxidium sp. are reported. Skin samples from affected and unaffected eels were dissected, formalin fixed, paraffin embedded, sectioned and stained with H&E, Periodic acid-Schiff's staining method, Alcian Blue 8 GX pH 2.5/Periodic acid-Schiff's and McCallum-Goodpasture's Gram stain. Moreover, immunohistochemistry was performed using a primary polyclonal laminin antibody. Histologically, cysts (diameter 2-3 mm) were observed mainly under the scale pockets, encircled by a thin collagen layer, lined by elongated, flattened fibroblasts and containing bipolar, PAS- and Gram-positive spores with opposite polar capsules. The epidermis stretched by the underlying cyst appeared dysplastic, thinned with a significant reduction in mucous cells number. Only inconsistent and aspecific inflammatory reaction was noted around the cysts at the dermis/epidermis interface. Intense laminin-like protein immunolabel was documented in the plasmodial ectoplasm and related to host anergia. This was the first report of laminin immunolabel in a member of the Myxozoa. Epidermal dysplasia represents likely an aspecific response against the underlying tensile force exerted by the developing parasite cyst, while fibroblast and collagen encapsulation denote a parasite-driven host response protecting, rather than harming, the encircled parasite.
Collapse
Affiliation(s)
- M Manera
- Faculty of Biosciences, Food and Environmental Technologies, University of Teramo, Teramo, Italy
| | - C Borreca
- Small Animal Praxis, Roseto degli Abruzzi, TE, Italy
| | - B S Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
604
|
Hao MS, Rasmusson AG. The evolution of substrate specificity-associated residues and Ca(2+) -binding motifs in EF-hand-containing type II NAD(P)H dehydrogenases. PHYSIOLOGIA PLANTARUM 2016; 157:338-351. [PMID: 27079180 DOI: 10.1111/ppl.12453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/03/2016] [Accepted: 03/14/2016] [Indexed: 06/05/2023]
Abstract
Most eukaryotic organisms, except some animal clades, have mitochondrial alternative electron transport enzymes that allow respiration to bypass the energy coupling in oxidative phosphorylation. The energy bypass enzymes in plants include the external type II NAD(P)H dehydrogenases (DHs) of the NDB family, which are characterized by an EF-hand domain for Ca(2+) binding. Here we investigate these plant enzymes by combining molecular modeling with evolutionary analysis. Molecular modeling of the Arabidopsis thaliana AtNDB1 with the yeast ScNDI1 as template revealed distinct similarities in the core catalytic parts, and highlighted the interaction between the pyridine nucleotide and residues correlating with NAD(P)H substrate specificity. The EF-hand domain of AtNDB1 has no counterpart in ScNDI1, and was instead modeled with Ca(2+) -binding signal transducer proteins. Combined models displayed a proximity of the AtNDB1 EF-hand domain to the substrate entrance side of the catalytic part. Evolutionary analysis of the eukaryotic NDB-type proteins revealed ancient and recent reversions between the motif observed in proteins specific for NADH (acidic type) and NADPH (non-acidic type), and that the clade of enzymes with acidic motifs in angiosperms derives from non-acidic-motif NDB-type proteins present in basal plants, fungi and protists. The results suggest that Ca(2+) -dependent external NADPH oxidation is an ancient process, indicating that it has a fundamental importance for eukaryotic cellular redox metabolism. In contrast, the external NADH DHs in plants are products of a recent expansion, mirroring the expansion of the alternative oxidase family.
Collapse
Affiliation(s)
- Meng-Shu Hao
- Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
605
|
Martin WF, Neukirchen S, Zimorski V, Gould SB, Sousa FL. Energy for two: New archaeal lineages and the origin of mitochondria. Bioessays 2016; 38:850-6. [PMID: 27339178 DOI: 10.1002/bies.201600089] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metagenomics bears upon all aspects of microbiology, including our understanding of mitochondrial and eukaryote origin. Recently, ribosomal protein phylogenies show the eukaryote host lineage - the archaeal lineage that acquired the mitochondrion - to branch within the archaea. Metagenomic studies are now uncovering new archaeal lineages that branch more closely to the host than any cultivated archaea do. But how do they grow? Carbon and energy metabolism as pieced together from metagenome assemblies of these new archaeal lineages, such as the Deep Sea Archaeal Group (including Lokiarchaeota) and Bathyarchaeota, do not match the physiology of any cultivated microbes. Understanding how these new lineages live in their environment is important, and might hold clues about how mitochondria arose and how the eukaryotic lineage got started. Here we look at these exciting new metagenomic studies, what they say about archaeal physiology in modern environments, how they impact views on host-mitochondrion physiological interactions at eukaryote origin.
Collapse
Affiliation(s)
- William F Martin
- Institute of Molecular Evolution, Heinrich-Heine University, Düsseldorf, Germany.,Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sinje Neukirchen
- Institute of Molecular Evolution, Heinrich-Heine University, Düsseldorf, Germany
| | - Verena Zimorski
- Institute of Molecular Evolution, Heinrich-Heine University, Düsseldorf, Germany
| | - Sven B Gould
- Institute of Molecular Evolution, Heinrich-Heine University, Düsseldorf, Germany
| | - Filipa L Sousa
- Institute of Molecular Evolution, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
606
|
Abstract
In 1675, Antoni Van Leeuwenhoeck was the first to observe several forms using an optical microscope that he named "animalcules", realizing later that these were microorganisms. The first classification of living organisms proposed by Ehrenberg in 1833 was based on what we could visualize. The failure of this kind of classification arises from viral culture, which preceded direct observations that were finally achieved during the 20th century by electron microscopy. The number of prokaryotic species is estimated at approximately 10 million, although only 1800 were known in 1980, and 14,000 to date, thanks to the advent of 16S rRNA amplification and sequencing. This highlights our inability to access the entire diversity. Indeed, a large number of bacteria are only, known as Operational Taxonomic Units (OTUs) and detected as a result of metagenomics studies, revealing an unexplored world known as the "dark matter". Recently, the rebirth of bacterial culture through the example of culturomics has dramatically increased the human gut repertoire as well as the 18SrRNA sequencing allowed to largely extend the repertoire of Eukaryotes. Finally, filtration and co-culture on free-living protists associated with high-throughput culture elucidated a part of the megavirome. While the majority of studies currently performed on the human gut microbiota focus on bacterial diversity, it appears that several other prokaryotes (including archaea) and eukaryotic populations also inhabit this ecosystem; their detection depending exclusively on the tools used. Rational and comprehensive establishment of this ecosystem will allow the understanding of human health associated with gut microbiota and the potential to change this.
Collapse
|
607
|
Meier D, Kruse J, Buttlar J, Friedrich M, Zenk F, Boesler B, Förstner KU, Hammann C, Nellen W. Analysis of the Microprocessor in Dictyostelium: The Role of RbdB, a dsRNA Binding Protein. PLoS Genet 2016; 12:e1006057. [PMID: 27272207 PMCID: PMC4894637 DOI: 10.1371/journal.pgen.1006057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/26/2016] [Indexed: 11/28/2022] Open
Abstract
We identified the dsRNA binding protein RbdB as an essential component in miRNA processing in Dictyostelium discoideum. RbdB is a nuclear protein that accumulates, together with Dicer B, in nucleolar foci reminiscent of plant dicing bodies. Disruption of rbdB results in loss of miRNAs and accumulation of primary miRNAs. The phenotype can be rescued by ectopic expression of RbdB thus allowing for a detailed analysis of domain function. The lack of cytoplasmic dsRBD proteins involved in miRNA processing, suggests that both processing steps take place in the nucleus thus resembling the plant pathway. However, we also find features e.g. in the domain structure of Dicer which suggest similarities to animals. Reduction of miRNAs in the rbdB- strain and their increase in the Argonaute A knock out allowed the definition of new miRNAs one of which appears to belong to a new non-canonical class. miRNAs are essential regulators in eukaryotic cells and serve to control translation and stability of mRNAs. Processing of primary miRNA transcripts is carried out in two steps by evolutionary conserved machineries consisting mainly of double-strand specific RNases of the Dicer family and accessory double-strand RNA binding proteins (dsRBPs). Regulation occurs by effector proteins of the Argonaute family. While processing in plants is confined to the nucleus, the mechanisms is split into a nuclear and a cytoplasmic step in animals. By knock-out and complementation experiments, we identify RbdB in the amoebozoa Dictyostelium as the accessory dsRBP processing component for both steps. Fluorescence microscopy shows that RbdB co-localizes with the RNaseIII Dicer B in nucleolar foci suggesting mechanistic similarities to plants. Functional domain analysis of RbdB and the structure of Dicers, however, indicate similarities to animals. This places Dictyostelium at an evolutionary branch point between plants and animals. Deep sequencing reveals that the rbdB knock-out strain shows reduced accumulation of microRNAs. Comparison with the wild type and the miRNA overexpressing agnA knock-out strain, allowed for the identification of new miRNAs in Dictyostelium which may have escaped detection by other methods.
