601
|
Liu J, Liu Z, Jiang W, Wang J, Zhu M, Song J, Wang X, Su Y, Xiang G, Ye M, Li J, Zhang Y, Shen Q, Li Z, Yao D, Song Y, Yu K, Luo Z, Ye L. Clinical predictors of COVID-19 disease progression and death: Analysis of 214 hospitalised patients from Wuhan, China. CLINICAL RESPIRATORY JOURNAL 2020; 15:293-309. [PMID: 33090710 DOI: 10.1111/crj.13296] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/15/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION COVID-19 has spread rapidly worldwide and has been declared a pandemic. OBJECTIVES To delineate clinical features of COVID-19 patients with different severities and prognoses and clarify the risk factors for disease progression and death at an early stage. METHODS Medical history, laboratory findings, treatment and outcome data from 214 hospitalised patients with COVID-19 pneumonia admitted to Eastern Campus of Renmin Hospital, Wuhan University in China were collected from 30 January 2020 to 20 February 2020, and risk factors associated with clinical deterioration and death were analysed. The final date of follow-up was 21 March 2020. RESULTS Age, comorbidities, higher neutrophil cell counts, lower lymphocyte counts and subsets, impairment of liver, renal, heart, coagulation systems, systematic inflammation and clinical scores at admission were significantly associated with disease severity. Ten (16.1%) moderate and 45 (47.9%) severe patients experienced deterioration after admission, and median time from illness onset to clinical deterioration was 14.7 (IQR 11.3-18.5) and 14.5 days (IQR 11.8-20.0), respectively. Multivariate analysis showed increased Hazards Ratio of disease progression associated with older age, lymphocyte count <1.1 × 10⁹/L, blood urea nitrogen (BUN)> 9.5 mmol/L, lactate dehydrogenase >250 U/L and procalcitonin >0.1 ng/mL at admission. These factors were also associated with the risk of death except for BUN. Prediction models in terms of nomogram for clinical deterioration and death were established to illustrate the probability. CONCLUSIONS These findings provide insights for early detection and management of patients at risk of disease progression or even death, especially older patients and those with comorbidities.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zilong Liu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weipeng Jiang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengchan Zhu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Juan Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyue Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Su
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guiling Xiang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Maosong Ye
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiamin Li
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qinjun Shen
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhuozhe Li
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Danwei Yao
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kaihuan Yu
- Department of Hepatobiliary Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Zhe Luo
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ling Ye
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
602
|
Tilocca B, Britti D, Urbani A, Roncada P. Computational Immune Proteomics Approach to Target COVID-19. J Proteome Res 2020; 19:4233-4241. [PMID: 32914632 PMCID: PMC7640973 DOI: 10.1021/acs.jproteome.0c00553] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 12/28/2022]
Abstract
Progress of the omics platforms widens their application to diverse fields, including immunology. This enables a deeper level of knowledge and the provision of a huge amount of data for which management and fruitful integration with the past evidence requires a steadily growing computational effort. In light of this, immunoinformatics emerges as a new discipline placed in between the traditional lab-based investigations and the computational analysis of the biological data. Immunoinformatics make use of tailored bioinformatics tools and data repositories to facilitate the analysis of data from a plurality of disciplines and help drive novel research hypotheses and in silico screening investigations in a fast, reliable, and cost-effective manner. Such computational immunoproteomics studies may as well prepare and guide lab-based investigations, representing valuable technology for the investigation of novel pathogens, to tentatively evaluate specificity of diagnostic products, to forecast on potential adverse effects of vaccines and to reduce the use of animal models. The present manuscript provides an overview of the COVID-19 pandemic and reviews the state of the art of the omics technologies employed in fighting SARS-CoV-2 infections. A comprehensive description of the immunoinformatics approaches and its potential role in contrasting COVID-19 pandemics is provided.
Collapse
Affiliation(s)
- Bruno Tilocca
- Department
of Health Sciences, University “Magna
Graecia” of Catanzaro, Catanzaro 88100, Italy
| | - Domenico Britti
- Department
of Health Sciences, University “Magna
Graecia” of Catanzaro, Catanzaro 88100, Italy
| | - Andrea Urbani
- Department
of Basic Biotechnological Sciences, Intensivological and Perioperative
Clinics, Università Cattolica del
Sacro Cuore, Roma 00168, Italy
- Dipartimento
di Scienze di laboratorio e infettivologiche, Fondazione Policlinico Universitario Agostino Gemelli, Roma 00168, Italy
| | - Paola Roncada
- Department
of Health Sciences, University “Magna
Graecia” of Catanzaro, Catanzaro 88100, Italy
| |
Collapse
|
603
|
Alothaid H, Aldughaim MSK, El Bakkouri K, AlMashhadi S, Al-Qahtani AA. Similarities between the effect of SARS-CoV-2 and HCV on the cellular level, and the possible role of ion channels in COVID19 progression: a review of potential targets for diagnosis and treatment. Channels (Austin) 2020; 14:403-412. [PMID: 33092458 PMCID: PMC7588196 DOI: 10.1080/19336950.2020.1837439] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has prompted an urgent need to identify effective medicines for the prevention and treatment of the disease. A comparative analysis between SARS-CoV-2 and Hepatitis C Virus (HCV) can expand the available knowledge regarding the virology and potential drug targets against these viruses. Interestingly, comparing HCV with SARS-CoV-2 reveals major similarities between them, ranging from the ion channels that are utilized, to the symptoms that are exhibited by patients. Via this comparative analysis, and from what is known about HCV, the most promising treatments for COVID-19 can focus on the reduction of viral load, treatment of pulmonary system damages, and reduction of inflammation. In particular, the drugs that show most potential in this regard include ritonavir, a combination of peg-IFN, and lumacaftor-ivacaftor. This review anaylses SARS-CoV-2 from the perspective of the role of ion homeostasis and channels in viral pathomechanism. We also highlight other novel treatment approaches that can be used for both treatment and prevention of COVID-19. The relevance of this review is to offer high-quality evidence that can be used as the basis for the identification of potential solutions to the COVID-19 pandemic.
Collapse
Affiliation(s)
- Hani Alothaid
- Department of Basic Sciences, Faculty of Applied Medical Sciences, Al-Baha University , Al-Baha, Saudi Arabia
| | | | - Karim El Bakkouri
- Research Center, King Fahad Medical City , Riyadh, Saudi Arabia.,Rapid Test Development Department, SciMed Services and Solutions , Brussels, Belgium
| | - Sufana AlMashhadi
- Research Center, King Fahad Medical City , Riyadh, Saudi Arabia.,McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, USA
| | - Ahmed A Al-Qahtani
- Department of Infection and Immunity, Research Centre, King Faisal Specialist Hospital & Research Centre , Riyadh, Saudi Arabia.,Department of Microbiology and Immunology, School of Medicine, Alfaisal University , Riyadh, Saudi Arabia
| |
Collapse
|
604
|
Abstract
SARS-CoV2 infection or COVID-19 has created panic around the world since its first origin in December 2019 in Wuhan city, China. The COVID-19 pandemic has infected more than 46.4 million people, with 1,199,727 deaths. The immune system plays a crucial role in the severity of COVID-19 and the development of pneumonia-induced acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Along with providing protection, both innate and T cell-based adaptive immune response dysregulate during severe SARS-CoV2 infection. This dysregulation is more pronounced in older population and patients with comorbidities (Diabetes, hypertension, obesity, other pulmonary and autoimmune diseases). However, COVID-19 patients develop protective antibodies (Abs) against SARS-CoV2, but they do not long for last. The induction of the immune response against the pathogen also requires metabolic energy that generates through the process of immunometabolism. The change in the metabolic stage of immune cells from homeostasis to an inflammatory or infectious environment is called immunometabolic reprogramming. The article describes the cellular immunology (macrophages, T cells, B cells, dendritic cells, NK cells and pulmonary epithelial cells (PEC) and vascular endothelial cells) and the associated immune response during COVID-19. Immunometabolism may serve as a cell-specific therapeutic approach to target COVID-19.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
605
|
Nagarkatti P, Miranda K, Nagarkatti M. Use of Cannabinoids to Treat Acute Respiratory Distress Syndrome and Cytokine Storm Associated with Coronavirus Disease-2019. Front Pharmacol 2020; 11:589438. [PMID: 33240092 PMCID: PMC7677512 DOI: 10.3389/fphar.2020.589438] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly infectious respiratory disease caused by the severe acute respiratory syndrome coronavirus 2. A significant proportion of COVID-19 patients develop Acute Respiratory Distress Syndrome (ARDS) resulting from hyperactivation of the immune system and cytokine storm, which leads to respiratory and multi-organ failure, and death. Currently, there are no effective treatments against hyperimmune syndrome and ARDS. We propose that because immune cells express cannabinoid receptors and their agonists are known to exhibit potent anti-inflammatory activity, targeting cannabinoid receptors, and endocannabinoids deserve intense investigation as a novel approach to treat systemic inflammation, cytokine storm, and ARDS in patients with COVID-19.
Collapse
Affiliation(s)
- Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States.,University of South Carolina, Columbia, SC, United States
| | - Kathryn Miranda
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
606
|
Abstract
Studies of patients with COVID-19 have demonstrated markedly dysregulated coagulation and a high risk of morbid arterial and venous thrombotic events. Elevated levels of blood neutrophils and neutrophil extracellular traps (NETs) have recently been described in patients with COVID-19. However, their potential role in COVID-19-associated thrombosis remains incompletely understood. In order to elucidate the potential role of hyperactive neutrophils and NET release in COVID-19-associated thrombosis, we conducted a case–control study of patients hospitalized with COVID-19 who developed thrombosis, as compared with gender- and age-matched COVID-19 patients without clinical thrombosis. We found that remnants of NETs (cell-free DNA, myeloperoxidase-DNA complexes, and citrullinated histone H3) and neutrophil-derived S100A8/A9 (calprotectin) in patient sera were associated with higher risk of morbid thrombotic events in spite of prophylactic anticoagulation. These observations underscore the need for urgent investigation into the potential relationship between NETs and unrelenting thrombosis in COVID-19, as well as novel approaches for thrombosis prevention.
Collapse
|
607
|
Liou TG, Adler FR, Cahill BC, Cox DR, Cox JE, Grant GJ, Hanson KE, Hartsell SC, Hatton ND, Helms MN, Jensen JL, Kartsonaki C, Li Y, Leung DT, Marvin JE, Middleton EA, Osburn-Staker SM, Packer KA, Shakir SM, Sturrock AB, Tardif KD, Warren KJ, Waddoups LJ, Weaver LJ, Zimmerman E, Paine R. SARS-CoV-2 Innate Effector Associations and Viral Load in Early Nasopharyngeal Infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.10.30.20223545. [PMID: 33173878 PMCID: PMC7654861 DOI: 10.1101/2020.10.30.20223545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
To examine innate immune responses in early SARS-CoV-2 infection that may change clinical outcomes, we compared nasopharyngeal swab data from 20 virus-positive and 20 virus-negative individuals. Multiple innate immune-related and ACE-2 transcripts increased with infection and were strongly associated with increasing viral load. We found widespread discrepancies between transcription and translation. Interferon proteins were unchanged or decreased in infected samples suggesting virally-induced shut-off of host anti-viral protein responses. However, IP-10 and several interferon-stimulated gene proteins increased with viral load. Older age was associated with modifications of some effects. Our findings may characterize the disrupted immune landscape of early disease.
