601
|
Balanis NG, Sheu KM, Esedebe FN, Patel SJ, Smith BA, Park JW, Alhani S, Gomperts BN, Huang J, Witte ON, Graeber TG. Pan-cancer Convergence to a Small-Cell Neuroendocrine Phenotype that Shares Susceptibilities with Hematological Malignancies. Cancer Cell 2019; 36:17-34.e7. [PMID: 31287989 PMCID: PMC6703903 DOI: 10.1016/j.ccell.2019.06.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/04/2019] [Accepted: 06/06/2019] [Indexed: 01/01/2023]
Abstract
Small-cell neuroendocrine cancers (SCNCs) are an aggressive cancer subtype. Transdifferentiation toward an SCN phenotype has been reported as a resistance route in response to targeted therapies. Here, we identified a convergence to an SCN state that is widespread across epithelial cancers and is associated with poor prognosis. More broadly, non-SCN metastases have higher expression of SCN-associated transcription factors than non-SCN primary tumors. Drug sensitivity and gene dependency screens demonstrate that these convergent SCNCs have shared vulnerabilities. These common vulnerabilities are found across unannotated SCN-like epithelial cases, small-round-blue cell tumors, and unexpectedly in hematological malignancies. The SCN convergent phenotype and common sensitivity profiles with hematological cancers can guide treatment options beyond tissue-specific targeted therapies.
Collapse
Affiliation(s)
- Nikolas G Balanis
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA
| | - Katherine M Sheu
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA
| | - Favour N Esedebe
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA
| | - Saahil J Patel
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA
| | - Bryan A Smith
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Jung Wook Park
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Salwan Alhani
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA
| | - Brigitte N Gomperts
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, Department of Pediatrics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Owen N Witte
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA.
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA 90095, USA; California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
602
|
Nam AS, Kim KT, Chaligne R, Izzo F, Ang C, Taylor J, Myers RM, Abu-Zeinah G, Brand R, Omans ND, Alonso A, Sheridan C, Mariani M, Dai X, Harrington E, Pastore A, Cubillos-Ruiz JR, Tam W, Hoffman R, Rabadan R, Scandura JM, Abdel-Wahab O, Smibert P, Landau DA. Somatic mutations and cell identity linked by Genotyping of Transcriptomes. Nature 2019; 571:355-360. [PMID: 31270458 PMCID: PMC6782071 DOI: 10.1038/s41586-019-1367-0] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
Defining the transcriptomic identity of malignant cells is challenging in the absence of surface markers that distinguish cancer clones from one another, or from admixed non-neoplastic cells. To address this challenge, here we developed Genotyping of Transcriptomes (GoT), a method to integrate genotyping with high-throughput droplet-based single-cell RNA sequencing. We apply GoT to profile 38,290 CD34+ cells from patients with CALR-mutated myeloproliferative neoplasms to study how somatic mutations corrupt the complex process of human haematopoiesis. High-resolution mapping of malignant versus normal haematopoietic progenitors revealed an increasing fitness advantage with myeloid differentiation of cells with mutated CALR. We identified the unfolded protein response as a predominant outcome of CALR mutations, with a considerable dependency on cell identity, as well as upregulation of the NF-κB pathway specifically in uncommitted stem cells. We further extended the GoT toolkit to genotype multiple targets and loci that are distant from transcript ends. Together, these findings reveal that the transcriptional output of somatic mutations in myeloproliferative neoplasms is dependent on the native cell identity.
Collapse
Affiliation(s)
- Anna S Nam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Kyu-Tae Kim
- New York Genome Center, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ronan Chaligne
- New York Genome Center, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Franco Izzo
- New York Genome Center, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Chelston Ang
- New York Genome Center, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Justin Taylor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert M Myers
- New York Genome Center, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional MD-PhD Program, Weill Cornell Medicine, Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ghaith Abu-Zeinah
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Richard T. Silver MD Myeloproliferative Neoplasms Center, Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ryan Brand
- New York Genome Center, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Nathaniel D Omans
- New York Genome Center, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Memorial Sloan Kettering Cancer Center, Cornell University, Weill Cornell Medicine, New York, NY, USA
| | - Alicia Alonso
- Epigenomics Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Caroline Sheridan
- Epigenomics Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Marisa Mariani
- Epigenomics Core Facility, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Alessandro Pastore
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
| | - Wayne Tam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ronald Hoffman
- Division of Hematology and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raul Rabadan
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Joseph M Scandura
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Richard T. Silver MD Myeloproliferative Neoplasms Center, Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Peter Smibert
- Technology Innovation Lab, New York Genome Center, New York, NY, USA
| | - Dan A Landau
- New York Genome Center, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
603
|
Berger A, Brady NJ, Bareja R, Robinson B, Conteduca V, Augello MA, Puca L, Ahmed A, Dardenne E, Lu X, Hwang I, Bagadion AM, Sboner A, Elemento O, Paik J, Yu J, Barbieri CE, Dephoure N, Beltran H, Rickman DS. N-Myc-mediated epigenetic reprogramming drives lineage plasticity in advanced prostate cancer. J Clin Invest 2019; 129:3924-3940. [PMID: 31260412 DOI: 10.1172/jci127961] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite recent therapeutic advances, prostate cancer remains a leading cause of cancer-related death. A subset of castration resistant prostate cancers become androgen receptor (AR) signaling-independent and develop neuroendocrine prostate cancer (NEPC) features through lineage plasticity. These NEPC tumors, associated with aggressive disease and poor prognosis, are driven, in part, by aberrant expression of N-Myc, through mechanisms that remain unclear. Integrative analysis of the N-Myc transcriptome, cistrome and interactome using in vivo, in vitro and ex vivo models (including patient-derived organoids) identified a lineage switch towards a neural identity associated with epigenetic reprogramming. N-Myc and known AR-co-factors (e.g., FOXA1 and HOXB13) overlapped, independently of AR, at genomic loci implicated in neural lineage specification. Moreover, histone marks specifically associated with lineage-defining genes were reprogrammed by N-Myc. We also demonstrated that the N-Myc-induced molecular program accurately classifies our cohort of patients with advanced prostate cancer. Finally, we revealed the potential for EZH2 inhibition to reverse the N-Myc-induced suppression of epithelial lineage genes. Altogether, our data provide insights on how N-Myc regulates lineage plasticity and epigenetic reprogramming associated with lineage-specification. The N-Myc signature we defined could also help predict the evolution of prostate cancer and thus better guide the choice of future therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Rohan Bareja
- Caryl and Israel Englander Institute for Precision Medicine, NewYork-Presbyterian Hospital
| | - Brian Robinson
- Department of Pathology and Laboratory Medicine.,Caryl and Israel Englander Institute for Precision Medicine, NewYork-Presbyterian Hospital
| | | | | | | | - Adnan Ahmed
- Department of Biochemistry, Weill Cornell Medicine, New York, New York, USA
| | | | - Xiaodong Lu
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Inah Hwang
- Department of Pathology and Laboratory Medicine
| | | | - Andrea Sboner
- Department of Pathology and Laboratory Medicine.,Caryl and Israel Englander Institute for Precision Medicine, NewYork-Presbyterian Hospital.,Department of Physiology and Biophysics, Institute for Computational Biomedicine, and.,Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, NewYork-Presbyterian Hospital.,Department of Physiology and Biophysics, Institute for Computational Biomedicine, and.,Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Jihye Paik
- Department of Pathology and Laboratory Medicine.,Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Jindan Yu
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Christopher E Barbieri
- Caryl and Israel Englander Institute for Precision Medicine, NewYork-Presbyterian Hospital.,Department of Urology, and.,Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Noah Dephoure
- Department of Biochemistry, Weill Cornell Medicine, New York, New York, USA.,Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| | - Himisha Beltran
- Caryl and Israel Englander Institute for Precision Medicine, NewYork-Presbyterian Hospital.,Department of Medicine.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - David S Rickman
- Department of Pathology and Laboratory Medicine.,Caryl and Israel Englander Institute for Precision Medicine, NewYork-Presbyterian Hospital.,Meyer Cancer Center, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
604
|
Shen MM, Rubin MA. Prostate Cancer Research at the Crossroads. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036277. [PMID: 30348836 DOI: 10.1101/cshperspect.a036277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Michael M Shen
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York 10032
| | - Mark A Rubin
- Englander Institute for Precision Medicine, Department of Pathology and Laboratory Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021.,Department of BioMedical Research, University of Bern and Inselspital, 3008 Bern, Switzerland
| |
Collapse
|
605
|
Laudato S, Aparicio A, Giancotti FG. Clonal Evolution and Epithelial Plasticity in the Emergence of AR-Independent Prostate Carcinoma. Trends Cancer 2019; 5:440-455. [PMID: 31311658 DOI: 10.1016/j.trecan.2019.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
In spite of an initial clinical response to androgen deprivation therapy (ADT), the majority of prostate cancer patients eventually develop castration-resistant prostate cancer (CRPC). Recent studies have highlighted the role of epithelial plasticity, including transdifferentiation and epithelial-to-mesenchymal transition (EMT), in the development of AR pathway-negative CRPC, a form of the disease that has increased in incidence after the introduction of potent AR inhibitors. In this review, we will discuss the switches between different cell fates that occur in response to AR blockade or acquisition of specific oncogenic mutations, such as those in TP53 and RB1, during the evolution to CRPC. We highlight the urgent need to dissect the mechanistic underpinnings of these transitions and identify novel vulnerabilities that can be targeted therapeutically.
Collapse
Affiliation(s)
- Sara Laudato
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. )
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Filippo G Giancotti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
606
|
Concurrent RB1 and TP53 Alterations Define a Subset of EGFR-Mutant Lung Cancers at risk for Histologic Transformation and Inferior Clinical Outcomes. J Thorac Oncol 2019; 14:1784-1793. [PMID: 31228622 DOI: 10.1016/j.jtho.2019.06.002] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/19/2019] [Accepted: 06/05/2019] [Indexed: 01/17/2023]
Abstract
INTRODUCTION EGFR-mutant lung cancers are clinically and genomically heterogeneous with concurrent RB transcriptional corepressor 1 (RB1)/tumor protein p53 (TP53) alterations identifying a subset at increased risk for small cell transformation. The genomic alterations that induce lineage plasticity are unknown. METHODS Patients with EGFR/RB1/TP53-mutant lung cancers, identified by next-generation sequencing from 2014 to 2018, were compared to patients with untreated, metastatic EGFR-mutant lung cancers without both RB1 and TP53 alterations. Time to EGFR-tyrosine kinase inhibitor discontinuation, overall survival, SCLC transformation rate, and genomic alterations were evaluated. RESULTS Patients with EGFR/RB1/TP53-mutant lung cancers represented 5% (43 of 863) of EGFR-mutant lung cancers but were uniquely at risk for transformation (7 of 39, 18%), with no transformations in EGFR-mutant lung cancers without baseline TP53 and RB1 alterations. Irrespective of transformation, patients with EGFR/TP53/RB1-mutant lung cancers had a shorter time to discontinuation than EGFR/TP53- and EGFR-mutant -only cancers (9.5 versus 12.3 versus 36.6 months, respectively, p = 2 × 10-9). The triple-mutant population had a higher incidence of whole-genome doubling compared to NSCLC and SCLC at large (80% versus 34%, p < 5 × 10-9 versus 51%, p < 0.002, respectively) and further enrichment in triple-mutant cancers with eventual small cell histology (seven of seven pre-transformed plus four of four baseline SCLC versus 23 of 32 never transformed, respectively, p = 0.05). Activation-induced cytidine deaminase/apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like mutation signature was also enriched in triple-mutant lung cancers that transformed (false discovery rate = 0.03). CONCLUSIONS EGFR/TP53/RB1-mutant lung cancers are at unique risk of histologic transformation, with 25% presenting with de novo SCLC or eventual small cell transformation. Triple-mutant lung cancers are enriched in whole-genome doubling and Activation-induced cytidine deaminase/apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like hypermutation which may represent early genomic determinants of lineage plasticity.
Collapse
|
607
|
Blatt EB, Raj GV. Molecular mechanisms of enzalutamide resistance in prostate cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:189-197. [PMID: 35582713 PMCID: PMC8992629 DOI: 10.20517/cdr.2019.25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 11/12/2022]
Abstract
An estimated 30,000 men in the United States will die of metastatic prostate cancer (PCa) each year due to the development of therapy resistance, most notably resistance to second-generation antiandrogen enzalutamide. The vast majority of PCa is driven by the androgen receptor (AR). Enzalutamide is an AR antagonist, which extends patient survival and is widely used in the clinic for the treatment of castration-resistant prostate cancer (CRPC); however, many patients will have primary or develop acquired resistance and continue to progress. Characterization of the molecular mechanisms of enzalutamide resistance provides insight into potentially efficacious therapies for enzalutamide-resistant CRPC (ER-CRPC). Understanding these mechanisms is critical for the identification of biomarkers predictive of therapy resistance and the development of therapeutic strategies to target ER-CRPC.