Collapse
Affiliation(s)
- Doreen Meier
- Department of Genetics, FB10, Kassel University, Kassel, Germany
| | - Janis Kruse
- Ribogenetics Biochemistry Laboratory, Department of Life Science and Chemistry, Molecular Life Sciences Research Center, Jacobs University, Bremen, Germany
| | - Jann Buttlar
- Department of Genetics, FB10, Kassel University, Kassel, Germany
| | | | - Fides Zenk
- Department of Genetics, FB10, Kassel University, Kassel, Germany
| | - Benjamin Boesler
- Department of Genetics, FB10, Kassel University, Kassel, Germany
| | | | - Christian Hammann
- Ribogenetics Biochemistry Laboratory, Department of Life Science and Chemistry, Molecular Life Sciences Research Center, Jacobs University, Bremen, Germany
| | - Wolfgang Nellen
- Department of Genetics, FB10, Kassel University, Kassel, Germany
- * E-mail:
| |
Collapse
|
608
|
Morphology and Molecular Phylogeny of Coelomic Gregarines (Apicomplexa) with Different Types of Motility: Urospora ovalis and U. travisiae from the Polychaete Travisia forbesii. Protist 2016; 167:279-301. [DOI: 10.1016/j.protis.2016.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 04/18/2016] [Accepted: 05/05/2016] [Indexed: 11/21/2022]
|
609
|
Dumack K, Schuster J, Bass D, Bonkowski M. A Novel Lineage of ‘Naked Filose Amoebae’; Kraken carinae gen. nov. sp. nov. (Cercozoa) with a Remarkable Locomotion by Disassembly of its Cell Body. Protist 2016; 167:268-78. [DOI: 10.1016/j.protis.2016.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/30/2016] [Accepted: 04/16/2016] [Indexed: 01/03/2023]
|
610
|
Feng Y, Klahr A, Janik P, Ronikier A, Hoppe T, Novozhilov YK, Schnittler M. What an Intron May Tell: Several Sexual Biospecies Coexist in Meriderma spp. (Myxomycetes). Protist 2016; 167:234-53. [DOI: 10.1016/j.protis.2016.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 03/14/2016] [Accepted: 03/23/2016] [Indexed: 12/17/2022]
|
611
|
Luo X, Fan Y, Hu X, Miao M, Al-Farraj SA, Song W. Morphology, Ontogeny, and Molecular Phylogeny of Two Freshwater Species of Deviata
(Ciliophora, Hypotrichia) from Southern China. J Eukaryot Microbiol 2016; 63:771-785. [DOI: 10.1111/jeu.12324] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/24/2016] [Accepted: 05/04/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaotian Luo
- Institute of Evolution and Marine Biodiversity; Ocean University of China; Qingdao 266003 China
| | - Yangbo Fan
- Institute of Evolution and Marine Biodiversity; Ocean University of China; Qingdao 266003 China
- School of Civil and Environmental Engineering; Harbin Institute of Technology Shenzhen Graduate School; Shenzhen 518055 China
| | - Xiaozhong Hu
- Institute of Evolution and Marine Biodiversity; Ocean University of China; Qingdao 266003 China
| | - Miao Miao
- Savaid Medical School; University of Chinese Academy of Sciences; Beijing 100049 China
| | | | - Weibo Song
- Institute of Evolution and Marine Biodiversity; Ocean University of China; Qingdao 266003 China
| |
Collapse
|
612
|
Mans BJ, de Castro MH, Pienaar R, de Klerk D, Gaven P, Genu S, Latif AA. Ancestral reconstruction of tick lineages. Ticks Tick Borne Dis 2016; 7:509-35. [DOI: 10.1016/j.ttbdis.2016.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/26/2016] [Accepted: 02/02/2016] [Indexed: 01/15/2023]
|
613
|
Takahashi T, Nishida T, Saito C, Yasuda H, Nozaki H. A new type of 3-D peripheral ultrastructure in Glaucocystis (Glaucocystales, Glaucophyta) as revealed by ultra-high voltage electron microscopy. JOURNAL OF PHYCOLOGY 2016; 52:486-490. [PMID: 27273537 DOI: 10.1111/jpy.12412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/07/2016] [Indexed: 06/06/2023]
Abstract
The coccoid glaucophyte genus Glaucocystis is characterized by having a thick cell wall, which has to date prohibited examination of the native ultrastructural features of the protoplast periphery. Recently, however, the three-dimensional (3-D) ultrastructure of the protoplast periphery was revealed in two divergent Glaucocystis species, with the world's most powerful ultra-high voltage electron microscope (UHVEM). The two species exhibit morphological diversity in terms of their 3-D ultrastructural features. However, these two types do not seem to encompass actual ultrastructural diversity in the genetically diverse genus Glaucocystis. Here, we report a new type of peripheral 3-D ultrastructure resolved in "G. incrassata" SAG 229-2 cells by 3-D modeling based on UHVEM tomography using high-pressure freezing and freeze-substitution fixation. The plasma membrane and underlying flattened vesicles in "G. incrassata" SAG 229-2 exhibited grooves at intervals of 200-600 nm, and the flattened vesicles often overlapped one another at the protoplast periphery. This 3-D ultrastructure differs from those of the two types previously reported in other species of Glaucocystis. The possibility of classification of Glaucocystis species based on the 3-D ultrastructure of the protoplast periphery is discussed.
Collapse
Affiliation(s)
- Toshiyuki Takahashi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomoki Nishida
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Chieko Saito
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hidehiro Yasuda
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
614
|
Simon M, López-García P, Deschamps P, Restoux G, Bertolino P, Moreira D, Jardillier L. Resilience of Freshwater Communities of Small Microbial Eukaryotes Undergoing Severe Drought Events. Front Microbiol 2016; 7:812. [PMID: 27303393 PMCID: PMC4885337 DOI: 10.3389/fmicb.2016.00812] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/12/2016] [Indexed: 01/15/2023] Open
Abstract
Small and shallow aquatic ecosystems such as ponds and streams constitute a significant proportion of continental surface waters, especially in temperate zones. In comparison with bigger lakes and rivers, they harbor higher biodiversity but they also exhibit reduced buffering capacity face to environmental shifts, such that climate global change can affect them in a more drastic way. For instance, many temperate areas are predicted to undergo droughts with increasing frequency in the near future, which may lead to the temporal desiccation of streams and ponds. In this work, we monitored temporal dynamics of planktonic communities of microbial eukaryotes (cell size range: 0.2–5 μm) in one brook and one pond that experienced recurrent droughts from 1 to 5 consecutive months during a temporal survey carried out monthly for 2 years based on high-throughput 18S rDNA metabarcoding. During drought-induced desiccation events, protist communities present in the remaining dry sediment, though highly diverse, differed radically from their planktonic counterparts. However, after water refill, the aquatic protist assemblages recovered their original structure within a month. This rapid recovery indicates that these eukaryotic communities are resilient to droughts, most likely via the entrance in dormancy. This property is essential for the long-term survival and functional stability of small freshwater ecosystems.
Collapse
Affiliation(s)
- Marianne Simon
- Centre National de la Recherche Scientifique, Unite d'Ecologie Systématique Evolution, Université Paris-Sud, AgroParisTech, Université Paris-Saclay Orsay, France
| | - Purificación López-García
- Centre National de la Recherche Scientifique, Unite d'Ecologie Systématique Evolution, Université Paris-Sud, AgroParisTech, Université Paris-Saclay Orsay, France
| | - Philippe Deschamps
- Centre National de la Recherche Scientifique, Unite d'Ecologie Systématique Evolution, Université Paris-Sud, AgroParisTech, Université Paris-Saclay Orsay, France
| | - Gwendal Restoux
- Génétique Animale et Biologie Intégrative, INRA, AgroParisTech Paris, France
| | - Paola Bertolino
- Centre National de la Recherche Scientifique, Unite d'Ecologie Systématique Evolution, Université Paris-Sud, AgroParisTech, Université Paris-Saclay Orsay, France
| | - David Moreira
- Centre National de la Recherche Scientifique, Unite d'Ecologie Systématique Evolution, Université Paris-Sud, AgroParisTech, Université Paris-Saclay Orsay, France
| | - Ludwig Jardillier
- Centre National de la Recherche Scientifique, Unite d'Ecologie Systématique Evolution, Université Paris-Sud, AgroParisTech, Université Paris-Saclay Orsay, France
| |
Collapse
|
615
|
Stensvold CR, Clark CG. Current status of Blastocystis: A personal view. Parasitol Int 2016; 65:763-771. [PMID: 27247124 DOI: 10.1016/j.parint.2016.05.015] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 05/10/2016] [Accepted: 05/27/2016] [Indexed: 12/15/2022]
Abstract
Despite Blastocystis being one of the most widespread and prevalent intestinal eukaryotes, its role in health and disease remains elusive. DNA-based detection methods have led to a recognition that the organism is much more common than previously thought, at least in some geographic regions and some groups of individuals. Molecular methods have also enabled us to start categorizing the vast genetic heterogeneity that exists among Blastocystis isolates, wherein the key to potential differences in the clinical outcome of Blastocystis carriage may lie. In this review we summarize some of the recent developments and advances in Blastocystis research, including updates on diagnostic methods, molecular epidemiology, genetic diversity, host specificity, clinical significance, taxonomy, and genomics. As we are now in the microbiome era, we also review some of the steps taken towards understanding the place of Blastocystis in the intestinal microbiota.
