651
|
Zhang Y, Wang Y, Zhao M, Li X, Li H, Tang M, Geng Z, Zuo L, Song X, Wang Z, Wang Q, Su F. VEGF Mediates Tumor Growth and Metastasis by Affecting the Expression of E-Cadherin and N-Cadherin Promoting Epithelial to Mesenchymal Transition in Gastric Cancer. Clin Med Insights Oncol 2023; 17:11795549231175715. [PMID: 37435016 PMCID: PMC10331225 DOI: 10.1177/11795549231175715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/26/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is the fifth leading cancer in the world, and there is a high mortality rate in China. Exploring the relationship between the prognosis of GC and the expression of related genes is helpful to further understand the common characteristics of the occurrence and development of GC and provide a new method for the identification of early GC, so as to provide the best therapeutic targets. METHODS Vascular endothelial growth factor (VEGF) and markers of epithelial-mesenchymal transition (EMT) were investigated immunohistochemically using tumor samples obtained from 196 GC tissues and adjacent tumor tissues. The correlation of the expression level with histopathologic features and survival was investigated. RESULTS Here, we show that VEGF and EMT markers expression were significantly correlated with depth of tumor invasion and GC stage (P < .05), degree of differentiation and lymph node metastasis (P < .001). We found that the rate of VEGF positivity in GC tissues was 52.05%, which was significantly higher than that in adjacent cancer tissues (16.84%). In GC, the association between VEGF and E-cadherin was negative (r = -0.188, P < .05), whereas VEGF and N-cadherin were positively correlated (r = 0.214, P < .05). Furthermore, the Kaplan-Meier analysis and a Cox regression model were used to analyze the effect of VEGF and EMT marker expression on the survival of the patients. We found that the overall survival of GC patients was correlated with VEGF (P < .001), N-cadherin (P < .001), E-cadherin (P = .002) expression, and some histopathologic features. CONCLUSIONS Vascular endothelial growth factor and EMT markers exist side by side and play a part together in the development of GC, which provides new ideas for evaluating the prognosis of GC and researching targeted drugs.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, PR China
| | - Yanyan Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, PR China
| | - Menglin Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, PR China
| | - Xinwei Li
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, PR China
| | - Huiyuan Li
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, PR China
| | - Mingyue Tang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, PR China
| | - Zhijun Geng
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, PR China
| | - Lugen Zuo
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, PR China
| | - Xue Song
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, PR China
| | - Zishu Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, PR China
| | - Qiang Wang
- Department of Network Information Center, Bengbu Medical College, Bengbu, Anhui, PR China
| | - Fang Su
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, PR China
| |
Collapse
|
652
|
Zhang J, Wang Y, Ma J, Aimudula A. Expression of gasdermin D in clear cell renal cell carcinoma and its effect on its biological function. Front Oncol 2023; 13:1163714. [PMID: 37483501 PMCID: PMC10358983 DOI: 10.3389/fonc.2023.1163714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cell carcinoma, which suffers from the lack of diagnosis and treatment methods, and many patients cannot be diagnosed at first time. Gasdermin D (GSDMD) is involved in inflammatory reactions and pyroptosis and is considered a potential therapeutic target. This paper's aim is to elucidate the expression of GSDMD in clear cell renal cell carcinoma and its value for treatment and prognosis, as well as its impact on the biological function of clear cell renal cell carcinoma. Method The Cancer Genome Atlas (TCGA) database was used to compare the expression of GSDMD in tumor and normal tissues, analyze its correlation with cancer stage and overall survival time, and establish receiver operating characteristic (ROC) curve, which was confirmed by the Gene Expression Omnibus (GEO) database and immunohistochemical staining of clinical samples and PCR and Western blotting (WB) of cell lines. The relationship between GSDMD and patient prognosis and staging was analyzed using TCGA database and validated using clinical sample data. Differentially expressed genes (DEGs) and epithelial-mesenchymal transition (EMT)-related genes of GSDMD were screened by TCGA database. Protein-protein interaction (PPI) of GSDMD was constructed by GeneMANIA and STRING, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were analyzed by the Metascape database. Then, R software was used to analyze the immune cell infiltration, immune microenvironment score, and tumor mutational burden (TMB) analysis of GSDMD high- and low-expression groups in TCGA database. GSDMD lentivirus was used to transfect 769-P cells to construct stable upregulated and downregulated transfected cell lines. PCR was used to verify the expression differences of differentially expressed genes between the high- and low-expression groups of GSDMD; then, MTT, flow apoptosis, and Transwell were used to detect the proliferation, apoptosis, invasion, and migration of the transfected cells. Results The results of bioinformatics analysis showed that the expression of GSDMD in clear cell renal cell carcinoma was significantly correlated with patient stage and overall survival, and the tumor with high expression of GSDMD had a worse stage and overall survival. GSDMD has some significance in the diagnosis of ccRCC. The results of EMT correlation analysis and enrichment analysis showed that GSDMD was correlated with genes and pathways related to invasion and metastasis of renal cell carcinoma. The subsequent immune cell infiltration analysis showed that there were many differences in the infiltration of immune cells between the high- and low-expression groups of GSDMD, such as naive B cells. The immune microenvironment score showed that the high-expression group had a lower proportion of stromal cells than the local expression group but had a higher proportion of immune cells. Through TMB, it was shown that the high-expression group had a higher mutation. The expression of GSDMD in renal cell carcinoma by immunohistochemistry and in vitro cell experiments was confirmed. According to the prognostic information of clinical patients, it was found that GSDMD was significantly correlated with TNM stage, Fuhrman grade, lymph node metastasis, gender, and smoking or not, and the prognosis of patients with high expression of GSDMD was worse. After that, we constructed stable transfection cell lines with high expression and knockdown through lentivirus transfection and verified the expression amount of differentially expressed genes by PCR, which is consistent with the results of TCGA database. Then, we confirmed that GSDMD is related to proliferation, invasion, migration, and apoptosis of ccRCC by MTT, flow apoptosis, and Transwell assay. The low expression of GSDMD inhibits the proliferation, invasion, and migration of tumors and enhances apoptosis and vice versa. Therefore, GSDMD can be used as a potential biological marker for the diagnosis and prognosis of ccRCC.
Collapse
Affiliation(s)
- Jichi Zhang
- Urological Center, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yujie Wang
- Urological Center, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jun Ma
- Urological Center, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ainiwaer Aimudula
- Cancer Center, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
653
|
Hu C, Ye M, Bai J, Liu P, Lu F, Chen J, Yu P, Chen T, Shi X, Tang Q. Methylmalonic acid promotes colorectal cancer progression via activation of Wnt/β-catenin pathway mediated epithelial-mesenchymal transition. Cancer Cell Int 2023; 23:131. [PMID: 37403090 DOI: 10.1186/s12935-023-02973-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND It has been manifested in several studies that age-related metabolic reprogramming is associated with tumor progression, in particular, colorectal cancer (CRC). Here we investigated the role of upregulated metabolites of the aged serum, including methylmalonic acid (MMA), phosphoenolpyruvate (PEP), and quinolinate (QA), in CRC. METHODS Functional assays including CCK-8, EdU, colony formation and transwell experiments were used to ascertain which upregulated metabolite of elderly serum was related to tumor progression. RNA-seq analysis was conducted to explore the potential mechanisms of MMA-induced CRC progression. Subcutaneous tumorigenesis and metastatic tumor models were constructed to verify the function of MMA in vivo. RESULTS Among three consistently increased metabolites of the aged sera, MMA was responsible for tumorigenesis and metastasis in CRC, according to functional assays. The promotion of Epithelial-mesenchymal transition (EMT) was observed in CRC cells treated with MMA, on the basis of protein expression of EMT markers. Moreover, combined with transcriptome sequencing, Wnt/β-catenin signaling pathway was activated in CRC cells treated with MMA, which was verified by western blot and qPCR experiments. Furthermore, animal assays demonstrated the pro-proliferation and promotion of metastasis role of MMA in vivo. CONCLUSION We have identified that age-dependent upregulation of MMA in serum promoted the progression of CRC via Wnt/β-catenin signaling pathway mediated EMT. These collective findings provide valuable insights into the vital role of age-related metabolic reprogramming in CRC progression and propose a potential therapeutic target for elderly CRC.
Collapse
Affiliation(s)
- Chunhua Hu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, NO. 300 Guangzhou Road, Nanjing, China
| | - Mujie Ye
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, NO. 300 Guangzhou Road, Nanjing, China
| | - Jianan Bai
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, NO. 300 Guangzhou Road, Nanjing, China
| | - Pengfei Liu
- Department of Gastroenterology, Jiangyin People's Hospital, Jiangyin, Jiangsu Province, China
| | - Feiyu Lu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, NO. 300 Guangzhou Road, Nanjing, China
| | - Jinhao Chen
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, NO. 300 Guangzhou Road, Nanjing, China
| | - Ping Yu
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, NO. 300 Guangzhou Road, Nanjing, China
| | - Tiaotiao Chen
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, NO. 300 Guangzhou Road, Nanjing, China
| | - Xiaoting Shi
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, NO. 300 Guangzhou Road, Nanjing, China
| | - Qiyun Tang
- Department of Geriatric Gastroenterology, Neuroendocrine Tumor Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Institute of Neuroendocrine Tumor, Nanjing Medical University, NO. 300 Guangzhou Road, Nanjing, China.
| |
Collapse
|
654
|
Liu H, Han J, Lv Y, Zhao Z, Zheng S, Sun Y, Sun T. Isorhamnetin and anti-PD-L1 antibody dual-functional mesoporous silica nanoparticles improve tumor immune microenvironment and inhibit YY1-mediated tumor progression. J Nanobiotechnology 2023; 21:208. [PMID: 37408047 DOI: 10.1186/s12951-023-01967-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND The immune checkpoint inhibitor (ICI) anti-PD-L1 monoclonal antibody can inhibit the progress of hepatocellular carcinoma (HCC). Epithelial-mesenchymal transformation (EMT) can promote tumor migration and the formation of immune-suppression microenvironment, which affects the therapeutic effect of ICI. Yin-yang-1 (YY1) is an important transcription factor regulating proliferation, migration and EMT of tumor cells. This work proposed a drug-development strategy that combined the regulation of YY1-mediated tumor progression with ICIs for the treatment of HCC. METHODS We first studied the proteins that regulated YY1 expression by using pull-down, co-immunoprecipitation, and duo-link assay. The active compound regulating YY1 content was screened by virtual screening and cell-function assay. Isorhamnetin (ISO) and anti-PD-L1 antibody dual-functional mesoporous silica nanoparticles (HMSN-ISO@ProA-PD-L1 Ab) were prepared as an antitumor drug to play a synergistic anti-tumor role. RESULTS YY1 can specifically bind with the deubiquitination enzyme USP7. USP7 can prevent YY1 from ubiquitin-dependent degradation and stabilize YY1 expression, which can promote the proliferation, migration and EMT of HCC cells. Isorhamnetin (ISO) were screened out, which can target USP7 and promote YY1 ubiquitin-dependent degradation. The cell experiments revealed that the HMSN-ISO@ProA-PD-L1 Ab nanoparticles can specifically target tumor cells and play a role in the controlled release of ISO. HMSN-ISO@ProA-PD-L1 Ab nanoparticles inhibited the growth of Hepa1-6 transplanted tumors and the effect was better than that of PD-L1 Ab treatment group and ISO treatment group. HMSN-ISO@ProA-PD-L1 Ab nanoparticles also exerted a promising effect on reducing MDSC content in the tumor microenvironment and promoting T-cell infiltration in tumors. CONCLUSIONS The isorhamnetin and anti-PD-L1 antibody dual-functional nanoparticles can improve tumor immune microenvironment and inhibit YY1-mediated tumor progression. This study demonstrated the possibility of HCC treatment strategies based on inhibiting USP7-mediated YY1 deubiquitination combined with anti-PD-L1 monoclonal Ab.
Collapse
Affiliation(s)
- Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.
| | - Jingxia Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Ying Lv
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Zihan Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Shaoting Zheng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Yu Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
| |
Collapse
|
655
|
Jiang LJ, Guo SB, Huang ZY, Li XL, Jin XH, Huang WJ, Tian XP. PHB promotes bladder cancer cell epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathway. Pathol Res Pract 2023; 247:154536. [PMID: 37235908 DOI: 10.1016/j.prp.2023.154536] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/30/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
As a member of PHB (prohibitin1) family, PHB plays important roles in many cancers, but its property in bladder carcinoma aggressiveness is unknown. This research was to explore the function and potential mechanism of PHB in bladder carcinoma in vivo and in vitro. The invasive abilities of cancer cell were determined by transwell and wound-healing assays. The function of PHB was confirmed by gene knockdown and overexpression methods. Further in vivo confirmation was performed in a nude mouse model with lung metastasis. The relationship of PHB and β-catenin was confirmed by immunoprecipitation and immunofluorescence staining assays. The protein expression of epithelial-mescenchymal transition (EMT) and Wnt/β-catenin signaling pathway was tested by immunofluorescence staining and western blotting assay. The depletion of PHB prevented bladder cancer cell invasiveness and inhibited EMT. Contrarily,the abilities of bladder carcinoma cells migration and invasion in vitro as well as metastasis in vivo were enhanced when the PHB overexpressed unnormally. Importantly, the β-catenin was identified to be bound by PHB and β-catenin knockdown reduced the cancer cell migration, invasion and EMT in PHB overexpressing cells. In addition, PHB stabilized β-catenin by inhibiting its ubiqutin-mediated degradation thus leading to increased Wnt/β-catenin signaling. These observations indicate that PHB could promote bladder cancer aggressiveness by binding with β-catenin to prevent the degradation of β-catenin and the localized invasive bladder cancer patients with PHB overexpression should take more aggressive postsurgical adjuvant anticancer therapies.