Collapse
Affiliation(s)
- Eliot B. Blatt
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ganesh V. Raj
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
608
|
Luo J, Wang K, Yeh S, Sun Y, Liang L, Xiao Y, Xu W, Niu Y, Cheng L, Maity SN, Jiang R, Chang C. LncRNA-p21 alters the antiandrogen enzalutamide-induced prostate cancer neuroendocrine differentiation via modulating the EZH2/STAT3 signaling. Nat Commun 2019; 10:2571. [PMID: 31189930 PMCID: PMC6561926 DOI: 10.1038/s41467-019-09784-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/01/2019] [Indexed: 12/22/2022] Open
Abstract
While the antiandrogen enzalutamide (Enz) extends the castration resistant prostate cancer (CRPC) patients' survival an extra 4.8 months, it might also result in some adverse effects via inducing the neuroendocrine differentiation (NED). Here we found that lncRNA-p21 is highly expressed in the NEPC patients derived xenograft tissues (NEPC-PDX). Results from cell lines and human clinical sample surveys also revealed that lncRNA-p21 expression is up-regulated in NEPC and Enz treatment could increase the lncRNA-p21 to induce the NED. Mechanism dissection revealed that Enz could promote the lncRNA-p21 transcription via altering the androgen receptor (AR) binding to different androgen-response-elements, which switch the EZH2 function from histone-methyltransferase to non-histone methyltransferase, consequently methylating the STAT3 to promote the NED. Preclinical studies using the PDX mouse model proved that EZH2 inhibitor could block the Enz-induced NED. Together, these results suggest targeting the Enz/AR/lncRNA-p21/EZH2/STAT3 signaling may help urologists to develop a treatment for better suppression of the human CRPC progression.
Collapse
Affiliation(s)
- Jie Luo
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, Biology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY, 14642, USA
| | - Keliang Wang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, Biology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY, 14642, USA
- Department of Urology, The 4th Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Shuyuan Yeh
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, Biology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY, 14642, USA
| | - Yin Sun
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, Biology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY, 14642, USA
| | - Liang Liang
- Department of Urology, Shanxi Province People's Hospital, Xi'an, 710068, Shanxi, China
| | - Yao Xiao
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, Biology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY, 14642, USA
| | - Wanhai Xu
- Department of Urology, The 4th Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Yuanjie Niu
- Tianjin Institute of Urology, Tianjin Medical University, Tianjin, 300211, China
| | - Liang Cheng
- Department of Pathology & Laboratory Medicine, Indiana University, Indianapolis, 46202, IN, USA
| | - Sankar N Maity
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, 77030, TX, USA
| | - Runze Jiang
- Jiangmen Maternity and Child Health Care Hospital, Jiangmen, 529000, Guangdong, China
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, Biology and The Wilmot Cancer Institute, University of Rochester, Rochester, NY, 14642, USA.
- Sex Hormone Research Center, China Medical University and Hospital, Taichung, 404, Taiwan.
| |
Collapse
|
609
|
Predicting clinical outcome of therapy-resistant prostate cancer. Proc Natl Acad Sci U S A 2019; 116:11090-11092. [PMID: 31113882 PMCID: PMC6561261 DOI: 10.1073/pnas.1906812116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
610
|
Abida W, Cyrta J, Heller G, Prandi D, Armenia J, Coleman I, Cieslik M, Benelli M, Robinson D, Van Allen EM, Sboner A, Fedrizzi T, Mosquera JM, Robinson BD, De Sarkar N, Kunju LP, Tomlins S, Wu YM, Nava Rodrigues D, Loda M, Gopalan A, Reuter VE, Pritchard CC, Mateo J, Bianchini D, Miranda S, Carreira S, Rescigno P, Filipenko J, Vinson J, Montgomery RB, Beltran H, Heath EI, Scher HI, Kantoff PW, Taplin ME, Schultz N, deBono JS, Demichelis F, Nelson PS, Rubin MA, Chinnaiyan AM, Sawyers CL. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci U S A 2019; 116:11428-11436. [PMID: 31061129 PMCID: PMC6561293 DOI: 10.1073/pnas.1902651116] [Citation(s) in RCA: 926] [Impact Index Per Article: 154.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Heterogeneity in the genomic landscape of metastatic prostate cancer has become apparent through several comprehensive profiling efforts, but little is known about the impact of this heterogeneity on clinical outcome. Here, we report comprehensive genomic and transcriptomic analysis of 429 patients with metastatic castration-resistant prostate cancer (mCRPC) linked with longitudinal clinical outcomes, integrating findings from whole-exome, transcriptome, and histologic analysis. For 128 patients treated with a first-line next-generation androgen receptor signaling inhibitor (ARSI; abiraterone or enzalutamide), we examined the association of 18 recurrent DNA- and RNA-based genomic alterations, including androgen receptor (AR) variant expression, AR transcriptional output, and neuroendocrine expression signatures, with clinical outcomes. Of these, only RB1 alteration was significantly associated with poor survival, whereas alterations in RB1, AR, and TP53 were associated with shorter time on treatment with an ARSI. This large analysis integrating mCRPC genomics with histology and clinical outcomes identifies RB1 genomic alteration as a potent predictor of poor outcome, and is a community resource for further interrogation of clinical and molecular associations.
Collapse
Affiliation(s)
- Wassim Abida
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Joanna Cyrta
- Department of Pathology, Weill Medical College of Cornell University, New York, NY 10021
- Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Glenn Heller
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Davide Prandi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Joshua Armenia
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Ilsa Coleman
- Fred Hutchinson Cancer Center, University of Washington, Seattle, WA 98109
| | - Marcin Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Matteo Benelli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Dan Robinson
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Broad Institute, Cambridge, MA 02142
| | - Andrea Sboner
- Department of Pathology, Weill Medical College of Cornell University, New York, NY 10021
| | - Tarcisio Fedrizzi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Juan Miguel Mosquera
- Department of Pathology, Weill Medical College of Cornell University, New York, NY 10021
| | - Brian D Robinson
- Department of Pathology, Weill Medical College of Cornell University, New York, NY 10021
| | - Navonil De Sarkar
- Fred Hutchinson Cancer Center, University of Washington, Seattle, WA 98109
| | - Lakshmi P Kunju
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Scott Tomlins
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Yi Mi Wu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Daniel Nava Rodrigues
- Institute of Cancer Research, London SW7 3RP, United Kingdom
- The Royal Marsden National Health Service Foundation Trust, London SM2 5NG, United Kingdom
| | - Massimo Loda
- Department of Pathology, Weill Medical College of Cornell University, New York, NY 10021
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Anuradha Gopalan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Victor E Reuter
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Colin C Pritchard
- Fred Hutchinson Cancer Center, University of Washington, Seattle, WA 98109
| | - Joaquin Mateo
- Institute of Cancer Research, London SW7 3RP, United Kingdom
- The Royal Marsden National Health Service Foundation Trust, London SM2 5NG, United Kingdom
| | - Diletta Bianchini
- Institute of Cancer Research, London SW7 3RP, United Kingdom
- The Royal Marsden National Health Service Foundation Trust, London SM2 5NG, United Kingdom
| | - Susana Miranda
- Institute of Cancer Research, London SW7 3RP, United Kingdom
- The Royal Marsden National Health Service Foundation Trust, London SM2 5NG, United Kingdom
| | - Suzanne Carreira
- Institute of Cancer Research, London SW7 3RP, United Kingdom
- The Royal Marsden National Health Service Foundation Trust, London SM2 5NG, United Kingdom
| | - Pasquale Rescigno
- Institute of Cancer Research, London SW7 3RP, United Kingdom
- The Royal Marsden National Health Service Foundation Trust, London SM2 5NG, United Kingdom
| | - Julie Filipenko
- Prostate Cancer Clinical Trials Consortium, New York, NY 10065
| | - Jacob Vinson
- Prostate Cancer Clinical Trials Consortium, New York, NY 10065
| | | | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
- Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021
| | - Elisabeth I Heath
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Howard I Scher
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Mary-Ellen Taplin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Nikolaus Schultz
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Johann S deBono
- Institute of Cancer Research, London SW7 3RP, United Kingdom
- The Royal Marsden National Health Service Foundation Trust, London SM2 5NG, United Kingdom
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Peter S Nelson
- Fred Hutchinson Cancer Center, University of Washington, Seattle, WA 98109;
| | - Mark A Rubin
- Department of Pathology, Weill Medical College of Cornell University, New York, NY 10021;
- Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109;
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
611
|
Yang Z, Jiang S, Lu C, Ji T, Yang W, Li T, Lv J, Hu W, Yang Y, Jin Z. SOX11: friend or foe in tumor prevention and carcinogenesis? Ther Adv Med Oncol 2019; 11:1758835919853449. [PMID: 31210798 PMCID: PMC6547177 DOI: 10.1177/1758835919853449] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
Sex-determining region Y-related high-mobility-group box transcription factor 11 (SOX11) is an essential member of the SOX transcription factors and has been highlighted as an important regulator in embryogenesis. SOX11 studies have only recently shifted focus from its role in embryogenesis and development to its function in disease. In particular, the role of SOX11 in carcinogenesis has become of major interest in the field. SOX11 expression is elevated in a wide variety of tumors. In many cancers, dysfunctional expression of SOX11 has been correlated with increased cancer cell survival, inhibited cell differentiation, and tumor progression through the induction of metastasis and angiogenesis. Nevertheless, in a limited number of malignancies, SOX11 has also been identified to function as a tumor suppressor. Herein, we review the correlation between the expression of SOX11 and tumor behaviors. We also summarize the mechanisms underlying the regulation of SOX11 expression and activity in pathological conditions. In particular, we focus on the pathological processes of cancer targeted by SOX11 and discuss whether SOX11 is protective or detrimental during tumor progression. Moreover, SOX11 is highlighted as a clinical biomarker for the diagnosis and prognosis of various human cancer. The information reviewed here should assist in future experimental designs and emphasize the potential of SOX11 as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Cardiovascular Surgery, Xijing
Hospital, The Fourth Military Medical University, Xi’an, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth
Military Medical University, Xi’an, China
| | - Chenxi Lu
- Key Laboratory of Resource Biology and
Biotechnology in Western China, Ministry of Education, Faculty of Life
Sciences, Northwest University, Xi’an, China
| | - Ting Ji
- Key Laboratory of Resource Biology and
Biotechnology in Western China, Ministry of Education, Faculty of Life
Sciences, Northwest University, Xi’an, China
| | - Wenwen Yang
- Key Laboratory of Resource Biology and
Biotechnology in Western China, Ministry of Education, Faculty of Life
Sciences, Northwest University, Xi’an, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth
Military Medical University, Xi’an, China
| | - Jianjun Lv
- Department of Biomedical Engineering, The Fourth
Military Medical University, Xi’an, China
| | - Wei Hu
- Department of Immunology, The Fourth Military
Medical University, Xi’an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and
Biotechnology in Western China, Ministry of Education, Faculty of Life
Sciences, Northwest University, Xi’an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing
Hospital, The Fourth Military Medical University, 127 Changle West Road,
Xi’an 710032, China
| |
Collapse
|
612
|
Hu J, Sun F, Chen W, Zhang J, Zhang T, Qi M, Feng T, Liu H, Li X, Xing Y, Xiong X, Shi B, Zhou G, Han B. BTF3 sustains cancer stem-like phenotype of prostate cancer via stabilization of BMI1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:227. [PMID: 31138311 PMCID: PMC6540453 DOI: 10.1186/s13046-019-1222-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/09/2019] [Indexed: 12/24/2022]
Abstract
Background Cancer stem-like traits contribute to prostate cancer (PCa) progression and metastasis. Deciphering the novel molecular mechanisms underlying stem-like traits may provide important insight for developing novel therapeutics. Methods Immunohistochemistry and immunofluorescence assays in prostatic tissues; gain- and loss-of-function analyses using ectopic overexpression and shRNAs in PCa cell lines; measurements of tumorigenic and stemness properties, and transcription in vitro and in vivo; transcriptional analysis in public databases. Results We identified that overexpression of BTF3 in PCa tissues and BTF3 expression highly correlates to stem-like traits. Cancer stem-like characteristics in PCa including self-renewal and metastatic potential were impaired by BTF3 loss and promoted by BTF3 overexpression. Mechanistically, BTF3 could stabilize BMI1, which is a crucial regulator of prostate stem cell self-renewal. More importantly, our data revealed that BTF3 is highly predictive of poor prognosis and may help in risk stratification of PCa patients. Conclusions BTF3 promotes PCa progression though modeling stem-like traits in PCa. BTF3 represents a stratification marker in PCa progression and outcomes. Electronic supplementary material The online version of this article (10.1186/s13046-019-1222-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Hu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Feifei Sun
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Weiwen Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Jinan, 250012, China
| | - Jing Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated To Shandong University, Jinan, 250021, China
| | - Tao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Shandong University, Jinan, 250012, China
| | - Mei Qi
- Department of Pathology, Shandong University QiLu hospital, Jinan, 250012, China
| | - Tingting Feng
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Hui Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Xinjun Li
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.,Department of Pathology, Binzhou People's Hospital, Binzhou, 256610, China
| | - Yuanxin Xing
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Jinan, 250012, China
| | - Xueting Xiong
- Department of Molecular Genetics, University of Toronto, M5S1A8, Toronto, ON, Canada
| | - Benkang Shi
- Department of Urology, Shandong University QiLu hospital, Jinan, 250012, China
| | - Gengyin Zhou
- Department of Pathology, Shandong University QiLu hospital, Jinan, 250012, China
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China. .,Department of Pathology, Shandong University QiLu hospital, Jinan, 250012, China.