Collapse
Affiliation(s)
| | - C Graham Clark
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
616
|
Tellier G, Lenne A, Cailliau-Maggio K, Cabezas-Cruz A, Valdés JJ, Martoriati A, Aliouat EM, Gosset P, Delaire B, Fréville A, Pierrot C, Khalife J. Identification of Plasmodium falciparum Translation Initiation eIF2β Subunit: Direct Interaction with Protein Phosphatase Type 1. Front Microbiol 2016; 7:777. [PMID: 27303372 PMCID: PMC4881399 DOI: 10.3389/fmicb.2016.00777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/09/2016] [Indexed: 12/19/2022] Open
Abstract
Protein phosphatase 1 (PP1c) is one of the main phosphatases whose function is shaped by many regulators to confer a specific location and a selective function for this enzyme. Here, we report that eukaryotic initiation factor 2β of Plasmodium falciparum (PfeIF2β) is an interactor of PfPP1c. Sequence analysis of PfeIF2β revealed a deletion of 111 amino acids when compared to its human counterpart and the presence of two potential binding motifs to PfPP1 (29FGEKKK34, 103KVAW106). As expected, we showed that PfeIF2β binds PfeIF2γ and PfeIF5, confirming its canonical interaction with partners of the translation complex. Studies of the PfeIF2β-PfPP1 interaction using wild-type, single and double mutated versions of PfeIF2β revealed that both binding motifs are critical. We next showed that PfeIF2β is able to induce Germinal Vesicle Break Down (GVBD) when expressed in Xenopus oocytes, an indicator of its capacity to regulate PP1. Only combined mutations of both binding motifs abolished the interaction with PP1 and the induction of GVBD. In P. falciparum, although the locus is accessible for genetic manipulation, PfeIF2β seems to play an essential role in intraerythrocytic cycle as no viable knockout parasites were detectable. Interestingly, as for PfPP1, the subcellular fractionation of P. falciparum localized PfeIF2β in cytoplasm and nuclear extracts, suggesting a potential effect on PfPP1 in both compartments and raising the question of a non-canonical function of PfeIf2β in the nucleus. Hence, the role played by PfeIF2β in blood stage parasites could occur at multiple levels involving the binding to proteins of the translational complex and to PfPP1.
Collapse
Affiliation(s)
- Géraldine Tellier
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - Centre d'Infection et d'Immunité de Lille, Université de Lille Lille, France
| | - Astrid Lenne
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - Centre d'Infection et d'Immunité de Lille, Université de Lille Lille, France
| | - Katia Cailliau-Maggio
- Centre National de la Recherche Scientifique, UMR 8576 - Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille Lille, France
| | - Alejandro Cabezas-Cruz
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - Centre d'Infection et d'Immunité de Lille, Université de Lille Lille, France
| | - James J Valdés
- Institute of Parasitology, The Czech Academy of SciencesČeské Budějovice, Czech Republic; Department of Virology, Veterinary Research InstituteBrno, Czech Republic
| | - Alain Martoriati
- Centre National de la Recherche Scientifique, UMR 8576 - Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille Lille, France
| | - El M Aliouat
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - Centre d'Infection et d'Immunité de Lille, Université de Lille Lille, France
| | - Pierre Gosset
- Service d'Anatomie et de Cytologie Pathologiques, Groupe Hospitalier de l'Université Catholique de Lille Lille, France
| | - Baptiste Delaire
- Service d'Anatomie et de Cytologie Pathologiques, Groupe Hospitalier de l'Université Catholique de Lille Lille, France
| | - Aline Fréville
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - Centre d'Infection et d'Immunité de Lille, Université de Lille Lille, France
| | - Christine Pierrot
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - Centre d'Infection et d'Immunité de Lille, Université de Lille Lille, France
| | - Jamal Khalife
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - Centre d'Infection et d'Immunité de Lille, Université de Lille Lille, France
| |
Collapse
|
617
|
|
618
|
da Costa E, Silva J, Mendonça SH, Abreu MH, Domingues MR. Lipidomic Approaches towards Deciphering Glycolipids from Microalgae as a Reservoir of Bioactive Lipids. Mar Drugs 2016; 14:md14050101. [PMID: 27213410 PMCID: PMC4882575 DOI: 10.3390/md14050101] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 12/31/2022] Open
Abstract
In recent years, noteworthy research has been performed around lipids from microalgae. Among lipids, glycolipids (GLs) are quite abundant in microalgae and are considered an important source of fatty acids (FAs). GLs are rich in 16- and 18-carbon saturated and unsaturated fatty acids and often contain polyunsaturated fatty acids (PUFAs) like n-3 α-linolenic (ALA 18:3), eicosapentaenoic (EPA, 20:5) and docosahexaenoic (DHA, 22:6). GLs comprise three major classes: monogalactosyldiacyl glycerolipids (MGDGs), digalactosyl diacylglycerolipids (DGDGs) and sulfoquinovosyl diacylglycerolipids (SQDGs), whose composition in FA directly depends on the growth conditions. Some of these lipids are high value-added compounds with antitumoral, antimicrobial and anti-inflammatory activities and also with important nutritional significance. To fully explore GLs’ bioactive properties it is necessary to fully characterize their structure and to understand the relation between the structure and their biological properties, which can be addressed using modern mass spectrometry (MS)-based lipidomic approaches. This review will focus on the up-to-date FA composition of GLs identified by MS-based lipidomics and their potential as phytochemicals.
Collapse
Affiliation(s)
- Elisabete da Costa
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Joana Silva
- Allmicroalgae-Natural Products S.A., Avenida das Forças Armadas, 125, 7º piso, 1600-079 Lisboa, Portugal.
| | - Sofia Hoffman Mendonça
- Allmicroalgae-Natural Products S.A., Avenida das Forças Armadas, 125, 7º piso, 1600-079 Lisboa, Portugal.
| | - Maria Helena Abreu
- ALGAplus-Produção e Comercialização de Algas e Derivados, Lda., 3830-196 Ílhavo, Portugal.
| | - Maria Rosário Domingues
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
619
|
O'Malley MA, Wideman JG, Ruiz-Trillo I. Losing Complexity: The Role of Simplification in Macroevolution. Trends Ecol Evol 2016; 31:608-621. [PMID: 27212432 DOI: 10.1016/j.tree.2016.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 10/21/2022]
Abstract
Macroevolutionary patterns can be produced by combinations of diverse and even oppositional dynamics. A growing body of data indicates that secondary simplifications of molecular and cellular structures are common. Some major diversifications in eukaryotes have occurred because of loss and minimalisation; numerous episodes in prokaryote evolution have likewise been driven by the reduction of structure. After examining a range of examples of secondary simplification and its consequences across the tree of life, we address how macroevolutionary explanations might incorporate simplification as well as complexification, and adaptive as well as nonadaptive dynamics.
Collapse
Affiliation(s)
- Maureen A O'Malley
- UMR5164, University of Bordeaux, 146 Rue Léo Saignat, Bordeaux 33076, France.
| | | | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain; Departament de Genètica, Universitat de Barcelona, 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats, Pg Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
620
|
Cenci U, Moog D, Curtis BA, Tanifuji G, Eme L, Lukeš J, Archibald JM. Heme pathway evolution in kinetoplastid protists. BMC Evol Biol 2016; 16:109. [PMID: 27193376 PMCID: PMC4870792 DOI: 10.1186/s12862-016-0664-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 04/21/2016] [Indexed: 01/09/2023] Open
Abstract
Background Kinetoplastea is a diverse protist lineage composed of several of the most successful parasites on Earth, organisms whose metabolisms have coevolved with those of the organisms they infect. Parasitic kinetoplastids have emerged from free-living, non-pathogenic ancestors on multiple occasions during the evolutionary history of the group. Interestingly, in both parasitic and free-living kinetoplastids, the heme pathway—a core metabolic pathway in a wide range of organisms—is incomplete or entirely absent. Indeed, Kinetoplastea investigated thus far seem to bypass the need for heme biosynthesis by acquiring heme or intermediate metabolites directly from their environment. Results Here we report the existence of a near-complete heme biosynthetic pathway in Perkinsela spp., kinetoplastids that live as obligate endosymbionts inside amoebozoans belonging to the genus Paramoeba/Neoparamoeba. We also use phylogenetic analysis to infer the evolution of the heme pathway in Kinetoplastea. Conclusion We show that Perkinsela spp. is a deep-branching kinetoplastid lineage, and that lateral gene transfer has played a role in the evolution of heme biosynthesis in Perkinsela spp. and other Kinetoplastea. We also discuss the significance of the presence of seven of eight heme pathway genes in the Perkinsela genome as it relates to its endosymbiotic relationship with Paramoeba. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0664-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ugo Cenci
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada
| | - Daniel Moog
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada
| | - Bruce A Curtis
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada
| | - Goro Tanifuji
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Laura Eme
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, České Budӗjovice, Czech Republic.,Canadian Institute for Advanced Research, Toronto, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada. .,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada. .,Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
621
|
Klemm BP, Wu N, Chen Y, Liu X, Kaitany KJ, Howard MJ, Fierke CA. The Diversity of Ribonuclease P: Protein and RNA Catalysts with Analogous Biological Functions. Biomolecules 2016; 6:biom6020027. [PMID: 27187488 PMCID: PMC4919922 DOI: 10.3390/biom6020027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022] Open
Abstract
Ribonuclease P (RNase P) is an essential endonuclease responsible for catalyzing 5' end maturation in precursor transfer RNAs. Since its discovery in the 1970s, RNase P enzymes have been identified and studied throughout the three domains of life. Interestingly, RNase P is either RNA-based, with a catalytic RNA subunit, or a protein-only (PRORP) enzyme with differential evolutionary distribution. The available structural data, including the active site data, provides insight into catalysis and substrate recognition. The hydrolytic and kinetic mechanisms of the two forms of RNase P enzymes are similar, yet features unique to the RNA-based and PRORP enzymes are consistent with different evolutionary origins. The various RNase P enzymes, in addition to their primary role in tRNA 5' maturation, catalyze cleavage of a variety of alternative substrates, indicating a diversification of RNase P function in vivo. The review concludes with a discussion of recent advances and interesting research directions in the field.