Collapse
Affiliation(s)
- Li-Juan Jiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Song-Bin Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhong-Ying Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xin-Ling Li
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, China; Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiao-Han Jin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei-Juan Huang
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, China; Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China.
| | - Xiao-Peng Tian
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
656
|
Jiang LJ, Guo SB, Huang ZY, Li XL, Jin XH, Huang WJ, Tian XP. PHB promotes bladder cancer cell epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathway. Pathol Res Pract 2023; 247:154536. [DOI: pmid: 37235908; doi: 10.1016/j.prp.2023.154536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2025]
|
657
|
Yan C, Li Y, Liu H, Chen D, Wu J. Antitumor mechanism of cannabidiol hidden behind cancer hallmarks. Biochim Biophys Acta Rev Cancer 2023; 1878:188905. [PMID: 37164234 DOI: 10.1016/j.bbcan.2023.188905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
Cannabinoids have been utilized for recreational and therapeutic purposes for over 4,000 years. As the primary ingredient in exogenous cannabinoids, Cannabidiol (CBD) has drawn a lot of interest from researchers due to its negligible psychotropic side effects and potential tumor-suppressing properties. However, the obscure mechanisms that underlie them remain a mystery. Complex biological mechanisms are involved in the progression of cancer, and malignancies have a variety of acquired biological capabilities, including sustained proliferation, death evasion, neovascularization, tissue invasion and metastasis, immune escape, metabolic reprogramming, induction of tumor-associated inflammation, cancerous stemness and genomic instability. Nowadays, the role of CBD hidden in these hallmarks is gradually revealed. Nevertheless, flaws or inconsistencies in the recent studies addressing the anti-cancer effects of CBD still exist. The purpose of this review is to evaluate the potential mechanisms underlying the role of CBD in a range of tumor-acquired biological capabilities. We propose potential drugs that may have a synergistic effect with CBD and provide optional directions for future research.
Collapse
Affiliation(s)
- Chaobiao Yan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China; NHC Key Laboratory of Combined Multi-organ Transplantation, China; Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, Zhejiang Province, China.
| | - Yu Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China; NHC Key Laboratory of Combined Multi-organ Transplantation, China; Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, Zhejiang Province, China.
| | - Hanqing Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China; NHC Key Laboratory of Combined Multi-organ Transplantation, China; Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, Zhejiang Province, China.
| | - Diyu Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China; NHC Key Laboratory of Combined Multi-organ Transplantation, China; Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, Zhejiang Province, China.
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China; NHC Key Laboratory of Combined Multi-organ Transplantation, China; Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, Zhejiang Province, China.
| |
Collapse
|
658
|
Wang H, Chen X, Jin Y, Liu T, Song Y, Zhu X, Zhu X. The role of DYNLT3 in breast cancer proliferation, migration, and invasion via epithelial-to-mesenchymal transition. Cancer Med 2023; 12:15289-15303. [PMID: 37260179 PMCID: PMC10417059 DOI: 10.1002/cam4.6173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/06/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
PURPOSE DYNLT3 is identified as an age-related gene. Nevertheless, the specific mechanism of its carcinogenesis in breast tumor has not been clarified. This research aims to elucidate the role and the underlying molecular pathways of DYNLT3 on breast cancer tumorigenesis. METHODS The differential expression of DYNLT3 among breast cancer, breast fibroids, and normal tissues, as well as in various breast cancer cell lines were detected by immunohistochemical staining, real-time quantitative reverse transcription-PCR and Western blotting, respectively. Additionally, the role of DYNLT3 on cell viability and proliferation were observed through cell counting kit-8, bromodeoxyuridine, and colony formation experiments. Migratory and invasive abilities was envaulted by wound healing and Transwell methods. Apoptotic cells rate was examined by flow cytometry. Furthermore, nude mice xenograft models were established to confirm the role of DYNLT3 in tumor formation in vivo. RESULTS DYNLT3 expression was highly rising in both breast cancer tissues and cells. DYNLT3 knockdown obviously suppressed cell growth, migration and invasion, and induced cell apoptosis in MDA-MB-231 and MCF-7 breast cancer cells. The overexpression of DYNLT3 exerted the opposite effect in MDA-MB-231 cells. Moreover, DYNLT3 knockdown inhibited tumor formation in vivo. Mechanistically, an elevation of N-cadherin and vimentin levels and a decline of E-cadherin were observed when DYNLT3 was upregulated, which was reversed when DYNLT3 knockdown was performed. CONCLUSION DYNLT3 may function as a tumor-promotor of age-associated breast cancer, which is expected to provide experimental basis for new treatment options.
Collapse
Affiliation(s)
- Han Wang
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xin Chen
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yanshan Jin
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Tingxian Liu
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yizuo Song
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xuejie Zhu
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xueqiong Zhu
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
659
|
Zhang Y, Luo L, Fu C, Hu W, Li Y, Xiong J. CDC23 knockdown suppresses the proliferation, migration and invasion of liver cancer via the EMT process. Oncol Lett 2023; 26:291. [PMID: 37274472 PMCID: PMC10236262 DOI: 10.3892/ol.2023.13877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/29/2023] [Indexed: 06/06/2023] Open
Abstract
Liver cancer (LC) is a malignant tumour that is associated with high mortality rates worldwide. Cell division cycle 23 (CDC23) acts as an oncogene in papillary thyroid cancer. In addition, epithelial-mesenchymal transition (EMT) is frequently involved in the malignant metastasis of various cancer types. Therefore, we hypothesized that CDC23 may regulate the malignant biological behaviours of LC cells through EMT. Proliferation, colony formation and Transwell assays, western blotting and xenograft experiments were performed. The results of the present study showed that CDC23 was highly expressed in LC cell lines. In addition, it was found via multiple in vitro assays that CDC23 knockdown reduced the proliferation, migration and invasion of LC cell lines. Finally, an in vivo study confirmed that CDC23 knockdown inhibited the growth of xenograft LC in nude mice. More importantly, the changes in the levels of EMT-related marker proteins were analysed in the sh-CDC23 group compared with the sh-NC group of cells and xenografts. E-cadherin was upregulated, and N-cadherin and vimentin were significantly downregulated after CDC23 silencing. Taken together, these results revealed that the knockdown of CDC23 inhibits the progression of LC by regulating EMT and that CDC23 may be a novel therapeutic target for LC.
Collapse
Affiliation(s)
- Yang Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Laboratory of Digestive Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lianghua Luo
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Laboratory of Digestive Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chengchao Fu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Laboratory of Digestive Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wang Hu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Laboratory of Digestive Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yong Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Laboratory of Digestive Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jianbo Xiong
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Laboratory of Digestive Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
660
|
Luo J, Tian Z, Zhou Y, Xiao Z, Park SY, Sun H, Zhuang T, Wang Y, Li P, Zhao X. CircABCA13 acts as a miR-4429 sponge to facilitate esophageal squamous cell carcinoma development by stabilizing SRXN1. Cancer Sci 2023; 114:2835-2847. [PMID: 37017121 PMCID: PMC10323080 DOI: 10.1111/cas.15807] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/06/2023] Open
Abstract
Circular RNAs (circRNAs) play a pivotal role in the tumorigenesis and progression of various cancers. However, the role and mechanisms of circABCA13 in esophageal squamous cell carcinoma (ESCC) are largely unknown. Here, we reported that circABCA13, a novel circular RNA generated by back-splicing of the intron of the ABCA13 gene, is highly expressed in ESCC tumor tissues and cell lines. Upregulation of circABCA13 correlated with TNM stage and a poor prognosis in ESCC patients. While knockdown of circABCA13 in ESCC cells significantly reduced cell proliferation, migration, invasion, and anchorage-independent growth, overexpression of circABCA13 facilitated tumor growth both in vitro and in vivo. In addition, circABCA13 directly binds to miR-4429 and sequesters miR-4429 from its endogenous target, SRXN1 mRNA, which subsequently upregulates SRXN1 and promotes ESCC progression. Consistently, overexpression of miR-4429 or knockdown of SRXN1 abolished malignant behavior promotion of ESCC results from circABCA13 overexpression in vitro and in vivo. Collectively, our study uncovered the oncogenic role of circABCA13 and its mechanism in ESCC, suggesting that circABCA13 could be a potential therapeutic target and a predictive biomarker for ESCC patients.
Collapse
Affiliation(s)
- Junwen Luo
- Department of Thoracic SurgeryThe Second Hospital of Shandong UniversityJinanChina
| | - Zhongxian Tian
- Department of Thoracic SurgeryThe Second Hospital of Shandong UniversityJinanChina
- Key Laboratory of Chest CancerShandong University, The Second Hospital of Shandong UniversityJinanChina
| | - Yongjia Zhou
- Department of Thoracic SurgeryThe Second Hospital of Shandong UniversityJinanChina
| | - Zhaohua Xiao
- Department of Thoracic SurgeryThe Second Hospital of Shandong UniversityJinanChina
| | - Sun Young Park
- Department of Environmental MedicineNew York University Grossman School of MedicineNew YorkUSA
| | - Hong Sun
- Department of Environmental MedicineNew York University Grossman School of MedicineNew YorkUSA
| | - Ting Zhuang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory MedicineXinxiang Medical UniversityXinxiangChina
| | - Yongjie Wang
- Department of Thoracic SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Peiwei Li
- Institute of Medical SciencesThe Second Hospital of Shandong UniversityJinanChina
| | - Xiaogang Zhao
- Department of Thoracic SurgeryThe Second Hospital of Shandong UniversityJinanChina
- Key Laboratory of Chest CancerShandong University, The Second Hospital of Shandong UniversityJinanChina
| |
Collapse
|
661
|
Gao X, Yu Y, Wang H, Liu G, Sun X, Wang Z, Jiang X. Emerging roles of circ_NRIP1 in tumor development and cancer therapy (Review). Oncol Lett 2023; 26:321. [PMID: 37332333 PMCID: PMC10272956 DOI: 10.3892/ol.2023.13907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Circular RNA (circRNA) is a class of endogenous non-coding RNA, a type of single-stranded covalently closed RNA molecule formed by alternative splicing of exons or introns. Previous studies have demonstrated that circRNA participates in modulating biological processes such as cell proliferation, differentiation and apoptosis, and plays key roles in tumor occurrence and development. CircRNA nuclear receptor interacting protein 1 (circ_NRIP1), a form of circRNA, is abnormally expressed in certain human tumor types. It is present at a higher abundance compared with cognate linear transcripts and can regulate malignant biological behaviors such as tumor proliferation, invasion and migration, revealing a currently unexplored frontier in cancer progression. The present review presents a pattern of circ_NRIP1 expression in various malignant tumor types and highlights its significance in cancer development, in addition to its potential as a disease indicator or future therapeutic agent.
Collapse
Affiliation(s)
- Xin Gao
- General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yongbo Yu
- General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Haicun Wang
- General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Guanglin Liu
- General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xinyu Sun
- General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Zhidong Wang
- General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xingming Jiang
- General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
662
|
Liu T, Jiang L, Bai Q, Wu S, Yu X, Wu T, Wang J, Zhang X, Li H, Zhao K, Wang L. CLDN6 Suppresses Migration and Invasion of MCF-7 and SKBR-3 Breast Cancer Cells by Blocking the SMAD/Snail/MMP-2/9 Axis. Bull Exp Biol Med 2023; 175:376-381. [PMID: 37566248 DOI: 10.1007/s10517-023-05871-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 08/12/2023]
Abstract
The study examined the mechanisms of action of signal protein claudin 6 (CLDN6) on migration and invasion of breast cancer cell lines MCF-7 and SKBR-3. To this end, the signal proteins SMAD were blocked with their inhibitor SB431542, the genes CLDN6 and SNAIL were knocked down with short hairpin RNAs, and MMP2 and MMP9 were inhibited with TIMP-1. Expressions of MMP2 and MMP9 mRNAs were evaluated by reverse transcription PCR, Expressions of MMP-2, MMP-9, E-cadherin, N-cadherin, and vimentin were examined by Western blotting. Migration and invasion were analyzed by scratch test and Matrigel invasion assay. SB431542 inhibited expression of MMP2 and MMP9 in both cell lines. Single use of SB431542 inhibited expression of MMP-2/MMP-9 and corresponding mRNAs, but subsequent silencing of CLDN6 gene reversed this effect. TIMP-1 reversed down-regulation of E-cadherin, upregulation of N-cadherin and vimentin, facilitation of migration and invasion evoked by CLDN6 knocking down. Silencing of SNAIL gene inhibited migration and invasion, upregulated the expression of E-cadherin, and down-regulated expression of MMP2, MMP 9, N-cadherin, and vimentin. Thus, CLDN6 suppresses the epithelial-mesenchymal transition, migration, and invasion via blocking SMAD/Snail/MMP-2/9 signaling pathway in MCF-7 and SKBR-3 cancer cell lines.