| |
Collapse
|
613
|
Civenni G, Albino D, Shinde D, Vázquez R, Merulla J, Kokanovic A, Mapelli SN, Carbone GM, Catapano CV. Transcriptional Reprogramming and Novel Therapeutic Approaches for Targeting Prostate Cancer Stem Cells. Front Oncol 2019; 9:385. [PMID: 31143708 PMCID: PMC6521702 DOI: 10.3389/fonc.2019.00385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer is the most common malignancy in men and the second cause of cancer-related deaths in western countries. Despite the progress in the treatment of localized prostate cancer, there is still lack of effective therapies for the advanced forms of the disease. Most patients with advanced prostate cancer become resistant to androgen deprivation therapy (ADT), which remains the main therapeutic option in this setting, and progress to lethal metastatic castration-resistant prostate cancer (mCRPC). Current therapies for prostate cancer preferentially target proliferating, partially differentiated, and AR-dependent cancer cells that constitute the bulk of the tumor mass. However, the subpopulation of tumor-initiating or tumor-propagating stem-like cancer cells is virtually resistant to the standard treatments causing tumor relapse at the primary or metastatic sites. Understanding the pathways controlling the establishment, expansion and maintenance of the cancer stem cell (CSC) subpopulation is an important step toward the development of more effective treatment for prostate cancer, which might enable ablation or exhaustion of CSCs and prevent treatment resistance and disease recurrence. In this review, we focus on the impact of transcriptional regulators on phenotypic reprogramming of prostate CSCs and provide examples supporting the possibility of inhibiting maintenance and expansion of the CSC pool in human prostate cancer along with the currently available methodological approaches. Transcription factors are key elements for instructing specific transcriptional programs and inducing CSC-associated phenotypic changes implicated in disease progression and treatment resistance. Recent studies have shown that interfering with these processes causes exhaustion of CSCs with loss of self-renewal and tumorigenic capability in prostate cancer models. Targeting key transcriptional regulators in prostate CSCs is a valid therapeutic strategy waiting to be tested in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Carlo V. Catapano
- Institute of Oncology (IOR), Università della Svizzera Italiana, Bellinzona, Switzerland
| |
Collapse
|
614
|
Rudin CM, Poirier JT, Byers LA, Dive C, Dowlati A, George J, Heymach JV, Johnson JE, Lehman JM, MacPherson D, Massion PP, Minna JD, Oliver TG, Quaranta V, Sage J, Thomas RK, Vakoc CR, Gazdar AF. Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nat Rev Cancer 2019; 19:289-297. [PMID: 30926931 PMCID: PMC6538259 DOI: 10.1038/s41568-019-0133-9] [Citation(s) in RCA: 793] [Impact Index Per Article: 132.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Small cell lung cancer (SCLC) is an exceptionally lethal malignancy for which more effective therapies are urgently needed. Several lines of evidence, from SCLC primary human tumours, patient-derived xenografts, cancer cell lines and genetically engineered mouse models, appear to be converging on a new model of SCLC subtypes defined by differential expression of four key transcription regulators: achaete-scute homologue 1 (ASCL1; also known as ASH1), neurogenic differentiation factor 1 (NeuroD1), yes-associated protein 1 (YAP1) and POU class 2 homeobox 3 (POU2F3). In this Perspectives article, we review and synthesize these recent lines of evidence and propose a working nomenclature for SCLC subtypes defined by relative expression of these four factors. Defining the unique therapeutic vulnerabilities of these subtypes of SCLC should help to focus and accelerate therapeutic research, leading to rationally targeted approaches that may ultimately improve clinical outcomes for patients with this disease.
Collapse
Affiliation(s)
| | - John T Poirier
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | | | | | | | | | | | - Jane E Johnson
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | - John D Minna
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Trudy G Oliver
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Vito Quaranta
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | - Adi F Gazdar
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
615
|
Abstract
PURPOSE OF REVIEW Prostate cancer (PCa) is diagnosed in one out of every nine men and is the second leading cause of cancer death among men. Although therapies targeting the androgen receptor (AR) are highly effective, development of resistance is universal and remains a major therapeutic challenge. Nonetheless, signaling via AR is frequently maintained despite standard androgen-signaling inhibition. We review the current understanding of mechanisms of resistance as well as therapeutic approaches to improving treatment of PCa via targeting of the AR. RECENT FINDINGS Resistance to AR-targeting therapies may be mediated by several mechanisms, including amplification, mutation, and alternative splicing of AR; intratumoral androgen synthesis; activation of alternative signaling pathways; and in a minority of cases, emergence of AR-independent phenotypes. Recent trials demonstrate that intensification of androgen blockade in metastatic castration-sensitive PCa can significantly improve survival. Similar strategies are being explored in earlier disease states. In addition, several other cellular signaling pathways have been identified as mechanisms of resistance, offering opportunities for cotargeted therapy. Finally, immune-based approaches are in development to complement AR-targeted therapies. SUMMARY Targeting the AR remains a critical focus in the treatment of PCa.
Collapse
Affiliation(s)
- David J Einstein
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | |
Collapse
|
616
|
González-Billalabeitia E, Conteduca V, Wetterskog D, Jayaram A, Attard G. Circulating tumor DNA in advanced prostate cancer: transitioning from discovery to a clinically implemented test. Prostate Cancer Prostatic Dis 2019; 22:195-205. [PMID: 30413805 PMCID: PMC6398580 DOI: 10.1038/s41391-018-0098-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/21/2018] [Accepted: 09/08/2018] [Indexed: 12/13/2022]
Abstract
The genomic landscape of metastatic castration-resistant prostate cancer (mCRPC) differs from that of the primary tumor and is dynamic during tumor progression. The real-time and repeated characterization of this process via conventional solid tumor biopsies is challenging. Alternatively, circulating cell-free DNA (cfDNA) containing circulating tumor DNA (ctDNA) can be obtained from patient plasma using minimally disruptive blood draws and is amenable to sequential analysis. ctDNA has high overlap with the genomic sequences of biopsies from metastases and has the advantage of being representative of multiple metastases. The availability of techniques with high sensitivity and specificity, such as next-generation sequencing (NGS) and digital PCR, has greatly contributed to the development of the cfDNA field and enabled the detection of genomic alterations at low ctDNA fractions. In mCRPC, a number of clinically relevant genomic alterations have been tracked in ctDNA, including androgen receptor (AR) aberrations, which have been shown to be associated with an adverse outcome to novel antiandrogen therapies, and alterations in homologous recombination repair (HRR) genes, which have been associated with a response to PARP inhibitors. Several clinical applications have been proposed for cfDNA analysis, including its use as a prognostic tool, as a predictive biomarker, to monitor tumor response and to identify novel mechanisms of resistance. To date, the cfDNA analysis has provided interesting results, but there is an urgent need for these findings to be confirmed in prospective clinical trials.
Collapse
Affiliation(s)
- Enrique González-Billalabeitia
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, IMIB-Universidad de Murcia, Murcia, 30008, Spain.
- Universidad Católica San Antonio de Murcia (UCAM), Murcia, 30107, Spain.
| | - Vincenza Conteduca
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Meldola, 47014, Italy
- Research Department of Oncology, University College London Cancer Institute, London, UK
| | - Daniel Wetterskog
- Research Department of Oncology, University College London Cancer Institute, London, UK
| | - Anuradha Jayaram
- Research Department of Oncology, University College London Cancer Institute, London, UK
| | - Gerhardt Attard
- Research Department of Oncology, University College London Cancer Institute, London, UK.
| |
Collapse
|
617
|
Gritsina G, Gao WQ, Yu J. Transcriptional repression by androgen receptor: roles in castration-resistant prostate cancer. Asian J Androl 2019; 21:215-223. [PMID: 30950412 PMCID: PMC6498738 DOI: 10.4103/aja.aja_19_19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/12/2019] [Indexed: 01/02/2023] Open
Abstract
Androgen receptor (AR), a hormonal transcription factor, plays important roles during prostate cancer progression and is a key target for therapeutic interventions. While androgen-deprivation therapies are initially successful in regressing prostate tumors, the disease ultimately comes back as castration-resistant prostate cancer (CRPC) or at the late stage as neuroendocrine prostate cancer (NEPC). CRPC remains largely dependent on hyperactive AR signaling in the milieu of low androgen, while NEPC is negative of AR expression but positive of many AR-repressed genes. Recent technological advances in genome-wide analysis of transcription factor binding sites have revealed an unprecedented set of AR target genes. In addition to its well-known function in activating gene expression, AR is increasingly known to also act as a transcriptional repressor. Here, we review the molecular mechanisms by which AR represses gene expression. We also summarize AR-repressed genes that are aberrantly upregulated in CRPC and NEPC and represent promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Galina Gritsina
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Wei-Qiang Gao
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
618
|
Blee AM, Huang H. Lineage plasticity-mediated therapy resistance in prostate cancer. Asian J Androl 2019; 21:241-248. [PMID: 29900883 PMCID: PMC6498731 DOI: 10.4103/aja.aja_41_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/08/2018] [Indexed: 12/21/2022] Open
Abstract
Therapy resistance is a significant challenge for prostate cancer treatment in clinic. Although targeted therapies such as androgen deprivation and androgen receptor (AR) inhibition are effective initially, tumor cells eventually evade these strategies through multiple mechanisms. Lineage reprogramming in response to hormone therapy represents a key mechanism that is increasingly observed. The studies in this area have revealed specific combinations of alterations present in adenocarcinomas that provide cells with the ability to transdifferentiate and perpetuate AR-independent tumor growth after androgen-based therapies. Interestingly, several master regulators have been identified that drive plasticity, some of which also play key roles during development and differentiation of the cell lineages in the normal prostate. Thus, further study of each AR-independent tumor type and understanding underlying mechanisms are warranted to develop combinational therapies that combat lineage plasticity in prostate cancer.
Collapse
Affiliation(s)
- Alexandra M Blee
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
619
|
Knudsen ES, Pruitt SC, Hershberger PA, Witkiewicz AK, Goodrich DW. Cell Cycle and Beyond: Exploiting New RB1 Controlled Mechanisms for Cancer Therapy. Trends Cancer 2019; 5:308-324. [PMID: 31174843 DOI: 10.1016/j.trecan.2019.03.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022]
Abstract
Recent studies highlight the importance of the RB1 tumor suppressor as a target for cancer therapy. Canonically, RB1 regulates cell cycle progression and represents the downstream target for cyclin-dependent kinase (CDK) 4/6 inhibitors that are in clinical use. However, newly discovered features of the RB1 pathway suggest new therapeutic strategies to counter resistance and improve precision medicine. These therapeutic strategies include deepening cell cycle exit with CDK4/6 inhibitor combinations, selectively targeting tumors that have lost RB1, and expanding therapeutic index by mitigating therapy-associated adverse effects. In addition, RB1 impacts immunological features of tumors and the microenvironment that can enhance sensitivity to immunotherapy. Lastly, RB1 specifies epigenetically determined cell lineage states that are disrupted during therapy resistance and could be re-installed through the direct use of epigenetic therapies. Thus, new opportunities are emerging to improve cancer therapy by exploiting the RB1 pathway.
Collapse
Affiliation(s)
- Erik S Knudsen
- Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA.
| | - Steven C Pruitt
- Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Pamela A Hershberger
- Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Agnieszka K Witkiewicz
- Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - David W Goodrich
- Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| |
Collapse
|
620
|
Corrupted coordination of epigenetic modifications leads to diverging chromatin states and transcriptional heterogeneity in CLL. Nat Commun 2019; 10:1874. [PMID: 31015400 PMCID: PMC6478836 DOI: 10.1038/s41467-019-09645-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/22/2019] [Indexed: 12/31/2022] Open
Abstract
Cancer evolution is fueled by epigenetic as well as genetic diversity. In chronic lymphocytic leukemia (CLL), intra-tumoral DNA methylation (DNAme) heterogeneity empowers evolution. Here, to comprehensively study the epigenetic dimension of cancer evolution, we integrate DNAme analysis with histone modification mapping and single cell analyses of RNA expression and DNAme in 22 primary CLL and 13 healthy donor B lymphocyte samples. Our data reveal corrupted coherence across different layers of the CLL epigenome. This manifests in decreased mutual information across epigenetic modifications and gene expression attributed to cell-to-cell heterogeneity. Disrupted epigenetic-transcriptional coordination in CLL is also reflected in the dysregulation of the transcriptional output as a function of the combinatorial chromatin states, including incomplete Polycomb-mediated gene silencing. Notably, we observe unexpected co-mapping of typically mutually exclusive activating and repressing histone modifications, suggestive of intra-tumoral epigenetic diversity. Thus, CLL epigenetic diversification leads to decreased coordination across layers of epigenetic information, likely reflecting an admixture of cells with diverging cellular identities. In chronic lymphocytic leukemia (CLL), evolution is driven by transcriptional and epigenetic heterogeneity. Here, the authors integrate epigenomic analyses to show how intra-tumoral epigenetic diversity results in divergent chromatin states in CLL cells, increasing cell-to-cell transcriptional heterogeneity.