Collapse
Affiliation(s)
- Bradley P Klemm
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Nancy Wu
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yu Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Xin Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Kipchumba J Kaitany
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Michael J Howard
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Carol A Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| |
Collapse
|
622
|
Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R, Eme L, Novák L, Žárský V, Barlow LD, Herman EK, Soukal P, Hroudová M, Doležal P, Stairs CW, Roger AJ, Eliáš M, Dacks JB, Vlček Č, Hampl V. A Eukaryote without a Mitochondrial Organelle. Curr Biol 2016; 26:1274-84. [PMID: 27185558 DOI: 10.1016/j.cub.2016.03.053] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/05/2016] [Accepted: 03/23/2016] [Indexed: 11/28/2022]
Abstract
The presence of mitochondria and related organelles in every studied eukaryote supports the view that mitochondria are essential cellular components. Here, we report the genome sequence of a microbial eukaryote, the oxymonad Monocercomonoides sp., which revealed that this organism lacks all hallmark mitochondrial proteins. Crucially, the mitochondrial iron-sulfur cluster assembly pathway, thought to be conserved in virtually all eukaryotic cells, has been replaced by a cytosolic sulfur mobilization system (SUF) acquired by lateral gene transfer from bacteria. In the context of eukaryotic phylogeny, our data suggest that Monocercomonoides is not primitively amitochondrial but has lost the mitochondrion secondarily. This is the first example of a eukaryote lacking any form of a mitochondrion, demonstrating that this organelle is not absolutely essential for the viability of a eukaryotic cell.
Collapse
Affiliation(s)
- Anna Karnkowska
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic; Department of Molecular Phylogenetics and Evolution, University of Warsaw, Warsaw 00478, Poland.
| | - Vojtěch Vacek
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Zuzana Zubáčová
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Sebastian C Treitli
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Romana Petrželková
- Department of Biology and Ecology, University of Ostrava, Ostrava 710 00, Czech Republic
| | - Laura Eme
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Lukáš Novák
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Vojtěch Žárský
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Lael D Barlow
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Emily K Herman
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Petr Soukal
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Miluše Hroudová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | - Pavel Doležal
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic
| | - Courtney W Stairs
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Marek Eliáš
- Department of Biology and Ecology, University of Ostrava, Ostrava 710 00, Czech Republic
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Čestmír Vlček
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | - Vladimír Hampl
- Department of Parasitology, Charles University in Prague, Prague 12843, Czech Republic.
| |
Collapse
|
623
|
Kaczanowski S. Apoptosis: its origin, history, maintenance and the medical implications for cancer and aging. Phys Biol 2016; 13:031001. [DOI: 10.1088/1478-3975/13/3/031001] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
624
|
Shiratori T, Ishida KI. Trachyrhizium urniformis
n. g., n. sp., a Novel Marine Filose Thecate Amoeba Related to a Cercozoan Environmental Clade (Novel Clade 4). J Eukaryot Microbiol 2016; 63:722-731. [DOI: 10.1111/jeu.12319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Takashi Shiratori
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8572 Japan
| | - Ken-ichiro Ishida
- Faculty of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8572 Japan
| |
Collapse
|
625
|
Medina EM, Turner JJ, Gordân R, Skotheim JM, Buchler NE. Punctuated evolution and transitional hybrid network in an ancestral cell cycle of fungi. eLife 2016; 5. [PMID: 27162172 PMCID: PMC4862756 DOI: 10.7554/elife.09492] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 04/07/2016] [Indexed: 12/12/2022] Open
Abstract
Although cell cycle control is an ancient, conserved, and essential process, some core animal and fungal cell cycle regulators share no more sequence identity than non-homologous proteins. Here, we show that evolution along the fungal lineage was punctuated by the early acquisition and entrainment of the SBF transcription factor through horizontal gene transfer. Cell cycle evolution in the fungal ancestor then proceeded through a hybrid network containing both SBF and its ancestral animal counterpart E2F, which is still maintained in many basal fungi. We hypothesize that a virally-derived SBF may have initially hijacked cell cycle control by activating transcription via the cis-regulatory elements targeted by the ancestral cell cycle regulator E2F, much like extant viral oncogenes. Consistent with this hypothesis, we show that SBF can regulate promoters with E2F binding sites in budding yeast. DOI:http://dx.doi.org/10.7554/eLife.09492.001 Living cells grow and divide with remarkable precision to ensure that their genetic material is faithfully duplicated and distributed equally to the newly formed daughter cells. This precision is achieved through a series of steps known as the cell cycle. The cell cycle is ancient and conserved across all Eukaryotes, including plants, animals and fungi. However, some of the core proteins present in animals and fungi are unrelated. This raises the question as to how a drastic change could have occurred and been tolerated over evolution. In animals and plants, a protein called E2F controls the expression of genes that are needed to begin the cell cycle. In most fungi, an equivalent protein called SBF performs the same role as E2F, but the two proteins are very different and do not appear to share a common ancestor. This is unexpected given that fungi and animals are more closely related to one another than either is to plants. Medina et al. searched the genomes of many animals, fungi, plants, algae, and their closest relatives for genes that encoded proteins like E2F and SBF. SBF-like proteins were only found in fungi, yet some fungal groups had cell cycle regulators like those found in animals. Zoosporic fungi, which diverged early from the fungal ancestor, had both SBF- and E2F-like proteins, while many fungi later lost E2F during evolution. So how did fungi acquire SBF? Medina et al. observed that part of the SBF protein is similar to proteins found in many viruses. The broad distribution of these viral SBF-like proteins suggests that they arose first in viruses, and a fungal ancestor acquired one such protein during a viral infection. As SBF and E2F bind similar DNA sequences, Medina et al. hypothesized that this viral SBF hijacked control of the cell cycle in the fungal ancestor by controlling expression of genes that were originally controlled only by E2F. In support of this idea, experiments showed that many E2F binding sites in modern genes are also SBF binding sites, and that E2F sites can substitute for SBF sites in SBF-controlled genes. Future experiments in zoosporic fungi, which have animal-like and fungal-like features, would provide a glimpse of how a fungal ancestor may have used both SBF and E2F. These experiments may also reveal why most fungi have retained the newer SBF but lost the ancestral and widely conserved E2F protein. DOI:http://dx.doi.org/10.7554/eLife.09492.002
Collapse
Affiliation(s)
- Edgar M Medina
- Department of Biology, Duke University, Durham, United States.,Center for Genomic and Computational Biology, Duke University, Durham, United States
| | | | - Raluca Gordân
- Center for Genomic and Computational Biology, Duke University, Durham, United States.,Department of Biostatistics and Bioinformatics, Duke University, Durham, United States
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, United States
| | - Nicolas E Buchler
- Department of Biology, Duke University, Durham, United States.,Center for Genomic and Computational Biology, Duke University, Durham, United States
| |
Collapse
|
626
|
Aguilar M, Richardson E, Tan B, Walker G, Dunfield PF, Bass D, Nesbø C, Foght J, Dacks JB. Next-Generation Sequencing Assessment of Eukaryotic Diversity in Oil Sands Tailings Ponds Sediments and Surface Water. J Eukaryot Microbiol 2016; 63:732-743. [PMID: 27062087 DOI: 10.1111/jeu.12320] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/25/2016] [Accepted: 03/27/2016] [Indexed: 11/27/2022]
Abstract
Tailings ponds in the Athabasca oil sands (Canada) contain fluid wastes, generated by the extraction of bitumen from oil sands ores. Although the autochthonous prokaryotic communities have been relatively well characterized, almost nothing is known about microbial eukaryotes living in the anoxic soft sediments of tailings ponds or in the thin oxic layer of water that covers them. We carried out the first next-generation sequencing study of microbial eukaryotic diversity in oil sands tailings ponds. In metagenomes prepared from tailings sediment and surface water, we detected very low numbers of sequences encoding eukaryotic small subunit ribosomal RNA representing seven major taxonomic groups of protists. We also produced and analysed three amplicon-based 18S rRNA libraries prepared from sediment samples. These revealed a more diverse set of taxa, 169 different OTUs encompassing up to eleven higher order groups of eukaryotes, according to detailed classification using homology searching and phylogenetic methods. The 10 most abundant OTUs accounted for > 90% of the total of reads, vs. large numbers of rare OTUs (< 1% abundance). Despite the anoxic and hydrocarbon-enriched nature of the environment, the tailings ponds harbour complex communities of microbial eukaryotes indicating that these organisms should be taken into account when studying the microbiology of the oil sands.