Collapse
Affiliation(s)
- T Liu
- Basic Pathology Department, Pathology College, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China
| | - L Jiang
- Basic Pathology Department, Pathology College, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China
| | - Q Bai
- Basic Pathology Department, Pathology College, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China
| | - S Wu
- Basic Pathology Department, Pathology College, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China
| | - X Yu
- Basic Pathology Department, Pathology College, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China
| | - T Wu
- Basic Pathology Department, Pathology College, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China
| | - J Wang
- Basic Pathology Department, Pathology College, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China
| | - X Zhang
- Basic Pathology Department, Pathology College, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China
| | - H Li
- Basic Pathology Department, Pathology College, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China
| | - K Zhao
- Basic Pathology Department, Pathology College, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China
| | - L Wang
- Basic Pathology Department, Pathology College, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China.
| |
Collapse
|
663
|
Jin Y, Qiu Y, Li Y, Jiang Z, Hu S, Dai H. A novel epithelial-mesenchymal transition-related lncRNA signature predicts prognosis and immune status in endometrioid endometrial cancer. Medicine (Baltimore) 2023; 102:e34126. [PMID: 37390286 PMCID: PMC10313257 DOI: 10.1097/md.0000000000034126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/07/2023] [Indexed: 07/02/2023] Open
Abstract
The pathogenesis and progression of endometrial cancer (EC) are associated with epithelial-mesenchymal transition (EMT) and long noncoding RNAs (lncRNAs). In the present study, we aimed to identify an EMT-related lncRNA signature and evaluate its prognostic value in EC. We obtained the expression profile of lncRNAs and clinical information of patients with endometrioid EC from The Cancer Genome Atlas database (N = 401). We identified a signature of 5 EMT-related lncRNAs and calculated the risk score of each patient. Next, we validated the independence of the prognostic value of the EMT-related lncRNA signature. Furthermore, we performed Gene Set Enrichment Analysis to identify potential molecular function and Kyoto Encyclopedia of Genes and Genomes pathways related to the EMT-related lncRNA signature. Tumor microenvironment analysis and immune checkpoint blockade (ICB) response prediction were also assessed. Survival analysis revealed that the high-risk group, based on the EMT-related lncRNA signature, had a poorer prognosis than the low-risk group in the training, testing, and entire sets. The predictive value of the EMT-related lncRNA signature was independent of age, The International Federation of Gynecology and Obstetrics stage, tumor grade, and body mass index. Time-dependent receiver operating characteristic curves also demonstrate the prognostic accuracy of this risk model. Gene Set Enrichment Analysis showed that cytokine-cytokine receptor interaction, glycolysis/gluconeogenesis, and IL-17 signaling pathway were significantly enriched. Furthermore, tumor microenvironment analysis indicated a significant negative correlation between the immune score and EMT-related lncRNA signature risks core, while the low-risk group was more likely to respond to ICB therapy than the high-risk group. A reliable EMT-related lncRNA signature of endometrioid EC was identified that could be utilized as an independent prognostic biomarker to predict patient survival outcomes and provide references for the option of ICB therapy.
Collapse
Affiliation(s)
- Yichao Jin
- Department of Gynecology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yixuan Qiu
- Department of Gynecology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yujing Li
- Department of Gynecology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Ziwei Jiang
- Department of Gynecology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Siwen Hu
- Department of Gynecology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Huihua Dai
- Department of Gynecology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
664
|
Derham JM, Kalsotra A. The discovery, function, and regulation of epithelial splicing regulatory proteins (ESRP) 1 and 2. Biochem Soc Trans 2023; 51:1097-1109. [PMID: 37314029 PMCID: PMC11298080 DOI: 10.1042/bst20221124] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
Alternative splicing is a broad and evolutionarily conserved mechanism to diversify gene expression and functionality. The process relies on RNA binding proteins (RBPs) to recognize and bind target sequences in pre-mRNAs, which allows for the inclusion or skipping of various alternative exons. One recently discovered family of RBPs is the epithelial splicing regulatory proteins (ESRP) 1 and 2. Here, we discuss the structure and physiological function of the ESRPs in a variety of contexts. We emphasize the current understanding of their splicing activities, using the classic example of fibroblast growth factor receptor 2 mutually exclusive splicing. We also describe the mechanistic roles of ESRPs in coordinating the splicing and functional output of key signaling pathways that support the maintenance of, or shift between, epithelial and mesenchymal cell states. In particular, we highlight their functions in the development of mammalian limbs, the inner ear, and craniofacial structure while discussing the genetic and biochemical evidence that showcases their conserved roles in tissue regeneration, disease, and cancer pathogenesis.
Collapse
Affiliation(s)
- Jessica M. Derham
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center @ Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
665
|
Saini M, Schmidleitner L, Moreno HD, Donato E, Falcone M, Bartsch JM, Klein C, Vogel V, Würth R, Pfarr N, Espinet E, Lehmann M, Königshoff M, Reitberger M, Haas S, Graf E, Schwarzmayr T, Strom TM, Spaich S, Sütterlin M, Schneeweiss A, Weichert W, Schotta G, Reichert M, Aceto N, Sprick MR, Trumpp A, Scheel CH. Resistance to mesenchymal reprogramming sustains clonal propagation in metastatic breast cancer. Cell Rep 2023; 42:112533. [PMID: 37257449 DOI: 10.1016/j.celrep.2023.112533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 10/04/2022] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
The acquisition of mesenchymal traits is considered a hallmark of breast cancer progression. However, the functional relevance of epithelial-to-mesenchymal transition (EMT) remains controversial and context dependent. Here, we isolate epithelial and mesenchymal populations from human breast cancer metastatic biopsies and assess their functional potential in vivo. Strikingly, progressively decreasing epithelial cell adhesion molecule (EPCAM) levels correlate with declining disease propagation. Mechanistically, we find that persistent EPCAM expression marks epithelial clones that resist EMT induction and propagate competitively. In contrast, loss of EPCAM defines clones arrested in a mesenchymal state, with concomitant suppression of tumorigenicity and metastatic potential. This dichotomy results from distinct clonal trajectories impacting global epigenetic programs that are determined by the interplay between human ZEB1 and its target GRHL2. Collectively, our results indicate that susceptibility to irreversible EMT restrains clonal propagation, whereas resistance to mesenchymal reprogramming sustains disease spread in multiple models of human metastatic breast cancer, including patient-derived cells in vivo.
Collapse
Affiliation(s)
- Massimo Saini
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany; Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
| | - Laura Schmidleitner
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany; Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Center for Functional Protein Assemblies (CPA), Technical University of Munich (TUM), Garching, Germany; Center for Organoid Systems (COS), Technical University of Munich (TUM), Garching, Germany; Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), Garching, Germany
| | - Helena Domínguez Moreno
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilian University of Munich (LMU), Munich, Germany
| | - Elisa Donato
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Mattia Falcone
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Johanna M Bartsch
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Corinna Klein
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Vanessa Vogel
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Roberto Würth
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Nicole Pfarr
- Institute of Pathology, Technical University of Munich (TUM), Munich, Germany
| | - Elisa Espinet
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Mareike Lehmann
- Institute for Lung Health and Immunity (LHI) and Comprehensive Pneumology Center (CPC), Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich, Germany; Institute for Lung Research, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Melanie Königshoff
- Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Manuel Reitberger
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Simon Haas
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Thomas Schwarzmayr
- Institute of Human Genetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Tim-Matthias Strom
- Institute of Human Genetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Saskia Spaich
- Department of Gynaecology and Obstetrics, University Women's Clinic, University Medical Centre Mannheim, Mannheim, Germany
| | - Marc Sütterlin
- Department of Gynaecology and Obstetrics, University Women's Clinic, University Medical Centre Mannheim, Mannheim, Germany
| | - Andreas Schneeweiss
- National Center for Tumor Diseases, University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University of Munich (TUM), Munich, Germany; German Cancer Consortium (DKTK), Germany
| | - Gunnar Schotta
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilian University of Munich (LMU), Munich, Germany
| | - Maximilian Reichert
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Center for Functional Protein Assemblies (CPA), Technical University of Munich (TUM), Garching, Germany; Center for Organoid Systems (COS), Technical University of Munich (TUM), Garching, Germany; Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), Garching, Germany; German Cancer Consortium (DKTK), Germany
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Martin R Sprick
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; German Cancer Consortium (DKTK), Germany.
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; German Cancer Consortium (DKTK), Germany.
| | - Christina H Scheel
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany.
| |
Collapse
|
666
|
Si H, Esquivel M, Mendoza Mendoza E, Roarty K. The covert symphony: cellular and molecular accomplices in breast cancer metastasis. Front Cell Dev Biol 2023; 11:1221784. [PMID: 37440925 PMCID: PMC10333702 DOI: 10.3389/fcell.2023.1221784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer has emerged as the most commonly diagnosed cancer and primary cause of cancer-related deaths among women worldwide. Although significant progress has been made in targeting the primary tumor, the effectiveness of systemic treatments to prevent metastasis remains limited. Metastatic disease continues to be the predominant factor leading to fatality in the majority of breast cancer patients. The existence of a prolonged latency period between initial treatment and eventual recurrence in certain patients indicates that tumors can both adapt to and interact with the systemic environment of the host, facilitating and sustaining the progression of the disease. In order to identify potential therapeutic interventions for metastasis, it will be crucial to gain a comprehensive framework surrounding the mechanisms driving the growth, survival, and spread of tumor cells, as well as their interaction with supporting cells of the microenvironment. This review aims to consolidate recent discoveries concerning critical aspects of breast cancer metastasis, encompassing the intricate network of cells, molecules, and physical factors that contribute to metastasis, as well as the molecular mechanisms governing cancer dormancy.
Collapse
Affiliation(s)
- Hongjiang Si
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Madelyn Esquivel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Erika Mendoza Mendoza
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Kevin Roarty
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| |
Collapse
|
667
|
Unal B, Celik MY, Gedik EO, Bassorgun CI, Elpek GO. Tumor budding as a potential prognostic marker in determining the behavior of primary liver cancers. World J Hepatol 2023; 15:775-785. [PMID: 37397937 PMCID: PMC10308291 DOI: 10.4254/wjh.v15.i6.775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/22/2023] [Accepted: 04/18/2023] [Indexed: 06/25/2023] Open
Abstract
Hepatocellular (HCC) and intrahepatic cholangiocarcinoma (ICC), the most common primary tumors of the liver, are among the most important causes of cancer deaths worldwide. Because patients with primary liver tumors are frequently diagnosed at an advanced stage and have high mortality, many efforts have been made to identify new markers to determine their behavior and treatment, similar to those in other solid organ tumors. Recently, morphological assessment of tumor budding (TB) has been revealed as a promising prognostic finding to predict tumor behavior and survival across several different tumor types. Currently, the TB score in colorectal cancer has been revealed as an important parameter in pathology report protocols to determine the course of the disease. Regarding the liver, despite enormous data showing that many mechanisms involved in TB are associated with tumor behavior in both HCC and ICC, studies focusing on the role of TB in predicting the behavior and prognosis of these tumors have started to be investigated very recently. The purpose of this review is to present data about TB in primary tumors of the liver, pointing out the potential role of this parameter in determining the course of the disease, and emphasize the need to increase the number of further studies focusing on the evaluation of this parameter with an overview of the mechanisms involved in TB.
Collapse
Affiliation(s)
- Betul Unal
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| | | | - Elif Ocak Gedik
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| | | | - Gulsum Ozlem Elpek
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey.
| |
Collapse
|
668
|
Richter F, Henssen C, Steiert TA, Meissner T, Mehdorn AS, Röcken C, Franke A, Egberts JH, Becker T, Sebens S, Forster M. Combining Solid and Liquid Biopsy for Therapy Monitoring in Esophageal Cancer. Int J Mol Sci 2023; 24:10673. [PMID: 37445849 DOI: 10.3390/ijms241310673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
Esophageal cancer (EC) has one of the highest mortality rates among cancers, making it imperative that therapies are optimized and dynamically adapted to individuals. In this regard, liquid biopsy is an increasingly important method for residual disease monitoring. However, conflicting detection rates (14% versus 60%) and varying cell-free circulating tumor DNA (ctDNA) levels (0.07% versus 0.5%) have been observed in previous studies. Here, we aim to resolve this discrepancy. For 19 EC patients, a complete set of cell-free DNA (cfDNA), formalin-fixed paraffin-embedded tumor tissue (TT) DNA and leukocyte DNA was sequenced (139 libraries). cfDNA was examined in biological duplicates and/or longitudinally, and TT DNA was examined in technical duplicates. In baseline cfDNA, mutations were detected in 12 out of 19 patients (63%); the median ctDNA level was 0.4%. Longitudinal ctDNA changes were consistent with clinical presentation. Considerable mutational diversity was observed in TT, with fewer mutations in cfDNA. The most recurrently mutated genes in TT were TP53, SMAD4, TSHZ3, and SETBP1, with SETBP1 being reported for the first time. ctDNA in blood can be used for therapy monitoring of EC patients. However, a combination of solid and liquid samples should be used to help guide individualized EC therapy.