Collapse
|
621
|
Chen WS, Alshalalfa M, Zhao SG, Liu Y, Mahal BA, Quigley DA, Wei T, Davicioni E, Rebbeck TR, Kantoff PW, Maher CA, Knudsen KE, Small EJ, Nguyen PL, Feng FY. Novel RB1-Loss Transcriptomic Signature Is Associated with Poor Clinical Outcomes across Cancer Types. Clin Cancer Res 2019; 25:4290-4299. [PMID: 31010837 DOI: 10.1158/1078-0432.ccr-19-0404] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/27/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE Rb-pathway disruption is of great clinical interest, as it has been shown to predict outcomes in multiple cancers. We sought to develop a transcriptomic signature for detecting biallelic RB1 loss (RBS) that could be used to assess the clinical implications of RB1 loss on a pan-cancer scale. EXPERIMENTAL DESIGN We utilized data from the Cancer Cell Line Encyclopedia (N = 995) to develop the first pan-cancer transcriptomic signature for predicting biallelic RB1 loss (RBS). Model accuracy was validated using The Cancer Genome Atlas (TCGA) Pan-Cancer dataset (N = 11,007). RBS was then used to assess the clinical relevance of biallelic RB1 loss in TCGA Pan-Cancer and in an additional metastatic castration-resistant prostate cancer (mCRPC) cohort. RESULTS RBS outperformed the leading existing signature for detecting RB1 biallelic loss across all cancer types in TCGA Pan-Cancer (AUC, 0.89 vs. 0.66). High RBS (RB1 biallelic loss) was associated with promoter hypermethylation (P = 0.008) and gene body hypomethylation (P = 0.002), suggesting RBS could detect epigenetic gene silencing. TCGA Pan-Cancer clinical analyses revealed that high RBS was associated with short progression-free (P < 0.00001), overall (P = 0.0004), and disease-specific (P < 0.00001) survival. On multivariable analyses, high RBS was predictive of shorter progression-free survival in TCGA Pan-Cancer (P = 0.03) and of shorter overall survival in mCRPC (P = 0.004) independently of the number of DNA alterations in RB1. CONCLUSIONS Our study provides the first validated tool to assess RB1 biallelic loss across cancer types based on gene expression. RBS can be useful for analyzing datasets with or without DNA-sequencing results to investigate the emerging prognostic and treatment implications of Rb-pathway disruption.See related commentary by Choudhury and Beltran, p. 4199.
Collapse
Affiliation(s)
- William S Chen
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.,Yale School of Medicine, New Haven, Connecticut
| | - Mohammed Alshalalfa
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.,Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts
| | - Shuang G Zhao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Yang Liu
- GenomeDx Biosciences, Vancouver, British Columbia, Canada
| | - Brandon A Mahal
- Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Ting Wei
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Elai Davicioni
- GenomeDx Biosciences, Vancouver, British Columbia, Canada
| | - Timothy R Rebbeck
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christopher A Maher
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri.,Department of Internal Medicine, Washington University in St. Louis, St. Louis, Missouri.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Karen E Knudsen
- Departments of Cancer Biology and Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.,Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Paul L Nguyen
- Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, Massachusetts
| | - Felix Y Feng
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California. .,Departments of Radiation Oncology and Urology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
622
|
Yuan S, Norgard RJ, Stanger BZ. Cellular Plasticity in Cancer. Cancer Discov 2019; 9:837-851. [PMID: 30992279 DOI: 10.1158/2159-8290.cd-19-0015] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022]
Abstract
During cancer progression, tumor cells undergo molecular and phenotypic changes collectively referred to as cellular plasticity. Such changes result from microenvironmental cues, stochastic genetic and epigenetic alterations, and/or treatment-imposed selective pressures, thereby contributing to tumor heterogeneity and therapy resistance. Epithelial-mesenchymal plasticity is the best-known case of tumor cell plasticity, but recent work has uncovered other examples, often with functional consequences. In this review, we explore the nature and role(s) of these diverse cellular plasticity programs in premalignant progression, tumor evolution, and adaptation to therapy and consider ways in which targeting plasticity could lead to novel anticancer treatments. SIGNIFICANCE: Changes in cell identity, or cellular plasticity, are common at different stages of tumor progression, and it has become clear that cellular plasticity can be a potent mediator of tumor progression and chemoresistance. Understanding the mechanisms underlying the various forms of cell plasticity may deliver new strategies for targeting the most lethal aspects of cancer: metastasis and resistance to therapy.
Collapse
Affiliation(s)
- Salina Yuan
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert J Norgard
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ben Z Stanger
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania. .,Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
623
|
Li S, Chen K, Zhang Y, Barnes SD, Jaichander P, Zheng Y, Hassan M, Malladi VS, Skapek SX, Xu L, Bassel-Duby R, Olson EN, Liu N. Twist2 amplification in rhabdomyosarcoma represses myogenesis and promotes oncogenesis by redirecting MyoD DNA binding. Genes Dev 2019; 33:626-640. [PMID: 30975722 PMCID: PMC6546057 DOI: 10.1101/gad.324467.119] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/25/2019] [Indexed: 01/07/2023]
Abstract
Li et al. show that TWIST2 shapes the epigenetic landscape to drive chromatin opening at oncogenic loci and chromatin closing at myogenic loci. These epigenetic changes redirect MyoD binding from myogenic genes toward oncogenic, metabolic, and growth genes. Rhabdomyosarcoma (RMS) is an aggressive pediatric cancer composed of myoblast-like cells. Recently, we discovered a unique muscle progenitor marked by the expression of the Twist2 transcription factor. Genomic analyses of 258 RMS patient tumors uncovered prevalent copy number amplification events and increased expression of TWIST2 in fusion-negative RMS. Knockdown of TWIST2 in RMS cells results in up-regulation of MYOGENIN and a decrease in proliferation, implicating TWIST2 as an oncogene in RMS. Through an inducible Twist2 expression system, we identified Twist2 as a reversible inhibitor of myogenic differentiation with the remarkable ability to promote myotube dedifferentiation in vitro. Integrated analysis of genome-wide ChIP-seq and RNA-seq data revealed the first dynamic chromatin and transcriptional landscape of Twist2 binding during myogenic differentiation. During differentiation, Twist2 competes with MyoD at shared DNA motifs to direct global gene transcription and repression of the myogenic program. Additionally, Twist2 shapes the epigenetic landscape to drive chromatin opening at oncogenic loci and chromatin closing at myogenic loci. These epigenetic changes redirect MyoD binding from myogenic genes toward oncogenic, metabolic, and growth genes. Our study reveals the dynamic interplay between two opposing transcriptional regulators that control the fate of RMS and provides insight into the molecular etiology of this aggressive form of cancer.
Collapse
Affiliation(s)
- Stephen Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yichi Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Spencer D Barnes
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Priscilla Jaichander
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yanbin Zheng
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Mohammed Hassan
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Venkat S Malladi
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Stephen X Skapek
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Lin Xu
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
624
|
Li S, Fong KW, Gritsina G, Zhang A, Zhao JC, Kim J, Sharp A, Yuan W, Aversa C, Yang XJ, Nelson PS, Feng FY, Chinnaiyan AM, de Bono JS, Morrissey C, Rettig MB, Yu J. Activation of MAPK Signaling by CXCR7 Leads to Enzalutamide Resistance in Prostate Cancer. Cancer Res 2019; 79:2580-2592. [PMID: 30952632 DOI: 10.1158/0008-5472.can-18-2812] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/19/2019] [Accepted: 03/29/2019] [Indexed: 01/16/2023]
Abstract
Castration-resistant prostate cancer (CRPC) that has developed resistance to the new-generation androgen receptor (AR) antagonist enzalutamide is a lethal disease. Transcriptome analysis of multiple prostate cancer models identified CXCR7, an atypical chemokine receptor, as one of the most upregulated genes in enzalutamide-resistant cells. AR directly repressed CXCR7 by binding to an enhancer 110 kb downstream of the gene and expression was restored upon androgen deprivation. We demonstrate that CXCR7 is a critical regulator of prostate cancer sensitivity to enzalutamide and is required for CRPC growth in vitro and in vivo. Elevated CXCR7 activated MAPK/ERK signaling through ligand-independent, but β-arrestin 2-dependent mechanisms. Examination of patient specimens showed that CXCR7 and pERK levels increased significantly from localized prostate cancer to CRPC and further upon enzalutamide resistance. Preclinical studies revealed remarkable efficacies of MAPK/ERK inhibitors in suppressing enzalutamide-resistant prostate cancer. Overall, these results indicate that CXCR7 may serve as a biomarker of resistant disease in patients with prostate cancer and that disruption of CXCR7 signaling may be an effective strategy to overcome resistance. SIGNIFICANCE: These findings identify CXCR7-mediated MAPK activation as a mechanism of resistance to second-generation antiandrogen therapy, highlighting the therapeutic potential of MAPK/ERK inhibitors in CRPC.
Collapse
Affiliation(s)
- Shangze Li
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ka-Wing Fong
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Galina Gritsina
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ali Zhang
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jonathan C Zhao
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jung Kim
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Adam Sharp
- Institute of Cancer Research, London, United Kingdom.,Royal Marsden Hospital, London, United Kingdom
| | - Wei Yuan
- Institute of Cancer Research, London, United Kingdom
| | - Caterina Aversa
- Institute of Cancer Research, London, United Kingdom.,Royal Marsden Hospital, London, United Kingdom
| | - Ximing J Yang
- Department of Pathology, Northwestern University, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Felix Y Feng
- Departments of Radiation Oncology, Urology, and Medicine, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - Johann S de Bono
- Institute of Cancer Research, London, United Kingdom.,Royal Marsden Hospital, London, United Kingdom
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington
| | - Matthew B Rettig
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California.,VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| |
Collapse
|
625
|
Metz EP, Rizzino A. Sox2 dosage: A critical determinant in the functions of Sox2 in both normal and tumor cells. J Cell Physiol 2019; 234:19298-19306. [PMID: 31344986 DOI: 10.1002/jcp.28610] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/21/2019] [Indexed: 01/01/2023]
Abstract
The stem cell transcription factor Sox2 is widely recognized for its many roles during normal development and cancer. Over the last several years, it has become increasingly evident that Sox2 dosage plays critical roles in both normal and malignant cells. The work described in this review indicates that the dosage of Sox2 influences cell fate decisions made during normal mammalian development, as well as cell fate decisions in cancer, including those that influence the tumor cell of origin and progression of the cancer. Equally important, Sox2 dosage is a key determinant in the proliferation of both normal cells and tumor cells, where proliferation is restricted in Sox2high cells. Collectively, the studies reviewed here indicate that tumor cells utilize the fundamental effects of Sox2 dosage to suit their own needs. Finally, we speculate that elevated expression of Sox2 helps establish and maintain tumor dormancy in Sox2-positive cancers.
Collapse
Affiliation(s)
- Ethan P Metz
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Angie Rizzino
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
626
|
Torquato S, Pallavajjala A, Goldstein A, Valda Toro P, Silberstein JL, Lee J, Nakazawa M, Waters I, Chu D, Shinn D, Groginski T, Hughes RM, Simons BW, Khan H, Feng Z, Carducci MA, Paller CJ, Denmeade SR, Kressel B, Eisenberger MA, Antonarakis ES, Trock BJ, Park BH, Hurley PJ. Genetic Alterations Detected in Cell-Free DNA Are Associated With Enzalutamide and Abiraterone Resistance in Castration-Resistant Prostate Cancer. JCO Precis Oncol 2019; 3:PO.18.00227. [PMID: 31131348 PMCID: PMC6532665 DOI: 10.1200/po.18.00227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2019] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Androgen receptor (AR) gene alterations, including ligand-binding domain mutations and copy number (CN) gain, have yet to be fully established as predictive markers of resistance to enzalutamide and abiraterone in men with metastatic castration-resistant prostate cancer (mCRPC). The goal of this study was to validate AR gene alterations detected in cell-free DNA (cfDNA) as markers of enzalutamide and abiraterone resistance in patients with mCRPC. METHODS Patients with mCRPC (N = 62) were prospectively enrolled between 2014 and 2018. Blood was collected before therapies-enzalutamide (n = 25), abiraterone (n = 35), or enzalutamide and abiraterone (n = 2)-and at disease progression. We used deep next-generation sequencing to analyze cfDNA for sequence variants and CN status in AR and 45 additional cancer-associated genes. Primary end points were prostate-specific antigen response, progression-free survival (PFS), and overall survival (OS). RESULTS Elevated tumor-specific cfDNA (circulating tumor DNA) was associated with a worse prostate-specific antigen response (hazard ratio [HR], 3.17; 95% CI, 1.11 to 9.05; P = .031), PFS (HR, 1.76; 95% CI, 1.03 to 3.01; P = .039), and OS (HR, 2.92; 95% CI, 1.40 to 6.11; P = .004). AR ligand-binding domain missense mutations (HR, 2.51; 95% CI, 1.15 to 5.72; P = .020) were associated with a shorter PFS in multivariable models. AR CN gain was associated with a shorter PFS; however, significance was lost in multivariable modeling. Genetic alterations in tumor protein p53 (HR, 2.70; 95% CI, 1.27 to 5.72; P = .009) and phosphoinositide 3-kinase pathway defects (HR, 2.62; 95% CI, 1.12 to 6.10; P = .026) were associated with a worse OS in multivariable models. CONCLUSION These findings support the conclusion that high circulating tumor DNA burden is associated with worse outcomes to enzalutamide and abiraterone in men with mCRPC. Tumor protein p53 loss and phosphoinositide 3-kinase pathway defects were associated with worse OS in men with mCRPC. AR status associations with outcomes were not robust, and additional validation is needed.