Collapse
|
608
|
Cai L, Zhou X, Wang M, Mei H, Ai L, Mu S, Zhao X, Chen W, Hu Y, Wang H. Predictive Nomogram for Severe COVID-19 and Identification of Mortality-Related Immune Features. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 9:177-184.e3. [PMID: 33160092 PMCID: PMC7640885 DOI: 10.1016/j.jaip.2020.10.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Patients with severe 2019 novel coronavirus disease (COVID-19) have a high mortality rate. The early identification of severe COVID-19 is of critical concern. In addition, the correlation between the immunological features and clinical outcomes in severe cases needs to be explored. OBJECTIVE To build a nomogram for identifying patients with severe COVID-19 and explore the immunological features correlating with fatal outcomes. METHODS We retrospectively enrolled 85 and 41 patients with COVID-19 in primary and validation cohorts, respectively. A predictive nomogram based on risk factors for severe COVID-19 was constructed using the primary cohort and evaluated internally and externally. In addition, in the validation cohort, immunological features in patients with severe COVID-19 were analyzed and correlated with disease outcomes. RESULTS The risk prediction nomogram incorporating age, C-reactive protein, and D-dimer for early identification of patients with severe COVID-19 showed favorable discrimination in both the primary (area under the curve [AUC] 0.807) and validation cohorts (AUC 0.902) and was well calibrated. Patients who died from COVID-19 showed lower abundance of peripheral CD45RO+CD3+ T cells and natural killer cells, but higher neutrophil counts than that in the patients who recovered (P = .001, P = .009, and P = .009, respectively). Moreover, the abundance of CD45RO+CD3+ T cells, neutrophil-to-lymphocyte ratio, and neutrophil-to-natural killer cell ratio were strong indicators of death in patients with severe COVID-19 (AUC 0.933 for all 3). CONCLUSION The novel nomogram aided the early identification of severe COVID-19 cases. In addition, the abundance of CD45RO+CD3+ T cells and neutrophil-to-lymphocyte and neutrophil-to-natural killer cell ratios may serve as useful prognostic predictors in severe patients.
Collapse
Affiliation(s)
- Li Cai
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Miao Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lisha Ai
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shidai Mu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Zhao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Huafang Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
609
|
Bellmann-Weiler R, Lanser L, Burkert F, Seiwald S, Fritsche G, Wildner S, Schroll A, Koppelstätter S, Kurz K, Griesmacher A, Weiss G. Neopterin Predicts Disease Severity in Hospitalized Patients With COVID-19. Open Forum Infect Dis 2020; 8:ofaa521. [PMID: 33442554 PMCID: PMC7665702 DOI: 10.1093/ofid/ofaa521] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/21/2020] [Indexed: 01/08/2023] Open
Abstract
This study evaluates the predictive value of circulating inflammatory markers, especially neopterin, in patients with coronavirus disease 2019 (COVID-19). Within this retrospective analysis of 115 hospitalized COVID-19 patients, elevated neopterin levels upon admission were significantly associated with disease severity, risk for intensive care unit admission, need for mechanical ventilation, and death. Therefore, neopterin is a reliable predictive marker in patients with COVID-19 and may help to improve the clinical management of patients.
Collapse
Affiliation(s)
- Rosa Bellmann-Weiler
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck, Austria
| | - Lukas Lanser
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck, Austria
| | - Francesco Burkert
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck, Austria
| | - Stefanie Seiwald
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck, Austria
| | - Gernot Fritsche
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck, Austria
| | - Sophie Wildner
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck, Austria
| | - Andrea Schroll
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck, Austria
| | - Sabine Koppelstätter
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck, Austria
| | - Katharina Kurz
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck, Austria
| | - Andrea Griesmacher
- Central Institute for Medical and Chemical Laboratory Diagnosis, Innsbruck University Hospital, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
610
|
Yonas E, Alwi I, Pranata R, Huang I, Lim MA, Yamin M, Nasution SA, Setiati S, Virani SS. Elevated interleukin levels are associated with higher severity and mortality in COVID 19 - A systematic review, meta-analysis, and meta-regression. Diabetes Metab Syndr 2020; 14:2219-2230. [PMID: 33395783 PMCID: PMC7669483 DOI: 10.1016/j.dsx.2020.11.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS COVID 19 pneumonia commonly leads to ARDS. The occurrence of ARDS in COVID 19 patients is thought to occur secondary to an exaggerated immunologic response. In this meta-analysis, we aim to comprehensively study the various levels of immunological parameters in patients with COVID 19. MATERIALS AND METHODS We performed a systematic literature search from PubMed, EuropePMC, SCOPUS, Cochrane Central Database, and medRxiv with the search terms, "COVID-19" and "Interleukin". The outcome of interest was prognosis in COVID 19 patients. RESULTS We performed meta analysis of 16 studies. Higher counts of CD4 and CD8 with Lower Levels of TNF-a, IL2R, IL6, IL8 were observed on patients with good prognosis compared to patients with poor prognosis; -0.57 (pg/mL) (-1.10, -0.04, p = 0.04), (I2 91%, p < 0.001); -579.84 (U/mL) (-930.11, -229.57, p < 0.001), (I2 96%, p < 0.001); -1.49 (pg/mL) (-1.97, -1.01, p < 0.001), (I2 94%, p < 0.001); -0.80 (pg/mL) (-1.21, -0.40, p < 0.001), (I2 79%, p < 0.001); -2.51 (pg/mL) (-3.64, -1.38, p < 0.00001), (I2 98%, p < 0.001) respectively. Meta-regression showed age and hypertension (coefficient: 1.99, and -1.57, p = 0.005, and 0.006) significantly influenced association between IL-6 and poor outcome. CONCLUSION Elevated immune response to coronavirus occurs in COVID 19 patients. Higher counts of CD4 and CD8 were seen in patients with good prognosis compared to patients with poor prognosis, with Lower levels of TNF-a, IL2R, IL6, IL8, were observed in patients with good prognosis compared to patients with poor prognosis.
Collapse
Affiliation(s)
- Emir Yonas
- Faculty of Medicine, Universitas YARSI, Jakarta, Indonesia.
| | - Idrus Alwi
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia/ Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia.
| | - Raymond Pranata
- Faculty of Medicine, Universitas Pelita Harapan, Tangerang, Indonesia.
| | - Ian Huang
- Faculty of Medicine, Universitas Pelita Harapan, Tangerang, Indonesia; Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin General Hospital, Bandung, Indonesia.
| | | | - Muhammad Yamin
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia/ Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia.
| | - Sally Aman Nasution
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia/ Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia.
| | - Siti Setiati
- Division of Geriatrics, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo General Hospital, Jakarta, Indonesia.
| | - Salim S Virani
- Michael E. DeBakey Veterans Affairs Medical Center & Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
611
|
Sriram K, Insel PA. A hypothesis for pathobiology and treatment of COVID-19: The centrality of ACE1/ACE2 imbalance. Br J Pharmacol 2020; 177:4825-4844. [PMID: 32333398 PMCID: PMC7572451 DOI: 10.1111/bph.15082] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 11/29/2022] Open
Abstract
Angiotensin Converting Enzyme2 is the cell surface binding site for the coronavirus SARS-CoV-2, which causes COVID-19. We propose that an imbalance in the action of ACE1- and ACE2-derived peptides, thereby enhancing angiotensin II (Ang II) signalling is primary driver of COVID-19 pathobiology. ACE1/ACE2 imbalance occurs due to the binding of SARS-CoV-2 to ACE2, reducing ACE2-mediated conversion of Ang II to Ang peptides that counteract pathophysiological effects of ACE1-generated ANG II. This hypothesis suggests several approaches to treat COVID-19 by restoring ACE1/ACE2 balance: (a) AT receptor antagonists; (b) ACE1 inhibitors (ACEIs); (iii) agonists of receptors activated by ACE2-derived peptides (e.g. Ang (1-7), which activates MAS1); (d) recombinant human ACE2 or ACE2 peptides as decoys for the virus. Reducing ACE1/ACE2 imbalance is predicted to blunt COVID-19-associated morbidity and mortality, especially in vulnerable patients. Importantly, approved AT antagonists and ACEIs can be rapidly repurposed to test their efficacy in treating COVID-19. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
- Krishna Sriram
- Department of PharmacologyUniversity of California San DiegoLa JollaCAUSA
| | - Paul A. Insel
- Department of PharmacologyUniversity of California San DiegoLa JollaCAUSA
- Department of MedicineUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
612
|
Verma S, Carter EB, Mysorekar IU. SARS-CoV2 and pregnancy: An invisible enemy? Am J Reprod Immunol 2020; 84:e13308. [PMID: 32678975 PMCID: PMC7404619 DOI: 10.1111/aji.13308] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Coronavirus disease 2019 or COVID-19 is an emerging viral disease caused by a member of the betacoronavirus family, SARS-CoV-2. Since its' emergence in December 2019, it has rapidly caused close to half a million fatalities globally. Data regarding the impact of COVID-19 on pregnancy are limited. Here, we review pathological findings in placentas from women who tested positive for SARS-CoV-2 as well as information on pregnancy outcomes associated with related and highly pathogenic coronaviruses (ie, severe acute respiratory syndrome (SARS-COV) and the Middle East respiratory syndrome, MERS). We present immune-inflammatory correlates of COVID-19 in pregnancy and review the role of the Renin Angiotensin System in the pathogenesis of COVID-19 in pregnancy. Greater understanding of the pathogenesis of SARS-CoV-2 in the placenta will yield important insight into potential therapeutic interventions for pregnant women with COVID-19.
Collapse
Affiliation(s)
- Sonam Verma
- Department of Obstetrics and GynecologyWashington University in St. Louis School of MedicineSt. LouisMOUSA
- Department of Pathology and ImmunologyWashington University in St. Louis School of MedicineSt. LouisMOUSA
| | - Ebony B. Carter
- Department of Obstetrics and GynecologyWashington University in St. Louis School of MedicineSt. LouisMOUSA
- Department of Pathology and ImmunologyWashington University in St. Louis School of MedicineSt. LouisMOUSA
| | - Indira U. Mysorekar
- Department of Obstetrics and GynecologyWashington University in St. Louis School of MedicineSt. LouisMOUSA
- Department of Pathology and ImmunologyWashington University in St. Louis School of MedicineSt. LouisMOUSA
| |
Collapse
|
613
|
Laganà AS, Unfer V, Garzon S, Bizzarri M. Role of inositol to improve surfactant functions and reduce IL-6 levels: A potential adjuvant strategy for SARS-CoV-2 pneumonia? Med Hypotheses 2020; 144:110262. [PMID: 33254564 PMCID: PMC7480225 DOI: 10.1016/j.mehy.2020.110262] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/30/2020] [Accepted: 09/05/2020] [Indexed: 01/18/2023]
Abstract
To date, the spread of SARS-CoV-2 infection is increasing worldwide and represents a primary healthcare emergency. Although the infection can be asymptomatic, several cases develop severe pneumonia and acute respiratory distress syndrome (ARDS) characterized by high levels of pro-inflammatory cytokines, primarily interleukin (IL)-6. Based on available data, the severity of ARDS and serum levels of IL-6 are key determinants for the prognosis. In this scenario, available in vitro and in vivo data suggested that myo-inositol is able to increase the synthesis and function of the surfactant phosphatidylinositol, acting on the phosphoinositide 3-kinase (PI3K)-regulated signaling, with amelioration of both immune system and oxygenation at the bronchoalveolar level. In addition, myo-inositol has been found able to decrease the levels of IL-6 in several experimental settings, due to an effect on the inositol-requiring enzyme 1 (IRE1)-X-box-binding protein 1 (XBP1) and on the signal transducer and activator of transcription 3 (STAT3) pathways. In this scenario, treatment with myo-inositol may be able to reduce IL-6 dependent inflammatory response and improve oxygenation in patients with severe ARDS by SARS-CoV-2. In addition, the action of myo-inositol on IRE1 endonuclease activity may also inhibit the replication of SARS-CoV-2, as was reported for the respiratory syncytial virus. Since the available data are extremely limited, if this potential therapeutic approach will be considered valid in the clinical practice, the necessary future investigations should aim to identify the best dose, administration route (oral, intravenous and/or aerosol nebulization), and cluster(s) of patients which may get beneficial effects from this treatment.