Collapse
Affiliation(s)
- Florian Richter
- Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein Campus Kiel, 24105 Kiel, Germany
| | - Clara Henssen
- Institute of Clinical Molecular Biology, Kiel University, 24105 Kiel, Germany
| | | | - Tobias Meissner
- Department of Molecular and Experimental Medicine, Avera Cancer Institute, Sioux Falls, SD 57105, USA
| | - Anne-Sophie Mehdorn
- Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein Campus Kiel, 24105 Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, University Hospital Schleswig-Holstein Campus Kiel, 24105 Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, 24105 Kiel, Germany
| | - Jan-Hendrik Egberts
- Department of Surgery, Israelitisches Krankenhaus Hamburg, 22297 Hamburg, Germany
| | - Thomas Becker
- Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein Campus Kiel, 24105 Kiel, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University, University Hospital Schleswig-Holstein Campus Kiel, 24105 Kiel, Germany
| | - Michael Forster
- Institute of Clinical Molecular Biology, Kiel University, 24105 Kiel, Germany
| |
Collapse
|
669
|
Subramani A, Cui W, Zhang Y, Friman T, Zhao Z, Huang W, Fonseca P, Lui WO, Narayanan V, Bobrowska J, Lekka M, Yan J, Conway DE, Holmgren L. Modulation of E-Cadherin Function through the AmotL2 Isoforms Promotes Ameboid Cell Invasion. Cells 2023; 12:1682. [PMID: 37443716 PMCID: PMC10340588 DOI: 10.3390/cells12131682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
The spread of tumor cells and the formation of distant metastasis remain the main causes of mortality in cancer patients. However, the mechanisms governing the release of cells from micro-environmental constraints remain unclear. E-cadherin negatively controls the invasion of epithelial cells by maintaining cell-cell contacts. Furthermore, the inactivation of E-cadherin triggers invasion in vitro. However, the role of E-cadherin is complex, as metastasizing cells maintain E-cadherin expression, which appears to have a positive role in the survival of tumor cells. In this report, we present a novel mechanism delineating how E-cadherin function is modulated to promote invasion. We have previously shown that E-cadherin is associated with p100AmotL2, which is required for radial actin formation and the transmission of mechanical force. Here, we present evidence that p60AmotL2, which is expressed in invading tumor cells, binds to the p100AmotL2 isoform and uncouples the mechanical constraint of radial actin filaments. We show for the first time that the coupling of E-cadherin to the actin cytoskeleton via p100AmotL2 is directly connected to the nuclear membrane. The expression of p60AmotL2 inactivates this connection and alters the properties of the nuclear lamina, potentiating the invasion of cells into micropores of the extracellular matrix. In summary, we propose that the balance of the two AmotL2 isoforms is important in the modulation of E-cadherin function and that an imbalance of this axis promotes ameboid cell invasion.
Collapse
Affiliation(s)
- Aravindh Subramani
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| | - Weiyingqi Cui
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| | - Yuanyuan Zhang
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| | - Tomas Friman
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| | - Zhihai Zhao
- Department of Physics, Faculty of Science: 2 Science Drive 3, S7-01-10, Lower Kent Ridge Road, Singapore 117542, Singapore; (Z.Z.); (W.H.); (J.Y.)
- Mechanobiology Institute (MBI): T-Lab, #10-02, 5A Engineering Drive 1, National University of Singapore, Singapore 117411, Singapore
| | - Wenmao Huang
- Department of Physics, Faculty of Science: 2 Science Drive 3, S7-01-10, Lower Kent Ridge Road, Singapore 117542, Singapore; (Z.Z.); (W.H.); (J.Y.)
- Mechanobiology Institute (MBI): T-Lab, #10-02, 5A Engineering Drive 1, National University of Singapore, Singapore 117411, Singapore
| | - Pedro Fonseca
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| | - Weng-Onn Lui
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| | - Vani Narayanan
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, USA; (V.N.); (D.E.C.)
| | - Justyna Bobrowska
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (J.B.); (M.L.)
| | - Małgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (J.B.); (M.L.)
| | - Jie Yan
- Department of Physics, Faculty of Science: 2 Science Drive 3, S7-01-10, Lower Kent Ridge Road, Singapore 117542, Singapore; (Z.Z.); (W.H.); (J.Y.)
- Mechanobiology Institute (MBI): T-Lab, #10-02, 5A Engineering Drive 1, National University of Singapore, Singapore 117411, Singapore
| | - Daniel E. Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, USA; (V.N.); (D.E.C.)
| | - Lars Holmgren
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| |
Collapse
|
670
|
Fan C, González-Prieto R, Kuipers TB, Vertegaal ACO, van Veelen PA, Mei H, Ten Dijke P. The lncRNA LETS1 promotes TGF-β-induced EMT and cancer cell migration by transcriptionally activating a TβR1-stabilizing mechanism. Sci Signal 2023; 16:eadf1947. [PMID: 37339182 DOI: 10.1126/scisignal.adf1947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/25/2023] [Indexed: 06/22/2023]
Abstract
Transforming growth factor-β (TGF-β) signaling is a critical driver of epithelial-to-mesenchymal transition (EMT) and cancer progression. In SMAD-dependent TGF-β signaling, activation of the TGF-β receptor complex stimulates the phosphorylation of the intracellular receptor-associated SMADs (SMAD2 and SMAD3), which translocate to the nucleus to promote target gene expression. SMAD7 inhibits signaling through the pathway by promoting the polyubiquitination of the TGF-β type I receptor (TβRI). We identified an unannotated nuclear long noncoding RNA (lncRNA) that we designated LETS1 (lncRNA enforcing TGF-β signaling 1) that was not only increased but also perpetuated by TGF-β signaling. Loss of LETS1 attenuated TGF-β-induced EMT and migration in breast and lung cancer cells in vitro and extravasation of the cells in a zebrafish xenograft model. LETS1 potentiated TGF-β-SMAD signaling by stabilizing cell surface TβRI, thereby forming a positive feedback loop. Specifically, LETS1 inhibited TβRI polyubiquitination by binding to nuclear factor of activated T cells (NFAT5) and inducing the expression of the gene encoding the orphan nuclear receptor 4A1 (NR4A1), a component of a destruction complex for SMAD7. Overall, our findings characterize LETS1 as an EMT-promoting lncRNA that potentiates signaling through TGF-β receptor complexes.
Collapse
Affiliation(s)
- Chuannan Fan
- Department of Cell and Chemical Biology, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
- Oncode Institute, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
| | - Román González-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
- Genome Proteomics Laboratory, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Seville, Américo Vespucio 24, 41092 Seville, Spain
- Department of Cell Biology, University of Seville, Américo Vespucio 24, 41092 Seville, Spain
| | - Thomas B Kuipers
- Department of Biomedical Data Sciences, Sequencing Analysis Support Core, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
| | - Hailiang Mei
- Department of Biomedical Data Sciences, Sequencing Analysis Support Core, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
- Oncode Institute, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, Netherlands
| |
Collapse
|
671
|
Han B, He J, Chen Q, Yuan M, Zeng X, Li Y, Zeng Y, He M, Feng D, Ma D. Identifying the role of NUDCD1 in human tumors from clinical and molecular mechanisms: a study based on comprehensive bioinformatics and experimental validation. Aging (Albany NY) 2023; 15:5611-5649. [PMID: 37338527 PMCID: PMC10333089 DOI: 10.18632/aging.204813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
NUDCD1 (NudC domain-containing 1) is abnormally activated in multiple tumors and has been identified as a cancer antigen. But there is still no pan-cancer analysis available for NUDCD1 in human cancers. The role of NUDCD1 across multiple tumors was explored using data from the public databases including HPA, TCGA, GEO, GTEx, TIMER2, TISIDB, UALCAN, GEPIA2, cBioPortal, GSCA and so on. Molecular experiments (e.g., quantitative real-time PCR, immunohistochemistry and western blot) were conducted to validate the expression and biological function of NUDCD1 in STAD. Results showed that NUDCD1 was highly expressed in most tumors and its levels were associated with the prognosis. Multiple genetic and epigenetic features of NUDCD1 exist in different cancers. NUDCD1 was associated with expression levels of recognized immune checkpoints (anti-CTLA-4) and immune infiltrates (e.g., CD4+ and CD8+ T cells) in some cancers. Moreover, NUDCD1 correlated with the CTRP and GDSC drug sensitivity and acted as a link between chemicals and cancers. Importantly, NUDCD1-related genes were enriched in several tumors (e.g., COAD, STAD and ESCA) and affected apoptosis, cell cycle and DNA damage cancer-related pathways. Furthermore, expression, mutation and copy number variations for the gene sets were also associated with prognosis. At last, the overexpression and contribution of NUDCD1 in STAD were experimentally validated in vitro and in vivo. NUDCD1 was involved in diverse biological processes and it influenced the occurrence and development of cancers. This first pan-cancer analysis for NUDCD1 provides a comprehensive understanding about its roles across various cancer types, especially in STAD.
Collapse
Affiliation(s)
- Bin Han
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Jinsong He
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Qing Chen
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Min Yuan
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Xi Zeng
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Yuanting Li
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Yan Zeng
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Meibo He
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Dan Feng
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Daiyuan Ma
- GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
672
|
Xu J, Chen C, Sun K, Shi Q, Wang B, Huang Y, Ren T, Tang X. Tocilizumab (monoclonal anti-IL-6R antibody) reverses anlotinib resistance in osteosarcoma. Front Oncol 2023; 13:1192472. [PMID: 37404767 PMCID: PMC10315670 DOI: 10.3389/fonc.2023.1192472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
Purpose Anlotinib, a tyrosine kinase inhibitor (TKI) has been in clinical application to inhibit malignant cell growth and lung metastasis in osteosarcoma (OS). However, a variety of drug resistance phenomena have been observed in the treatment. We aim to explore the new target to reverse anlotinib resistance in OS. Materials and Methods In this study, we established four OS anlotinib-resistant cell lines, and RNA-sequence was performed to evaluate differentially expressed genes. We verified the results of RNA-sequence by PCR, western blot and ELISA assay. We further explored the effects of tocilizumab (anti- IL-6 receptor), either alone or in combined with anlotinib, on the inhibition of anlotinib-resistant OS cells malignant viability by CCK8, EDU, colony formation, apoptosis, transwell, wound healing, Cytoskeletal stain assays, and xenograft nude mouse model. The expression of IL-6 in 104 osteosarcoma samples was tested by IHC. Results We found IL-6 and its downstream pathway STAT3 were activated in anlotinib-resistant osteosarcoma. Tocilizumab impaired the tumor progression of anlotinib-resistant OS cells, and combined treatment with anlotinib augmented these effects by inhibiting STAT3 expressions. IL-6 was highly expressed in patients with OS and correlated with poor prognosis. Conclusion Tocilizumab could reverse anlotinib resistance in OS by IL-6/STAT3 pathway and the combination treatment with anlotinib rationalized further studies and clinical treatment of OS.
Collapse
Affiliation(s)
- Jiuhui Xu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Chenglong Chen
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Department of Orthopedics, Beijing Jishuitan Hospital, Beijing, China
| | - Kunkun Sun
- Department of Pathology, Peking University People’s Hospital, Beijing, China
| | - Qianyu Shi
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Boyang Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Yi Huang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Xiaodong Tang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
673
|
Ekeuku SO, Etim EP, Pang KL, Chin KY, Mai CW. Vitamin E in the management of pancreatic cancer: A scoping review. World J Gastrointest Oncol 2023; 15:943-958. [PMID: 37389119 PMCID: PMC10302993 DOI: 10.4251/wjgo.v15.i6.943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/03/2023] [Accepted: 04/07/2023] [Indexed: 06/14/2023] Open
Abstract
Pancreatic cancer is the leading cause of cancer mortality worldwide. Research investigating effective management strategies for pancreatic cancer is ongoing. Vitamin E, consisting of both tocopherol and tocotrienol, has demonstrated debatable effects on pancreatic cancer cells. Therefore, this scoping review aims to summarize the effects of vitamin E on pancreatic cancer. In October 2022, a literature search was conducted using PubMed and Scopus since their inception. Original studies on the effects of vitamin E on pancreatic cancer, including cell cultures, animal models and human clinical trials, were considered for this review. The literature search found 75 articles on this topic, but only 24 articles met the inclusion criteria. The available evidence showed that vitamin E modulated proliferation, cell death, angiogenesis, metastasis and inflammation in pancreatic cancer cells. However, the safety and bioavailability concerns remain to be answered with more extensive preclinical and clinical studies. More in-depth analysis is necessary to investigate further the role of vitamin E in the management of pancreatic cancers.
Collapse
Affiliation(s)
- Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Effiong Paul Etim
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Kok-Lun Pang
- Newcastle University Medicine Malaysia, Iskandar Puteri 79200, Johor, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chun-Wai Mai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
674
|
Ding Y, Wang H, Liu J, Jiang H, Gong A, Xu M. MBD3 as a Potential Biomarker for Colon Cancer: Implications for Epithelial-Mesenchymal Transition (EMT) Pathways. Cancers (Basel) 2023; 15:3185. [PMID: 37370795 PMCID: PMC10296356 DOI: 10.3390/cancers15123185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
The tumor EMT is a crucial event in tumor pathogenesis and progression. Previous research has established MBD3's significant role in pancreatic cancer EMT. However, MBD3's precise role in colon cancer remains unclear and warrants further investigation. Pan-cancer analysis revealed MBD3's differential expression in various tumors and its significant association with tumor occurrence, growth, and progression. Moreover, analysis of single-cell sequencing and clinical data for colon cancer revealed MBD3 expression's negative correlation with clinical indicators such as survival prognosis. Functional enrichment analysis confirmed the association between MBD3 and EMT in colon cancer. Pathological examinations, western blotting, and qRT-PCR in vitro and in vivo validated MBD3's differential expression in colon cancer. Transwell, CCK-8, clone formation, and in vivo tumorigenesis experiments confirmed MBD3's impact on migration, invasion, and proliferation. Our findings demonstrate MBD3 as a potential prognostic marker and therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Yuntao Ding
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212000, China; (Y.D.); (H.W.); (J.L.); (H.J.)
| | - Huizhi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212000, China; (Y.D.); (H.W.); (J.L.); (H.J.)
| | - Junqiang Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212000, China; (Y.D.); (H.W.); (J.L.); (H.J.)
| | - Han Jiang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212000, China; (Y.D.); (H.W.); (J.L.); (H.J.)
| | - Aihua Gong
- Hematological Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212000, China; (Y.D.); (H.W.); (J.L.); (H.J.)
| |
Collapse
|
675
|
Xi S, Ming DJ, Zhang JH, Guo MM, Wang SY, Cai Y, Liu MY, Wang DQ, Zhang YJ, Li Y, Yuan S. Downregulation of N6-methyladenosine-modified LINC00641 promotes EMT, but provides a ferroptotic vulnerability in lung cancer. Cell Death Dis 2023; 14:359. [PMID: 37311754 DOI: 10.1038/s41419-023-05880-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
The prognosis of lung cancer is poor with few effective therapies. Targeting ferroptosis is a new promising strategy for cancer therapy. LINC00641 has been involved in several cancers, however, its specific roles in lung cancer treatment remain largely unknown. Here, we reported that LINC00641 was down-regulated in tumor tissues and its downregulation was associated with poor outcomes in lung adenocarcinoma. LINC00641 was localized primarily in the nucleus and was modified by m6A. The nuclear m6A reader YTHDC1 regulated LINC00641 expression by affecting its stability. We demonstrated that LINC00641 suppressed lung cancer by inhibiting migration and invasion in vitro and metastasis in vivo. Knockdown of LINC00641 upregulated HuR protein level (especially in the cytoplasm), which subsequently increased N-cadherin levels by stabilizing its mRNA, then ultimately promoted EMT. Interestingly, LINC00641 knockdown in lung cancer cells increased the arachidonic acid metabolism and promoted ferroptosis sensitivity. Our findings identified LINC00641 as a tumor suppressor through inhibiting EMT. In another aspect, low expression of LINC00641 caused a ferroptotic vulnerability in lung cancer cells, which may serve as a potential ferroptosis-related therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Shu Xi
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- School of Clinical Medicine, Henan University, Kaifeng, China
- Department of Respiratory, Huaihe Hospital of Henan University, Kaifeng, China
| | - Dao-Jing Ming
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Jin-Hui Zhang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Meng-Meng Guo
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Shuang-Ying Wang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Cai
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Meng-Yang Liu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dan-Qi Wang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi-Jie Zhang
- School of Clinical Medicine, Henan University, Kaifeng, China.