Collapse
Affiliation(s)
- Maria Aguilar
- Department of Cell Biology, University of Alberta, 510 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
| | - Elisabeth Richardson
- Department of Cell Biology, University of Alberta, 510 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
| | - BoonFei Tan
- Department of Biological Sciences, CW 405, University of Alberta, Biological Sciences Bldg., Edmonton, AB, T6G 2E9, Canada
| | - Giselle Walker
- Department of Cell Biology, University of Alberta, 510 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
| | - Peter F Dunfield
- Department of Biological Sciences, 507 Campus Drive NW, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - David Bass
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom.,Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, DT4 8UB, United Kingdom
| | - Camilla Nesbø
- Department of Biological Sciences, CW 405, University of Alberta, Biological Sciences Bldg., Edmonton, AB, T6G 2E9, Canada.,CEES, Deptartment of Biosciences, University of Oslo, PO Box 1066, Blindern NO-0316, Oslo, Norway
| | - Julia Foght
- Department of Biological Sciences, CW 405, University of Alberta, Biological Sciences Bldg., Edmonton, AB, T6G 2E9, Canada
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, 510 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada. .,Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom.
| |
Collapse
|
627
|
Dyková I, Tyml T. Testate amoeba Rhogostoma minus Belar, 1921, associated with nodular gill disease of rainbow trout, Oncorhynchus mykiss (Walbaum). JOURNAL OF FISH DISEASES 2016; 39:539-546. [PMID: 25952929 DOI: 10.1111/jfd.12384] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 04/01/2015] [Accepted: 04/01/2015] [Indexed: 06/04/2023]
Abstract
The case study targeted to determine the aetiology of nodular gill disease (NGD) of farmed rainbow trout. The methods included microscopical examination of gill material in fresh, culturing of isolated organisms, histology, transmission electron microscopy and molecular biology identification. The results revealed an intravital colonization of fish gills by the testate amoeba Rhogostoma minus Belar, 1921. Rhogostoma infection was found in all fish examined microscopically (15/15); in contrast, naked amoebae related to fully developed NGD lesions were found in minority of these fish (5/15). They belonged to four genera, Acanthamoeba, Vermamoeba, Naegleria and Vannella. Results presented in this study contribute to the mosaic of findings that contrary to amoebic gill disease of marine fish turn attention to the possibility of the heterogeneous, multi-amoeba-species and multifactorial aetiology of NGD.
Collapse
Affiliation(s)
- I Dyková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - T Tyml
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
628
|
|
629
|
Gao F, Warren A, Zhang Q, Gong J, Miao M, Sun P, Xu D, Huang J, Yi Z, Song W. The All-Data-Based Evolutionary Hypothesis of Ciliated Protists with a Revised Classification of the Phylum Ciliophora (Eukaryota, Alveolata). Sci Rep 2016; 6:24874. [PMID: 27126745 PMCID: PMC4850378 DOI: 10.1038/srep24874] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/05/2016] [Indexed: 11/17/2022] Open
Abstract
The phylum Ciliophora plays important roles in a wide range of biological studies. However, the evolutionary relationships of many groups remain unclear due to a lack of sufficient molecular data. In this study, molecular dataset was expanded with representatives from 55 orders and all major lineages. The main findings are: (1) 14 classes were recovered including one new class, Protocruziea n. cl.; (2) in addition to the two main branches, Postciliodesmatophora and Intramacronucleata, a third branch, the Mesodiniea, is identified as being basal to the other two subphyla; (3) the newly defined order Discocephalida is revealed to be a sister clade to the euplotids, strongly suggesting the separation of discocephalids from the hypotrichs; (4) the separation of mobilids from the peritrichs is not supported; (5) Loxocephalida is basal to the main scuticociliate assemblage, whereas the thigmotrichs are placed within the order Pleuronematida; (6) the monophyly of classes Phyllopharyngea, Karyorelictea, Armophorea, Prostomatea, Plagiopylea, Colpodea and Heterotrichea are confirmed; (7) ambiguous genera Askenasia, CyclotrichiumParaspathidium and Plagiocampa show close affiliation to the well known plagiopyleans; (8) validity of the subclass Rhynchostomatia is supported, and (9) the systematic positions of Halteriida and Linconophoria remain unresolved and are thus regarded as incertae sedis within Spirotrichea.
Collapse
Affiliation(s)
- Feng Gao
- Institute of Evolution &Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Qianqian Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jun Gong
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Miao Miao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Sun
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, Xiamen University, Xiamen 361102, China
| | - Dapeng Xu
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, China
| | - Jie Huang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhenzhen Yi
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Weibo Song
- Institute of Evolution &Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
630
|
An Evolutionary Framework for Understanding the Origin of Eukaryotes. BIOLOGY 2016; 5:biology5020018. [PMID: 27128953 PMCID: PMC4929532 DOI: 10.3390/biology5020018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/15/2016] [Accepted: 04/25/2016] [Indexed: 12/12/2022]
Abstract
Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real-the endosymbiosis that led to the mitochondrion is often described as "non-Darwinian" because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious-all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes.
Collapse
|
631
|
Opperdoes FR, Butenko A, Flegontov P, Yurchenko V, Lukeš J. Comparative Metabolism of Free-living Bodo saltans
and Parasitic Trypanosomatids. J Eukaryot Microbiol 2016; 63:657-78. [DOI: 10.1111/jeu.12315] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/10/2016] [Accepted: 03/20/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Fred R. Opperdoes
- de Duve Institute; Université Catholique de Louvain; Brussels B-1200 Belgium
| | - Anzhelika Butenko
- Life Science Research Centre; Faculty of Science; University of Ostrava; Ostrava 710 00 Czech Republic
| | - Pavel Flegontov
- Life Science Research Centre; Faculty of Science; University of Ostrava; Ostrava 710 00 Czech Republic
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) 370 05 Czech Republic
- A.A. Kharkevich Institute for Information Transmission Problems; Russian Academy of Sciences; Moscow 127 051 Russia
| | - Vyacheslav Yurchenko
- Life Science Research Centre; Faculty of Science; University of Ostrava; Ostrava 710 00 Czech Republic
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) 370 05 Czech Republic
- Faculty of Science; Institute of Environmental Technologies; University of Ostrava; Ostrava 710 00 Czech Republic
| | - Julius Lukeš
- Biology Centre; Institute of Parasitology; Czech Academy of Sciences; České Budějovice (Budweis) 370 05 Czech Republic
- Faculty of Science; University of South Bohemia; České Budějovice (Budweis) 370 05 Czech Republic
- Canadian Institute for Advanced Research; Toronto ON M5G 1Z8 Canada
| |
Collapse
|
632
|
Investigating the diversity of the 18S SSU rRNA hyper-variable region of Theileria in cattle and Cape buffalo (Syncerus caffer) from southern Africa using a next generation sequencing approach. Ticks Tick Borne Dis 2016; 7:869-879. [PMID: 27084674 DOI: 10.1016/j.ttbdis.2016.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 11/21/2022]
Abstract
Molecular classification and systematics of the Theileria is based on the analysis of the 18S rRNA gene. Reverse line blot or conventional sequencing approaches have disadvantages in the study of 18S rRNA diversity and a next-generation 454 sequencing approach was investigated. The 18S rRNA gene was amplified using RLB primers coupled to 96 unique sequence identifiers (MIDs). Theileria positive samples from African buffalo (672) and cattle (480) from southern Africa were combined in batches of 96 and sequenced using the GS Junior 454 sequencer to produce 825711 informative sequences. Sequences were extracted based on MIDs and analysed to identify Theileria genotypes. Genotypes observed in buffalo and cattle were confirmed in the current study, while no new genotypes were discovered. Genotypes showed specific geographic distributions, most probably linked with vector distributions. Host specificity of buffalo and cattle specific genotypes were confirmed and prevalence data as well as relative parasitemia trends indicate preference for different hosts. Mixed infections are common with African buffalo carrying more genotypes compared to cattle. Associative or exclusion co-infection profiles were observed between genotypes that may have implications for speciation and systematics: specifically that more Theileria species may exist in cattle and buffalo than currently recognized. Analysis of primers used for Theileria parva diagnostics indicate that no new genotypes will be amplified by the current primer sets confirming their specificity. T. parva SNP variants that occur in the 18S rRNA hypervariable region were confirmed. A next generation sequencing approach is useful in obtaining comprehensive knowledge regarding 18S rRNA diversity and prevalence for the Theileria, allowing for the assessment of systematics and diagnostic assays based on the 18S gene.
Collapse
|
633
|
Liu W, Xu D, Ma H, Al-Farraj SA, Warren A, Yi Z. Taxonomy and molecular systematics of three oligotrich (s.l.) ciliates including descriptions of two new species, Strombidium guangdongense sp. nov. and Strombidinopsis sinicum sp. nov. (Protozoa, Ciliophora). SYST BIODIVERS 2016. [DOI: 10.1080/14772000.2016.1162872] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Weiwei Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou, 510631, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Dapeng Xu
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecosphere, Xiamen University, Xiamen, 361102, China
| | - Honggang Ma
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | | | - Alan Warren
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Zhenzhen Yi
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
634
|
Heger TJ, Derungs N, Theurillat JP, Mitchell EAD. Testate Amoebae Like It Hot: Species Richness Decreases Along a Subalpine-Alpine Altitudinal Gradient in Both Natural Calluna vulgaris Litter and Transplanted Minuartia sedoides Cushions. MICROBIAL ECOLOGY 2016; 71:725-734. [PMID: 26487438 DOI: 10.1007/s00248-015-0687-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/05/2015] [Indexed: 06/05/2023]
Abstract
Most groups of higher organisms show a decrease in species richness toward high altitude, but the existence of such a pattern is debated for micro-eukaryotes. Existing data are scarce and mostly confounded with the diversity of habitats that also decreases with elevation. In order to disentangle these two factors, one approach is to consider only similar types of habitats occurring across an elevational gradient. We assessed the diversity and community structure of testate amoebae in two specific habitats: (1) natural Calluna vulgaris litter and (2) Minuartia sedoides cushions 7 years after their transplantation along a vertical transect from 1770 to 2430 m in the subalpine and alpine zones of the Swiss Alps. Analyses of co-variance and variance showed that testate amoeba species richness, equitability, and diversity declined with elevation and were significantly correlated to habitat type. In a redundancy analysis, the variation in the relative abundance of the testate amoeba taxa in Calluna vulgaris litter was equally explained by elevation and litter pH. This is the first study documenting a monotonic decrease of protist diversity in similar habitats across an elevational gradient.