Collapse
Affiliation(s)
- Antonio Simone Laganà
- Department of Obstetrics and Gynecology, "Filippo Del Ponte" Hospital, University of Insubria, Varese, Italy; The Experts Group on Inositol in Basic and Clinical Research (EGOI), Italy(1).
| | - Vittorio Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), Italy(1); Systems Biology Group Lab, "La Sapienza" University, Rome, Italy
| | - Simone Garzon
- Department of Obstetrics and Gynecology, "Filippo Del Ponte" Hospital, University of Insubria, Varese, Italy
| | - Mariano Bizzarri
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), Italy(1); Systems Biology Group Lab, "La Sapienza" University, Rome, Italy; Department of Experimental Medicine, "La Sapienza" University, Rome, Italy
| |
Collapse
|
614
|
Vasanthakumar N. Beta-Adrenergic Blockers as a Potential Treatment for COVID-19 Patients. Bioessays 2020; 42:e2000094. [PMID: 32815593 PMCID: PMC7460992 DOI: 10.1002/bies.202000094] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/28/2020] [Indexed: 12/19/2022]
Abstract
More than 15 million people have been affected by coronavirus disease 2019 (COVID-19) and it has caused 640 016 deaths as of July 26, 2020. Currently, no effective treatment option is available for COVID-19 patients. Though many drugs have been proposed, none of them has shown particular efficacy in clinical trials. In this article, the relationship between the Adrenergic system and the renin-angiotensin-aldosterone system (RAAS) is focused in COVID-19 and a vicious circle consisting of the Adrenergic system-RAAS-Angiotensin converting enzyme 2 (ACE2)-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (which is referred to as the "ARAS loop") is proposed. Hyperactivation of the ARAS loop may be the underlying pathophysiological mechanism in COVID-19, and beta-adrenergic blockers are proposed as a potential treatment option. Beta-adrenergic blockers may decrease the SARS-CoV-2 cellular entry by decreasing ACE2 receptors expression and cluster of differentiation 147 (CD147) in various cells in the body. Beta-adrenergic blockers may decrease the morbidity and mortality in COVID-19 patients by preventing or reducing acute respiratory distress syndrome (ARDS) and other complications. Retrospective and prospective clinical trials should be conducted to check the validity of the hypothesis. Also see the video abstract here https://youtu.be/uLoy7do5ROo.
Collapse
Affiliation(s)
- Natesan Vasanthakumar
- School of Chemical and BiotechnologySASTRA Deemed UniversityThanjavurTamil Nadu613401India
- Present address:
Abel ClinicUthangaraiTamil Nadu635207India
| |
Collapse
|
615
|
Abstract
As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic spreads, it is becoming increasingly evident that coronavirus disease 2019 (COVID-19) is not limited to the respiratory system, and that other organs can be affected. In particular, virus-related neurological manifestations are being reported more and more frequently in the scientific literature. In this article, we review the literature on the association between COVID-19 and neurological manifestations, present evidence from preclinical research suggesting that SARS-CoV-2 could be responsible for many of these manifestations, and summarize the biological pathways that could underlie each neurological symptom. Understanding the mechanisms that lead to neurological manifestations in patients with COVID-19 and how these manifestations correlate with clinical outcomes will be instrumental in guiding the optimal use of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Alessandro Pezzini
- Department of Clinical and Experimental Sciences, Neurology Clinic, University of Brescia, Brescia, Italy.
| | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, Neurology Clinic, University of Brescia, Brescia, Italy
| |
Collapse
|
616
|
d'Arminio Monforte A, Tavelli A, Bai F, Tomasoni D, Falcinella C, Castoldi R, Barbanotti D, Mulè G, Allegrini M, Tesoro D, Tagliaferri G, Mondatore D, Augello M, Cona A, Ancona G, Gazzola L, Iannotti N, Tincati C, Viganò O, De Bona A, Bini T, Cozzi-Lepri A, Marchetti G. The importance of patients' case-mix for the correct interpretation of the hospital fatality rate in COVID-19 disease. Int J Infect Dis 2020; 100:67-74. [PMID: 32950738 PMCID: PMC7497732 DOI: 10.1016/j.ijid.2020.09.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/31/2020] [Accepted: 09/13/2020] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE We aimed to document data on the epidemiology and factors associated with clinical course leading to death of patients hospitalised with COVID-19. METHODS Prospective observational cohort study on patients hospitalised with COVID-19 disease in February-24th/May-17th 2020 in Milan, Italy. Uni-multivariable Cox regression analyses were performed. Death's percentage by two-weeks' intervals according to age and disease severity was analysed. RESULTS A total of 174/539 (32.3%) patients died in hospital over 8228 person-day follow-up; the 14-day Kaplan-Meier probability of death was 29.5% (95%CI: 25.5-34.0). Older age, burden of comorbidities, COVID-19 disease severity, inflammatory markers at admission were independent predictors of increased risk, while several drug-combinations were predictors of reduced risk of in-hospital death. The highest fatality rate, 36.5%, occurred during the 2nd-3rd week of March, when 55.4% of patients presented with severe disease, while a second peak, by the end of April, was related to the admission of older patients (55% ≥80 years) with less severe disease, 30% coming from long-term care facilities. CONCLUSIONS The unusual fatality rate in our setting is likely to be related to age and the clinical conditions of our patients. These findings may be useful to better allocate resources of the national healthcare system, in case of re-intensification of COVID-19 epidemics.
Collapse
Affiliation(s)
- Antonella d'Arminio Monforte
- Clinic of Infectious Diseases, Department of Health Science, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy.
| | - Alessandro Tavelli
- Clinic of Infectious Diseases, Department of Health Science, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Francesca Bai
- Clinic of Infectious Diseases, Department of Health Science, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Daniele Tomasoni
- Clinic of Infectious Diseases, Department of Health Science, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Camilla Falcinella
- Clinic of Infectious Diseases, Department of Health Science, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Roberto Castoldi
- Clinic of Infectious Diseases, Department of Health Science, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Diletta Barbanotti
- Clinic of Infectious Diseases, Department of Health Science, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Giovanni Mulè
- Clinic of Infectious Diseases, Department of Health Science, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Marina Allegrini
- Clinic of Infectious Diseases, Department of Health Science, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Daniele Tesoro
- Clinic of Infectious Diseases, Department of Health Science, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Gianmarco Tagliaferri
- Clinic of Infectious Diseases, Department of Health Science, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Debora Mondatore
- Clinic of Infectious Diseases, Department of Health Science, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Matteo Augello
- Clinic of Infectious Diseases, Department of Health Science, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Andrea Cona
- Clinic of Infectious Diseases, Department of Health Science, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Giuseppe Ancona
- Clinic of Infectious Diseases, Department of Health Science, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Lidia Gazzola
- Clinic of Infectious Diseases, Department of Health Science, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Nathalie Iannotti
- Clinic of Infectious Diseases, Department of Health Science, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Camilla Tincati
- Clinic of Infectious Diseases, Department of Health Science, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Ottavia Viganò
- Clinic of Infectious Diseases, Department of Health Science, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Anna De Bona
- Clinic of Infectious Diseases, Department of Health Science, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Teresa Bini
- Clinic of Infectious Diseases, Department of Health Science, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Alessandro Cozzi-Lepri
- Centre for Clinical Research, Epidemiology, Modelling and Evaluation, Institute for Global Health, University College London, London, UK
| | - Giulia Marchetti
- Clinic of Infectious Diseases, Department of Health Science, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| |
Collapse
|
617
|
Kumar V. Understanding the complexities of SARS-CoV2 infection and its immunology: A road to immune-based therapeutics. Int Immunopharmacol 2020; 88:106980. [PMID: 33182073 PMCID: PMC7843151 DOI: 10.1016/j.intimp.2020.106980] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Emerging infectious diseases always pose a threat to humans along with plant and animal life. SARS-CoV2 is the recently emerged viral infection that originated from Wuhan city of the Republic of China in December 2019. Now, it has become a pandemic. Currently, SARS-CoV2 has infected more than 27.74 million people worldwide, and taken 901,928 human lives. It was named first 'WH 1 Human CoV' and later changed to 2019 novel CoV (2019-nCoV). Scientists have established it as a zoonotic viral disease emerged from Chinese horseshoe bats, which do not develop a severe infection. For example, Rhinolophus Chinese horseshoe bats harboring severe acute respiratory syndrome-related coronavirus (SARSr-CoV) or SARSr-Rh-BatCoV appear healthy and clear the virus within 2-4 months period. The article introduces first the concept of EIDs and some past EIDs, which have affected human life. Next section discusses mysteries regarding SARS-CoV2 origin, its evolution, and human transfer. Third section describes COVID-19 clinical symptoms and factors affecting susceptibility or resistance. The fourth section introduces the SARS-CoV2 entry in the host cell, its replication, and the establishment of productive infection. Section five describes the host's immune response associated with asymptomatic, symptomatic, mild to moderate, and severe COVID-19. The subsequent seventh and eighth sections mention the immune status in COVID-19 convalescent patients and re-emergence of COVID-19 in them. Thereafter, the eighth section describes viral strategies to hijack the host antiviral immune response and generate the "cytokine storm". The ninth section describes about transgenic humane ACE2 (hACE2) receptor expressing mice to study immunity, drugs, and vaccines. The article ends with the development of different immunomodulatory and immunotherapeutics strategies, including vaccines waiting for their approval in humans as prophylaxis or treatment measures.
Collapse
Affiliation(s)
- V Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
618
|
Sriram K, Insel PA. A hypothesis for pathobiology and treatment of COVID-19: The centrality of ACE1/ACE2 imbalance. Br J Pharmacol 2020. [PMID: 32333398 DOI: 10.1111/bph.15082.10.1111/bph.15082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Angiotensin Converting Enzyme2 is the cell surface binding site for the coronavirus SARS-CoV-2, which causes COVID-19. We propose that an imbalance in the action of ACE1- and ACE2-derived peptides, thereby enhancing angiotensin II (Ang II) signalling is primary driver of COVID-19 pathobiology. ACE1/ACE2 imbalance occurs due to the binding of SARS-CoV-2 to ACE2, reducing ACE2-mediated conversion of Ang II to Ang peptides that counteract pathophysiological effects of ACE1-generated ANG II. This hypothesis suggests several approaches to treat COVID-19 by restoring ACE1/ACE2 balance: (a) AT receptor antagonists; (b) ACE1 inhibitors (ACEIs); (iii) agonists of receptors activated by ACE2-derived peptides (e.g. Ang (1-7), which activates MAS1); (d) recombinant human ACE2 or ACE2 peptides as decoys for the virus. Reducing ACE1/ACE2 imbalance is predicted to blunt COVID-19-associated morbidity and mortality, especially in vulnerable patients. Importantly, approved AT antagonists and ACEIs can be rapidly repurposed to test their efficacy in treating COVID-19. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
- Krishna Sriram
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Paul A Insel
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
619
|
Elkahloun AG, Saavedra JM. Candesartan could ameliorate the COVID-19 cytokine storm. Biomed Pharmacother 2020; 131:110653. [PMID: 32942152 PMCID: PMC7439834 DOI: 10.1016/j.biopha.2020.110653] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Angiotensin receptor blockers (ARBs) reducing inflammation and protecting lung and brain function, could be of therapeutic efficacy in COVID-19 patients. METHODS Using GSEA, we compared our previous transcriptome analysis of neurons injured by glutamate and treated with the ARB Candesartan (GSE67036) with transcriptional signatures from SARS-CoV-2 infected primary human bronchial epithelial cells (NHBE) and lung postmortem (GSE147507), PBMC and BALF samples (CRA002390) from COVID-19 patients. RESULTS Hundreds of genes upregulated in SARS-CoV-2/COVID-19 transcriptomes were similarly upregulated by glutamate and normalized by Candesartan. Gene Ontology analysis revealed expression profiles with greatest significance and enrichment, including proinflammatory cytokine and chemokine activity, the NF-kappa B complex, alterations in innate and adaptive immunity, with many genes participating in the COVID-19 cytokine storm. CONCLUSIONS There are similar injury mechanisms in SARS-CoV-2 infection and neuronal injury, equally reduced by ARB treatment. This supports the hypothesis of a therapeutic role for ARBs, ameliorating the COVID-19 cytokine storm.
Collapse
Affiliation(s)
- Abdel G Elkahloun
- Comparative Genomics and Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Juan M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, SE402 Med/Dent, 3900 Reservoir Road, Washington, DC 20057, USA.
| |
Collapse
|
620
|
Yang Y, Ding L, Zou X, Shen Y, Hu D, Hu X, Li Z, Kamel IR. Visceral Adiposity and High Intramuscular Fat Deposition Independently Predict Critical Illness in Patients with SARS-CoV-2. Obesity (Silver Spring) 2020; 28:2040-2048. [PMID: 32677752 PMCID: PMC7405187 DOI: 10.1002/oby.22971] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVE This study aimed to assess the association between adipose tissue distribution and severity of clinical course in patients with severe acute respiratory syndrome coronavirus 2. METHODS For this retrospective study, 143 hospitalized patients with confirmed coronavirus disease 2019 (COVID-19) who underwent an unenhanced abdominal computed tomography (CT) scan between January 1, 2020, and March 30, 2020, were included. Univariate and multivariate logistic regression analyses were performed to identify the risk factors associated with the severity of COVID-19 infection. RESULTS There were 45 patients who were identified as critically ill. High visceral to subcutaneous adipose tissue area ratio (called visceral adiposity) (odds ratio: 2.47; 95% CI: 1.05-5.98, P = 0.040) and low mean attenuation of skeletal muscle (called high intramuscular fat [IMF] deposition) (odds ratio: 11.90; 95% CI: 4.50-36.14; P < 0.001) were independent risk factors for critical illness. Furthermore, visceral adiposity or high IMF deposition increased the risk of mechanical ventilation (P = 0.013, P < 0.001, respectively). High IMF deposition increased the risk of death (P = 0.012). CONCLUSIONS COVID-19 patients with visceral adiposity or high IMF deposition have higher risk for critical illness. Therefore, patients with abdominal obesity should be monitored more carefully when hospitalized.