Collapse
Affiliation(s)
| | | | | | | | | | - Justin Lee
- Johns Hopkins School of Medicine, Baltimore, MD
| | | | - Ian Waters
- Johns Hopkins School of Medicine, Baltimore, MD
| | - David Chu
- Johns Hopkins School of Medicine, Baltimore, MD
| | | | | | | | | | - Hamda Khan
- Johns Hopkins School of Medicine, Baltimore, MD
| | | | | | | | | | | | | | | | | | - Ben H. Park
- Johns Hopkins School of Medicine, Baltimore, MD
- Johns Hopkins University, Baltimore, MD
| | | |
Collapse
|
627
|
Logothetis C, Morris MJ, Den R, Coleman RE. Current perspectives on bone metastases in castrate-resistant prostate cancer. Cancer Metastasis Rev 2019; 37:189-196. [PMID: 29380085 PMCID: PMC5801387 DOI: 10.1007/s10555-017-9719-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prostate cancer is the most frequent noncutaneous cancer occurring in men. On average, men with localized prostate cancer have a high 10-year survival rate, and many can be cured. However, men with metastatic castrate-resistant prostate cancer have incurable disease with poor survival despite intensive therapy. This unmet need has led to recent advances in therapy aimed at treating bone metastases resulting from prostate cancer. The bone microenvironment lends itself to metastases in castrate-resistant prostate cancer, as a result of complex interactions between the microenvironment and tumor cells. The development of 223radium dichloride (Ra-223) to treat symptomatic bone metastases has improved survival in men with metastatic castrate-resistant prostate cancer. Moreover, Ra-223 may have effects on the tumor microenvironment that enhance its activity. Ra-223 treatment has been shown to prolong survival, and its effects on the immune system are under investigation. Because prostate cancer affects a sizable portion of the adult male population, understanding how it metastasizes to bone is an important step in advancing therapy. Clinical trials that are underway should yield new information on whether Ra-223 synergizes effectively with immunotherapy agents and whether Ra-223 has enhancing effects on the immune system in patients with prostate cancer.
Collapse
Affiliation(s)
| | - Michael J Morris
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Robert Den
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
628
|
Braadland PR, Urbanucci A. Chromatin reprogramming as an adaptation mechanism in advanced prostate cancer. Endocr Relat Cancer 2019; 26:R211-R235. [PMID: 30844748 DOI: 10.1530/erc-18-0579] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/13/2022]
Abstract
Tumor evolution is based on the ability to constantly mutate and activate different pathways under the selective pressure of targeted therapies. Epigenetic alterations including those of the chromatin structure are associated with tumor initiation, progression and drug resistance. Many cancers, including prostate cancer, present enlarged nuclei, and chromatin appears altered and irregular. These phenotypic changes are likely to result from epigenetic dysregulation. High-throughput sequencing applied to bulk samples and now to single cells has made it possible to study these processes in unprecedented detail. It is therefore timely to review the impact of chromatin relaxation and increased DNA accessibility on prostate cancer growth and drug resistance, and their effects on gene expression. In particular, we focus on the contribution of chromatin-associated proteins such as the bromodomain-containing proteins to chromatin relaxation. We discuss the consequence of this for androgen receptor transcriptional activity and briefly summarize wider gain-of-function effects on other oncogenic transcription factors and implications for more effective prostate cancer treatment.
Collapse
Affiliation(s)
- Peder Rustøen Braadland
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alfonso Urbanucci
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, Forskningsparken, University of Oslo, Oslo, Norway
| |
Collapse
|
629
|
Takayama KI. Splicing Factors Have an Essential Role in Prostate Cancer Progression and Androgen Receptor Signaling. Biomolecules 2019; 9:biom9040131. [PMID: 30939845 PMCID: PMC6523118 DOI: 10.3390/biom9040131] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/16/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Although inhibition of the androgen–androgen receptor (AR) axis effectively represses the growth of prostate cancer, most of all cases eventually become castration-resistant prostate cancers (CRPCs). Enhancement of the expression of AR and its variants along with the downstream signals is important for disease progression. AR-V7, a constitutive active form of AR, is generated as a result of RNA splicing. RNA splicing creates multiple transcript variants from one pre-messenger RNA (mRNA) by removing introns/exons to allow mRNA translation. The molecular mechanisms leading to marked increases of AR and generation of AR-V7 have been unclear. However, recent papers highlighted the roles of RNA splicing factors which promote AR expression and production of variants. Notably, a broad range of splicing components were aberrantly regulated in CRPC tissues. Interestingly, expression of various spliceosome genes is enhanced by RNA-binding protein splicing factor proline- and glutamine-rich (PSF/SFPQ), leading to changes in the expression of AR transcript variants. Moreover, inhibition of several splicing factors repressed tumor growth in vivo. Altered expression of splicing factors is correlated to biochemical recurrence in prostate cancer patients. Thus, these findings suggest that splicing factors would be a potential therapeutic target. This review focuses on the emerging roles of splicing factors in prostate cancer progression and AR signaling.
Collapse
Affiliation(s)
- Ken-Ichi Takayama
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan.
- Department of Geriatric Medicine, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Japan.
| |
Collapse
|
630
|
The Contributions of Prostate Cancer Stem Cells in Prostate Cancer Initiation and Metastasis. Cancers (Basel) 2019; 11:cancers11040434. [PMID: 30934773 PMCID: PMC6521153 DOI: 10.3390/cancers11040434] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/15/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
Research in the last decade has clearly revealed a critical role of prostate cancer stem cells (PCSCs) in prostate cancer (PC). Prostate stem cells (PSCs) reside in both basal and luminal layers, and are the target cells of oncogenic transformation, suggesting a role of PCSCs in PC initiation. Mutations in PTEN, TP53, and RB1 commonly occur in PC, particularly in metastasis and castration-resistant PC. The loss of PTEN together with Ras activation induces partial epithelial–mesenchymal transition (EMT), which is a major mechanism that confers plasticity to cancer stem cells (CSCs) and PCSCs, which contributes to metastasis. While PTEN inactivation leads to PC, it is not sufficient for metastasis, the loss of PTEN concurrently with the inactivation of both TP53 and RB1 empower lineage plasticity in PC cells, which substantially promotes PC metastasis and the conversion to PC adenocarcinoma to neuroendocrine PC (NEPC), demonstrating the essential function of TP53 and RB1 in the suppression of PCSCs. TP53 and RB1 suppress lineage plasticity through the inhibition of SOX2 expression. In this review, we will discuss the current evidence supporting a major role of PCSCs in PC initiation and metastasis, as well as the underlying mechanisms regulating PCSCs. These discussions will be developed along with the cancer stem cell (CSC) knowledge in other cancer types.
Collapse
|
631
|
Aggarwal RR, Quigley DA, Huang J, Zhang L, Beer TM, Rettig MB, Reiter RE, Gleave ME, Thomas GV, Foye A, Playdle D, Lloyd P, Chi KN, Evans CP, Lara PN, Feng FY, Alumkal JJ, Small EJ. Whole-Genome and Transcriptional Analysis of Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer Demonstrates Intraclass Heterogeneity. Mol Cancer Res 2019; 17:1235-1240. [PMID: 30918106 DOI: 10.1158/1541-7786.mcr-18-1101] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/09/2018] [Accepted: 03/22/2019] [Indexed: 11/16/2022]
Abstract
Therapeutic resistance in metastatic castration-resistant prostate cancer (mCRPC) can be accompanied by treatment-emergent small-cell neuroendocrine carcinoma (t-SCNC), a morphologically distinct subtype. We performed integrative whole-genome and -transcriptome analysis of mCRPC tumor biopsies including paired biopsies after progression, and multiple samples from the same individual. t-SCNC was significantly less likely to have amplification of AR or an intergenic AR-enhancer locus, and demonstrated lower expression of AR and its downstream transcriptional targets. Genomic and transcriptional hallmarks of t-SCNC included biallelic loss of RB1, elevated expression levels of CDKN2A and E2F1, and loss of expression of the AR and AR-responsive genes including TMPRSS2 and NKX3-1. We identified three tumors that converted from adenocarcinoma to t-SCNC and demonstrate spatial and temporal intrapatient heterogeneity of metastatic tumors harboring adenocarcinoma, t-SCNC, or mixed expression phenotypes, with implications for treatment strategies in which dual targeting of adenocarcinoma and t-SCNC phenotypes may be necessary. IMPLICATIONS: The t-SCNC phenotype is characterized by lack of AR enhancer gain and loss of RB1 function, and demonstrates both interindividual and intraindividual heterogeneity.Visual Overview: http://mcr.aacrjournals.org/content/molcanres/17/6/1235/F1.large.jpg.
Collapse
Affiliation(s)
- Rahul R Aggarwal
- University of California San Francisco, San Francisco, California.
| | - David A Quigley
- University of California San Francisco, San Francisco, California
| | | | - Li Zhang
- University of California San Francisco, San Francisco, California
| | - Tomasz M Beer
- Oregon Health & Science University, Portland, Oregon
| | | | - Rob E Reiter
- University of California Los Angeles, Los Angeles, California
| | - Martin E Gleave
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Adam Foye
- University of California San Francisco, San Francisco, California
| | - Denise Playdle
- University of California San Francisco, San Francisco, California
| | - Paul Lloyd
- University of California San Francisco, San Francisco, California
| | - Kim N Chi
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Primo N Lara
- University of California Davis, Davis, California
| | - Felix Y Feng
- University of California San Francisco, San Francisco, California
| | | | - Eric J Small
- University of California San Francisco, San Francisco, California
| |
Collapse
|
632
|
Puca L, Gavyert K, Sailer V, Conteduca V, Dardenne E, Sigouros M, Isse K, Kearney M, Vosoughi A, Fernandez L, Pan H, Motanagh S, Hess J, Donoghue AJ, Sboner A, Wang Y, Dittamore R, Rickman D, Nanus DM, Tagawa ST, Elemento O, Mosquera JM, Saunders L, Beltran H. Delta-like protein 3 expression and therapeutic targeting in neuroendocrine prostate cancer. Sci Transl Med 2019; 11:eaav0891. [PMID: 30894499 PMCID: PMC6525633 DOI: 10.1126/scitranslmed.aav0891] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 02/11/2019] [Indexed: 01/06/2023]
Abstract
Histologic transformation to small cell neuroendocrine prostate cancer occurs in a subset of patients with advanced prostate cancer as a mechanism of treatment resistance. Rovalpituzumab tesirine (SC16LD6.5) is an antibody-drug conjugate that targets delta-like protein 3 (DLL3) and was initially developed for small cell lung cancer. We found that DLL3 is expressed in most of the castration-resistant neuroendocrine prostate cancer (CRPC-NE) (36 of 47, 76.6%) and in a subset of castration-resistant prostate adenocarcinomas (7 of 56, 12.5%). It shows minimal to no expression in localized prostate cancer (1 of 194) and benign prostate (0 of 103). DLL3 expression correlates with neuroendocrine marker expression, RB1 loss, and aggressive clinical features. DLL3 in circulating tumor cells was concordant with matched metastatic biopsy (87%). Treatment of DLL3-expressing prostate cancer xenografts with a single dose of SC16LD6.5 resulted in complete and durable responses, whereas DLL3-negative models were insensitive. We highlight a patient with neuroendocrine prostate cancer with a meaningful clinical and radiologic response to SC16LD6.5 when treated on a phase 1 trial. Overall, our findings indicate that DLL3 is preferentially expressed in CRPC-NE and provide rationale for targeting DLL3 in patients with DLL3-positive metastatic prostate cancer.
Collapse
MESH Headings
- Aged
- Animals
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Benzodiazepinones/pharmacology
- Benzodiazepinones/therapeutic use
- Carcinoma, Neuroendocrine/drug therapy
- Carcinoma, Neuroendocrine/genetics
- Carcinoma, Neuroendocrine/pathology
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic/drug effects
- Genetic Heterogeneity
- Humans
- Immunoconjugates/pharmacology
- Immunoconjugates/therapeutic use
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Molecular Targeted Therapy
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/pathology
- Time Factors
- Treatment Outcome
Collapse
Affiliation(s)
- Loredana Puca
- Division of Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY 10021, USA
| | - Katie Gavyert
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY 10021, USA
| | - Verena Sailer
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY 10021, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Vincenza Conteduca
- Division of Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, FC, Italy
| | - Etienne Dardenne
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Michael Sigouros
- Division of Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Kumiko Isse
- AbbVie Stemcentrx LLC, South San Francisco, CA 94080, USA
| | | | - Aram Vosoughi
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY 10021, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Heng Pan
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY 10021, USA
| | - Samaneh Motanagh
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY 10021, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Judy Hess
- Division of Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Adam J Donoghue
- Division of Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andrea Sboner
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY 10021, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yuzhuo Wang
- University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | - David Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - David M Nanus
- Division of Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY 10021, USA
| | - Scott T Tagawa
- Division of Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY 10021, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY 10021, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Juan Miguel Mosquera
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY 10021, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Laura Saunders
- AbbVie Stemcentrx LLC, South San Francisco, CA 94080, USA
| | - Himisha Beltran
- Division of Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA.