- Department of Respiratory, Huaihe Hospital of Henan University, Kaifeng, China.
| | - Yafei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Shuai Yuan
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
676
|
Amicone L, Marchetti A, Cicchini C. The lncRNA HOTAIR: a pleiotropic regulator of epithelial cell plasticity. J Exp Clin Cancer Res 2023; 42:147. [PMID: 37308974 DOI: 10.1186/s13046-023-02725-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a trans-differentiation process that endows epithelial cells with mesenchymal properties, including motility and invasion capacity; therefore, its aberrant reactivation in cancerous cells represents a critical step to gain a metastatic phenotype. The EMT is a dynamic program of cell plasticity; many partial EMT states can be, indeed, encountered and the full inverse mesenchymal-to-epithelial transition (MET) appears fundamental to colonize distant secondary sites. The EMT/MET dynamics is granted by a fine modulation of gene expression in response to intrinsic and extrinsic signals. In this complex scenario, long non-coding RNAs (lncRNAs) emerged as critical players. This review specifically focuses on the lncRNA HOTAIR, as a master regulator of epithelial cell plasticity and EMT in tumors. Molecular mechanisms controlling its expression in differentiated as well as trans-differentiated epithelial cells are highlighted here. Moreover, current knowledge about HOTAIR pleiotropic functions in regulation of both gene expression and protein activities are described. Furthermore, the relevance of the specific HOTAIR targeting and the current challenges of exploiting this lncRNA for therapeutic approaches to counteract the EMT are discussed.
Collapse
Affiliation(s)
- Laura Amicone
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Medicina Molecolare, Sapienza University of Rome, Viale Regina Elena 324, Rome, 00161, Italy
| | - Alessandra Marchetti
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Medicina Molecolare, Sapienza University of Rome, Viale Regina Elena 324, Rome, 00161, Italy
| | - Carla Cicchini
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Medicina Molecolare, Sapienza University of Rome, Viale Regina Elena 324, Rome, 00161, Italy.
| |
Collapse
|
677
|
Jing Q, Yuan C, Zhou C, Jin W, Wang A, Wu Y, Shang W, Zhang G, Ke X, Du J, Li Y, Shao F. Comprehensive analysis identifies CLEC1B as a potential prognostic biomarker in hepatocellular carcinoma. Cancer Cell Int 2023; 23:113. [PMID: 37308868 PMCID: PMC10262401 DOI: 10.1186/s12935-023-02939-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/06/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND C-type lectin domain family 1 member B (CLEC1B, encoding the CLEC-2 protein), a member of the C-type lectin superfamily, is a type II transmembrane receptor involved in platelet activation, angiogenesis, and immune and inflammatory responses. However, data regarding its function and clinical prognostic value in hepatocellular carcinoma (HCC) remain scarce. METHODS The expression of CLEC1B was explored using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. RT-qPCR, western blot, and immunohistochemistry assays were employed to validate the downregulation of CLEC1B. Univariate Cox regression and survival analyses were used to evaluate the prognostic value of CLEC1B. Gene Set Enrichment Analysis (GSEA) was conducted to investigate the potential association between cancer hallmarks and CLEC1B expression. The TISIDB database was applied to search for the correlation between immune cell infiltration levels and CLEC1B expression. The association between CLEC1B and immunomodulators was conducted by Spearman correlation analysis based on the Sangerbox platform. Annexin V-FITC/PI apoptosis kit was used for the detection of cell apoptosis. RESULTS The expression of CLEC1B was low in various tumors and exhibited a promising clinical prognostic value for HCC patients. The expression level of CLEC1B was tightly associated with the infiltration of various immune cells in the HCC tumor microenvironment (TME) and positively correlated with a bulk of immunomodulators. In addition, CLEC1B and its related genes or interacting proteins are implicated in multiple immune-related processes and signaling pathways. Moreover, overexpression of CLEC1B significantly influenced the treatment effects of sorafenib on HCC cells. CONCLUSIONS Our results reveal that CLEC1B could serve as a potential prognostic biomarker and may be a novel immunoregulator for HCC. However, its function in immune regulation should be further explored.
Collapse
Grants
- 2021KY077, 2022KY503, 2022KY046, 2022KY074, 2022KY290 Medical and Health Science and Technology Project of Zhejiang Province
- 2021KY077, 2022KY503, 2022KY046, 2022KY074, 2022KY290 Medical and Health Science and Technology Project of Zhejiang Province
- 2021KY077, 2022KY503, 2022KY046, 2022KY074, 2022KY290 Medical and Health Science and Technology Project of Zhejiang Province
- 2020ZA098, 2021ZB245 Traditional Chinese Medicine Science and Technology Project of Zhejiang Province
- 2020ZA098, 2021ZB245 Traditional Chinese Medicine Science and Technology Project of Zhejiang Province
- LGF21H010008, LGF20H080005, LBY23H080004, LGF22H080008 Zhejiang Provincial Natural Science Foundation of China
- LGF21H010008, LGF20H080005, LBY23H080004, LGF22H080008 Zhejiang Provincial Natural Science Foundation of China
- LGF21H010008, LGF20H080005, LBY23H080004, LGF22H080008 Zhejiang Provincial Natural Science Foundation of China
Collapse
Affiliation(s)
- Qiangan Jing
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Department of Central Laboratory, Affiliated Hangzhou first people's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Chen Yuan
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chaoting Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Weidong Jin
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Aiwei Wang
- Department of Hematology, The first people's Hospital of Fuyang Hangzhou, Hangzhou, Zhejiang, China
| | - Yanfang Wu
- Department of Hematology, The first people's Hospital of Fuyang Hangzhou, Hangzhou, Zhejiang, China
| | - Wenzhong Shang
- Department of Hematology, The first people's Hospital of Fuyang Hangzhou, Hangzhou, Zhejiang, China
| | - Guibing Zhang
- Department of Hematology, The first people's Hospital of Fuyang Hangzhou, Hangzhou, Zhejiang, China
| | - Xia Ke
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou first people's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Fangchun Shao
- Cancer Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
678
|
Waryah C, Alves E, Mazzieri R, Dolcetti R, Thompson EW, Redfern A, Blancafort P. Unpacking the Complexity of Epithelial Plasticity: From Master Regulator Transcription Factors to Non-Coding RNAs. Cancers (Basel) 2023; 15:3152. [PMID: 37370762 DOI: 10.3390/cancers15123152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular plasticity in cancer enables adaptation to selective pressures and stress imposed by the tumor microenvironment. This plasticity facilitates the remodeling of cancer cell phenotype and function (such as tumor stemness, metastasis, chemo/radio resistance), and the reprogramming of the surrounding tumor microenvironment to enable immune evasion. Epithelial plasticity is one form of cellular plasticity, which is intrinsically linked with epithelial-mesenchymal transition (EMT). Traditionally, EMT has been regarded as a binary state. Yet, increasing evidence suggests that EMT involves a spectrum of quasi-epithelial and quasi-mesenchymal phenotypes governed by complex interactions between cellular metabolism, transcriptome regulation, and epigenetic mechanisms. Herein, we review the complex cross-talk between the different layers of epithelial plasticity in cancer, encompassing the core layer of transcription factors, their interacting epigenetic modifiers and non-coding RNAs, and the manipulation of cancer immunogenicity in transitioning between epithelial and mesenchymal states. In examining these factors, we provide insights into promising therapeutic avenues and potential anti-cancer targets.
Collapse
Affiliation(s)
- Charlene Waryah
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Eric Alves
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Roberta Mazzieri
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Riccardo Dolcetti
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Erik W Thompson
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Andrew Redfern
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
679
|
Dev Tripathi A, Katiyar S, Mishra A. Glypican1: a potential cancer biomarker for nanotargeted therapy. Drug Discov Today 2023:103660. [PMID: 37301249 DOI: 10.1016/j.drudis.2023.103660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/11/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Glypicans (GPCs) are generally involved in cellular signaling, growth and proliferation. Previous studies reported their roles in cancer proliferation. GPC1 is a co-receptor for a variety of growth-related ligands, thereby stimulating the tumor microenvironment by promoting angiogenesis and epithelial-mesenchymal transition (EMT). This work reviews GPC1-biomarker-assisted drug discovery by the application of nanostructured materials, creating nanotheragnostics for targeted delivery and application in liquid biopsies. The review includes details of GPC1 as a potential biomarker in cancer progression as well as a potential candidate for nano-mediated drug discovery.
Collapse
Affiliation(s)
- Abhay Dev Tripathi
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Soumya Katiyar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India.
| |
Collapse
|
680
|
Ning S, Liu C, Wang K, Cai Y, Ning Z, Li M, Zeng L. NUCB2/Nesfatin-1 drives breast cancer metastasis through the up-regulation of cholesterol synthesis via the mTORC1 pathway. J Transl Med 2023; 21:362. [PMID: 37277807 PMCID: PMC10243030 DOI: 10.1186/s12967-023-04236-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Reprogramming lipid metabolism for tumor metastasis is essential in breast cancer, and NUCB2/Nesfatin-1 plays a crucial role in regulating energy metabolism. Its high expression is associated with poor prognosis in breast cancer. Here, we studied whether NUCB2/Nesfatin-1 promotes breast cancer metastasis through reprogramming cholesterol metabolism. METHODS ELISA was employed to measure the concentration of Nesfatin-1 in the serum of breast cancer patients and the control group. Database analysis suggested that NUCB2/Nesfatin-1 might be acetylated in breast cancer, which was confirmed by treating the breast cancer cells with acetyltransferase inhibitors. Transwell migration and Matrigel invasion assays were conducted, and nude mouse lung metastasis models were established to examine the effect of NUCB2/Nesfatin-1 on breast cancer metastasis in vitro and in vivo. The Affymetrix gene expression chip results were analyzed using IPA software to identify the critical pathway induced by NUCB2/Nesfatin-1. We evaluated the effect of NUCB2/Nesfatin-1 on cholesterol biosynthesis through the mTORC1-SREBP2-HMGCR axis by utilizing mTORC1 inhibitor and rescue experiments. RESULTS NUCB2/Nesfatin-1 was found to be overexpressed in the breast cancer patients, and its overexpression was positively correlated with poor prognosis. NUCB2 was potentially acetylated, leading to high expression in breast cancer. NUCB2/Nesfatin-1 promoted metastasis in vitro and in vivo, while Nesfatin-1 rescued impaired cell metastasis induced by NUCB2 depletion. Mechanistically, NUCB2/Nesfatin-1 upregulated cholesterol synthesis via the mTORC1 signal pathway, contributing to breast cancer migration and metastasis. CONCLUSIONS Our findings demonstrate that the NUCB2/Nesfatin-1/mTORC1/SREBP2 signal pathway is critical in regulating cholesterol synthesis, essential for breast cancer metastasis. Thus, NUCB2/Nesfatin-1 might be utilized as a diagnostic tool and also used in cancer therapy for breast cancer in the future.
