651
|
Wasilewski D, Priego N, Fustero-Torre C, Valiente M. Reactive Astrocytes in Brain Metastasis. Front Oncol 2017; 7:298. [PMID: 29312881 PMCID: PMC5732246 DOI: 10.3389/fonc.2017.00298] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/20/2017] [Indexed: 11/13/2022] Open
Abstract
Brain metastasis, the secondary growth of malignant cells within the central nervous system (CNS), exceeds the incidence of primary brain tumors (i.e., gliomas) by tenfold and are seemingly on the rise owing to the emergence of novel targeted therapies that are more effective in controlling extracranial disease relatively to intracranial lesions. Despite the fact that metastasis to the brain poses a unmet clinical problem, with afflicted patients carrying significant morbidity and a fatal prognosis, our knowledge as to how metastatic cells manage to adapt to the tissue environment of the CNS remains limited. Answering this question could pave the way for novel and more specific therapeutic modalities in brain metastasis by targeting the specific makeup of the brain metastatic niche. In regard to this, astrocytes have emerged as the major host cell type that cancer cells encounter and interact with during brain metastasis formation. Similarly to other CNS disorders, astrocytes become reactive and respond to the presence of cancer cells by changing their phenotype and significantly influencing the outcome of disseminated cancer cells within the CNS. Here, we summarize the current knowledge on the contribution of reactive astrocytes in brain metastasis by focusing on the signaling pathways and types of interactions that play a crucial part in the communication with cancer cells and how these could be translated into innovative therapies.
Collapse
Affiliation(s)
- David Wasilewski
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Neibla Priego
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Coral Fustero-Torre
- Bioinformatics Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| |
Collapse
|
652
|
Saltiel P, d’Avella A, Tresch MC, Wyler K, Bizzi E. Critical Points and Traveling Wave in Locomotion: Experimental Evidence and Some Theoretical Considerations. Front Neural Circuits 2017; 11:98. [PMID: 29276476 PMCID: PMC5727018 DOI: 10.3389/fncir.2017.00098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/20/2017] [Indexed: 11/13/2022] Open
Abstract
The central pattern generator (CPG) architecture for rhythm generation remains partly elusive. We compare cat and frog locomotion results, where the component unrelated to pattern formation appears as a temporal grid, and traveling wave respectively. Frog spinal cord microstimulation with N-methyl-D-Aspartate (NMDA), a CPG activator, produced a limited set of force directions, sometimes tonic, but more often alternating between directions similar to the tonic forces. The tonic forces were topographically organized, and sites evoking rhythms with different force subsets were located close to the constituent tonic force regions. Thus CPGs consist of topographically organized modules. Modularity was also identified as a limited set of muscle synergies whose combinations reconstructed the EMGs. The cat CPG was investigated using proprioceptive inputs during fictive locomotion. Critical points identified both as abrupt transitions in the effect of phasic perturbations, and burst shape transitions, had biomechanical correlates in intact locomotion. During tonic proprioceptive perturbations, discrete shifts between these critical points explained the burst durations changes, and amplitude changes occurred at one of these points. Besides confirming CPG modularity, these results suggest a fixed temporal grid of anchoring points, to shift modules onsets and offsets. Frog locomotion, reconstructed with the NMDA synergies, showed a partially overlapping synergy activation sequence. Using the early synergy output evoked by NMDA at different spinal sites, revealed a rostrocaudal topographic organization, where each synergy is preferentially evoked from a few, albeit overlapping, cord regions. Comparing the locomotor synergy sequence with this topography suggests that a rostrocaudal traveling wave would activate the synergies in the proper sequence for locomotion. This output was reproduced in a two-layer model using this topography and a traveling wave. Together our results suggest two CPG components: modules, i.e., synergies; and temporal patterning, seen as a temporal grid in the cat, and a traveling wave in the frog. Animal and limb navigation have similarities. Research relating grid cells to the theta rhythm and on segmentation during navigation may relate to our temporal grid and traveling wave results. Winfree's mathematical work, combining critical phases and a traveling wave, also appears important. We conclude suggesting tracing, and imaging experiments to investigate our CPG model.