Collapse
Affiliation(s)
- T J Heger
- Beaty Biodiversity Center, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada.
| | - N Derungs
- University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - J P Theurillat
- Centre Alpien de Phytogéographie, Fondation J.-M. Aubert, 1938, Champex, Switzerland
- Laboratoire de Biogéographie, Section de Biologie, Université de Genève, Case postale 60, 1292, Chambésy, Switzerland
| | - E A D Mitchell
- University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
- Jardin Botanique de Neuchâtel, Chemin du Perthuis-du-Sault 58, 2000, Neuchâtel, Switzerland
| |
Collapse
|
635
|
Hounslow E, Noirel J, Gilmour DJ, Wright PC. Lipid quantification techniques for screening oleaginous species of microalgae for biofuel production. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201500469] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Emily Hounslow
- Department of Chemical and Biological Engineering; ChELSI Institute; The University of Sheffield; Sheffield UK
- Department of Molecular Biology and Biotechnology; The University of Sheffield; Sheffield UK
| | - Josselin Noirel
- Chaire de Bioinformatique; LGBA; Conservatoire National des Arts et Métiers; Paris France
| | - D. James Gilmour
- Department of Molecular Biology and Biotechnology; The University of Sheffield; Sheffield UK
| | - Phillip C. Wright
- Department of Chemical and Biological Engineering; ChELSI Institute; The University of Sheffield; Sheffield UK
| |
Collapse
|
636
|
Regulation of nuclear shape and size in plants. Curr Opin Cell Biol 2016; 40:114-123. [PMID: 27030912 DOI: 10.1016/j.ceb.2016.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/03/2016] [Accepted: 03/09/2016] [Indexed: 11/22/2022]
Abstract
Nuclear shape and size changes have long been used by cytopathologists to diagnose, stage, and prognose cancer. However, the underlying causalities and molecular mechanisms are largely unknown. The current eukaryotic tree of life groups eukaryotes into five supergroups, with all organisms between humans and yeast falling into the supergroup Opisthokonta. The emergence of model organisms with strong molecular genetic methodology in the other supergroups has recently facilitated a broader evolutionary approach to pressing biological questions. Here, we review what is known about the control of nuclear shape and size in the Archaeplastidae, the supergroup containing the higher plants. We discuss common themes as well as differences toward a more generalized model of how eukaryotic organisms regulate nuclear morphology.
Collapse
|
637
|
Gillett AK, Ploeg R, O’Donoghue PJ, Chapman PA, Webb RI, Flint M, Mills PC. Ultrastructural and Molecular Characterisation of an Heterosporis-Like Microsporidian in Australian Sea Snakes (Hydrophiinae). PLoS One 2016; 11:e0150724. [PMID: 27007116 PMCID: PMC4805256 DOI: 10.1371/journal.pone.0150724] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 02/17/2016] [Indexed: 11/18/2022] Open
Abstract
Four sea snakes (two Hydrophis major, one Hydrophis platurus, one Hydrophis elegans) were found washed ashore on different beaches in the Sunshine Coast region and Fraser Island in Queensland, Australia between 2007–2013. Each snake had multiple granulomas and locally extensive regions of pallor evident in the hypaxial and intercostal musculature along the body. Lesions in two individuals were also associated with vertebral and rib fractures. Histological examination revealed granulomas scattered throughout skeletal muscle, subcutaneous adipose tissue and fractured bone. These were composed of dense aggregates of microsporidian spores surrounded by a mantle of macrophages. Sequences (ssrRNA) were obtained from lesions in three sea snakes and all revealed 99% similarity with Heterosporis anguillarum from the Japanese eel (Anguillarum japonica). However, ultrastructural characteristics of the organism were not consistent with those of previous descriptions. Electron microscopic examination of skeletal muscle revealed large cysts (not xenomas) bound by walls of fibrillar material (Heterosporis-like sporophorocyst walls were not detected). The cysts contained numerous mature microsporidian spores arranged in small clusters, sometimes apparently within sporophorous vesicles. The microspores were monomorphic, oval and measured 2.5–3.0 μm by 1.6–1.8 μm. They contained isofilar polar filaments with 11 (infrequently 9–12) coils arranged in two ranks. This is the first published report of a microsporidian infection in hydrophiid sea snakes. This discovery shows microsporidia with molecular affinities to Heterosporis anguillarum but ultrastructural characters most consistent with the genus Pleistophora (but no hitherto described species). Further studies are required to determine whether the microsporidian presented here belongs to the genus Heterosporis, or to a polymorphic species group as suggested by the recognition of a robust Pleistophora/Heterosporis clade by molecular studies. The gross and histological pathology associated with these infections are described.
Collapse
Affiliation(s)
- Amber K. Gillett
- Vet-MARTI, School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
- Australia Zoo Wildlife Hospital, Beerwah, Queensland, Australia
- * E-mail:
| | - Richard Ploeg
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Victoria, Australia
| | - Peter J. O’Donoghue
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Phoebe A. Chapman
- Vet-MARTI, School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Richard I. Webb
- Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, Queensland, Australia
| | - Mark Flint
- Vet-MARTI, School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
- School of Forest Resources and Conservation, University of Florida, The Florida Aquarium’s Centre for Conservation, Apollo Beach, Florida, United States of America
| | - Paul C. Mills
- Vet-MARTI, School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| |
Collapse
|
638
|
Tice AK, Silberman JD, Walthall AC, Le KND, Spiegel FW, Brown MW. Sorodiplophrys stercorea: Another Novel Lineage of Sorocarpic Multicellularity. J Eukaryot Microbiol 2016; 63:623-8. [PMID: 26940948 DOI: 10.1111/jeu.12311] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/18/2016] [Accepted: 02/28/2016] [Indexed: 11/30/2022]
Abstract
Sorodiplophrys stercorea is a sorocarpic organism that utilizes filose pseudopodia for locomotion and absorptive nutrition. It has traditionally been considered to be a member of the Labyrinthulae based on its morphology. Its closest relatives were thought to be species in the taxon Diplophrys. Since the genus Diplophrys has been shown to be paraphyletic and S. stercorea has pseudopodia similar to some members of Rhizaria, we examined its relationship with other eukaryotes. We obtained four isolates from the dung of cow and horse, brought each into monoeukaryotic culture, and sequenced their SSU rRNA gene for phylogenetic analysis. All our isolates were shown to form a monophyletic group in the Labyrinthulae, nested in the Amphifiloidea clade. Our results demonstrate that Sorodiplophrys is more closely related to species of the genus Amphifila than to Diplophrys and represents an additional independent origin of sorocarpic multicellularity among eukaryotes. This study represents the first confirmed sorocarpic lifestyle in the Stramenopiles.
Collapse
Affiliation(s)
- Alexander K Tice
- Department of Biological Sciences, Mississippi State University, Mississippi State, 39762, Mississippi.,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, 39762, Mississippi.,Department of Biological Sciences, University of Arkansas, Fayetteville, 72701, Arkansas
| | - Jeffrey D Silberman
- Department of Biological Sciences, University of Arkansas, Fayetteville, 72701, Arkansas
| | - Austin C Walthall
- Department of Biological Sciences, Mississippi State University, Mississippi State, 39762, Mississippi
| | - Khoa N D Le
- Department of Biological Sciences, University of Arkansas, Fayetteville, 72701, Arkansas
| | - Frederick W Spiegel
- Department of Biological Sciences, University of Arkansas, Fayetteville, 72701, Arkansas
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, 39762, Mississippi.,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, 39762, Mississippi
| |
Collapse
|
639
|
Comparative Cell Biology and Evolution of Annexins in Diplomonads. mSphere 2016; 1:mSphere00032-15. [PMID: 27303715 PMCID: PMC4863580 DOI: 10.1128/msphere.00032-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/02/2016] [Indexed: 12/13/2022] Open
Abstract
Annexins are proteins that associate with phospholipids in a Ca2+-dependent fashion. These proteins have been intensely studied in animals and plants because of their importance in diverse cellular processes, yet very little is known about annexins in single-celled eukaryotes, which represent the largest diversity of organisms. The human intestinal parasite Giardia intestinalis is known to have more annexins than humans, and they contribute to its pathogenic potential. In this study, we investigated the annexin complement in the salmon pathogen Spironucleus salmonicida, a relative of G. intestinalis. We found that S. salmonicida has a large repertoire of annexins and that the gene family has expanded separately across diplomonads, with members showing sequence diversity similar to that seen across kingdom-level groups such as plants and animals. S. salmonicida annexins are prominent components of the cytoskeleton and membrane. Two annexins are associated with a previously unrecognized structure in the anterior of the cell. Annexins are multifunctional, calcium-binding proteins found in organisms across all kingdoms. Most studies of annexins from single-celled eukaryotes have focused on the alpha-giardins, proteins assigned to the group E annexins, expressed by the diplomonad Giardia intestinalis. We have characterized the annexin gene family in another diplomonad parasite, Spironucleus salmonicida, by phylogenetic and experimental approaches. We constructed a comprehensive phylogeny of the diplomonad group E annexins and found that they are abundant across the group with frequent gene duplications and losses. The annexins of S. salmonicida were found to be related to alpha-giardins but with better-preserved type II Ca2+ coordination sites. Two annexins were confirmed to bind phospholipids in a Ca2+-dependent fashion but with different specificities. Superresolution and confocal microscopy of epitope-tagged S. salmonicida annexins revealed localization to distinct parts of the cytoskeleton and membrane. The ultrastructural details of the localization of several annexins were determined by proximity labeling and transmission electron microscopy. Two annexins localize to a novel cytoskeletal structure in the anterior of the cell. Our results show that the annexin gene family is expanded in diplomonads and that these group E annexins are associated mostly with cytoskeletal and membrane structures. IMPORTANCE Annexins are proteins that associate with phospholipids in a Ca2+-dependent fashion. These proteins have been intensely studied in animals and plants because of their importance in diverse cellular processes, yet very little is known about annexins in single-celled eukaryotes, which represent the largest diversity of organisms. The human intestinal parasite Giardia intestinalis is known to have more annexins than humans, and they contribute to its pathogenic potential. In this study, we investigated the annexin complement in the salmon pathogen Spironucleus salmonicida, a relative of G. intestinalis. We found that S. salmonicida has a large repertoire of annexins and that the gene family has expanded separately across diplomonads, with members showing sequence diversity similar to that seen across kingdom-level groups such as plants and animals. S. salmonicida annexins are prominent components of the cytoskeleton and membrane. Two annexins are associated with a previously unrecognized structure in the anterior of the cell.