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine and NewYork Presbyterian, New York, NY 10021, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
633
|
AKT drives SOX2 overexpression and cancer cell stemness in esophageal cancer by protecting SOX2 from UBR5-mediated degradation. Oncogene 2019; 38:5250-5264. [PMID: 30894683 DOI: 10.1038/s41388-019-0790-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/14/2022]
Abstract
As a transcription factor critical for embryonic and adult stem cell self-renewal and function, SOX2 gene amplification has been recognized as a driving factor for various cancers including esophageal cancer. SOX2 overexpression occurs more broadly in cancer than gene amplification, but the mechanism is poorly understood. Here we showed that in esophageal cancer cell lines the levels of SOX2 proteins are not directly correlated to the copy numbers of SOX2 genes and are strongly influenced by proteostasis. We showed that AKT is a major determinant for SOX2 overexpression and does so by protecting SOX2 from ubiquitin-dependent protein degradation. We identified UBR5 as a major ubiquitin E3 ligase that induces SOX2 degradation through ubiquitinating SOX2 at lysine 115. Phosphorylation of SOX2 at threonine 116 by AKT inhibits the interaction of UBR5 with SOX2 and thus stabilizes SOX2. We provided evidence that AKT inhibitor can effectively downregulate SOX2 and suppress esopheageal cancer cell proliferation and stemness. Taken together, our study provides new insight into the mechanism of SOX2 overexpression in cancer and evidence for targeting AKT as a potential therapeutic strategy for SOX2-positive cancers.
Collapse
|
634
|
Reina-Campos M, Linares JF, Duran A, Cordes T, L'Hermitte A, Badur MG, Bhangoo MS, Thorson PK, Richards A, Rooslid T, Garcia-Olmo DC, Nam-Cha SY, Salinas-Sanchez AS, Eng K, Beltran H, Scott DA, Metallo CM, Moscat J, Diaz-Meco MT. Increased Serine and One-Carbon Pathway Metabolism by PKCλ/ι Deficiency Promotes Neuroendocrine Prostate Cancer. Cancer Cell 2019; 35:385-400.e9. [PMID: 30827887 PMCID: PMC6424636 DOI: 10.1016/j.ccell.2019.01.018] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/13/2018] [Accepted: 01/28/2019] [Indexed: 12/18/2022]
Abstract
Increasingly effective therapies targeting the androgen receptor have paradoxically promoted the incidence of neuroendocrine prostate cancer (NEPC), the most lethal subtype of castration-resistant prostate cancer (PCa), for which there is no effective therapy. Here we report that protein kinase C (PKC)λ/ι is downregulated in de novo and during therapy-induced NEPC, which results in the upregulation of serine biosynthesis through an mTORC1/ATF4-driven pathway. This metabolic reprogramming supports cell proliferation and increases intracellular S-adenosyl methionine (SAM) levels to feed epigenetic changes that favor the development of NEPC characteristics. Altogether, we have uncovered a metabolic vulnerability triggered by PKCλ/ι deficiency in NEPC, which offers potentially actionable targets to prevent therapy resistance in PCa.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA; Sanford Burnham Prebys Graduate School of Biomedical Sciences, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Juan F Linares
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Angeles Duran
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Thekla Cordes
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Antoine L'Hermitte
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mehmet G Badur
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Munveer S Bhangoo
- Division of Hematology-Oncology Scripps Clinic, 10666 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Phataraporn K Thorson
- Depatment of Pathology, Scripps Clinic Medical Group, 10666 Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alicia Richards
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tarmo Rooslid
- Conrad Prebys Center for Drug Discovery, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Dolores C Garcia-Olmo
- Centre de Recerca Experimental Biomèdica Aplicada (CREBA), IRBLLEIDA, 25138 Lleida, Spain
| | - Syongh Y Nam-Cha
- Pathology Department, Director of the Research Unit Biobank, University of Castilla-La Mancha, School of Medicine, 02006 Albacete, Spain
| | - Antonio S Salinas-Sanchez
- Urology Department, Research Unit, University Hospital Complex of Albacete, School of Medicine, 02006 Albacete, Spain
| | - Ken Eng
- Department of Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - David A Scott
- Cancer Metabolism Core, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jorge Moscat
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Maria T Diaz-Meco
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
635
|
Armstrong AJ, Halabi S, Luo J, Nanus DM, Giannakakou P, Szmulewitz RZ, Danila DC, Healy P, Anand M, Rothwell CJ, Rasmussen J, Thornburg B, Berry WR, Wilder RS, Lu C, Chen Y, Silberstein JL, Kemeny G, Galletti G, Somarelli JA, Gupta S, Gregory SG, Scher HI, Dittamore R, Tagawa ST, Antonarakis ES, George DJ. Prospective Multicenter Validation of Androgen Receptor Splice Variant 7 and Hormone Therapy Resistance in High-Risk Castration-Resistant Prostate Cancer: The PROPHECY Study. J Clin Oncol 2019; 37:1120-1129. [PMID: 30865549 PMCID: PMC6494355 DOI: 10.1200/jco.18.01731] [Citation(s) in RCA: 269] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Androgen receptor splice variant 7 (AR-V7) results in a truncated receptor, which leads to ligand-independent constitutive activation that is not inhibited by anti-androgen therapies, including abiraterone or enzalutamide. Given that previous reports suggested that circulating tumor cell (CTC) AR-V7 detection is a poor prognostic indicator for the clinical efficacy of secondary hormone therapies, we conducted a prospective multicenter validation study. PATIENTS AND METHODS PROPHECY (ClinicalTrials.gov identifier: NCT02269982) is a multicenter, prospective-blinded study of men with high-risk mCRPC starting abiraterone acetate or enzalutamide treatment. The primary objective was to validate the prognostic significance of baseline CTC AR-V7 on the basis of radiographic or clinical progression free-survival (PFS) by using the Johns Hopkins University modified-AdnaTest CTC AR-V7 mRNA assay and the Epic Sciences CTC nuclear-specific AR-V7 protein assay. Overall survival (OS) and prostate-specific antigen responses were secondary end points. RESULTS We enrolled 118 men with mCRPC who were starting abiraterone or enzalutamide treatment. AR-V7 detection by both the Johns Hopkins and Epic AR-V7 assays was independently associated with shorter PFS (hazard ratio, 1.9 [95% CI, 1.1 to 3.3; P = .032] and 2.4 [95% CI, 1.1 to 5.1; P = .020], respectively) and OS (hazard ratio, 4.2 [95% CI, 2.1 to 8.5] and 3.5 [95% CI, 1.6 to 8.1], respectively) after adjusting for CTC number and clinical prognostic factors. Men with AR-V7–positive mCRPC had fewer confirmed prostate-specific antigen responses (0% to 11%) or soft tissue responses (0% to 6%). The observed percentage agreement between the two AR-V7 assays was 82%. CONCLUSION Detection of AR-V7 in CTCs by two blood-based assays is independently associated with shorter PFS and OS with abiraterone or enzalutamide, and such men with mCRPC should be offered alternative treatments.
Collapse
Affiliation(s)
| | | | - Jun Luo
- 2 Johns Hopkins University, Baltimore, MD
| | | | | | | | - Daniel C Danila
- 3 Weill Cornell Medical College, New York, NY.,5 Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | | | | | | | | | | | - Yan Chen
- 2 Johns Hopkins University, Baltimore, MD
| | | | | | | | | | | | | | - Howard I Scher
- 3 Weill Cornell Medical College, New York, NY.,5 Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | | |
Collapse
|
636
|
Abstract
The genomics of prostate cancer (PCA) has been difficult to study compared with some other cancer types for a multitude of reasons, despite significant efforts since the early 1980s. Overcoming some of these obstacles has paved the way for greater insight into the genomics of PCA. The advent of high-throughput technologies coming from the initial use of microsatellite and oligonucleotide probes gave rise to techniques like comparative genomic hybridization (CGH). With the introduction of massively parallel genomic sequencing, referred to as next-generation sequencing (NGS), a deeper understanding of cancer genomics in general has occurred. Along with these technologic advances, there has been the development of computational biology and statistical approaches to address novel large data sets characterized by single base resolution. This review will provide a historic perspective of PCA genomics with an emphasis on the cardinal mutations and alterations observed to be consistently seen in PCA for both hormone-naïve localized PCA and castration-resistant prostate cancer (CRPC). There will be a focus on alterations that have the greatest potential to play a role in disease progression and therapy management.
Collapse
Affiliation(s)
- Mark A Rubin
- Englander Institute for Precision Medicine, Weill Cornell Medical College-New York Presbyterian Hospital, New York, New York 10065
- Sandra and Edward Meyer Cancer Center at Weill Cornell Medical College, New York, New York 10021
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10021
- Department of BioMedical Research, University of Bern, 3012 Bern, Switzerland
| | - Francesca Demichelis
- Englander Institute for Precision Medicine, Weill Cornell Medical College-New York Presbyterian Hospital, New York, New York 10065
- Centre for Integrative Biology, University of Trento, 38123 Trento, Italy
| |
Collapse
|
637
|
Majera D, Skrott Z, Bouchal J, Bartkova J, Simkova D, Gachechiladze M, Steigerova J, Kurfurstova D, Gursky J, Korinkova G, Cwiertka K, Hodny Z, Mistrik M, Bartek J. Targeting genotoxic and proteotoxic stress-response pathways in human prostate cancer by clinically available PARP inhibitors, vorinostat and disulfiram. Prostate 2019; 79:352-362. [PMID: 30499118 DOI: 10.1002/pros.23741] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/24/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Castration-resistant prostate cancer (PCa) represents a serious health challenge. Based on mechanistically-supported rationale we explored new therapeutic options based on clinically available drugs with anticancer effects, including inhibitors of PARP1 enzyme (PARPi), and histone deacetylases (vorinostat), respectively, and disulfiram (DSF, known as alcohol-abuse drug Antabuse) and its copper-chelating metabolite CuET that inhibit protein turnover. METHODS Drugs and their combination with ionizing radiation (IR) were tested in various cytotoxicity assays in three human PCa cell lines including radio-resistant stem-cell like derived cells. Mechanistically, DNA damage repair, heat shock and unfolded protein response (UPR) pathways were assessed by immunofluorescence and immunoblotting. RESULTS We observed enhanced sensitivity to PARPi/IR in PC3 cells consistent with lower homologous recombination (HR) repair. Vorinostat sensitized DU145 cells to PARPi/IR and decreased mutant p53. Vorinostat also impaired HR-mediated DNA repair, as determined by Rad51 foci formation and downregulation of TOPBP1 protein, and overcame radio-resistance of stem-cell like DU145-derived cells. All PCa models responded well to CuET or DSF combined with copper. We demonstrated that DSF interacts with copper in the culture media and forms adequate levels of CuET indicating that DSF/copper and CuET may be considered as comparable treatments. Both DSF/copper and CuET evoked hallmarks of UPR in PCa cells, documented by upregulation of ATF4, CHOP and phospho-eIF2α, with ensuing heat shock response encompassing activation of HSF1 and HSP70. Further enhancing the cytotoxicity of CuET, combination with an inhibitor of the anti-apoptotic protein survivin (YM155, currently undergoing clinical trials) promoted the UPR-induced toxicity, yielding synergistic effects of CuET and YM155. CONCLUSIONS We propose that targeting genotoxic and proteotoxic stress responses by combinations of available drugs could inspire innovative strategies to treat castration-resistant PCa.
Collapse
Affiliation(s)
- Dusana Majera
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Zdenek Skrott
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jirina Bartkova
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Dana Simkova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Mariam Gachechiladze
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jana Steigerova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Daniela Kurfurstova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jan Gursky
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Gabriela Korinkova
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Karel Cwiertka
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University, University Hospital, Olomouc, Czech Republic
| | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i., Prague, Czech Republic
| | - Martin Mistrik
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jiri Bartek
- Laboratory of Genome Integrity, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
- Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i., Prague, Czech Republic
| |
Collapse
|
638
|
Andey T, Bora-Singhal N, Chellappan SP, Singh M. Cationic lipoplexes for treatment of cancer stem cell-derived murine lung tumors. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 18:31-43. [PMID: 30831275 DOI: 10.1016/j.nano.2019.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/01/2018] [Accepted: 02/07/2019] [Indexed: 01/20/2023]
Abstract
Side population (SP) cells with stem-like properties, also known as cancer stem cells (CSC) have been recognized as drivers of the resistance phenotype in many cancers. Central to the characteristic stem-like phenotype of CSCs in cancer is the activity of the SOX2 transcription factor whose upregulation has been associated with enrichment of many oncogenes. This study outlines the fabrication of a lipoplex of SOX2 small interfering RNA (CL-siSOX2) for targeted treatment of SOX2-enriched, CSC-derived orthotopic and xenograft lung tumors in CB-17 SCID mice. CL-siSOX2 induced tumor contraction in cisplatin-naïve and cisplatin-treated groups by 85% and 94% respectively. Reduction in tumor weight and volume following treatment with CL-siSOX2 was associated with reduced protein expression of SOX2 and markers of tumor initiation, inflammation, invasion and metastasis in mice tumor xenografts. In addition, histological staining of lung tumor sections showed reduction in SOX2 expression was associated with inhibition markers of epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Terrick Andey
- Department of Pharmaceutical Sciences, School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences University, 19 Foster Street, Worcester, MA 01608, USA
| | - Namrata Bora-Singhal
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Srikumar P Chellappan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA.
| |
Collapse
|
639
|
Chatterjee N, Bivona TG. Polytherapy and Targeted Cancer Drug Resistance. Trends Cancer 2019; 5:170-182. [PMID: 30898264 PMCID: PMC6446041 DOI: 10.1016/j.trecan.2019.02.003] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
A current challenge in cancer treatment is drug resistance. Even the most effective therapies often fail to produce a complete and durable tumor response and ultimately give rise to therapy resistance and tumor relapse. However, how resistance arises in cancer remains incompletely understood. While drug resistance in cancer is thought to be driven by irreversible genetic mutations, emerging evidence also implicates reversible proteomic and epigenetic mechanisms in the development of drug resistance. Tumor microenvironment-mediated mechanisms and tumor heterogeneity can significantly contribute to cancer treatment resistance. Here, we discuss the diverse and dynamic strategies that cancers use to evade drug response, the promise of upfront combination and intermittent therapies and therapy switching in forestalling resistance, and epigenetic reprogramming to combat resistance.