Collapse
Affiliation(s)
- Yang Yang
- Department of RadiologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Lin Ding
- Department of RadiologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Xianlun Zou
- Department of RadiologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Yaqi Shen
- Department of RadiologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Daoyu Hu
- Department of RadiologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Xuemei Hu
- Department of RadiologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Zhen Li
- Department of RadiologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Ihab R. Kamel
- Russell H. Morgan Department of Radiology & Radiological ScienceJohns Hopkins HospitalBaltimoreMarylandUSA
| |
Collapse
|
621
|
Nasonov E, Samsonov M. The role of Interleukin 6 inhibitors in therapy of severe COVID-19. Biomed Pharmacother 2020; 131:110698. [PMID: 32920514 PMCID: PMC7455113 DOI: 10.1016/j.biopha.2020.110698] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Cytokine storm syndrome (CSS) is a severe complication of inflammatory immune diseases or treatment of malignancies; it may also appear during the progression of COVID-19. CSS is caused by dysregulation of the synthesis of cytokines, including pro-inflammatory, regulatory, and anti-inflammatory cytokines and chemokines, leading to pathologic activation of innate and adaptive (Th1 and Th17 mediated) immunity. Interleukin-6 (IL-6) plays an important role in the pathogenesis of CSS. The significant role of IL-6 in pathogenesis of COVID-19 was confirmed in a range of studies, which showed that the plasma concentration of IL-6 was increased in patients with severe COVID-19. Currently, IL-6 inhibitor therapeutics are not yet approved for the treatment of COVID-19; however, these medicines, including tocilizumab (TCZ) are used off-label for the treatment of patients with severe COVID-19, including life-threatening conditions. The role of IL-6 in the pathogenesis of CSS during COVID-19 is important however, a number of related issues are not yet clear. These issues include the indications for treatment with IL-6 inhibitors, as well as the estimation of risk associated with the disease, outcomes, treatment options, and adverse drug reactions. The development of personalized immunomodulatory therapy, with respect to the role of cytokines in pathogenesis, requires the studies that aimed to find other relevant therapeutic targets for the treatment of CSS in patients with COVID-19. These therapeutic targets include inhibition of IL-1, IL-6, TNFα, GM-CSF, IFNγ, IL-17, IL-18, and also activation of the complement system. The challenge of CSS in patients with COVID-19 is identifying the correct scientific targets and developing clinical trials aimed to evaluate the pathogenesis and treat immune-mediated inflammatory diseases (IMIDs). Hopefully, the significant efforts of scientists and physicians across the globe will improve the prognosis in COVID-19 patients and provide useful information on IMIDs required to support the struggle for treating potential viral outbreaks, and treatment of well-known IMIDs.
Collapse
Affiliation(s)
- E Nasonov
- V.A. Nasonova Research Institute of Rheumatology, Moscow, Russia; I.M. Sechenov First Moscow State Medical University, MOH, Moscow, Russia; Kashirskoye roadway, 34А, 1115522, Moscow, Russia; Trubetskaya str, 8, bdg. 2, 2119991, Moscow, Russia.
| | - M Samsonov
- RPharm JSC, Leninsky prospect 111, 11942, Moscow, Russia.
| |
Collapse
|
622
|
AbdAllah M, Ez Elarab H, Raslan E, Saber L, Daoud E, Saber M. Role of micronutrients in the management of coronavirus disease 2019. New Microbes New Infect 2020; 38:100782. [PMID: 33072335 PMCID: PMC7547825 DOI: 10.1016/j.nmni.2020.100782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/26/2020] [Accepted: 10/07/2020] [Indexed: 11/21/2022] Open
Abstract
Micronutrients play an important role in enhancing the immune system, therefore, proper nutritional support of micronutrients could have a positive impact on COVID-19 outcome.
Collapse
Affiliation(s)
- M. AbdAllah
- Complementary Medicine Department, Medical Research Division, National Research Centre, Giza, Egypt
| | - H. Ez Elarab
- Department of Community, Environmental and Occupational Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - E. Raslan
- Family Medicine Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - L. Saber
- Department of Medical Biochemistry, Al-Azhar University, Cairo, Egypt
| | - E. Daoud
- Complementary Medicine Department, Medical Research Division, National Research Centre, Giza, Egypt
| | - M. Saber
- Complementary Medicine Department, Medical Research Division, National Research Centre, Giza, Egypt
| |
Collapse
|
623
|
Swarz JA, Daily S, Niemi E, Hilbert SG, Ibrahim HA, Gaitanis JN. COVID-19 Infection Presenting as Acute-Onset Focal Status Epilepticus. Pediatr Neurol 2020; 112:7. [PMID: 32823139 PMCID: PMC7392878 DOI: 10.1016/j.pediatrneurol.2020.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 11/17/2022]
|
624
|
Awortwe C, Cascorbi I. Meta-analysis on outcome-worsening comorbidities of COVID-19 and related potential drug-drug interactions. Pharmacol Res 2020; 161:105250. [PMID: 33059010 PMCID: PMC7550259 DOI: 10.1016/j.phrs.2020.105250] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 01/08/2023]
Abstract
Drug-drug interactions (DDI) potentially occurring between medications used in the course of COVID-19 infection and medications prescribed for the management of underlying comorbidities may cause adverse drug reactions (ADRs) contributing to worsening of the clinical outcome in affected patients. First, we conducted a meta-analysis to determine comorbidities observed in the course of COVID-19 disease associated with an increased risk of worsened clinical outcome from 24 published studies. In addition, the potential risk of DDI between medications used in the course of COVID-19 treatment in these studies and those for the management of observed comorbidities was evaluated for possible worsening of the clinical outcome. Our meta-analysis revealed an implication cardiometabolic syndrome (e.g. cardiovascular disease, cerebrovascular disease, hypertension, and diabetes), chronic kidney disease and chronic obstructive pulmonary disease as main co-morbidities associated with worsen the clinical outcomes including mortality (risk difference RD 0.12, 95 %-CI 0.05-0.19, p = 0.001), admission to ICU (RD 0.10, 95 %-CI 0.04-0.16, p = 0.001) and severe infection (RD 0.05, 95 %-CI 0.01-0.09, p = 0.01) in COVID-19 patients. Potential DDI on pharmacokinetic level were identified between the antiviral agents atazanavir and lopinavir/ritonavir and some drugs, used in the treatment of cardiovascular diseases such as antiarrhythmics and anti-coagulants possibly affecting the clinical outcome including cardiac injury or arrest because of QTc-time prolongation or bleeding. Concluding, DDI occurring in the course of anti-Covid-19 treatment and co-morbidities could lead to ADRs, increasing the risk of hospitalization, prolonged time to recovery or death on extreme cases. COVID-19 patients with cardiometabolic diseases, chronic kidney disease and chronic obstructive pulmonary disease should be subjected to particular carefully clinical monitoring of adverse events with a possibility of dose adjustment when necessary.
Collapse
Affiliation(s)
- Charles Awortwe
- Institute for Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany; Division of Clinical Pharmacology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Ingolf Cascorbi
- Institute for Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
625
|
Ahmed MH, Hassan A. Dexamethasone for the Treatment of Coronavirus Disease (COVID-19): a Review. ACTA ACUST UNITED AC 2020; 2:2637-2646. [PMID: 33163859 PMCID: PMC7599121 DOI: 10.1007/s42399-020-00610-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
The World Health Organization (WHO) declared COVID-19 (novel coronavirus) as a global pandemic in the middle of March 2020, after the disease spread to more than 150 countries and territories leading to tens of thousands of cases within a couple of months. To date, there are no effective pharmaceutical treatments available. As well as that, the novel vaccines have not yet been approved as establishing their efficacy will take time. This study aims to summarize the evidence regarding corticosteroids such as dexamethasone for the treatment of COVID-19. Electronic searches were conducted on 7 September 2020 on Google Scholar database, MEDLINE and PubMed. A further search was conducted on the World Health Organization’s COVID-19 research article database. The findings of recent investigations that proved, both, the in vitro and in vivo activity of corticosteroids against COVID-19 and other coronavirus-related pneumonia were discussed. Low doses of corticosteroids (dexamethasone) could reduce the mortality in patients with severe COVID-19 disease; however, they had no effect on the mortality rate of those patients with a mild form of the condition. Moreover, the liberal use of corticosteroids was not advocated for, as high doses of the drug can cause more harm than good.
Collapse
Affiliation(s)
- Mukhtar H Ahmed
- SISAF Nanotechnology Drug Delivery, Ulster University, BT37 0QB Belfast, UK
| | - Arez Hassan
- School of Medicine, Queen's University, Belfast, BT9 7BL UK
| |
Collapse
|
626
|
Sriram K, Insel PA. Inflammation and thrombosis in COVID-19 pathophysiology: proteinase-activated and purinergic receptors as drivers and candidate therapeutic targets. Physiol Rev 2020; 101:545-567. [PMID: 33124941 PMCID: PMC8238137 DOI: 10.1152/physrev.00035.2020] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Evolving information has identified disease mechanisms and dysregulation of host biology that might be targeted therapeutically in coronavirus disease 2019 (COVID-19). Thrombosis and coagulopathy, associated with pulmonary injury and inflammation, are emerging clinical features of COVID-19. We present a framework for mechanisms of thrombosis in COVID-19 that initially derive from interaction of SARS-CoV-2 with ACE2, resulting in dysregulation of angiotensin signaling and subsequent inflammation and tissue injury. These responses result in increased signaling by thrombin (proteinase-activated) and purinergic receptors, which promote platelet activation and exert pathological effects on other cell types (e.g., endothelial cells, epithelial cells, and fibroblasts), further enhancing inflammation and injury. Inhibitors of thrombin and purinergic receptors may, thus, have therapeutic effects by blunting platelet-mediated thromboinflammation and dysfunction in other cell types. Such inhibitors include agents (e.g., anti-platelet drugs) approved for other indications, and that could be repurposed to treat, and potentially improve the outcome of, COVID-19 patients. COVID-19, caused by the SARS-CoV-2 virus, drives dysregulation of angiotensin signaling, which, in turn, increases thrombin-mediated and purinergic-mediated activation of platelets and increase in inflammation. This thromboinflammation impacts the lungs and can also have systemic effects. Inhibitors of receptors that drive platelet activation or inhibitors of the coagulation cascade provide opportunities to treat COVID-19 thromboinflammation.
Collapse
Affiliation(s)
- Krishna Sriram
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Paul A Insel
- Department of Pharmacology and Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
627
|
Chowdhury P, Barooah AK. Tea Bioactive Modulate Innate Immunity: In Perception to COVID-19 Pandemic. Front Immunol 2020; 11:590716. [PMID: 33193427 PMCID: PMC7655931 DOI: 10.3389/fimmu.2020.590716] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Innate immunity impairment led to disruption in cascade of signaling pathways upregulating pro-inflammatory cytokines, diminish interferons, depleted natural killer cells and activate reactive oxygen species production. These conditions severely affected body's ability to fight against infectious diseases and also plays a pivotal role in disease progression. Here, in emphasis is on nutritional immunity for regulating effective innate immune response for combating against infectious diseases like novel coronavirus disease (COVID 19). Drawing from discoveries on in-vitro experiments, animal models and human trials, tea polyphenols, micronutrients, and vitamins has the potential to modulate and enhance innate immune response. This article provides a comprehensive review on tea (Camellia sinensis L) infusion (a hot water extract of dried processed tea leaves prepared from young shoots of tea plant) as an innate immunity modulator. Tea infusion is rich in polyphenols; epigallocatechin gallate (EGCG) and theaflavin (TF), major green and black tea polyphenols, respectively. Studies showed their immunomodulatory competence. Tea infusions are also rich in alkaloids; caffeine and its intermediates, theophylline and theobromine, which have anti-inflammatory properties. Tea plant being an acidophilic perennial crop can accumulate different micronutrients, viz., copper (Cu), iron (Fe), manganese (Mn), selenium (Se), and zinc (Zn) from growing medium, i.e., from soil, which led to their considerable presence in tea infusion. Micronutrients are integral part of innate immune response. Overall, this review presents tea infusion as an important source of nutritional immunity which can enhance innate immune response in order to mitigate the unprecedented COVID-19 pandemic.