Collapse
|
640
|
Faktorová D, Dobáková E, Peña-Diaz P, Lukeš J. From simple to supercomplex: mitochondrial genomes of euglenozoan protists. F1000Res 2016. [PMID: 27018240 DOI: 10.12688/f1000research.8040.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondria are double membrane organelles of endosymbiotic origin, best known for constituting the centre of energetics of a eukaryotic cell. They contain their own mitochondrial genome, which as a consequence of gradual reduction during evolution typically contains less than two dozens of genes. In this review, we highlight the extremely diverse architecture of mitochondrial genomes and mechanisms of gene expression between the three sister groups constituting the phylum Euglenozoa - Euglenida, Diplonemea and Kinetoplastea. The earliest diverging euglenids possess a simplified mitochondrial genome and a conventional gene expression, whereas both are highly complex in the two other groups. The expression of their mitochondrial-encoded proteins requires extensive post-transcriptional modifications guided by complex protein machineries and multiple small RNA molecules. Moreover, the least studied diplonemids, which have been recently discovered as a highly abundant component of the world ocean plankton, possess one of the most complicated mitochondrial genome organisations known to date.
Collapse
Affiliation(s)
- Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Dobáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Departments of Biochemistry and Genetics, Faculty of Natural Sciences, Comenius Universtity, Bratislava, Slovakia
| | - Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Canadian Institute for Adavanced Research, Toronto, Ontario, Canada
| |
Collapse
|
641
|
Faktorová D, Dobáková E, Peña-Diaz P, Lukeš J. From simple to supercomplex: mitochondrial genomes of euglenozoan protists. F1000Res 2016; 5. [PMID: 27018240 PMCID: PMC4806707 DOI: 10.12688/f1000research.8040.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2016] [Indexed: 01/06/2023] Open
Abstract
Mitochondria are double membrane organelles of endosymbiotic origin, best known for constituting the centre of energetics of a eukaryotic cell. They contain their own mitochondrial genome, which as a consequence of gradual reduction during evolution typically contains less than two dozens of genes. In this review, we highlight the extremely diverse architecture of mitochondrial genomes and mechanisms of gene expression between the three sister groups constituting the phylum Euglenozoa - Euglenida, Diplonemea and Kinetoplastea. The earliest diverging euglenids possess a simplified mitochondrial genome and a conventional gene expression, whereas both are highly complex in the two other groups. The expression of their mitochondrial-encoded proteins requires extensive post-transcriptional modifications guided by complex protein machineries and multiple small RNA molecules. Moreover, the least studied diplonemids, which have been recently discovered as a highly abundant component of the world ocean plankton, possess one of the most complicated mitochondrial genome organisations known to date.
Collapse
Affiliation(s)
- Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Eva Dobáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Departments of Biochemistry and Genetics, Faculty of Natural Sciences, Comenius Universtity, Bratislava, Slovakia
| | - Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Canadian Institute for Adavanced Research, Toronto, Ontario, Canada
| |
Collapse
|
642
|
Phylogenomics of 'Discosea': A new molecular phylogenetic perspective on Amoebozoa with flat body forms. Mol Phylogenet Evol 2016; 99:144-154. [PMID: 27015898 DOI: 10.1016/j.ympev.2016.03.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 11/20/2022]
Abstract
The majority of amoeboid lineages with flattened body forms are placed under a taxonomic hypothetical class 'Discosea' sensu Smirnov et al. (2011), which encompasses some of the most diverse morphs within Amoebozoa. However, its taxonomy and phylogeny is poorly understood. This is partly due to lack of support in studies that are based on limited gene sampling. In this study we use a phylogenomic approach including newly-generated RNA-Seq data and comprehensive taxon sampling to resolve the phylogeny of 'Discosea'. Our analysis included representatives from all orders of 'Discosea' and up to 550 genes, the largest gene sampling in Amoebozoa to date. We conducted extensive analyses to assess the robustness of our resulting phylogenies to effects of missing data and outgroup choice using probabilistic methods. All of our analyses, which explore the impact of varying amounts of missing data, consistently recover well-resolved and supported groups of Amoebozoa. Our results neither support the monophyly nor dichotomy of 'Discosea' as defined by Smirnov et al. (2011). Rather, we recover a robust well-resolved clade referred to as Eudiscosea encompassing the majority of discosean orders (seven of the nine studied here), while the Dactylopodida, Thecamoebida and Himatismenida, previously included in 'Discosea,' are non-monophyletic. We also recover novel relationships within the Eudiscosea that are largely congruent with morphology. Our analyses enabled us to place some incertae sedis lineages and previously unstable lineages such as Vermistella, Mayorella, Gocevia, and Stereomyxa. We recommend some phylogeny-based taxonomic amendments highlighting the new findings of this study and discuss the evolution of the group based on our current understanding.
Collapse
|
643
|
Bicudo CEDM, Menezes M. Phylogeny and Classification of Euglenophyceae: A Brief Review. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
644
|
Detection of Balamuthia mandrillaris DNA in the storage case of contact lenses in Germany. Parasitol Res 2016; 115:2111-4. [PMID: 26965426 DOI: 10.1007/s00436-016-4979-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/01/2016] [Indexed: 10/22/2022]
Abstract
Acanthamoeba spp. are frequently the etiological agents of a severe form of sight-threatening keratitis, called Acanthamoeba keratitis. The contact lens storage solution of a patient with keratitis of unknown genesis was screened using our diagnostic tools to detect potentially pathogenic free-living amoebae (FLA). Culture methods and a triplex quantitative real-time polymerase chain reaction (qPCR) targeting Acanthamoeba spp., Naegleria fowleri, and Balamuthia mandrillaris were used in context of this routine screening. While no amoebae were detected by culture, qPCR specifically detected DNA of B. mandrillaris. This FLA is known as the etiological agent of a fatal form of encephalitis in humans and other mammals, Balamuthia amoebic encephalitis (BAE). A fragment of the 18S rDNA gene was amplified from the sample and showed 99 % sequence identity to B. mandrillaris sequences from GenBank. To the best of our knowledge, this is the first report of B. mandrillaris found in association with contact lenses. Although no viable amoeba was obtained by culturing efforts, the verification of B. mandrillaris DNA in the contact lens storage solution demonstrates how easily this pathogen might come into close contact with humans.
Collapse
|
645
|
Yuasa T, Takahashi O. Light and electron microscopic observations of the reproductive swarmer cells of nassellarian and spumellarian polycystines (Radiolaria). Eur J Protistol 2016; 54:19-32. [PMID: 27023270 DOI: 10.1016/j.ejop.2016.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 10/22/2022]
Abstract
We observed reproductive swarmer cells of the nassellarian and spumellarian polycystine radiolarians Didymocyrtis ceratospyris, Pterocanium praetextum, Tetrapyle sp., and Triastrum aurivillii using light, scanning and transmission electron microscopy. The swarmer cells had subspherical to ovoid or spindle shapes with two unequal flagella tapered to whip-like ends. The cell size was approximately 2.5-5.5μm long and 1.6-2.2μm wide, which is significantly smaller than that of the collodarian (colonial or naked) polycystine radiolarians. Transmission electron microscopy revealed that the swarmer cells possessed a nucleus, mitochondria with tubular cristae, Golgi body, and small lipid droplets in the cytoplasm; they also had a large vacuole in which a single crystalline inclusion (approx. 1.0-1.5μm) that was probably celestite (SrSO4) was enclosed. The swarmer cells were released directly from the parent cells. At that time, morphological change such as encystment was not observed in the parent cells, and the axopodia remained extended in a period of swarmer reproduction for floating existence. This may have prevented the polycystine swarmers from rapidly sinking down to great depths. Thus, we concluded that the polycystine radiolarians release the swarmer cells into the photic layer in the same way as the symbiotic acantharians.