Collapse
Affiliation(s)
- Siyi Ning
- Department of Immunology, College of Basic Medical Sciences, Central South University, Changsha, 410028, China
| | - Caiying Liu
- Department of Immunology, College of Basic Medical Sciences, Central South University, Changsha, 410028, China
| | - Kangtao Wang
- Department of General Surgery, The Xiangya Hospital, Central South University, Changsha, 410028, China
| | - Yubo Cai
- Department of Immunology, College of Basic Medical Sciences, Central South University, Changsha, 410028, China
| | - Zhicheng Ning
- Hunan Normal University School of Medicine, Changsha, 410031, China
| | - Ming Li
- Department of Immunology, College of Basic Medical Sciences, Central South University, Changsha, 410028, China.
| | - Liang Zeng
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, Guangzhou, 510623, China.
| |
Collapse
|
681
|
Hu Y, Wan C, Yang X, Tian Y, Deng S, An D, Wang Y, Wang J, Liao Z, Meng J, Qin Y, Sun Y, Yang K. Radiated tumor cell-derived microparticles effectively kill stem-like tumor cells by increasing reactive oxygen species. Front Bioeng Biotechnol 2023; 11:1156951. [PMID: 37342505 PMCID: PMC10277801 DOI: 10.3389/fbioe.2023.1156951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/21/2023] [Indexed: 06/23/2023] Open
Abstract
Stem-like tumor cells (SLTCs) are thought to be the cellular entity responsible for clinical recurrence and subsequent metastasis. Inhibiting or killing SLTCs can effectively reduce recurrence and metastasis, yet little has been done to clear SLTCs because they are usually resistant to chemotherapy, radiotherapy, and even immunotherapy. In this study, we established SLTCs by low-serum culture and confirmed that the low-serum-cultured tumor cells were in a quiescent state and resistant to chemotherapy, showing features of SLTCs, consistent with the reported data. We demonstrated that SLTCs had high levels of reactive oxygen species (ROS). Based on the finding that radiated tumor cell-derived microparticles (RT-MPs) contained ROS, we used RT-MPs to kill SLTCs. We found that RT-MPs could further increase ROS levels and kill SLTCs in vivo and in vitro partially by ROS carried by the RT-MPs themselves, providing a new method for eliminating SLTCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yajie Sun
- *Correspondence: Yajie Sun, ; Kunyu Yang,
| | - Kunyu Yang
- *Correspondence: Yajie Sun, ; Kunyu Yang,
| |
Collapse
|
682
|
Huo Q, Wang J, Xie N. High HSPB1 expression predicts poor clinical outcomes and correlates with breast cancer metastasis. BMC Cancer 2023; 23:501. [PMID: 37268925 DOI: 10.1186/s12885-023-10983-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/19/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Heat shock protein beta-1 (HSPB1) is a crucial biomarker for pathological processes in various cancers. However, the clinical value and function of HSPB1 in breast cancer has not been extensively explored. Therefore, we adopted a systematic and comprehensive approach to investigate the correlation between HSPB1 expression and clinicopathological features of breast cancer, as well as determine its prognostic value. We also examined the effects of HSPB1 on cell proliferation, invasion, apoptosis, and metastasis. METHODS We investigated the expression of HSPB1 in patients with breast cancer using The Cancer Genome Atlas and immunohistochemistry. Chi-squared test and Wilcoxon signed-rank test were used to examine the relationship between HSPB1 expression and clinicopathological characteristics. RESULTS We observed that HSPB1 expression was significantly correlated with the stage N, pathologic stages, as well as estrogen and progesterone receptors. Furthermore, high HSPB1 expression resulted in a poor prognosis for overall survival, relapse-free survival, and distant metastasis-free survival. Multivariable analysis showed that patients with poor survival outcomes had higher tumor, node, metastasis, and pathologic stages. Pathway analysis of HSPB1 and the altered neighboring genes suggested that HSPB1 is involved in the epithelial-to-mesenchymal transition. Functional analysis revealed showed that transient knockdown of HSPB1 inhibited the cell migration/invasion ability and promoted apoptosis. CONCLUSIONS HSPB1 may be involved in breast cancer metastasis. Collectively, our study demonstrated that HSPB1 has prognostic value for clinical outcomes and may serve as a therapeutic biomarker for breast cancer.
Collapse
Affiliation(s)
- Qin Huo
- Biobank, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, 518035, Shenzhen, China
| | - Juan Wang
- Department of General Practice, Army Medical Center of PLA, Chongqing, 400042, China
| | - Ni Xie
- Biobank, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, 518035, Shenzhen, China.
| |
Collapse
|
683
|
Zhang M, Ding Y, Hu S, Li F, Wang Y, Zhou Y, Qi M, Ni H, Fang S, Chen Q. Transcriptomics and systems network-based molecular mechanism of herbal formula Huosu-Yangwei inhibited gastric cancer in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2023:116674. [PMID: 37277085 DOI: 10.1016/j.jep.2023.116674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/08/2023] [Accepted: 05/21/2023] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The efficacy of the herbal formula Huosu-Yangwei (HSYW) in the treatment of advanced gastric cancer and chronic atrophic gastritis with precancerous lesions has been reported in clinical trials. However, the molecular mechanisms underlying its inhibition of gastric tumor are not well-understood. AIM OF THE STUDY Combined with transcriptomics and systems network-based molecular mechanism to explore the potential circRNA-miRNA-mRNA network of HSYW in the treatment of gastric cancer. MATERIALS AND METHODS Animal experiments were conducted to investigate the effect of HSYW on tumor growth in vivo. RNA sequencing (RNA-seq) was implemented to identify the differentially expressed (DE) genes. Predictive miRNA targets and mRNA were used to construct circRNA-miRNA-mRNA networks and protein-protein interaction (PPI) networks. Quantitative real-time PCR (qRT-PCR) was utilized to verify the accuracy of the proposed circRNA-miRNA-mRNA networks. Additionally, the differentially expressed target proteins between gastric cancer (GC) and normal patients were assessed using data from the TCGA (The Cancer Genome Atlas) and HPA (The Human Protein Atlas) databases. RESULTS We demonstrate HSYW significantly inhibits tumor growth of N87 cell-bearing Balb/c mice. Transcriptomic analysis revealed the existence of 119 differentially expressed (DE) circRNAs and 200 DE mRNAs between HSYW-treated and model mice. By associating predicted circRNA-miRNA pairs and miRNA-mRNA pairs, we constructed a circRNA-miRNA-mRNA (CMM) network. Furthermore, a protein-protein interaction (PPI) network was developed using the differential expressed mRNAs. Consequently, the reconstructed core CMM network and qRT-PCR validation indicated that 4 circRNAs, 5 miRNAs and 6 mRNAs could potentially serve as biomarkers to assess the therapeutic effects of HSYW-treated N87-bearing Balb/c mice. The TCGA and HPA databases also demonstrated that mRNA KLF15 and PREX1 had substantial differences between gastric cancer (GC) and healthy controls. CONCLUSIONS By combining the experimental and bioinformatics analysis, this study confirms that the circRNA_00240/hsa-miR-642a-5p/KLF15 and circRNA_07980/hsa-miR-766-3p/PREX1 pathways play critical roles in HSYW-treated gastric cancer.
Collapse
Affiliation(s)
- Mengyuan Zhang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yujie Ding
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Sheng Hu
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Fulong Li
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yi Wang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yue Zhou
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Mei Qi
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - HongMei Ni
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Shengquan Fang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Qilong Chen
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| |
Collapse
|
684
|
Mao Y, Zhang M, Wang L, Lu Y, Hu X, Chen Z. Role of microRNA carried by small extracellular vesicles in urological tumors. Front Cell Dev Biol 2023; 11:1192937. [PMID: 37333986 PMCID: PMC10272383 DOI: 10.3389/fcell.2023.1192937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Small extracellular vesicles (sEVs) are minute vesicles secreted by various cells that are capable of transporting cargo, including microRNAs, between donor and recipient cells. MicroRNAs (miRNAs), small non-coding RNAs approximately 22 nucleotides in length, have been implicated in a wide array of biological processes, including those involved in tumorigenesis. Emerging evidence highlights the pivotal role of miRNAs encapsulated in sEVs in both the diagnosis and treatment of urological tumors, with potential implications in epithelial-mesenchymal transition, proliferation, metastasis, angiogenesis, tumor microenvironment and drug resistance. This review provides a brief overview of the biogenesis and functional mechanisms of sEVs and miRNAs, followed by a summarization of recent empirical findings on miRNAs encapsulated in sEVs from three archetypal urologic malignancies: prostate cancer, clear cell renal cell carcinoma, and bladder cancer. We conclude by underscoring the potential of sEV-enclosed miRNAs as both biomarkers and therapeutic targets, with a particular focus on their detection and analysis in biological fluids such as urine, plasma, and serum.
Collapse
Affiliation(s)
- Yiping Mao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mengting Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Lanfeng Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yukang Lu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xinyi Hu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhiping Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
685
|
Guan J, Zhang ZY, Sun JH, Wang XP, Zhou ZQ, Qin L. LITAF inhibits colorectal cancer stemness and metastatic behavior by regulating FOXO1-mediated SIRT1 expression. Clin Exp Metastasis 2023:10.1007/s10585-023-10213-x. [PMID: 37266842 DOI: 10.1007/s10585-023-10213-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/20/2023] [Indexed: 06/03/2023]
Abstract
Lipopolysaccharide-induced tumor necrosis factor alpha factor (LITAF) is a transcription factor that activates the transcription of TNF-α and regulates the inflammatory response. LITAF has been found to have potential anti-cancer effects of in several tumors. However, the role of LITAF in colorectal cancer (CRC) remains unclear. Through a comprehensive pan-cancer analysis of the Cancer Genome Atlas (TCGA), LITAF was identified as a differentially downregulated gene in CRC. We hypothesized that LITAF may participate in the modulation of CRC progression. The present study was aimed to investigate the expression profile of LITAF in CRC and its effect on metastatic behavior and stemness as well as the underlying molecular mechanism. The expression profile of LITAF in CRC, and its relationship with the prognosis of CRC were explored using public databases. LITAF expression was detected by quantitative real-time PCR (qRT-PCR), western blot, and immunohistochemistry. Furthermore, the effects of overexpression or knockdown of LITAF on cell proliferation, apoptosis, migration, invasion, and stemness of CRC cells were investigated in vitro. The regulatory effect of LITAF on forkhead Box O 1 (FOXO1)-sirtuin 1 (SIRT1) signaling axis was also explored. In addition, a xenograft mouse model was used to investigate the in-vivo role of LITAF. LITAF was downregulated in tumor tissues and its expression was associated with the prognosis, pathological stage and liver metastasis. In-vitro experiments confirmed that LITAF inhibited tumor cell proliferation, migration, invasion and stemness, and induced cell apoptosis. In vivo experiments demonstrated that LITAF inhibited the tumorigenicity and liver metastasis in tumor-bearing mice. Additionally, LITAF promoted FOXO1-mediated SIRT1 inhibition, thus regulating cancer stemness and malignant phenotypes. LITAF was silenced in CRC and it participated in the progression of CRC by inhibiting CRC cell stemness, and malignant phenotypes. Therefore, LITAF may serve as a novel biomarker of CRC prognosis.
Collapse
Affiliation(s)
- Jiao Guan
- Department of Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zheng-Yun Zhang
- Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jian-Hua Sun
- Department of Emergency, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xin-Ping Wang
- Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zun-Qiang Zhou
- Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Lei Qin
- Department of Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
686
|
Liang X, Du L, Fan Y. The potential of FCRL genes as targets for cancer treatment: insights from bioinformatics and immunology. Aging (Albany NY) 2023; 15:204766. [PMID: 37285836 PMCID: PMC10292877 DOI: 10.18632/aging.204766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
Cancer is a prevalent and dangerous disease that requires a multifaceted approach to treatment. The FCRL family gene has been linked to immune function and tumor progression. Bioinformatics may help unravel their role in cancer treatment. We conducted a comprehensive analysis of the FCRL family genes in pan-cancer using publicly available databases and online tools. Specifically, we examined gene expression, prognostic significance, mutation profiles, drug resistance, as well as biological and immunomodulatory roles. Our data were sourced from The Cancer Genome Atlas, Genotype-Tissue Expression, cBioPortal, STRING, GSCALite, Cytoscape, and R software. The expression of FCRL genes varies significantly across different tumor types and normal tissues. While high expression of most FCRL genes is associated with a protective effect in many cancers, FCRLB appears to be a risk factor in several types of cancer. Alterations in FCRL family genes, particularly through amplification and mutation, are common in cancers. These genes are closely linked to classical cancer pathways such as apoptosis, epithelial-mesenchymal transition (EMT), estrogen receptor (ER) signaling, and DNA damage response. Enrichment analysis indicates that FCRL family genes are predominantly associated with immune cell activation and differentiation. Immunological assays demonstrate a strong positive correlation between FCRL family genes and tumor-infiltrating lymphocytes (TILs), immunostimulators, and immunoinhibitors. Furthermore, FCRL family genes can enhance the sensitivity of various anticancer drugs. The FCRL family genes are vital in cancer pathogenesis and progression. Targeting these genes in conjunction with immunotherapy could enhance cancer treatment efficacy. Further research is required to determine their potential as therapeutic targets.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lei Du
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuchao Fan
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| |
Collapse
|
687
|
Wang G, Zhou Y, Yi B, Long Y, Ma B, Zhang Y. Comprehensive analysis of the prognostic value and biological function of TDG in hepatocellular carcinoma. Cell Cycle 2023; 22:1478-1495. [PMID: 37224078 PMCID: PMC10281473 DOI: 10.1080/15384101.2023.2216501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/30/2023] [Accepted: 04/27/2023] [Indexed: 05/26/2023] Open
Abstract
Epigenetics plays an important role in the malignant progression of tumors, in which DNA methylation can alter genetic performance without altering the DNA sequence. As a key regulator demethylation, thymine-DNA glycosylase (TDG) has been reported to participate in malignant progression of multiple tumors. In this study, we demonstrate that TDG is highly expressed in hepatocellular carcinoma (HCC) and its high expression is closely related to the poor prognosis of patients. Decreasing TDG expression can significantly inhibit the malignant biological behavior of HCC cells. ABL proto-oncogene 1(ABL1) was identified as a downstream gene regulated by TDG demethylation. In addition, TDG can affect the Hippo signaling pathway through ABL1 to regulate HCC cell proliferation, apoptosis, invasion and migration. Overall, our study demonstrated that TDG reduces DNA methylation of ABL1, increases ABL1 protein expression, and affects the Hippo signaling pathway to regulate the malignant progression of HCC.