Collapse
Affiliation(s)
- Pritom Chowdhury
- Department of Biotechnology, Tocklai Tea Research Institute, Tea Research Association, Jorhat, India
| | - Anoop Kumar Barooah
- Directorate, Tocklai Tea Research Institute, Tea Research Association, Jorhat, India
| |
Collapse
|
628
|
Melin AD, Janiak MC, Marrone F, Arora PS, Higham JP. Comparative ACE2 variation and primate COVID-19 risk. Commun Biol 2020; 3:641. [PMID: 33110195 PMCID: PMC7591510 DOI: 10.1038/s42003-020-01370-w] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
The emergence of SARS-CoV-2 has caused over a million human deaths and massive global disruption. The viral infection may also represent a threat to our closest living relatives, nonhuman primates. The contact surface of the host cell receptor, ACE2, displays amino acid residues that are critical for virus recognition, and variations at these critical residues modulate infection susceptibility. Infection studies have shown that some primate species develop COVID-19-like symptoms; however, the susceptibility of most primates is unknown. Here, we show that all apes and African and Asian monkeys (catarrhines), exhibit the same set of twelve key amino acid residues as human ACE2. Monkeys in the Americas, and some tarsiers, lemurs and lorisoids, differ at critical contact residues, and protein modeling predicts that these differences should greatly reduce SARS-CoV-2 binding affinity. Other lemurs are predicted to be closer to catarrhines in their susceptibility. Our study suggests that apes and African and Asian monkeys, and some lemurs, are likely to be highly susceptible to SARS-CoV-2. Urgent actions have been undertaken to limit the exposure of great apes to humans, and similar efforts may be necessary for many other primate species. Amanda Melin et al. compare variation in 29 primate species at 12 amino acid residue sites coded by the ACE2 gene and show that apes and African and Asian monkeys exhibit the same set of twelve key amino acid residues as human ACE2. These results suggest that these primates are likely to be susceptible to SARS-CoV-2, whereas ACE2 gene sequences and protein-protein interaction models suggest reduced susceptibility for platyrrhines, tarsiers, lorisoids, and some lemurs.
Collapse
Affiliation(s)
- Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada. .,Department of Medical Genetics, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Dr, NW, Calgary, AB, T2N 4N1, Canada.
| | - Mareike C Janiak
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Dr, NW, Calgary, AB, T2N 4N1, Canada
| | - Frank Marrone
- Department of Chemistry, New York University, 100 Washington Square East, 10th Floor, New York, NY, 10003, USA
| | - Paramjit S Arora
- Department of Chemistry, New York University, 100 Washington Square East, 10th Floor, New York, NY, 10003, USA
| | - James P Higham
- Department of Anthropology, New York University, 25 Waverly Place, New York, NY, 10003, USA. .,New York Consortium in Evolutionary Primatology, New York, NY, USA.
| |
Collapse
|
629
|
Wang Z, Yang Y, Liang X, Gao B, Liu M, Li W, Chen Z, Wang Z. COVID-19 Associated Ischemic Stroke and Hemorrhagic Stroke: Incidence, Potential Pathological Mechanism, and Management. Front Neurol 2020; 11:571996. [PMID: 33193019 PMCID: PMC7652923 DOI: 10.3389/fneur.2020.571996] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/27/2020] [Indexed: 01/08/2023] Open
Abstract
The outbreak of the novel coronavirus infectious disease 2019 (COVID-19) caused by the SARS-CoV-2 virus has rapidly spread around the world. Increasing evidence has suggested that patients with COVID-19 may present neurological symptoms, and cerebrovascular diseases are one of the most frequent comorbidities. The markedly elevated D-dimer levels in patients with acute ischemic stroke suggests that SARS-CoV-2 infection may induce an inflammatory response and trigger a hypercoagulation state, thus leading to acute ischemic stroke. Cardioembolism and atherosclerosis in patients with COVID-19 infection may also increase the risk of ischemic stroke. The reduction of the angiotensin-converting enzyme II (ACE2) caused by SARS-CoV-2 binding to the ACE2 receptor can lead to abnormally elevated blood pressure and increase the risk of hemorrhagic stroke. Additionally, the cytokine storm induced by the immune response against the viral infection increases the risk of acute stroke. The management for COVID-19 patients with stroke is not only based on the traditional guidelines, but also based on the experience and new instructions from healthcare workers worldwide who are combatting COVID-19.
Collapse
Affiliation(s)
- Zilan Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanbo Yang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaolong Liang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bixi Gao
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meirong Liu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wen Li
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhouqing Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
630
|
Lorenz G, Moog P, Bachmann Q, La Rosée P, Schneider H, Schlegl M, Spinner C, Heemann U, Schmid RM, Algül H, Lahmer T, Huber W, Schmaderer C. Title: Cytokine release syndrome is not usually caused by secondary hemophagocytic lymphohistiocytosis in a cohort of 19 critically ill COVID-19 patients. Sci Rep 2020; 10:18277. [PMID: 33106497 PMCID: PMC7589537 DOI: 10.1038/s41598-020-75260-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023] Open
Abstract
Severe COVID-19 associated respiratory failure, poses the one challenge of our days. Assessment and treatment of COVID-19 associated hyperinflammation may be key to improve outcomes. It was speculated that in subgroups of patients secondary hemophagocytic lymphohistiocytosis (sHLH) or cytokine release syndrome (CRS) with features of macrophage activation syndrome might drive severe disease trajectories. If confirmed, profound immunosuppressive therapy would be a rationale treatment approach. Over a median observation period of 11 (IQR: 8; 16) days, 19 consecutive confirmed severe COVID-19-patients admitted to our intensive-care-unit were tested for presence of sHLH by two independent experts. HScores and 2004-HLH diagnostic criteria were assessed. Patients were grouped according to short-term clinical courses: discharge from ICU versus ongoing ARDS or death at time of analysis. The median HScore at admission was 157 (IQR: 98;180), without the key clinical triad of HLH, i.e. progressive cytopenia, persistent fever and organomegaly. Independent expert chart review revealed the absence of sHLH in all cases. No patient reached more than 3/6 of modified HLH 2004 criteria. Nevertheless, patients presented hyperinflammation with peripheral neutrophilic signatures (neutrophil/lymphocyte-ratio > 3.5). The latter best paralleled their short-term clinical courses, with declining relative neutrophil numbers prior to extubation (4.4, [IQR: 2.5;6.3]; n = 8) versus those with unfavourable courses (7.6, [IQR: 5.2;31], n = 9). Our study rules out virus induced sHLH as the leading cause of most severe-COVID-19 trajectories. Instead, an associated innate neutrophilic hyperinflammatory response or virus-associated-CRS appears dominant in patients with an unfavourable clinical course. Therapeutic implications are discussed.
Collapse
Affiliation(s)
- Georg Lorenz
- School of Medicine, Klinikum rechts der Isar, Department of Nephrology, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
- School of Medicine, Klinikum rechts der Isar, Division of Rheumatology, Ismaninger Straße 22, 81675, Munich, Germany.
| | - Philipp Moog
- School of Medicine, Klinikum rechts der Isar, Department of Nephrology, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
- School of Medicine, Klinikum rechts der Isar, Division of Rheumatology, Ismaninger Straße 22, 81675, Munich, Germany.
| | - Quirin Bachmann
- School of Medicine, Klinikum rechts der Isar, Department of Nephrology, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- School of Medicine, Klinikum rechts der Isar, Division of Rheumatology, Ismaninger Straße 22, 81675, Munich, Germany
| | - Paul La Rosée
- Clinic for Internal Medicine II, Schwarzwald-Baar Klinikum Villingen-Schwenningen, Klinikstr. 11, 78052, Villingen-Schwenningen, Germany
| | - Heike Schneider
- School of Medicine, Klinikum rechts der Isar, Department for Clinical Chemistry, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Michaela Schlegl
- School of Medicine, Klinikum rechts der Isar, Department of Nephrology, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Christoph Spinner
- School of Medicine, Klinikum rechts der Isar, II. Department for Internal Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Uwe Heemann
- School of Medicine, Klinikum rechts der Isar, Department of Nephrology, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Roland M Schmid
- School of Medicine, Klinikum rechts der Isar, II. Department for Internal Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Hana Algül
- School of Medicine, Klinikum rechts der Isar, II. Department for Internal Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- Comprehensive Cancer Center Munich at the Klinikum rechts der Isar, Technische Universität München, 81675, Munich, Germany
| | - Tobias Lahmer
- School of Medicine, Klinikum rechts der Isar, II. Department for Internal Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Wolfgang Huber
- School of Medicine, Klinikum rechts der Isar, II. Department for Internal Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Christoph Schmaderer
- School of Medicine, Klinikum rechts der Isar, Department of Nephrology, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- German Center for Infectious Research (DZIF), Technische Universität München, 81675, Munich, Germany
| |
Collapse
|
631
|
Roberts KA, Colley L, Agbaedeng TA, Ellison-Hughes GM, Ross MD. Vascular Manifestations of COVID-19 - Thromboembolism and Microvascular Dysfunction. Front Cardiovasc Med 2020; 7:598400. [PMID: 33195487 PMCID: PMC7649150 DOI: 10.3389/fcvm.2020.598400,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The coronavirus pandemic has reportedly infected over 31.5 million individuals and caused over 970,000 deaths worldwide (as of 22nd Sept 2020). This novel coronavirus, officially named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), although primarily causes significant respiratory distress, can have significant deleterious effects on the cardiovascular system. Severe cases of the virus frequently result in respiratory distress requiring mechanical ventilation, often seen, but not confined to, individuals with pre-existing hypertension and cardiovascular disease, potentially due to the fact that the virus can enter the circulation via the lung alveoli. Here the virus can directly infect vascular tissues, via TMPRSS2 spike glycoprotein priming, thereby facilitating ACE-2-mediated viral entry. Clinical manifestations, such as vasculitis, have been detected in a number of vascular beds (e.g., lungs, heart, and kidneys), with thromboembolism being observed in patients suffering from severe coronavirus disease (COVID-19), suggesting the virus perturbs the vasculature, leading to vascular dysfunction. Activation of endothelial cells via the immune-mediated inflammatory response and viral infection of either endothelial cells or cells involved in endothelial homeostasis, are some of the multifaceted mechanisms potentially involved in the pathogenesis of vascular dysfunction within COVID-19 patients. In this review, we examine the evidence of vascular manifestations of SARS-CoV-2, the potential mechanism(s) of entry into vascular tissue and the contribution of endothelial cell dysfunction and cellular crosstalk in this vascular tropism of SARS-CoV-2. Moreover, we discuss the current evidence on hypercoagulability and how it relates to increased microvascular thromboembolic complications in COVID-19.