Collapse
Affiliation(s)
- Philippe Saltiel
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Andrea d’Avella
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation, Rome, Italy
| | - Matthew C. Tresch
- Departments of Biomedical Engineering, Physical Medicine and Rehabilitation, and Physiology, Northwestern University, Chicago, IL, United States
| | - Kuno Wyler
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Emilio Bizzi
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
653
|
Tosolini AP, Sleigh JN. Motor Neuron Gene Therapy: Lessons from Spinal Muscular Atrophy for Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2017; 10:405. [PMID: 29270111 PMCID: PMC5725447 DOI: 10.3389/fnmol.2017.00405] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/21/2017] [Indexed: 12/11/2022] Open
Abstract
Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS) are severe nervous system diseases characterized by the degeneration of lower motor neurons. They share a number of additional pathological, cellular, and genetic parallels suggesting that mechanistic and clinical insights into one disorder may have value for the other. While there are currently no clinical ALS gene therapies, the splice-switching antisense oligonucleotide, nusinersen, was recently approved for SMA. This milestone was achieved through extensive pre-clinical research and patient trials, which together have spawned fundamental insights into motor neuron gene therapy. We have thus tried to distil key information garnered from SMA research, in the hope that it may stimulate a more directed approach to ALS gene therapy. Not only must the type of therapeutic (e.g., antisense oligonucleotide vs. viral vector) be sensibly selected, but considerable thought must be applied to the where, which, what, and when in order to enhance treatment benefit: to where (cell types and tissues) must the drug be delivered and how can this be best achieved? Which perturbed pathways must be corrected and can they be concurrently targeted? What dosing regime and concentration should be used? When should medication be administered? These questions are intuitive, but central to identifying and optimizing a successful gene therapy. Providing definitive solutions to these quandaries will be difficult, but clear thinking about therapeutic testing is necessary if we are to have the best chance of developing viable ALS gene therapies and improving upon early generation SMA treatments.
Collapse
Affiliation(s)
- Andrew P Tosolini
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - James N Sleigh
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
654
|
Bowerman M, Murray LM, Scamps F, Schneider BL, Kothary R, Raoul C. Pathogenic commonalities between spinal muscular atrophy and amyotrophic lateral sclerosis: Converging roads to therapeutic development. Eur J Med Genet 2017; 61:685-698. [PMID: 29313812 DOI: 10.1016/j.ejmg.2017.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/04/2017] [Accepted: 12/03/2017] [Indexed: 12/12/2022]
Abstract
Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS) are the two most common motoneuron disorders, which share typical pathological hallmarks while remaining genetically distinct. Indeed, SMA is caused by deletions or mutations in the survival motor neuron 1 (SMN1) gene whilst ALS, albeit being mostly sporadic, can also be caused by mutations within genes, including superoxide dismutase 1 (SOD1), Fused in Sarcoma (FUS), TAR DNA-binding protein 43 (TDP-43) and chromosome 9 open reading frame 72 (C9ORF72). However, it has come to light that these two diseases may be more interlinked than previously thought. Indeed, it has recently been found that FUS directly interacts with an Smn-containing complex, mutant SOD1 perturbs Smn localization, Smn depletion aggravates disease progression of ALS mice, overexpression of SMN in ALS mice significantly improves their phenotype and lifespan, and duplications of SMN1 have been linked to sporadic ALS. Beyond genetic interactions, accumulating evidence further suggests that both diseases share common pathological identities such as intrinsic muscle defects, neuroinflammation, immune organ dysfunction, metabolic perturbations, defects in neuron excitability and selective motoneuron vulnerability. Identifying common molecular effectors that mediate shared pathologies in SMA and ALS would allow for the development of therapeutic strategies and targeted gene therapies that could potentially alleviate symptoms and be equally beneficial in both disorders. In the present review, we will examine our current knowledge of pathogenic commonalities between SMA and ALS, and discuss how furthering this understanding can lead to the establishment of novel therapeutic approaches with wide-reaching impact on multiple motoneuron diseases.
Collapse
Affiliation(s)
- Melissa Bowerman
- School of Medicine, Keele University, Staffordshire, United Kingdom; Institute for Science and Technology in Medicine, Stoke-on-Trent, United Kingdom; Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom
| | - Lyndsay M Murray
- Euan McDonald Centre for Motor Neuron Disease Research and Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Frédérique Scamps
- The Institute for Neurosciences of Montpellier, Inserm UMR1051, Univ Montpellier, Saint Eloi Hospital, Montpellier, France
| | - Bernard L Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada; Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Cédric Raoul
- The Institute for Neurosciences of Montpellier, Inserm UMR1051, Univ Montpellier, Saint Eloi Hospital, Montpellier, France.