Collapse
Affiliation(s)
- Guoliang Wang
- Department of Hepatobiliary Surgery, Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Yinwen Zhou
- Department of Surgery, Zunyi Medical University, Zunyi, Guizhou, China
| | - Bin Yi
- Department of Hepatobiliary Surgery, Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Yanli Long
- Department of Pathology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Bo Ma
- Department of Hepatobiliary Surgery, Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Yi Zhang
- Department of Hepatobiliary Surgery, Department of Organ Transplantation, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
688
|
Gong H, Tao Y, Xiao S, Li X, Fang K, Wen J, Zeng M, Liu Y, Chen Y. Identification of an EMT-related gene-based prognostic signature in osteosarcoma. Cancer Med 2023; 12:12912-12928. [PMID: 37102261 PMCID: PMC10278480 DOI: 10.1002/cam4.5942] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND The correlation between epithelial-mesenchymal transition (EMT) and osteosarcoma (OS) has been widely reported. Integration of the EMT-related genes to predict the prognosis is significant for investigating the mechanism of EMT in OS. Here, we aimed to construct a prognostic EMT-related gene signature for OS. METHODS Transcriptomic and survival data of OS patients were downloaded from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and Gene Expression Omnibus (GEO). We performed univariate Cox regression, least absolute shrinkage and selection operator (LASSO) regression, and stepwise multivariate Cox regression analysis to construct EMT-related gene signatures. Kaplan-Meier analysis and time-dependent receiver operating characteristic (ROC) were applied to evaluate its predictive performance. GSVA, ssGSEA, ESTIMATE, and scRNA-seq were performed to investigate the tumor microenvironment, and the correlation between IC50 of drugs and ERG score was investigated. Furthermore, Edu and transwell experiments were conducted to assess the malignancy of OS cells. RESULTS We constructed a novel EMT-related gene signature (including CDK3, MYC, UHRF2, STC2, COL5A2, MMD, and EHMT2) for outcome prediction of OS. According to the signature, patients stratified into high- and low-ERG-score groups exhibited significantly different prognoses. ROC curves and Kaplan-Meier analysis revealed a promising performance of the signature with external validation. GSVA, ssGSEA, ESTIMATE algorithm, and scRNA-seq excavated EMT-related pathways and suggested the correlation between ERG score and immune activation. Notably, the pivotal gene CDK3 was upregulated in OS tissue and positively related to OS cell proliferation and migration. CONCLUSION Our EMT-related gene signature might reference OS risk stratification and guide clinical strategies as an independent prognostic factor in OS.
Collapse
Affiliation(s)
- Haoli Gong
- Department of OrthopedicsHunan Provincial People's Hospital (The First‐Affiliated Hospital of Hunan Normal University)ChangshaChina
| | - Ye Tao
- Department of RadiologyThe Third Xiangya HospitalCentral South UniversityHunanChangshaChina
| | - Sheng Xiao
- Department of OrthopedicsHunan Provincial People's Hospital (The First‐Affiliated Hospital of Hunan Normal University)ChangshaChina
| | - Xin Li
- Department of OrthopedicsHunan Provincial People's Hospital (The First‐Affiliated Hospital of Hunan Normal University)ChangshaChina
| | - Ke Fang
- Department of OrthopedicsHunan Provincial People's Hospital (The First‐Affiliated Hospital of Hunan Normal University)ChangshaChina
| | - Jie Wen
- Department of OrthopedicsHunan Provincial People's Hospital (The First‐Affiliated Hospital of Hunan Normal University)ChangshaChina
| | - Ming Zeng
- Department of OrthopedicsHunan Provincial People's Hospital (The First‐Affiliated Hospital of Hunan Normal University)ChangshaChina
| | - Yiheng Liu
- Department of OrthopedicsHaikou Affiliated Hospital of Central South University Xiangya School of MedicineHai kouChina
| | - Yang Chen
- Department of OrthopedicsHaikou Affiliated Hospital of Central South University Xiangya School of MedicineHai kouChina
- Department of OrthopaedicsThe Third Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
689
|
Cai M, Wu W, Deng S, Yang Q, Wu H, Wang H, Zhang J, Feng Q, Shao J, Zeng Y, Li J. Expression of cytoskeleton-associated protein 4 is associated with poor prognosis and metastasis in nasopharyngeal carcinoma. Exp Biol Med (Maywood) 2023; 248:1085-1094. [PMID: 37208923 PMCID: PMC10581166 DOI: 10.1177/15353702231167940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/18/2022] [Indexed: 05/21/2023] Open
Abstract
Cytoskeleton-associated protein 4 (CKAP4) acts as a key transmembrane protein that connects the endoplasmic reticulum (ER) to microtubule dynamics. Researchers have not examined the roles of CKAP4 in nasopharyngeal carcinoma (NPC). The study aimed at evaluating the prognostic value and metastasis-regulating effect of CKAP4 in NPC. CKAP4 protein could be observed in 86.36% of 557 NPC specimens but not in normal nasopharyngeal epithelial tissue. According to immunoblot assays, NPC cell lines presented high CKAP4 expression relative to NP69 immortalized nasopharyngeal epithelial cells. Moreover, CKAP4 was highly expressed at the NPC tumor front and in matched liver, lung, and lymph node metastasis samples. Furthermore, high CKAP4 expression reported poor overall survival (OS) and presented a positive relevance to tumor (T) classification, recurrence, and metastasis. According to multivariate analysis, CKAP4 could independently and negatively predict patients' prognosis. Stable knockdown of CKAP4 expression in NPC cells inhibited cell migration, invasion and metastasis in vitro and in vivo. Moreover, CKAP4 promoted epithelial-mesenchymal transition (EMT) in NPC cells. CKAP4 knockdown was followed by the downregulation of the interstitial marker vimentin, and upregulation of the epithelial marker E-cadherin. In NPC tissues, high CKAP4 expression exhibited a positive relevance to vimentin expression and a negative relevance to E-cadherin expression. In conclusion, CKAP4 is an independent predictor of NPC, and CKAP4 might contribute NPC progression and metastasis, which may be involved in EMT with vimentin and E-cadherin.
Collapse
Affiliation(s)
- Manbo Cai
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Weijun Wu
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shengling Deng
- Department of Anesthesia, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Qiao Yang
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Haibiao Wu
- Department of Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Haiyun Wang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Jiaxing Zhang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Qisheng Feng
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Jianyong Shao
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Yixin Zeng
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Jianjun Li
- Department of Urological Surgical, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001,China
| |
Collapse
|
690
|
Hiraki HL, Matera DL, Wang WY, Prabhu ES, Zhang Z, Midekssa F, Argento AE, Buschhaus JM, Humphries BA, Luker GD, Pena-Francesch A, Baker BM. Fiber density and matrix stiffness modulate distinct cell migration modes in a 3D stroma mimetic composite hydrogel. Acta Biomater 2023; 163:378-391. [PMID: 36179980 PMCID: PMC10043045 DOI: 10.1016/j.actbio.2022.09.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 01/26/2023]
Abstract
The peritumoral stroma is a complex 3D tissue that provides cells with myriad biophysical and biochemical cues. Histologic observations suggest that during metastatic spread of carcinomas, these cues influence transformed epithelial cells, prompting a diversity of migration modes spanning single cell and multicellular phenotypes. Purported consequences of these variations in tumor escape strategies include differential metastatic capability and therapy resistance. Therefore, understanding how cues from the peritumoral stromal microenvironment regulate migration mode has both prognostic and therapeutic value. Here, we utilize a synthetic stromal mimetic in which matrix fiber density and bulk hydrogel mechanics can be orthogonally tuned to investigate the contribution of these two key matrix attributes on MCF10A migration mode phenotypes, epithelial-mesenchymal transition (EMT), and invasive potential. We develop an automated computational image analysis framework to extract migratory phenotypes from fluorescent images and determine 3D migration metrics relevant to metastatic spread. Using this analysis, we find that matrix fiber density and bulk hydrogel mechanics distinctly contribute to a variety of MCF10A migration modes including amoeboid, single mesenchymal, clusters, and strands. We identify combinations of physical and soluble cues that induce a variety of migration modes originating from the same MCF10A spheroid and use these settings to examine a functional consequence of migration mode -resistance to apoptosis. We find that cells migrating as strands are more resistant to staurosporine-induced apoptosis than either disconnected clusters or individual invading cells. Improved models of the peritumoral stromal microenvironment and understanding of the relationships between matrix attributes and cell migration mode can aid ongoing efforts to identify effective cancer therapeutics that address cell plasticity-based therapy resistances. STATEMENT OF SIGNIFICANCE: Stromal extracellular matrix structure dictates both cell homeostasis and activation towards migratory phenotypes. However decoupling the effects of myriad biophysical cues has been difficult to achieve. Here, we encapsulate electrospun fiber segments within an amorphous hydrogel to create a fiber-reinforced hydrogel composite in which fiber density and hydrogel stiffness can be orthogonally tuned. Quantification of 3D cell migration reveal these two parameters uniquely contribute to a diversity of migration phenotypes spanning amoeboid, single mesenchymal, multicellular cluster, and collective strand. By tuning biophysical and biochemical cues to elicit heterogeneous migration phenotypes, we find that collective strands best resist apoptosis. This work establishes a composite approach to modulate fibrous topography and bulk hydrogel mechanics and identified biomaterial parameters to direct distinct 3D cell migration phenotypes.
Collapse
Affiliation(s)
- Harrison L Hiraki
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Daniel L Matera
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - William Y Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Eashan S Prabhu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Zane Zhang
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 481095, United States
| | - Firaol Midekssa
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Anna E Argento
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Johanna M Buschhaus
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Brock A Humphries
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Gary D Luker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Abdon Pena-Francesch
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 481095, United States
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
691
|
Akhmetkaliyev A, Alibrahim N, Shafiee D, Tulchinsky E. EMT/MET plasticity in cancer and Go-or-Grow decisions in quiescence: the two sides of the same coin? Mol Cancer 2023; 22:90. [PMID: 37259089 DOI: 10.1186/s12943-023-01793-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/20/2023] [Indexed: 06/02/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) and mesenchymal epithelial transition (MET) are genetic determinants of cellular plasticity. These programs operate in physiological (embryonic development, wound healing) and pathological (organ fibrosis, cancer) conditions. In cancer, EMT and MET interfere with various signalling pathways at different levels. This results in gross alterations in the gene expression programs, which affect most, if not all hallmarks of cancer, such as response to proliferative and death-inducing signals, tumorigenicity, and cell stemness. EMT in cancer cells involves large scale reorganisation of the cytoskeleton, loss of epithelial integrity, and gain of mesenchymal traits, such as mesenchymal type of cell migration. In this regard, EMT/MET plasticity is highly relevant to the Go-or-Grow concept, which postulates the dichotomous relationship between cell motility and proliferation. The Go-or-Grow decisions are critically important in the processes in which EMT/MET plasticity takes the central stage, mobilisation of stem cells during wound healing, cancer relapse, and metastasis. Here we outline the maintenance of quiescence in stem cell and metastatic niches, focusing on the implication of EMT/MET regulatory networks in Go-or-Grow switches. In particular, we discuss the analogy between cells residing in hybrid quasi-mesenchymal states and GAlert, an intermediate phase allowing quiescent stem cells to enter the cell cycle rapidly.
Collapse
Affiliation(s)
- Azamat Akhmetkaliyev
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, 020000, Kazakhstan
| | | | - Darya Shafiee
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, 020000, Kazakhstan
| | - Eugene Tulchinsky
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, 020000, Kazakhstan.
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.
| |
Collapse
|
692
|
Mishra AB, Nishank SS. Therapeutic targeting approach on epithelial-mesenchymal plasticity to combat cancer metastasis. Med Oncol 2023; 40:190. [PMID: 37247000 DOI: 10.1007/s12032-023-02049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/06/2023] [Indexed: 05/30/2023]
Abstract
Epithelial-mesenchymal plasticity (EMP) is a process in which epithelial cells lose their characteristics and acquire mesenchymal properties, leading to increased motility and invasiveness, which are key factors in cancer metastasis. Targeting EMP has emerged as a promising therapeutic approach to combat cancer metastasis. Various strategies have been developed to target EMP, including inhibition of key signaling pathways, such as TGF-β, Wnt/β-catenin, and Notch, that regulate EMP, as well as targeting specific transcription factors, such as Snail, Slug, and Twist, that promote EMP. Additionally, targeting the tumor microenvironment, which plays a critical role in promoting EMP, has also shown promise. Several preclinical and clinical studies have demonstrated the efficacy of EMP-targeting therapies in inhibiting cancer metastasis. However, further research is needed to optimize these strategies and improve their clinical efficacy. Overall, therapeutic targeting of EMP represents a promising approach for the development of novel cancer therapies that can effectively inhibit metastasis, a major cause of cancer-related mortality.
Collapse
|
693
|
Chen Y, Jia L, Zhao K, Chen Z, Han Y, He X. CTHRC1 promotes anaplastic thyroid cancer progression by upregulating the proliferation, migration, and invasion of tumor cells. PeerJ 2023; 11:e15458. [PMID: 37273536 PMCID: PMC10234271 DOI: 10.7717/peerj.15458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is an extremely aggressive tumor with a high mortality rate and poor prognosis. However, the pathogenesis of ATC is complex and poorly understood, and the effective treatment options are limited. Analysis of data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases showed that collagen triple helix repeat containing-1 (CTHRC1) was specifically upregulated in ATC tissues and was negatively correlated with overall survival (OS) in thyroid carcinoma patients. In vitro knockdown of CTHRC1 dramatically decreased the proliferation, migration, and invasion abilities of ATC cells, and in vivo studies in BALB/c nude mice confirmed that CTHRC1 knockdown significantly inhibited tumor growth. Mechanistically, CTHRC1 knockdown was found to suppress the Wnt/β-catenin pathway and epithelial-mesenchymal transition (EMT) at the protein level. These findings suggest that CTHRC1 promotes the progression of ATC via upregulating tumor cell proliferation, migration, and invasion, which may be achieved by activating the Wnt/β-catenin pathway and EMT.