Collapse
Affiliation(s)
- Kirsty A. Roberts
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Liam Colley
- School of Sport, Health & Exercise Science, Bangor University, Bangor, United Kingdom
| | - Thomas A. Agbaedeng
- Centre for Heart Rhythm Disorders, School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Georgina M. Ellison-Hughes
- Centre for Human and Physiological Sciences, Faculty of Life Sciences & Medicine, School of Basic and Medical Biosciences, King's College London, London, United Kingdom,*Correspondence: Georgina M. Ellison-Hughes
| | - Mark D. Ross
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom,Mark D. Ross
| |
Collapse
|
632
|
López-Iranzo FJ, López-Rodas AM, Franco L, López-Rodas G. Pentoxifylline and Oxypurinol: Potential Drugs to Prevent the "Cytokine Release (Storm) Syndrome" Caused by SARS-CoV-2? Curr Pharm Des 2020; 26:4515-4521. [PMID: 32787748 DOI: 10.2174/1381612826666200811180232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND COVID-19, caused by SARS-CoV-2, is a potentially lethal, rapidly-expanding pandemic and many efforts are being carried out worldwide to understand and control the disease. COVID-19 patients may display a cytokine release syndrome, which causes severe lung inflammation, leading, in many instances, to death. OBJECTIVE This paper is intended to explore the possibilities of controlling the COVID-19-associated hyperinflammation by using licensed drugs with anti-inflammatory effects. HYPOTHESIS We have previously described that pentoxifylline alone, or in combination with oxypurinol, reduces the systemic inflammation caused by experimentally-induced pancreatitis in rats. Pentoxifylline is an inhibitor of TNF-α production and oxypurinol inhibits xanthine oxidase. TNF-α, in turn, activates other inflammatory genes such as Nos2, Icam or IL-6, which regulate migration and infiltration of neutrophils into the pulmonary interstitial tissue, causing injury to the lung parenchyma. In acute pancreatitis, the anti-inflammatory action of pentoxifylline seems to be mediated by the prevention of the rapid and presumably transient loss of PP2A activity. This may also occur in the hyperinflammatory -cytokine releasing phase- of SARS-CoV-2 infection. Therefore, it may be hypothesized that early treatment of COVID-19 patients with pentoxifylline, alone or in combination with oxypurinol, would prevent the potentially lethal acute respiratory distress syndrome. CONCLUSION Pentoxifylline and oxypurinol are licensed drugs used for diseases other than COVID-19 and, therefore, phase I clinical trials would not be necessary for the administration to SARS-CoV-2- infected people. It would be worth investigating their potential effects against the hyperinflammatory response to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Francisco J López-Iranzo
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain,Residential Centre for Elderly People, Savia-Requena, Spain
| | - Ana M López-Rodas
- Medical Specialist in Family and Community Medicine, SAMU Service, Hospital of Sagunto, Spain,Royal Academy of Medicine of the Valencian Community, Spain
| | - Luis Franco
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain,Royal Academy of Medicine of the Valencian Community, Spain,Institute for Health Research of the University Clinic Hospital (INCLIVA), Spain,Spanish Royal Academy of Sciences, Spain
| | - Gerardo López-Rodas
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain,Royal Academy of Medicine of the Valencian Community, Spain,Institute for Health Research of the University Clinic Hospital (INCLIVA), Spain
| |
Collapse
|
633
|
Roberts KA, Colley L, Agbaedeng TA, Ellison-Hughes GM, Ross MD. Vascular Manifestations of COVID-19 - Thromboembolism and Microvascular Dysfunction. Front Cardiovasc Med 2020; 7:598400. [PMID: 33195487 PMCID: PMC7649150 DOI: 10.3389/fcvm.2020.598400] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
The coronavirus pandemic has reportedly infected over 31.5 million individuals and caused over 970,000 deaths worldwide (as of 22nd Sept 2020). This novel coronavirus, officially named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), although primarily causes significant respiratory distress, can have significant deleterious effects on the cardiovascular system. Severe cases of the virus frequently result in respiratory distress requiring mechanical ventilation, often seen, but not confined to, individuals with pre-existing hypertension and cardiovascular disease, potentially due to the fact that the virus can enter the circulation via the lung alveoli. Here the virus can directly infect vascular tissues, via TMPRSS2 spike glycoprotein priming, thereby facilitating ACE-2-mediated viral entry. Clinical manifestations, such as vasculitis, have been detected in a number of vascular beds (e.g., lungs, heart, and kidneys), with thromboembolism being observed in patients suffering from severe coronavirus disease (COVID-19), suggesting the virus perturbs the vasculature, leading to vascular dysfunction. Activation of endothelial cells via the immune-mediated inflammatory response and viral infection of either endothelial cells or cells involved in endothelial homeostasis, are some of the multifaceted mechanisms potentially involved in the pathogenesis of vascular dysfunction within COVID-19 patients. In this review, we examine the evidence of vascular manifestations of SARS-CoV-2, the potential mechanism(s) of entry into vascular tissue and the contribution of endothelial cell dysfunction and cellular crosstalk in this vascular tropism of SARS-CoV-2. Moreover, we discuss the current evidence on hypercoagulability and how it relates to increased microvascular thromboembolic complications in COVID-19.
Collapse
Affiliation(s)
- Kirsty A. Roberts
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Liam Colley
- School of Sport, Health & Exercise Science, Bangor University, Bangor, United Kingdom
| | - Thomas A. Agbaedeng
- Centre for Heart Rhythm Disorders, School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Georgina M. Ellison-Hughes
- Centre for Human and Physiological Sciences, Faculty of Life Sciences & Medicine, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Mark D. Ross
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| |
Collapse
|
634
|
Guo H, Sheng Y, Li W, Li F, Xie Z, Li J, Zhu Y, Geng J, Liu G, Wang L, Li J, Wang F. Coagulopathy as a Prodrome of Cytokine Storm in COVID-19-Infected Patients. Front Med (Lausanne) 2020; 7:572989. [PMID: 33195321 PMCID: PMC7645068 DOI: 10.3389/fmed.2020.572989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/14/2020] [Indexed: 01/05/2023] Open
Abstract
Background: The rapid coronavirus disease 2019 (COVID-19) pandemic has hit hard on the world and causes panic since the virus causes serious infectious respiratory illness and easily leads to severe conditions such as immune system overactivation or cytokine storm. Due to the limited knowledge on the course of infection of this coronavirus and the lack of an effective treatment for this fatal disease, mortality remains high. The emergence of a cytokine storm in patients with a severe condition has been reported as the top reason of the death of patients with COVID-19 infection. However, the causative mechanism of cytokine storm remains elusive. Thus, we aim to observe the association of coagulopathy (D-dimer) with cytokine (i.e., IL-6) and CT imaging in COVID-19-infected patients. Methods: In this retrospective observational study, we systematically analyzed the comprehensive clinical laboratory data of COVID-19-positive patients in different illness groups of mild, moderate, and severe conditions according to the Chinese Clinical Guidance for COVID-19 Pneumonia Diagnosis and Treatment (7th edition). T tests and chi-square tests were used for two-group comparisons. One-way ANOVA was used for three-group comparisons. Pearson and Spearman correlation coefficients of the D-dimer level with IL-6 and CT imaging were computed at baseline. With regular liquid biopsy approach, D-dimer, IL-6, and neutrophil-to-lymphocyte ratio were recorded repeatedly with a time curve to investigate disease progression, along with CT imaging, and other indicators. Results: All the 64 patients were clinically evaluated and classified into three groups of mild (32 cases), moderate (23 cases), and severe (nine cases) conditions. The D-dimer level positively correlated with IL-6 (R = 0.5) at baseline when the COVID-19-infected patients were admitted. In addition, we observed that D-dimer rises earlier than the cytokine storm represented by IL-6 surge, which suggests that coagulopathy might act as a trigger to potentiate a cytokine storm. Conclusion: Integrated analysis revealed a positive correlation of coagulopathy with cytokine storm in COVID-19-infected patients; the D-dimer rises early, which indicates that coagulopathy acts as a prodrome of cytokine storm. Coagulopathy can be used to monitor early cytokine storm in COVID-19-infected patients.
Collapse
Affiliation(s)
- Hui Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ying Sheng
- School of Nursing, Indiana University, Indianapolis, IN, United States
| | - Wei Li
- Department of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Fei Li
- Department of Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Zongyu Xie
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jing Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yuhe Zhu
- Department of Laboratory Medicine, Bengbu Medical College, Bengbu, China
| | - Jian Geng
- Department of Laboratory Medicine, Bengbu Medical College, Bengbu, China
| | - Gang Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - LeJian Wang
- Department of Laboratory Medicine, Zhejiang University of Traditional Chinese Medicine Affiliated XinHua Hospital, Hangzhou, China
| | - Jing Li
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Fengchao Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
635
|
Martini F, De Mattei M, Contini C, Tognon MG. Potential Use of Alpha-1 Anti-trypsin in the Covid-19 Treatment. Front Cell Dev Biol 2020; 8:577528. [PMID: 33195215 PMCID: PMC7644540 DOI: 10.3389/fcell.2020.577528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Fernanda Martini
- Laboraotories of Cell Biology and Molecular Genetics, University of Ferrara, Ferrara, Italy
| | - Monica De Mattei
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Carlo Contini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro G. Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
636
|
Sahin E, Orhan C, Uckun FM, Sahin K. Clinical Impact Potential of Supplemental Nutrients as Adjuncts of Therapy in High-Risk COVID-19 for Obese Patients. Front Nutr 2020; 7:580504. [PMID: 33195370 PMCID: PMC7642511 DOI: 10.3389/fnut.2020.580504] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/10/2020] [Indexed: 01/08/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) in China at the end of 2019 caused a major global pandemic and continues to be an unresolved global health crisis. The supportive care interventions for reducing the severity of symptoms along with participation in clinical trials of investigational treatments are the mainstay of COVID-19 management because there is no effective standard therapy for COVID-19. The comorbidity of COVID-19 rises in obese patients. Micronutrients may boost the host immunity against viral infections, including COVID-19. In this review, we discuss the clinical impact potential of supplemental nutrients as adjuncts of therapy in high-risk COVID-19 for obese patients.
Collapse
Affiliation(s)
- Emre Sahin
- Department of Nutrition, School of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Cemal Orhan
- Department of Nutrition, School of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Fatih M. Uckun
- COVID-19 Task Force, Reven Pharmaceuticals, Golden, CO, United States
- Department of Developmental Therapeutics, Immunology and Integrative Medicine, Ares Pharmaceuticals, St. Paul, MN, United States
| | - Kazim Sahin
- Department of Nutrition, School of Veterinary Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
637
|
Shi C, Tingting W, Li JP, Sullivan MA, Wang C, Wang H, Deng B, Zhang Y. Comprehensive Landscape of Heparin Therapy for COVID-19. Carbohydr Polym 2020; 254:117232. [PMID: 33357843 PMCID: PMC7581413 DOI: 10.1016/j.carbpol.2020.117232] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 01/08/2023]
Abstract
The pandemic coronavirus disease 2019 (COVID-19), caused by the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is rapidly spreading globally. Clinical observations found that systemic symptoms caused by SARS-CoV-2 infection are attenuated when using the anticoagulant agent heparin, indicating that heparin may play other roles in managing COVID-19, in addition to prevention of pulmonary thrombosis. Several biochemical studies show strong binding of heparin and heparin-like molecules to the Spike protein, which resulted in inhibition of viral infection to cells. The clinical observations and in vitro studies argue for a potential multiple-targeting effects of heparin. However, adverse effects of heparin administration and some of the challenges using heparin therapy for SARS-CoV-2 infection need to be considered. This review discusses the pharmacological mechanisms of heparin regarding its anticoagulant, anti-inflammatory and direct antiviral activities, providing current evidence concerning the effectiveness and safety of heparin therapy for this major public health emergency.
Collapse
Affiliation(s)
- Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Wu Tingting
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mitchell A Sullivan
- Glycation and Diabetes Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, QLD, 4072, Australia
| | - Cong Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Hanxiang Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bin Deng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China.
| |
Collapse
|
638
|
Could Oral Phosphodiesterase 5 Inhibitors Have a Potential Adjuvant Role in Combating COVID-19 Infection? Sex Med Rev 2020. [PMID: 33077403 DOI: 10.1016/j.sxmr.2020.08.006.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The recent global outbreak of coronavirus disease 2019 (COVID-19) has become a pandemic with a lot of sufferers. Excessive inflammation, exaggerated immune response, with ultimate apoptosis contribute to COVID-19 pathology that progress to acute lung acute respiratory distress. OBJECTIVE To shed a light on the likely benefits of the oral phosphodiesterase 5 (PDE5) inhibitor adjuvant role in combating COVID-19 infection. METHODS A literature review was performed in the PubMed/Medline database, Scopus, Cochrane Library, EMBASE, Academic Search Complete, Google Scholar, and CINAHL databases using the keywords COVID-19; phosphodiesterase-5 inhibitors; cytokine storm; respiratory distress. RESULTS Despite the worsening trends of COVID-19, still no drugs are validated to have significant clinical efficacy in the treatment of patients with COVID-19 in large-scale studies. While the progress toward a curative agent and/or vaccine is certainly hopeful, the principal limiting factor in such public health emergencies is always the time. Therefore, a preexisting licensed therapeutic(s) might offer a reprieve to the healthcare systems operating at the edge of capacity. In this context, the innovation of oral PDE5 inhibitors with their valuable effects on erection have provided a breakthrough in the treatment of erectile dysfunction and opened new fields of clinical application for this class of drugs. Oral PDE5 inhibitors have been demonstrated to possess many beneficial useful additional implications with acknowledged anti-inflammatory, antioxidant, immune response regulation, and antiapoptotic properties. These properties have been elucidated through the nitric oxide/soluble guanylyl cyclase/cyclic guanylate monophosphate pathway in addition to the emerged hemeoxygenase-1 enzyme as well as hydrogen sulfide pathways. These properties could support repurposing oral PDE5 inhibitors' potential adjuvant use in targeting different aspects of COVID-19 infection. CONCLUSION Oral PDE5 inhibitors retain several acknowledged off-labeled useful implications with anti-inflammatory, antioxidant, immune response regulation, and antiapoptotic properties. These properties may support repurposing oral PDE5 inhibitors' potential adjuvant use in the protocols combating COVID-19 manifestations. Mostafa T. Could Oral Phosphodiesterase 5 Inhibitors Have a Potential Adjuvant Role in Combating Coronavirus Disease 2019 Infection? Sex Med Rev 2021;9:15-22.