Collapse
Affiliation(s)
- Tomoko Yuasa
- Department of Astronomy and Earth Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan.
| | - Osamu Takahashi
- Department of Astronomy and Earth Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
| |
Collapse
|
646
|
Iwamoto M, Hiraoka Y, Haraguchi T. Uniquely designed nuclear structures of lower eukaryotes. Curr Opin Cell Biol 2016; 40:66-73. [PMID: 26963276 DOI: 10.1016/j.ceb.2016.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
Abstract
The nuclear structures of lower eukaryotes, specifically protists, often vary from those of yeasts and metazoans. Several studies have demonstrated the unique and fascinating features of these nuclear structures, such as a histone-independent condensed chromatin in dinoflagellates and two structurally distinct nuclear pore complexes in ciliates. Despite their unique molecular/structural features, functions required for formation of their cognate molecules/structures are highly conserved. This provides important information about the structure-function relationship of the nuclear structures. In this review, we highlight characteristic nuclear structures found in lower eukaryotes, and discuss their attractiveness as potential biological systems for studying nuclear structures.
Collapse
Affiliation(s)
- Masaaki Iwamoto
- Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe, Japan
| | - Yasushi Hiraoka
- Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan; Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan; Graduate School of Science, Osaka University, Toyonaka, Japan.
| |
Collapse
|
647
|
Marques CA, Tiengwe C, Lemgruber L, Damasceno JD, Scott A, Paape D, Marcello L, McCulloch R. Diverged composition and regulation of the Trypanosoma brucei origin recognition complex that mediates DNA replication initiation. Nucleic Acids Res 2016; 44:4763-84. [PMID: 26951375 PMCID: PMC4889932 DOI: 10.1093/nar/gkw147] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/01/2016] [Indexed: 01/14/2023] Open
Abstract
Initiation of DNA replication depends upon recognition of genomic sites, termed origins, by AAA+ ATPases. In prokaryotes a single factor binds each origin, whereas in eukaryotes this role is played by a six-protein origin recognition complex (ORC). Why eukaryotes evolved a multisubunit initiator, and the roles of each component, remains unclear. In Trypanosoma brucei, an ancient unicellular eukaryote, only one ORC-related initiator, TbORC1/CDC6, has been identified by sequence homology. Here we show that three TbORC1/CDC6-interacting factors also act in T. brucei nuclear DNA replication and demonstrate that TbORC1/CDC6 interacts in a high molecular complex in which a diverged Orc4 homologue and one replicative helicase subunit can also be found. Analysing the subcellular localization of four TbORC1/CDC6-interacting factors during the cell cycle reveals that one factor, TbORC1B, is not a static constituent of ORC but displays S-phase restricted nuclear localization and expression, suggesting it positively regulates replication. This work shows that ORC architecture and regulation are diverged features of DNA replication initiation in T. brucei, providing new insight into this key stage of eukaryotic genome copying.
Collapse
Affiliation(s)
- Catarina A Marques
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Calvin Tiengwe
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Leandro Lemgruber
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Jeziel D Damasceno
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Alan Scott
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Daniel Paape
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Lucio Marcello
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Richard McCulloch
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow, G12 8TA, UK
| |
Collapse
|
648
|
Methodological Studies on Estimates of Abundance and Diversity of Heterotrophic Flagellates from the Deep-Sea Floor. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2016. [DOI: 10.3390/jmse4010022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
649
|
Obbels D, Verleyen E, Mano MJ, Namsaraev Z, Sweetlove M, Tytgat B, Fernandez-Carazo R, De Wever A, D'hondt S, Ertz D, Elster J, Sabbe K, Willems A, Wilmotte A, Vyverman W. Bacterial and eukaryotic biodiversity patterns in terrestrial and aquatic habitats in the Sør Rondane Mountains, Dronning Maud Land, East Antarctica. FEMS Microbiol Ecol 2016; 92:fiw041. [PMID: 26936447 DOI: 10.1093/femsec/fiw041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2016] [Indexed: 11/12/2022] Open
Abstract
The bacterial and microeukaryotic biodiversity were studied using pyrosequencing analysis on a 454 GS FLX+ platform of partial SSU rRNA genes in terrestrial and aquatic habitats of the Sør Rondane Mountains, including soils, on mosses, endolithic communities, cryoconite holes and supraglacial and subglacial meltwater lenses. This inventory was complemented with Denaturing Gradient Gel Electrophoresis targeting Chlorophyta and Cyanobacteria. OTUs belonging to the Rotifera, Chlorophyta, Tardigrada, Ciliophora, Cercozoa, Fungi, Bryophyta, Bacillariophyta, Collembola and Nematoda were present with a relative abundance of at least 0.1% in the eukaryotic communities. Cyanobacteria, Proteobacteria, Bacteroidetes, Acidobacteria, FBP and Actinobacteria were the most abundant bacterial phyla. Multivariate analyses of the pyrosequencing data revealed a general lack of differentiation of both eukaryotes and prokaryotes according to habitat type. However, the bacterial community structure in the aquatic habitats was dominated by the filamentous cyanobacteria Leptolyngbya and appeared to be significantly different compared with those in dry soils, on mosses, and in endolithic habitats. A striking feature in all datasets was the detection of a relatively large amount of sequences new to science, which underscores the need for additional biodiversity assessments in Antarctic inland locations.
Collapse
Affiliation(s)
- Dagmar Obbels
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281, S8, B-9000 Ghent, Belgium
| | - Elie Verleyen
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281, S8, B-9000 Ghent, Belgium
| | - Marie-José Mano
- Centre for Protein Engineering, Institute of Chemistry, Université de Liège, Sart-TilmanB6, B-4000 Liège, Belgium
| | - Zorigto Namsaraev
- Centre for Protein Engineering, Institute of Chemistry, Université de Liège, Sart-TilmanB6, B-4000 Liège, Belgium Winogradsky Institute of Microbiology RAS, Pr-t 60-letya Oktyabrya, 7/2, Moscow 117312, Russia NRC Kurchatov Institute, Akademika Kurchatova pl. 1, Moscow, 12 31 82, Russia
| | - Maxime Sweetlove
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281, S8, B-9000 Ghent, Belgium
| | - Bjorn Tytgat
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | - Rafael Fernandez-Carazo
- Centre for Protein Engineering, Institute of Chemistry, Université de Liège, Sart-TilmanB6, B-4000 Liège, Belgium
| | - Aaike De Wever
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281, S8, B-9000 Ghent, Belgium Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium
| | - Sofie D'hondt
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281, S8, B-9000 Ghent, Belgium
| | - Damien Ertz
- Botanic Garden Meise, Department Bryophytes-Thallophytes, Nieuwelaan 38, B-1860 Meise, Belgium Federation Wallonia-Brussels, General Administration of the Non-Compulsory Education and Scientific Research, Rue A. Lavallée 1, 1080 Brussels, Belgium
| | - Josef Elster
- Centre for Polar Ecology, Faculty of Sciences, University of South Bohemia, Institute of Botany, Academy of Sciences of the Czech Republic, Dukelská 135, 379 82, Třeboň, Czech republic
| | - Koen Sabbe
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281, S8, B-9000 Ghent, Belgium
| | - Anne Willems
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | - Annick Wilmotte
- Centre for Protein Engineering, Institute of Chemistry, Université de Liège, Sart-TilmanB6, B-4000 Liège, Belgium
| | - Wim Vyverman
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281, S8, B-9000 Ghent, Belgium
| |
Collapse
|
650
|
Perdomo D, Bonhivers M, Robinson DR. The Trypanosome Flagellar Pocket Collar and Its Ring Forming Protein-TbBILBO1. Cells 2016; 5:cells5010009. [PMID: 26950156 PMCID: PMC4810094 DOI: 10.3390/cells5010009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 12/11/2022] Open
Abstract
Sub-species of Trypanosoma brucei are the causal agents of human African sleeping sickness and Nagana in domesticated livestock. These pathogens have developed an organelle-like compartment called the flagellar pocket (FP). The FP carries out endo- and exocytosis and is the only structure this parasite has evolved to do so. The FP is essential for parasite viability, making it an interesting structure to evaluate as a drug target, especially since it has an indispensible cytoskeleton component called the flagellar pocket collar (FPC). The FPC is located at the neck of the FP where the flagellum exits the cell. The FPC has a complex architecture and division cycle, but little is known concerning its organization. Recent work has focused on understanding how the FP and the FPC are formed and as a result of these studies an important calcium-binding, polymer-forming protein named TbBILBO1 was identified. Cellular biology analysis of TbBILBO1 has demonstrated its uniqueness as a FPC component and until recently, it was unknown what structural role it played in forming the FPC. This review summarizes the recent data on the polymer forming properties of TbBILBO1 and how these are correlated to the FP cytoskeleton.
Collapse
Affiliation(s)
- Doranda Perdomo
- CNRS, Microbiology Fundamental and Pathogenicity, UMR 5234, F-33000 Bordeaux, France.
| | - Mélanie Bonhivers
- CNRS, Microbiology Fundamental and Pathogenicity, UMR 5234, F-33000 Bordeaux, France.
| | - Derrick R Robinson
- CNRS, Microbiology Fundamental and Pathogenicity, UMR 5234, F-33000 Bordeaux, France.
| |
Collapse
|