Collapse
Affiliation(s)
- Nilanjana Chatterjee
- Department of Medicine, University of California, San Francisco, 600 16(th) Street, Box 2140, Genentech Hall, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16(th) Street, Box 2140, Genentech Hall, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 600 16(th) Street, Box 2140, Genentech Hall, San Francisco, CA 94158, USA
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, 600 16(th) Street, Box 2140, Genentech Hall, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16(th) Street, Box 2140, Genentech Hall, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 600 16(th) Street, Box 2140, Genentech Hall, San Francisco, CA 94158, USA.
| |
Collapse
|
640
|
McAuley E, Moline D, VanOpstall C, Lamperis S, Brown R, Vander Griend DJ. Sox2 Expression Marks Castration-Resistant Progenitor Cells in the Adult Murine Prostate. Stem Cells 2019; 37:690-700. [PMID: 30720908 DOI: 10.1002/stem.2987] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/30/2018] [Accepted: 01/21/2019] [Indexed: 12/31/2022]
Abstract
Identification of defined epithelial cell populations with progenitor properties is critical for understanding prostatic development and disease. Here, we demonstrate that Sox2 expression is enriched in the epithelial cells of the proximal prostate adjacent to the urethra. We use lineage tracing of Sox2-positive cells during prostatic development, homeostasis, and regeneration to show that the Sox2 lineage is capable of self-renewal and contributes to prostatic regeneration. Persisting luminal cells express Sox2 after castration, highlighting a potential role for Sox2 in cell survival and castration-resistance. In addition to revealing a novel progenitor population in the prostate, these data implicate Sox2 as a regulatory factor of adult prostate epithelial stem cells. Stem Cells 2019;37:690-700.
Collapse
Affiliation(s)
- Erin McAuley
- The Committee on Molecular Pathogenesis and Molecular Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Daniel Moline
- The Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, Illinois, USA
| | - Calvin VanOpstall
- The Committee on Cancer Biology, The University of Chicago, Chicago, Illinois, USA
| | - Sophia Lamperis
- Department of Surgery, Section of Urology, The University of Chicago, Chicago, Illinois, USA.,Department of Pathology, The University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ryan Brown
- Department of Surgery, Section of Urology, The University of Chicago, Chicago, Illinois, USA.,Department of Pathology, The University of Illinois at Chicago, Chicago, Illinois, USA
| | - Donald J Vander Griend
- Department of Surgery, Section of Urology, The University of Chicago, Chicago, Illinois, USA.,Department of Pathology, The University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
641
|
Davies A, Conteduca V, Zoubeidi A, Beltran H. Biological Evolution of Castration-resistant Prostate Cancer. Eur Urol Focus 2019; 5:147-154. [PMID: 30772358 DOI: 10.1016/j.euf.2019.01.016] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/15/2019] [Accepted: 01/30/2019] [Indexed: 01/12/2023]
Abstract
CONTEXT Recent studies focused on the molecular characterization of metastatic prostate cancer have identified genomic subsets and emerging resistance patterns. Detection of these alterations in patients has potential implications for therapy selection and prognostication. OBJECTIVE The primary objective is to review the current landscape of clinical and molecular biomarkers in advanced prostate cancer and understand how they may reflect underlying tumor biology. We also discuss how these features may potentially impact earlier stages of the disease. EVIDENCE ACQUISITION A literature search was performed of recent clinical biomarker/genomic studies focused on advanced metastatic prostate cancer as well as relevant preclinical studies investigating how these alterations influence therapy response or resistance. EVIDENCE SYNTHESIS Metastatic castration-resistant prostate cancer is commonly driven by androgen receptor signaling even after progression on potent hormonal agents, but other alterations may also be present or emerge during therapy resistance such as DNA repair gene aberrations or combined loss of tumor suppressor genes. Biological implications of these changes are context dependent, which may affect their detection and interpretation. CONCLUSIONS Molecular changes occur during prostate cancer progression and treatment resistance. Detection of genomic alterations has potential to influence therapy choice. Additional studies are warranted to elucidate the evolution of these changes and their impact in earlier stages of the disease. PATIENT SUMMARY We review the biology of advanced prostate cancer, and highlight opportunities and challenges for using biological or molecular assays to help guide individualized treatment decisions for patients.
Collapse
Affiliation(s)
- Alastair Davies
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Vincenza Conteduca
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Amina Zoubeidi
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada.
| | - Himisha Beltran
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
642
|
Hepburn AC, Steele RE, Veeratterapillay R, Wilson L, Kounatidou EE, Barnard A, Berry P, Cassidy JR, Moad M, El-Sherif A, Gaughan L, Mills IG, Robson CN, Heer R. The induction of core pluripotency master regulators in cancers defines poor clinical outcomes and treatment resistance. Oncogene 2019; 38:4412-4424. [PMID: 30742096 PMCID: PMC6546609 DOI: 10.1038/s41388-019-0712-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/31/2022]
Abstract
Stem cell characteristics have been associated with treatment resistance and poor prognosis across many cancer types. The ability to induce and regulate the pathways that sustain these characteristic hallmarks of lethal cancers in a novel in vitro model would greatly enhance our understanding of cancer progression and treatment resistance. In this work, we present such a model, based simply on applying standard pluripotency/embryonic stem cell media alone. Core pluripotency stem cell master regulators (OCT4, SOX2 and NANOG) along with epithelial–mesenchymal transition (EMT) markers (Snail, Slug, vimentin and N-cadherin) were induced in human prostate, breast, lung, bladder, colorectal, and renal cancer cells. RNA sequencing revealed pathways activated by pluripotency inducing culture that were shared across all cancers examined. These pathways highlight a potential core mechanism of treatment resistance. With a focus on prostate cancer, the culture-based induction of core pluripotent stem cell regulators was shown to promote survival in castrate conditions—mimicking first line treatment resistance with hormonal therapies. This acquired phenotype was shown to be mediated through the upregulation of iodothyronine deiodinase DIO2, a critical modulator of the thyroid hormone signalling pathway. Subsequent inhibition of DIO2 was shown to supress expression of prostate specific antigen, the cardinal clinical biomarker of prostate cancer progression and highlighted a novel target for clinical translation in this otherwise fatal disease. This study identifies a new and widely accessible simple preclinical model to recreate and explore underpinning pathways of lethal disease and treatment resistance.
Collapse
Affiliation(s)
- A C Hepburn
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | - R E Steele
- Prostate Cancer UK/Movember Centre of Excellence for Prostate Cancer, Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, BT9 7AE, UK
| | - R Veeratterapillay
- Department of Urology, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| | - L Wilson
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - E E Kounatidou
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - A Barnard
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - P Berry
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - J R Cassidy
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - M Moad
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - A El-Sherif
- Department of Pathology, Royal Victoria Infirmary, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - L Gaughan
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - I G Mills
- Prostate Cancer UK/Movember Centre of Excellence for Prostate Cancer, Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, BT9 7AE, UK.,Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX3 9DU, UK
| | - C N Robson
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | - R Heer
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK. .,Department of Urology, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK.
| |
Collapse
|
643
|
Weindorf SC, Taylor AS, Kumar-Sinha C, Robinson D, Wu YM, Cao X, Spratt DE, Kim MM, Lagstein A, Chinnaiyan AM, Mehra R. Metastatic castration resistant prostate cancer with squamous cell, small cell, and sarcomatoid elements-a clinicopathologic and genomic sequencing-based discussion. Med Oncol 2019; 36:27. [PMID: 30712214 DOI: 10.1007/s12032-019-1250-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/23/2019] [Indexed: 12/19/2022]
Abstract
Histologic variants are uncommon but well reported amongst cases of prostatic adenocarcinoma, including those in the setting of hormonal and/or chemoradiation therapy and castration resistance. However, the spectrum of morphologic phenotypes and molecular alterations present in such histologic variants are still incompletely understood. Herein, we describe a case of metastatic prostatic adenocarcinoma with hormonal and chemoradiation therapy-associated differentiation, displaying a combination of squamous cell, small cell, and sarcomatoid elements. The morphologic, immunohistochemical, and molecular observations are discussed with attention given to the gene alterations present, including in TP53, NF1, AR, PTEN, and RB1. Finally, we will compare our findings with those observed in uncommonly reported similar cases so as to detail the molecular underpinnings of such processes which may carry therapeutic implications.
Collapse
Affiliation(s)
- Steven C Weindorf
- Department of Pathology, University of Michigan Medical School, 2800 Plymouth Road, Building 35, Ann Arbor, MI, USA
| | - Alexander S Taylor
- Department of Pathology, University of Michigan Medical School, 2800 Plymouth Road, Building 35, Ann Arbor, MI, USA
| | - Chandan Kumar-Sinha
- Department of Pathology, University of Michigan Medical School, 2800 Plymouth Road, Building 35, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, Ann Arbor, MI, USA
| | - Dan Robinson
- Department of Pathology, University of Michigan Medical School, 2800 Plymouth Road, Building 35, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, Ann Arbor, MI, USA
| | - Yi-Mi Wu
- Department of Pathology, University of Michigan Medical School, 2800 Plymouth Road, Building 35, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, Ann Arbor, MI, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, Ann Arbor, MI, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI, USA.,Rogel Cancer Center, Michigan Medicine, 1400 East Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Amir Lagstein
- Department of Pathology, University of Michigan Medical School, 2800 Plymouth Road, Building 35, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan Medical School, 2800 Plymouth Road, Building 35, Ann Arbor, MI, USA.,Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.,Rogel Cancer Center, Michigan Medicine, 1400 East Medical Center Drive, Ann Arbor, MI, 48109, USA.,Michigan Center for Translational Pathology, Ann Arbor, MI, USA.,Howard Hughes Medical Institute, Ann Arbor, MI, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan Medical School, 2800 Plymouth Road, Building 35, Ann Arbor, MI, USA. .,Rogel Cancer Center, Michigan Medicine, 1400 East Medical Center Drive, Ann Arbor, MI, 48109, USA. .,Michigan Center for Translational Pathology, Ann Arbor, MI, USA.
| |
Collapse
|
644
|
Puca L, Vlachostergios PJ, Beltran H. Neuroendocrine Differentiation in Prostate Cancer: Emerging Biology, Models, and Therapies. Cold Spring Harb Perspect Med 2019; 9:a030593. [PMID: 29844220 PMCID: PMC6360865 DOI: 10.1101/cshperspect.a030593] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although a de novo clinical presentation of small cell neuroendocrine carcinoma of the prostate is rare, a subset of patients previously diagnosed with prostate adenocarcinoma may develop neuroendocrine features in later stages of castration-resistant prostate cancer (CRPC) progression as a result of treatment resistance. Despite sharing clinical, histologic, and some molecular features with other neuroendocrine carcinomas, including small cell lung cancer, castration-resistant neuroendocrine prostate cancer (CRPC-NE) is clonally derived from prostate adenocarcinoma. CRPC-NE therefore retains early prostate cancer genomic alterations and acquires new molecular changes making them resistant to traditional CRPC therapies. This review focuses on recent advances in our understanding of CRPC-NE biology, the transdifferentiation/plasticity process, and development and characterization of relevant CRPC-NE preclinical models.
Collapse
Affiliation(s)
- Loredana Puca
- Englander Institute for Precision Medicine, Weill Cornell Medicine and New York-Presbyterian Hospital, New York, New York 10021
- Division of Medical Oncology, Weill Cornell Medicine, New York, New York 10021
| | | | - Himisha Beltran
- Englander Institute for Precision Medicine, Weill Cornell Medicine and New York-Presbyterian Hospital, New York, New York 10021
- Division of Medical Oncology, Weill Cornell Medicine, New York, New York 10021
| |
Collapse
|
645
|
Song B, Park SH, Zhao JC, Fong KW, Li S, Lee Y, Yang YA, Sridhar S, Lu X, Abdulkadir SA, Vessella RL, Morrissey C, Kuzel TM, Catalona W, Yang X, Yu J. Targeting FOXA1-mediated repression of TGF-β signaling suppresses castration-resistant prostate cancer progression. J Clin Invest 2019; 129:569-582. [PMID: 30511964 PMCID: PMC6355239 DOI: 10.1172/jci122367] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/06/2018] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer (PC) progressed to castration resistance (CRPC) is a fatal disease. CRPC tumors develop resistance to new-generation antiandrogen enzalutamide through lineage plasticity, characterized by epithelial-mesenchymal transition (EMT) and a basal-like phenotype. FOXA1 is a transcription factor essential for epithelial lineage differentiation. Here, we demonstrate that FOXA1 loss leads to remarkable upregulation of transforming growth factor beta 3 (TGFB3), which encodes a ligand of the TGF-β pathway. Mechanistically, this is due to genomic occupancy of FOXA1 on an upstream enhancer of the TGFB3 gene to directly inhibit its transcription. Functionally, FOXA1 downregulation induces TGF-β signaling, EMT, and cell motility, which is effectively blocked by the TGF-β receptor I inhibitor galunisertib (LY2157299). Tissue microarray analysis confirmed reduced levels of FOXA1 protein and a concordant increase in TGF-β signaling, indicated by SMAD2 phosphorylation, in CRPC as compared with primary tumors. Importantly, combinatorial LY2157299 treatment sensitized PC cells to enzalutamide, leading to synergistic effects in inhibiting cell invasion in vitro and xenograft CRPC tumor growth and metastasis in vivo. Therefore, our study establishes FOXA1 as an important regulator of lineage plasticity mediated in part by TGF-β signaling, and supports a novel therapeutic strategy to control lineage switching and potentially extend clinical response to antiandrogen therapies.