Collapse
Affiliation(s)
- Yong Chen
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Department of General Surgery, Huai’an Second People’s Hospital, Huai’an, Jiangsu, China
| | - Lanning Jia
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Ke Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zuoyu Chen
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yue Han
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xianghui He
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
694
|
Xie J, Lan T, Zheng DL, Ding LC, Lu YG. CDH4 inhibits ferroptosis in oral squamous cell carcinoma cells. BMC Oral Health 2023; 23:329. [PMID: 37237299 DOI: 10.1186/s12903-023-03046-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND The cadherin-4 gene (CDH4), a member of the cadherin family genes, encodes R-cadherin (R-cad); however, the function of this gene in different types of cancer remains controversial. The function of CDH4 in OSCC (oral squamous cell carcinoma) is unknown. MATERIALS AND METHODS We use the Cancer Genome Atlas (TCGA) database to find the expression of CDH4 in OSCC is more than normal tissue. Our tissue samples also confirmed that CDH4 gene was highly expressed in OSCC. The related cell function assay detected that CDH4 promotes the ability of cell proliferation, migration, self-renewal and invasion. Cell staining experiment confirmed that the change of CDH4 expression would change the cell mortality. The western blot of GPX4 (glutathione-dependent peroxidase-4), GSH (reduced glutathione) test assay and MDA(Malondialdehyde) test assay show that the expression of CDH4 may resist the sensitivity of ferropotosis in OSCC. RESULTS CDH4 was upregulated in OSCC samples and was correlation with poor survival of patients. High expression of CDH4 effectively promotes the proliferation, mobility of OSCC cells and reduce the sensitivity of OSCC cells to ferroptosis. CDH4 is positively correlated with EMT pathway genes, negatively correlated with fatty acid metabolism pathway genes and peroxisome pathway genes, and positively correlated with ferroptosis suppressor genes in OSCC. CONCLUSIONS These results indicate that CDH4 may play a positive role in tumor progression and resistance ferroptosis and may be a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Jian Xie
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350002, China
- Key Laboratory of Stomatology of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Rd, Fuzhou, 350004, China
| | - Ting Lan
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350002, China
| | - Da-Li Zheng
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350002, China
| | - Lin-Can Ding
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350002, China.
| | - You-Guang Lu
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350002, China.
- Key Laboratory of Stomatology of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Rd, Fuzhou, 350004, China.
| |
Collapse
|
695
|
Chen S, Saeed AFUH, Liu Q, Jiang Q, Xu H, Xiao GG, Rao L, Duo Y. Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther 2023; 8:207. [PMID: 37211559 DOI: 10.1038/s41392-023-01452-1] [Citation(s) in RCA: 603] [Impact Index Per Article: 301.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/06/2023] [Accepted: 04/26/2023] [Indexed: 05/23/2023] Open
Abstract
Macrophages exist in various tissues, several body cavities, and around mucosal surfaces and are a vital part of the innate immune system for host defense against many pathogens and cancers. Macrophages possess binary M1/M2 macrophage polarization settings, which perform a central role in an array of immune tasks via intrinsic signal cascades and, therefore, must be precisely regulated. Many crucial questions about macrophage signaling and immune modulation are yet to be uncovered. In addition, the clinical importance of tumor-associated macrophages is becoming more widely recognized as significant progress has been made in understanding their biology. Moreover, they are an integral part of the tumor microenvironment, playing a part in the regulation of a wide variety of processes including angiogenesis, extracellular matrix transformation, cancer cell proliferation, metastasis, immunosuppression, and resistance to chemotherapeutic and checkpoint blockade immunotherapies. Herein, we discuss immune regulation in macrophage polarization and signaling, mechanical stresses and modulation, metabolic signaling pathways, mitochondrial and transcriptional, and epigenetic regulation. Furthermore, we have broadly extended the understanding of macrophages in extracellular traps and the essential roles of autophagy and aging in regulating macrophage functions. Moreover, we discussed recent advances in macrophages-mediated immune regulation of autoimmune diseases and tumorigenesis. Lastly, we discussed targeted macrophage therapy to portray prospective targets for therapeutic strategies in health and diseases.
Collapse
Affiliation(s)
- Shanze Chen
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Abdullah F U H Saeed
- Department of Cancer Biology, Beckman Research Institute of City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Quan Liu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen University, Shenzhen, 518052, China
| | - Qiong Jiang
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Haizhao Xu
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
- Department of Respiratory, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Gary Guishan Xiao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, China.
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Yanhong Duo
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
696
|
Wang X, Zhang C, Song H, Yuan J, Zhang X, Yuan Y, Zhang L, He J. Characterization of LIMA1 and its emerging roles and potential therapeutic prospects in cancers. Front Oncol 2023; 13:1115943. [PMID: 37274282 PMCID: PMC10235525 DOI: 10.3389/fonc.2023.1115943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Actin is the most abundant and highly conserved cytoskeletal protein present in all eukaryotic cells. Remodeling of the actin cytoskeleton is controlled by a variety of actin-binding proteins that are extensively involved in biological processes such as cell motility and maintenance of cell shape. LIM domain and actin-binding protein 1 (LIMA1), as an important actin cytoskeletal regulator, was initially thought to be a tumor suppressor frequently downregulated in epithelial tumors. Importantly, the deficiency of LIMA1 may be responsible for dysregulated cytoskeletal dynamics, altered cell motility and disrupted cell-cell adhesion, which promote tumor proliferation, invasion and migration. As research progresses, the roles of LIMA1 extend from cytoskeletal dynamics and cell motility to cell division, gene regulation, apical extrusion, angiogenesis, cellular metabolism and lipid metabolism. However, the expression of LIMA1 in malignant tumors and its mechanism of action have not yet been elucidated, and many problems and challenges remain to be addressed. Therefore, this review systematically describes the structure and biological functions of LIMA1 and explores its expression and regulatory mechanism in malignant tumors, and further discusses its clinical value and therapeutic prospects.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Chao Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Huangqin Song
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Junlong Yuan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiaomin Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yiran Yuan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Lei Zhang
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Hepatic Surgery Center, Institute of Hepato-Pancreato-Biliary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiefeng He
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
697
|
Ying F, Guo J, Gao X, Huang L, Gao L, Cai J, Wang Z. Establishment of highly metastatic ovarian cancer model with omental tropism via in vivo selection. iScience 2023; 26:106719. [PMID: 37197325 PMCID: PMC10183668 DOI: 10.1016/j.isci.2023.106719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/15/2023] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
Epithelial ovarian cancer (OC) is often diagnosed at an advanced stage with peritoneal metastasis, and preclinical models mimicking the natural course of OC peritoneal metastasis are essential to improve treatment. We implanted ES2 and ID8 cells in the ovaries of mice and obtained highly metastatic (HM) sublines from their omental metastases after three cycles in vivo selection. Orthotopic xenografts derived from the HM sublines showed enhanced omental tropism and more extensive metastasis with earlier onset. The HM cells exhibited increased in vitro migration and invasion properties, and RNA sequencing revealed that the genes related to epithelial-mesenchymal transition and extracellular matrix regulation were significantly altered in the HM cells. Among them, the upregulated genes were significantly associated with poorer survival in OC patients. In conclusion, these HM sublines can be leveraged to establish spontaneous metastatic OC mouse models, which may serve as ideal preclinical models for anti-metastasis therapy for OC patients.
Collapse
Affiliation(s)
- Feiquan Ying
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuejiao Gao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Huang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lingling Gao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Corresponding author
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Corresponding author
| |
Collapse
|
698
|
Ke S, Guo J, Wang Q, Shao H, He M, Li T, Qiu T, Guo J. Netrin Family Genes as Prognostic Markers and Therapeutic Targets for Clear Cell Renal Cell Carcinoma: Netrin-4 Acts through the Wnt/β-Catenin Signaling Pathway. Cancers (Basel) 2023; 15:2816. [PMID: 37345154 DOI: 10.3390/cancers15102816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/27/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC, or KIRC) is the most common type of kidney cancer, originating within the renal cortex. The current outcomes for early diagnosis and late treatment of ccRCC are unsatisfactory. Therefore, it is important to explore tumor biomarkers and therapeutic opportunities for ccRCC. In this study, we used bioinformatics methods to systematically evaluate the expression and prognostic value of Netrin family genes in ccRCC. Through our analysis, three potential biomarkers for ccRCC were identified, namely NTNG1, NTNG2, and NTN4. Moreover, we performed in vitro and in vivo experiments to explore the possible biological roles of NTN4 and found that NTN4 could regulate ccRCC development through Wnt/β-catenin signaling. We elucidate the molecular mechanism by which NTN4 modulates β-catenin expression and nuclear translocation to inhibit ccRCC progression, providing a new theoretical basis for developing therapeutic targets for ccRCC. Thus, we suggest that Netrin-related studies may offer new directions for the diagnosis, treatment, and prognosis of ccRCC patients.
Collapse
Affiliation(s)
- Shuai Ke
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiayu Guo
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- The Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qinghua Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Haoren Shao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Mu He
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tao Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tao Qiu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- The Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jia Guo
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
699
|
Bao X, Li W, Jia R, Meng D, Zhang H, Xia L. Molecular mechanism of ferulic acid and its derivatives in tumor progression. Pharmacol Rep 2023:10.1007/s43440-023-00494-0. [PMID: 37202657 PMCID: PMC10374777 DOI: 10.1007/s43440-023-00494-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/20/2023]
Abstract
Cancer is a significant disease that poses a major threat to human health. The main therapeutic methods for cancer include traditional surgery, radiotherapy, chemotherapy, and new therapeutic methods such as targeted therapy and immunotherapy, which have been developed rapidly in recent years. Recently, the tumor antitumor effects of the active ingredients of natural plants have attracted extensive attention. Ferulic acid (FA), (3-methoxy-4-hydroxyl cinnamic), with the molecular formula is C10H10O4, is a phenolic organic compound found in ferulic, angelica, jujube kernel, and other Chinese medicinal plants but is also, abundant in rice bran, wheat bran, and other food raw materials. FA has anti-inflammatory, analgesic, anti-radiation, and immune-enhancing effects and also shows anticancer activity, as it can inhibit the occurrence and development of various malignant tumors, such as liver cancer, lung cancer, colon cancer, and breast cancer. FA can cause mitochondrial apoptosis by inducing the generation of intracellular reactive oxygen species (ROS). FA can also interfere with the cell cycle of cancer cells, arrest most cancer cells in G0/G1 phase, and exert an antitumor effect by inducing autophagy; inhibiting cell migration, invasion, and angiogenesis; and synergistically improving the efficacy of chemotherapy drugs and reducing adverse reactions. FA acts on a series of intracellular and extracellular targets and is involved in the regulation of tumor cell signaling pathways, including the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT), B-cell lymphoma-2 (Bcl-2), and tumor protein 53 (P53) pathways and other signaling pathways. In addition, FA derivatives and nanoliposomes, as platforms for drug delivery, have an important regulatory effect on tumor resistance. This paper reviews the effects and mechanisms of antitumor therapies to provide new theoretical support and insight for clinical antitumor therapy.
Collapse
Affiliation(s)
- Xingxun Bao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Wei Li
- Department of Obstetrics and Gynecology, Linyi Third People's Hospital, Linyi, People's Republic of China
| | - Ruixue Jia
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Dandan Meng
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Hairong Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Third Hospital, Jinan, 250031, People's Republic of China.
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
| |
Collapse
|
700
|
Panella R, Cotton CA, Maymi VA, Best S, Berry KE, Lee S, Batalini F, Vlachos IS, Clohessy JG, Kauppinen S, Paolo Pandolfi P. Targeting of microRNA-22 Suppresses Tumor Spread in a Mouse Model of Triple-Negative Breast Cancer. Biomedicines 2023; 11:biomedicines11051470. [PMID: 37239141 DOI: 10.3390/biomedicines11051470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/21/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
microRNA-22 (miR-22) is an oncogenic miRNA whose up-regulation promotes epithelial-mesenchymal transition (EMT), tumor invasion, and metastasis in hormone-responsive breast cancer. Here we show that miR-22 plays a key role in triple negative breast cancer (TNBC) by promoting EMT and aggressiveness in 2D and 3D cell models and a mouse xenograft model of human TNBC, respectively. Furthermore, we report that miR-22 inhibition using an LNA-modified antimiR-22 compound is effective in reducing EMT both in vitro and in vivo. Importantly, pharmacologic inhibition of miR-22 suppressed metastatic spread and markedly prolonged survival in mouse xenograft models of metastatic TNBC highlighting the potential of miR-22 silencing as a new therapeutic strategy for the treatment of TNBC.
Collapse
Affiliation(s)
- Riccardo Panella
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark
| | - Cody A Cotton
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA
| | - Valerie A Maymi
- Preclinical Murine Pharmacogenetics Facility and Mouse Hospital, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sachem Best
- Preclinical Murine Pharmacogenetics Facility and Mouse Hospital, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kelsey E Berry
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA
| | - Samuel Lee
- Preclinical Murine Pharmacogenetics Facility and Mouse Hospital, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Felipe Batalini
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ioannis S Vlachos
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - John G Clohessy
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Preclinical Murine Pharmacogenetics Facility and Mouse Hospital, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10154 Turin, Italy
- Renown Institute for Cancer, Nevada System of Higher Education, Reno, NV 89502, USA
| |
Collapse
|