Collapse
|
639
|
Casucci G, Acanfora D, Incalzi RA. The Cross-Talk between Age, Hypertension and Inflammation in COVID-19 Patients: Therapeutic Targets. Drugs Aging 2020; 37:779-785. [PMID: 33084001 PMCID: PMC7575413 DOI: 10.1007/s40266-020-00808-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 01/10/2023]
Abstract
This paper presents a brief overview of the complex interaction between age, hypertension, the renin–angiotensin–aldosterone system (RAAS), inflammation, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection. Coronavirus disease 2019 (COVID-19) is more frequent and more severe in comorbid elderly patients, especially those with hypertension, diabetes, obesity, or cardiovascular diseases. There are concerns regarding the use of RAAS inhibitors in patients with COVID-19. Some physicians have considered the need for interrupting RAAS inhibition in order to reduce the possibility of SARS-CoV2 entering lung cells after binding to angiotensin-converting enzyme 2 (ACE2) receptors. We offer a different point of view in relation to the need for continuing to use RAAS inhibitors in patients with COVID-19. We focused our article on elderly patients because of the distinctive imbalance between the immune response, which is depressed, and the exacerbated inflammatory response, ‘inflammaging’, which makes the geriatric patient an appropriate candidate for therapeutic strategies aimed at modulating the inflammatory response. Indeed, COVID-19 is an inflammatory storm that starts and worsens during the course of the disease. During the COVID-19 pandemic, various therapeutic approaches have been tested, including antiviral drugs, interferon, anti-interleukins, hydroxychloroquine, anti-inflammatories, immunoglobulins from recovered patients, and heparins. Some of these therapeutic approaches did not prove to be beneficial, or even induced serious complications. Based on current evidence, in the early stages of the disease modulation of the inflammatory response through the inhibition of neprilysin and modulation of the RAAS could affect the course and outcome of COVID-19.
Collapse
Affiliation(s)
- Gerardo Casucci
- Unit of Internal Medicine, San Francesco Hospital, Viale Europa 21, 82037, Telese Terme, BN, Italy
| | - Domenico Acanfora
- Unit of Internal Medicine, San Francesco Hospital, Viale Europa 21, 82037, Telese Terme, BN, Italy.
| | - Raffaele Antonelli Incalzi
- Unit of Geriatrics, Policlinico Universitario Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128, Rome, Italy
| |
Collapse
|
640
|
Paltrinieri S, Giordano A, Stranieri A, Lauzi S. Feline infectious peritonitis (FIP) and coronavirus disease 19 (COVID-19): Are they similar? Transbound Emerg Dis 2020; 68:1786-1799. [PMID: 32985113 PMCID: PMC7537058 DOI: 10.1111/tbed.13856] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/19/2020] [Accepted: 09/19/2020] [Indexed: 01/08/2023]
Abstract
SARS‐CoV‐2 has radically changed our lives causing hundreds of thousands of victims worldwide and influencing our lifestyle and habits. Feline infectious peritonitis (FIP) is a disease of felids caused by the feline coronaviruses (FCoV). FIP has been considered irremediably deadly until the last few years. Being one of the numerous coronaviruses that are well known in veterinary medicine, information on FCoV could be of interest and might give suggestions on pathogenic aspects of SARS‐CoV‐2 that are still unclear. The authors of this paper describe the most important aspects of FIP and COVID‐19 and the similarities and differences between these important diseases. SARS‐CoV‐2 and FCoV are taxonomically distant viruses, and recombination events with other coronaviruses have been reported for FCoV and have been suggested for SARS‐CoV‐2. SARS‐CoV‐2 and FCoV differ in terms of some pathogenic, clinical and pathological features. However, some of the pathogenic and immunopathogenic events that are well known in cats FIP seem to be present also in people with COVID‐19. Moreover, preventive measures currently recommended to prevent SARS‐CoV‐2 spreading have been shown to allow eradication of FIP in feline households. Finally, one of the most promising therapeutic compounds against FIP, GS‐441524, is the active form of Remdesivir, which is being used as one therapeutic option for COVID‐19.
Collapse
Affiliation(s)
- Saverio Paltrinieri
- Department of Veterinary Medicine, University of Milan, Lodi, Italy.,Veterinary Teaching Hospital, University of Milan, Lodi, Italy
| | - Alessia Giordano
- Department of Veterinary Medicine, University of Milan, Lodi, Italy.,Veterinary Teaching Hospital, University of Milan, Lodi, Italy
| | - Angelica Stranieri
- Department of Veterinary Medicine, University of Milan, Lodi, Italy.,Veterinary Teaching Hospital, University of Milan, Lodi, Italy
| | - Stefania Lauzi
- Department of Veterinary Medicine, University of Milan, Lodi, Italy.,Veterinary Teaching Hospital, University of Milan, Lodi, Italy
| |
Collapse
|
641
|
Bouwman W, Verhaegh W, Holtzer L, van de Stolpe A. Measurement of Cellular Immune Response to Viral Infection and Vaccination. Front Immunol 2020; 11:575074. [PMID: 33193365 PMCID: PMC7604353 DOI: 10.3389/fimmu.2020.575074] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Combined cellular and humoral host immune response determine the clinical course of a viral infection and effectiveness of vaccination, but currently the cellular immune response cannot be measured on simple blood samples. As functional activity of immune cells is determined by coordinated activity of signaling pathways, we developed mRNA-based JAK-STAT signaling pathway activity assays to quantitatively measure the cellular immune response on Affymetrix expression microarray data of various types of blood samples from virally infected patients (influenza, RSV, dengue, yellow fever, rotavirus) or vaccinated individuals, and to determine vaccine immunogenicity. JAK-STAT1/2 pathway activity was increased in blood samples of patients with viral, but not bacterial, infection and was higher in influenza compared to RSV-infected patients, reflecting known differences in immunogenicity. High JAK-STAT3 pathway activity was associated with more severe RSV infection. In contrast to inactivated influenza virus vaccine, live yellow fever vaccine did induce JAK-STAT1/2 pathway activity in blood samples, indicating superior immunogenicity. Normal (healthy) JAK-STAT1/2 pathway activity was established, enabling assay interpretation without the need for a reference sample. The JAK-STAT pathway assays enable measurement of cellular immune response for prognosis, therapy stratification, vaccine development, and clinical testing.
Collapse
|
642
|
Vergallo C. Infusion of HLA-matched and static magnetic field-exposed allogenic lymphocytes treating lymphocytopenia and cytokine storm syndrome: A treatment proposal for COVID-19 patients. Electromagn Biol Med 2020; 40:11-25. [PMID: 33073612 DOI: 10.1080/15368378.2020.1830290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Among haematological parameters of patients seriously ill with the coronavirus infectious disease 2019 (COVID-19), leucocytosis, lymphocytopenia, and the abnormal release of circulating cytokines, termed cytokine storm syndrome (CSS, also known as cytokine release syndrome or CRS), were found associated with disease severity. In particular, according to the serum cytokine profiling, pro-inflammatory interleukin 6 (IL-6) and anti-inflammatory interleukin 10 (IL-10) were observed to be considerably higher in patients experiencing respiratory distress, septic shock and/or multi-organ failure, namely "critical cases" requiring intensive care unit (ICU) admission, very often resulting in death. Interestingly, the production of these cytokines from human lymphocytes was found to be modulated by exposure of 24 h to a 554.2-553.8 mT inhomogeneous static magnetic field (SMF), which elicits IL-10 and suppresses IL-6. Thus, herein, with the aim of restoring lymphocyte count and physiological serum levels of IL-6 and IL-10, the infusion of human leukocyte antigen (HLA)-matched and SMF-exposed allogenic lymphocytes is proposed for the first time as an easy and affordable treatment option for COVID-19 patients. Even if the count of lymphocytes in COVID-19 patients is very low, SMF exposure may be a valuable tool for reprogramming autologous lymphocytes towards physiological conditions. Furthermore, the same procedure could be extended to include the whole autologous or allogenic white blood cells (WBCs). Time-varying/pulsed magnetic fields exerting comparable cell effects could also be employed.
Collapse
Affiliation(s)
- Cristian Vergallo
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio" , Chieti, Italy
| |
Collapse
|
643
|
Mortaz E, Malkmohammad M, Jamaati H, Naghan PA, Hashemian SM, Tabarsi P, Varahram M, Zaheri H, Chousein EGU, Folkerts G, Adcock IM. Silent hypoxia: higher NO in red blood cells of COVID-19 patients. BMC Pulm Med 2020; 20:269. [PMID: 33066765 PMCID: PMC7563910 DOI: 10.1186/s12890-020-01310-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19) has spread to almost 100 countries, infected over 31 M patients and resulted in 961 K deaths worldwide as of 21st September 2020. The major clinical feature of severe COVID-19 requiring ventilation is acute respiratory distress syndrome (ARDS) with multi-functional failure as a result of a cytokine storm with increased serum levels of cytokines. The pathogenesis of the respiratory failure in COVID-19 is yet unknown, but diffuse alveolar damage with interstitial thickening leading to compromised gas exchange is a plausible mechanism. Hypoxia is seen in the COVID-19 patients, however, patients present with a distinct phenotype. Intracellular levels of nitric oxide (NO) play an important role in the vasodilation of small vessels. To elucidate the intracellular levels of NO inside of RBCs in COVID-19 patients compared with that of healthy control subjects. Methods We recruited 14 COVID-19 infected cases who had pulmonary involvement of their disease, 4 non-COVID-19 healthy controls (without pulmonary involvement and were not hypoxic) and 2 hypoxic non-COVID-19 patients subjects who presented at the Masih Daneshvari Hospital of Tehran, Iran between March–May 2020. Whole blood samples were harvested from patients and intracellular NO levels in 1 × 106 red blood cells (RBC) was measured by DAF staining using flow cytometry (FACS Calibour, BD, CA, USA). Results The Mean florescent of intensity for NO was significantly enhanced in COVID-19 patients compared with healthy control subjects (P ≤ 0.05). As a further control for whether hypoxia induced this higher intracellular NO, we evaluated the levels of NO inside RBC of hypoxic patients. No significant differences in NO levels were seen between the hypoxic and non-hypoxic control group. Conclusions This pilot study demonstrates increased levels of intracellular NO in RBCs from COVID-19 patients. Future multi-centre studies should examine whether this is seen in a larger number of COVID-19 patients and whether NO therapy may be of use in these severe COVID-19 patients.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Malkmohammad
- Tracheal Disease Research Center, National Research Institute of Tuberculosisand Lung Diseases (NRITLD), Shahid Beheshti University of Medical Science, Tehran, Iran.