Collapse
Affiliation(s)
- Bing Song
- Division of Hematology/Oncology, Department of Medicine, and
| | - Su-Hong Park
- Division of Hematology/Oncology, Department of Medicine, and
| | | | - Ka-wing Fong
- Division of Hematology/Oncology, Department of Medicine, and
| | - Shangze Li
- Division of Hematology/Oncology, Department of Medicine, and
| | - Yongik Lee
- Division of Hematology/Oncology, Department of Medicine, and
| | - Yeqing A. Yang
- Division of Hematology/Oncology, Department of Medicine, and
| | | | - Xiaodong Lu
- Division of Hematology/Oncology, Department of Medicine, and
| | - Sarki A. Abdulkadir
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Robert L. Vessella
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington, USA
| | | | - William Catalona
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ximing Yang
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jindan Yu
- Division of Hematology/Oncology, Department of Medicine, and
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
646
|
Sabnis AJ, Bivona TG. Principles of Resistance to Targeted Cancer Therapy: Lessons from Basic and Translational Cancer Biology. Trends Mol Med 2019; 25:185-197. [PMID: 30686761 DOI: 10.1016/j.molmed.2018.12.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/23/2018] [Accepted: 12/28/2018] [Indexed: 12/15/2022]
Abstract
Identification of the genomic drivers of cancer has led to the clinical development of targeted therapies that strike at the heart of many malignancies. Nonetheless, many cancers outsmart such precision-medicine efforts, and thus therapeutic resistance contributes significantly to cancer mortality. Attempts to understand the basis for resistance in patient samples and laboratory models has yielded two major benefits: one, more effective chemical inhibitors and rational combination therapies are now employed to prevent or circumvent resistance pathways; and two, our understanding of how oncogenic mutations drive cancer cell survival and oncogene addiction is deeper and broader, highlighting downstream or parallel cellular programs that shape these phenotypes. This review discusses emerging principles of resistance to therapies targeted against key oncogenic drivers.
Collapse
Affiliation(s)
- Amit J Sabnis
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
647
|
Yin Y, Xu L, Chang Y, Zeng T, Chen X, Wang A, Groth J, Foo WC, Liang C, Hu H, Huang J. N-Myc promotes therapeutic resistance development of neuroendocrine prostate cancer by differentially regulating miR-421/ATM pathway. Mol Cancer 2019; 18:11. [PMID: 30657058 PMCID: PMC6337850 DOI: 10.1186/s12943-019-0941-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 01/01/2019] [Indexed: 02/07/2023] Open
Abstract
Background MYCN amplification or N-Myc overexpression is found in approximately 40% NEPC and up to 20% CRPC patients. N-Myc has been demonstrated to drive disease progression and hormonal therapeutic resistance of NEPC/CRPC. Here, we aim to identify the molecular mechanisms underlying the N-Myc-driven therapeutic resistance and provide new therapeutic targets for those N-Myc overexpressed NEPC/CRPC. Methods N-Myc overexpressing stable cell lines for LNCaP and C4–2 were generated by lentivirus infection. ADT-induced senescence was measured by SA-β-gal staining in LNCaP cells in vitro and in LNCaP xenograft tumors in vivo. Migration, cell proliferation and colony formation assays were used to measure the cellular response after overexpressing N-Myc or perturbing the miR-421/ATM pathway. CRISPR-Cas9 was used to knock out ATM in C4–2 cells and MTS cell viability assay was used to evaluate the drug sensitivity of N-Myc overexpressing C4–2 cells in response to Enzalutamide and ATM inhibitor Ku60019 respectively or in combination. Results N-Myc overexpression suppressed ATM expression through upregulating miR-421 in LNCaP cells. This suppression alleviated the ADT-induced senescence in vitro and in vivo. Surprisingly, N-Myc overexpression upregulated ATM expression in C4–2 cells and this upregulation promoted migration and invasion of prostate cancer cells. Further, the N-Myc-induced ATM upregulation in C4–2 cells rendered the cells resistance to Enzalutamide, and inhibition of ATM by CRISPR-Cas9 knockout or ATM inhibitor Ku60019 re-sensitized them to Enzalutamide. Conclusions N-Myc differentially regulating miR-421/ATM pathway contributes to ADT resistance and Enzalutamide resistance development respectively. Combination treatment with ATM inhibitor re-sensitizes N-Myc overexpressed CRPC cells to Enzalutamide. Our findings would offer a potential combination therapeutic strategy using ATM kinase inhibitor and Enzalutamide for the treatment of a subset of mCRPC with N-Myc overexpression that accounts for up to 20% CRPC patients. Electronic supplementary material The online version of this article (10.1186/s12943-019-0941-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Yin
- Department of Urology, First Affilated Hospital of Anhui Medical University, Hefei, 230022, China.,Department of Pathology, Duke Unversity School of Medicine, DUMC box 103864, 905 S. Lasalle Street, Durham, NC, 27710, USA.,Department of Pathology, Anhui Medical University, Hefei, 230032, China
| | - Lingfan Xu
- Department of Urology, First Affilated Hospital of Anhui Medical University, Hefei, 230022, China.,Department of Pathology, Duke Unversity School of Medicine, DUMC box 103864, 905 S. Lasalle Street, Durham, NC, 27710, USA
| | - Yan Chang
- Department of Pathology, Duke Unversity School of Medicine, DUMC box 103864, 905 S. Lasalle Street, Durham, NC, 27710, USA.,Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Tao Zeng
- Department of Pathology, Duke Unversity School of Medicine, DUMC box 103864, 905 S. Lasalle Street, Durham, NC, 27710, USA.,Department of Urology, Jiangxi Province People's Hospital, Nanchang, China
| | - Xufeng Chen
- Department of Pathology, Duke Unversity School of Medicine, DUMC box 103864, 905 S. Lasalle Street, Durham, NC, 27710, USA
| | - Aifeng Wang
- Department of Pathology, Duke Unversity School of Medicine, DUMC box 103864, 905 S. Lasalle Street, Durham, NC, 27710, USA
| | - Jeff Groth
- Department of Pathology, Duke Unversity School of Medicine, DUMC box 103864, 905 S. Lasalle Street, Durham, NC, 27710, USA
| | - Wen-Chi Foo
- Department of Pathology, Duke Unversity School of Medicine, DUMC box 103864, 905 S. Lasalle Street, Durham, NC, 27710, USA
| | - Chaozhao Liang
- Department of Urology, First Affilated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Hailiang Hu
- Department of Pathology, Duke Unversity School of Medicine, DUMC box 103864, 905 S. Lasalle Street, Durham, NC, 27710, USA. .,Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Jiaoti Huang
- Department of Pathology, Duke Unversity School of Medicine, DUMC box 103864, 905 S. Lasalle Street, Durham, NC, 27710, USA. .,Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA. .,Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
648
|
ONECUT2 is a driver of neuroendocrine prostate cancer. Nat Commun 2019; 10:278. [PMID: 30655535 PMCID: PMC6336817 DOI: 10.1038/s41467-018-08133-6] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/17/2018] [Indexed: 11/20/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC), a lethal form of the disease, is characterized by loss of androgen receptor (AR) signaling during neuroendocrine transdifferentiation, which results in resistance to AR-targeted therapy. Clinically, genomically and epigenetically, NEPC resembles other types of poorly differentiated neuroendocrine tumors (NETs). Through pan-NET analyses, we identified ONECUT2 as a candidate master transcriptional regulator of poorly differentiated NETs. ONECUT2 ectopic expression in prostate adenocarcinoma synergizes with hypoxia to suppress androgen signaling and induce neuroendocrine plasticity. ONEUCT2 drives tumor aggressiveness in NEPC, partially through regulating hypoxia signaling and tumor hypoxia. Specifically, ONECUT2 activates SMAD3, which regulates hypoxia signaling through modulating HIF1α chromatin-binding, leading NEPC to exhibit higher degrees of hypoxia compared to prostate adenocarcinomas. Treatment with hypoxia-activated prodrug TH-302 potently reduces NEPC tumor growth. Collectively, these results highlight the synergy between ONECUT2 and hypoxia in driving NEPC, and emphasize the potential of hypoxia-directed therapy for NEPC patients. Neuroendocrine prostate cancer (NEPC) is characterized by loss of androgen receptor (AR) signaling during neuroendocrine transdifferentiation, resulting in resistance to AR-targeted therapy. Here they report ONECUT2 to drive NEPC tumorigenesis via regulation of hypoxia signaling and tumor hypoxia, and find hypoxia directed therapy to be effective in NEPC.
Collapse
|
649
|
Lee E, Wongvipat J, Choi D, Wang P, Lee YS, Zheng D, Watson PA, Gopalan A, Sawyers CL. GREB1 amplifies androgen receptor output in human prostate cancer and contributes to antiandrogen resistance. eLife 2019; 8:e41913. [PMID: 30644358 PMCID: PMC6336405 DOI: 10.7554/elife.41913] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/27/2018] [Indexed: 01/22/2023] Open
Abstract
Genomic amplification of the androgen receptor (AR) is an established mechanism of antiandrogen resistance in prostate cancer. Here, we show that the magnitude of AR signaling output, independent of AR genomic alteration or expression level, also contributes to antiandrogen resistance, through upregulation of the coactivator GREB1. We demonstrate 100-fold heterogeneity in AR output within human prostate cancer cell lines and show that cells with high AR output have reduced sensitivity to enzalutamide. Through transcriptomic and shRNA knockdown studies, together with analysis of clinical datasets, we identify GREB1 as a gene responsible for high AR output. We show that GREB1 is an AR target gene that amplifies AR output by enhancing AR DNA binding and promoting EP300 recruitment. GREB1 knockdown in high AR output cells restores enzalutamide sensitivity in vivo. Thus, GREB1 is a candidate driver of enzalutamide resistance through a novel feed forward mechanism.
Collapse
Affiliation(s)
- Eugine Lee
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - John Wongvipat
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Danielle Choi
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Ping Wang
- Department of GeneticsAlbert Einstein College of MedicineNew YorkUnited States
| | - Young Sun Lee
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Deyou Zheng
- Department of GeneticsAlbert Einstein College of MedicineNew YorkUnited States
- Department of NeurologyAlbert Einstein College of MedicineNew YorkUnited States
- Department of NeuroscienceAlbert Einstein College of MedicineNew YorkUnited States
| | - Philip A Watson
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Anuradha Gopalan
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Charles L Sawyers
- Human Oncology and Pathogenesis ProgramMemorial Sloan Kettering Cancer CenterNew YorkUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
650
|
Park JW, Lee JK, Sheu KM, Wang L, Balanis NG, Nguyen K, Smith BA, Cheng C, Tsai BL, Cheng D, Huang J, Kurdistani SK, Graeber TG, Witte ON. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage. Science 2019; 362:91-95. [PMID: 30287662 DOI: 10.1126/science.aat5749] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/03/2018] [Accepted: 08/09/2018] [Indexed: 12/12/2022]
Abstract
The use of potent therapies inhibiting critical oncogenic pathways active in epithelial cancers has led to multiple resistance mechanisms, including the development of highly aggressive, small cell neuroendocrine carcinoma (SCNC). SCNC patients have a dismal prognosis due in part to a limited understanding of the molecular mechanisms driving this malignancy and the lack of effective treatments. Here, we demonstrate that a common set of defined oncogenic drivers reproducibly reprograms normal human prostate and lung epithelial cells to small cell prostate cancer (SCPC) and small cell lung cancer (SCLC), respectively. We identify shared active transcription factor binding regions in the reprogrammed prostate and lung SCNCs by integrative analyses of epigenetic and transcriptional landscapes. These results suggest that neuroendocrine cancers arising from distinct epithelial tissues may share common vulnerabilities that could be exploited for the development of drugs targeting SCNCs.
Collapse
Affiliation(s)
- Jung Wook Park
- Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - John K Lee
- Division of Hematology and Oncology, Department of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Katherine M Sheu
- Department of Molecular and Medical Pharmacology, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Liang Wang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Nikolas G Balanis
- Department of Molecular and Medical Pharmacology, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Kim Nguyen
- Department of Ecology and Evolutionary Biology, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Bryan A Smith
- Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Chen Cheng
- Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Brandon L Tsai
- Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Donghui Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Jiaoti Huang
- Department of Pathology, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Siavash K Kurdistani
- Department of Biological Chemistry, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, University of California-Los Angeles, Los Angeles, CA 90095, USA. .,Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Crump Institute for Molecular Imaging, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Owen N Witte
- Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90095, USA. .,Department of Molecular and Medical Pharmacology, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|