| | - Hamidreza Jamaati
- Chronic Respiratory Diseases Research Center, National Research Institute ofTuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Adimi Naghan
- Chronic Respiratory Diseases Research Center, National Research Institute ofTuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed MohamadReza Hashemian
- Chronic Respiratory Diseases Research Center, National Research Institute ofTuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maohammad Varahram
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Zaheri
- Chronic Respiratory Diseases Research Center, National Research Institute ofTuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Efsun Gonca Uğur Chousein
- University of Health Sciences Turkey, Yedikule Chest Diseases and Thoracic Surgery, Education and research Hospital, Department of pulmonology, Istanbul, Turkey
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Ian M Adcock
- Cell and Molecular Biology Group, Airways Disease Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK.,Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
644
|
Shi C, Wang C, Wang H, Yang C, Cai F, Zeng F, Cheng F, Liu Y, Zhou T, Deng B, Vlodavsky I, Li JP, Zhang Y. The Potential of Low Molecular Weight Heparin to Mitigate Cytokine Storm in Severe COVID-19 Patients: A Retrospective Cohort Study. Clin Transl Sci 2020; 13:1087-1095. [PMID: 32881340 PMCID: PMC7719364 DOI: 10.1111/cts.12880] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
On March 11, 2020, the World Health Organization declared its assessment of coronavirus disease 2019 (COVID-19) as a global pandemic. However, specific anti-severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) drugs are still under development, and patients are managed by multiple complementary treatments. We performed a retrospective analysis to compare and evaluate the effect of low molecular weight heparin (LMWH) treatment on disease progression. For this purpose, the clinical records and laboratory indicators were extracted from electronic medical records of 42 patients with COVID-19 (21 of whom were treated with LMWH, and 21 without LMWH) hospitalized (Union Hospital of Huazhong University of Science and Technology) from February 1 to March 15, 2020. Changes in the percentage of lymphocytes before and after LMWH treatment were significantly different from those in the control group (P = 0.011). Likewise, changes in the levels of D-dimer and fibrinogen degradation products in the LMWH group before and after treatment were significantly different from those in the control group (P = 0.035). Remarkably, IL-6 levels were significantly reduced after LMWH treatment (P = 0.006), indicating that, besides other beneficial properties, LMWH may exert an anti-inflammatory effect and attenuate in part the "cytokine storm" induced by the virus. Our results support the use of LMWH as a potential therapeutic drug for the treatment of COVID-19, paving the way for a subsequent well-controlled clinical study.
Collapse
Affiliation(s)
- Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Cong Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanxiang Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Yang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Cai
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Zeng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Cheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yihui Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Taotao Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Deng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Israel
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| |
Collapse
|
645
|
Gautam SS, Gautam CS, Garg VK, Singh H. Combining hydroxychloroquine and minocycline: potential role in moderate to severe COVID-19 infection. Expert Rev Clin Pharmacol 2020; 13:1183-1190. [PMID: 33008280 DOI: 10.1080/17512433.2020.1832889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Patients with moderate to severe COVID-19 infection require specific drugs to prevent the morbidity and mortality. Hydroxychloroquine (HCQ) has shown some promise in the management of COVID 19. Minocycline, because of its anticytokine and other useful properties can be an ideal candidate for combining with HCQ. AREAS COVERED Here we review the need and mechanisms and reasons for combining HCQ and minocycline moderate to severe COVID-19 infection. We also reviewed the advantages, potential safety concerns and precautions to be taken, while combining HCQ and minocycline. EXPERT OPINION Combining HCQ and minocycline offers many advantages in the management of moderate to severe COVID-19 infection. Both drugs are cheaper, widely available and long-term safety data and contraindications are well known. We do not recommend this combination for prophylaxis or use in asymptomatic or mild disease patients as this can lead to unnecessary safety concerns. Additive antimicrobial and anticytokine effects of both drugs may reduce the morbidity and mortality among patients with COVID-19 and may act as a cheaper alternative to the costlier drugs, however, thorough clinical research is warranted. We call upon public and private healthcare bodies to come up with large well-designed clinical studies for generating evidence-based recommendations.
Collapse
Affiliation(s)
| | - C S Gautam
- Department of Pharmacology, Government Medical College and Hospital , Chandigarh, India
| | - Vivek Kumar Garg
- Department of Biochemistry, Government Medical College and Hospital , Chandigarh, India
| | - Harmanjit Singh
- Department of Pharmacology, Government Medical College and Hospital , Chandigarh, India
| |
Collapse
|
646
|
Ooi ST, Parthasarathy P, Lin Y, Nallakaruppan VD, Ng S, Tan TC, Low S, Tang T. Antivirals With Adjunctive Corticosteroids Prevent Clinical Progression of Early Coronavirus 2019 Pneumonia: A Retrospective Cohort Study. Open Forum Infect Dis 2020; 7:ofaa486. [PMID: 33235888 PMCID: PMC7665708 DOI: 10.1093/ofid/ofaa486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/09/2020] [Indexed: 01/08/2023] Open
Abstract
This is a retrospective cohort study of hospitalized adults with coronavirus disease 2019 (COVID-19). Fifty-seven patients received treatment alone, and 35 patients received treatment with adjunctive prednisolone. A combination of corticosteroids and antivirals was associated with lower risk of clinical progression and invasive mechanical ventilation or death in early COVID-19 pneumonia.
Collapse
Affiliation(s)
- Say Tat Ooi
- Division of Infectious Diseases, Department of General Medicine, Khoo Teck Puat Hospital, Singapore.,Clinical Epidemiology Unit, Khoo Teck Puat Hospital, Singapore
| | - Purnima Parthasarathy
- Division of Infectious Diseases, Department of General Medicine, Khoo Teck Puat Hospital, Singapore
| | - Yi Lin
- Clinical Epidemiology Unit, Khoo Teck Puat Hospital, Singapore
| | | | - Shereen Ng
- Division of General Medicine, Department of General Medicine, Khoo Teck Puat Hospital, Singapore
| | - Teck Choon Tan
- Division of Rheumatology, Department of General Medicine, Khoo Teck Puat Hospital, Singapore
| | - Serena Low
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Terence Tang
- Department of Geriatric Medicine, Khoo Teck Puat Hospital, Singapore
| |
Collapse
|
647
|
Tang Z, Kong N, Zhang X, Liu Y, Hu P, Mou S, Liljeström P, Shi J, Tan W, Kim JS, Cao Y, Langer R, Leong KW, Farokhzad OC, Tao W. A materials-science perspective on tackling COVID-19. NATURE REVIEWS. MATERIALS 2020; 5:847-860. [PMID: 33078077 PMCID: PMC7556605 DOI: 10.1038/s41578-020-00247-y] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/14/2020] [Indexed: 05/08/2023]
Abstract
The ongoing SARS-CoV-2 pandemic highlights the importance of materials science in providing tools and technologies for antiviral research and treatment development. In this Review, we discuss previous efforts in materials science in developing imaging systems and microfluidic devices for the in-depth and real-time investigation of viral structures and transmission, as well as material platforms for the detection of viruses and the delivery of antiviral drugs and vaccines. We highlight the contribution of materials science to the manufacturing of personal protective equipment and to the design of simple, accurate and low-cost virus-detection devices. We then investigate future possibilities of materials science in antiviral research and treatment development, examining the role of materials in antiviral-drug design, including the importance of synthetic material platforms for organoids and organs-on-a-chip, in drug delivery and vaccination, and for the production of medical equipment. Materials-science-based technologies not only contribute to the ongoing SARS-CoV-2 research efforts but can also provide platforms and tools for the understanding, protection, detection and treatment of future viral diseases.
Collapse
Affiliation(s)
- Zhongmin Tang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA USA
| | - Yuan Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Ping Hu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Shan Mou
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peter Liljeström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | | | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY USA
| | - Omid C. Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
648
|
Schiaffino MT, Di Natale M, García-Martínez E, Navarro J, Muñoz-Blanco JL, Demelo-Rodríguez P, Sánchez-Mateos P. Immunoserologic Detection and Diagnostic Relevance of Cross-Reactive Autoantibodies in Coronavirus Disease 2019 Patients. J Infect Dis 2020; 222:1439-1443. [PMID: 32738141 PMCID: PMC7454719 DOI: 10.1093/infdis/jiaa485] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
Background During the coronavirus disease 2019 (COVID-19) pandemic, we detected a new immunofluorescence (IF) pattern in serum autoantibody (autoAb) screening of laboratory-confirmed COVID-19 patients. Methods The IF pattern was composed of liver and gastric mucosa staining on rat kidney/liver/stomach sections. Results We describe 12 patients positive for the cross-reactive antibody, compared with a negative group of 43 hospitalized COVID-19 patients, finding association with either neurologic or thrombotic complications. In sequential pre- and post-COVID-19 serum samples, we confirmed autoAb seroconversion. Conclusions Our data indicate that autoAb screening in COVID-19 patients may be easily performed by IF and alert for autoreactive-mediated complications such as thrombotic or neurologic events.
Collapse
Affiliation(s)
- María Teresa Schiaffino
- Servicio de Inmunología Clínica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Marisa Di Natale
- Servicio de Inmunología Clínica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Elena García-Martínez
- Servicio de Inmunología Clínica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Joaquín Navarro
- Servicio de Inmunología Clínica, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Pablo Demelo-Rodríguez
- Servicio de Medicina Interna, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Paloma Sánchez-Mateos
- Servicio de Inmunología Clínica, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
649
|
Huang C, Ji X, Zhou W, Huang Z, Peng X, Fan L, Lin G, Zhu W. Coronavirus: A possible cause of reduced male fertility. Andrology 2020; 9:80-87. [PMID: 32960504 PMCID: PMC7537192 DOI: 10.1111/andr.12907] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 01/08/2023]
Abstract
In lately December 2019, a novel coronavirus (SARS-CoV-2) outbreak occurred in Wuhan, PR China. It is a high contagious virus that has threatened human health worldwide. SARS-CoV-2 infection, termed COVID-19, causes rapidly developing lung lesions that can lead to multiple organ failure in a short period. Whenever a novel virus emerges, reproductive risk assessments should be performed after infection. In this review, we show that male fertility might be damaged by coronavirus associated with (i) direct cytopathic effects derived from viral replication and viral dissemination in the testis; and (ii) indirect damage to male fertility derived from immunopathology. In this review, we briefly describe the impaired fertility of humans and animals infected with coronaviruses to deduce the impact of the new coronavirus on male fertility. Together with information related to other coronaviruses, we extrapolate this knowledge to the new coronavirus SARS-CoV-2, which may have a significant impact on our understanding of the pathophysiology of this new virus.
Collapse
Affiliation(s)
- Chuan Huang
- Institute of Reproductive and Stem Cell Engineering, Basic Medicine College, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Xiren Ji
- Institute of Reproductive and Stem Cell Engineering, Basic Medicine College, Central South University, Changsha, China
| | - Wenjun Zhou
- Institute of Reproductive and Stem Cell Engineering, Basic Medicine College, Central South University, Changsha, China
| | - Zhenghui Huang
- Institute of Reproductive and Stem Cell Engineering, Basic Medicine College, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Xiangjie Peng
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Liqing Fan
- Institute of Reproductive and Stem Cell Engineering, Basic Medicine College, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, Basic Medicine College, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Wenbing Zhu
- Institute of Reproductive and Stem Cell Engineering, Basic Medicine College, Central South University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| |
Collapse
|
650
|
A Systematic Review and Meta-Analysis of Hospitalised Current Smokers and COVID-19. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207394. [PMID: 33050574 PMCID: PMC7601505 DOI: 10.3390/ijerph17207394] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 is a new coronavirus that has caused a worldwide pandemic. It produces severe acute respiratory disease (COVID-19), which is fatal in many cases, characterised by the cytokine release syndrome (CRS). According to the World Health Organization, those who smoke are likely to be more vulnerable to infection. Here, in order to clarify the epidemiologic relationship between smoking and COVID-19, we present a systematic literature review until 28th April 2020 and a meta-analysis. We included 18 recent COVID-19 clinical and epidemiological studies based on smoking patient status from 720 initial studies in China, the USA, and Italy. The percentage of hospitalised current smokers was 7.7% (95% CI: 6.9-8.4) in China, 2.3% (95% CI: 1.7-2.9) in the USA and 7.6% (95% CI: 4.2-11.0) in Italy. These percentages were compared to the smoking prevalence of each country and statistically significant differences were found in them all (p < 0.0001). By means of the meta-analysis, we offer epidemiological evidence showing that smokers were statistically less likely to be hospitalised (OR = 0.18, 95% CI: 0.14-0.23, p < 0.01). In conclusion, the analysis of data from 18 studies shows a much lower percentage of hospitalised current smokers than expected. As more studies become available, this trend should be checked to obtain conclusive results and to explore, where appropriate, the underlying mechanism of the severe progression and adverse outcomes of COVID-19.
Collapse
|