| |
Collapse
|
655
|
Bustos FJ, Ampuero E, Jury N, Aguilar R, Falahi F, Toledo J, Ahumada J, Lata J, Cubillos P, Henríquez B, Guerra MV, Stehberg J, Neve RL, Inestrosa NC, Wyneken U, Fuenzalida M, Härtel S, Sena-Esteves M, Varela-Nallar L, Rots MG, Montecino M, van Zundert B. Epigenetic editing of the Dlg4/PSD95 gene improves cognition in aged and Alzheimer's disease mice. Brain 2017; 140:3252-3268. [PMID: 29155979 PMCID: PMC5841035 DOI: 10.1093/brain/awx272] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/16/2017] [Accepted: 08/27/2017] [Indexed: 12/31/2022] Open
Abstract
The Dlg4 gene encodes for post-synaptic density protein 95 (PSD95), a major synaptic protein that clusters glutamate receptors and is critical for plasticity. PSD95 levels are diminished in ageing and neurodegenerative disorders, including Alzheimer's disease and Huntington's disease. The epigenetic mechanisms that (dys)regulate transcription of Dlg4/PSD95, or other plasticity genes, are largely unknown, limiting the development of targeted epigenome therapy. We analysed the Dlg4/PSD95 epigenetic landscape in hippocampal tissue and designed a Dlg4/PSD95 gene-targeting strategy: a Dlg4/PSD95 zinc finger DNA-binding domain was engineered and fused to effector domains to either repress (G9a, Suvdel76, SKD) or activate (VP64) transcription, generating artificial transcription factors or epigenetic editors (methylating H3K9). These epi-editors altered critical histone marks and subsequently Dlg4/PSD95 expression, which, importantly, impacted several hippocampal neuron plasticity processes. Intriguingly, transduction of the artificial transcription factor PSD95-VP64 rescued memory deficits in aged and Alzheimer's disease mice. Conclusively, this work validates PSD95 as a key player in memory and establishes epigenetic editing as a potential therapy to treat human neurological disorders.
Collapse
Affiliation(s)
- Fernando J Bustos
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
- FONDAP Center for Genome Regulation, Chile
| | - Estibaliz Ampuero
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| | - Nur Jury
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| | - Rodrigo Aguilar
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
- FONDAP Center for Genome Regulation, Chile
| | - Fahimeh Falahi
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jorge Toledo
- Anatomy and Developmental Biology, SCIAN-Lab, Institute of Biomedical Sciences, Biomedical Neuroscience Institute, Center for Medical Informatics and Telemedicine CIMT, National Center for Health Information Systems CENS, Santiago, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Juan Ahumada
- Centro de Neurobiología y Plasticidad Cerebral, Departamento de Fisiología, Facultad de Ciencias, Universidad Valparaíso, Chile
| | - Jaclyn Lata
- Department of Neurology and Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Paula Cubillos
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| | - Berta Henríquez
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| | - Miguel V Guerra
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| | - Jimmy Stehberg
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| | - Rachael L Neve
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Nibaldo C Inestrosa
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Chile
| | - Ursula Wyneken
- Laboratorio de Neurociencias, Universidad de Los Andes, Santiago, Chile
| | - Marco Fuenzalida
- Centro de Neurobiología y Plasticidad Cerebral, Departamento de Fisiología, Facultad de Ciencias, Universidad Valparaíso, Chile
| | - Steffen Härtel
- Anatomy and Developmental Biology, SCIAN-Lab, Institute of Biomedical Sciences, Biomedical Neuroscience Institute, Center for Medical Informatics and Telemedicine CIMT, National Center for Health Information Systems CENS, Santiago, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Miguel Sena-Esteves
- Department of Neurology and Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lorena Varela-Nallar
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| | - Marianne G Rots
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martin Montecino
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
- FONDAP Center for Genome Regulation, Chile
| | - Brigitte van Zundert
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| |
Collapse
|
656
|
Matsuzaki Y, Konno A, Mochizuki R, Shinohara Y, Nitta K, Okada Y, Hirai H. Intravenous administration of the adeno-associated virus-PHP.B capsid fails to upregulate transduction efficiency in the marmoset brain. Neurosci Lett 2017; 665:182-188. [PMID: 29175632 DOI: 10.1016/j.neulet.2017.11.049] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/15/2017] [Accepted: 11/21/2017] [Indexed: 01/25/2023]
Abstract
Intravenous administration of adeno-associated virus (AAV)-PHP.B, a capsid variant of AAV9 containing seven amino acid insertions, results in a greater permeability of the blood brain barrier (BBB) than standard AAV9 in mice, leading to highly efficient and global transduction of the central nervous system (CNS). The present study aimed to examine whether the enhanced BBB penetrance of AAV-PHP.B observed in mice also occurs in non-human primates. Thus, a young adult (age, 1.6 years) and an old adult (age, 7.2 years) marmoset received an intravenous injection of AAV-PHP.B expressing enhanced green fluorescent protein (EGFP) under the control of the constitutive CBh promoter (a hybrid of cytomegalovirus early enhancer and chicken β-actin promoter). Age-matched control marmosets were treated with standard AAV9-capsid vectors. The animals were sacrificed 6 weeks after the viral injection. Based on the results, only limited transduction of neurons (0-2%) and astrocytes (0.1-2.5%) was observed in both AAV-PHP.B- and AAV9-treated marmosets. One noticeable difference between AAV-PHP.B and AAV9 was the marked transduction of the peripheral dorsal root ganglia neurons. Indeed, the soma and axons in the projection from the spinal cord to the nucleus cuneatus in the medulla oblongata were strongly labeled with EGFP by AAV-PHP.B. Thus, except for the peripheral dorsal root ganglia neurons, the AAV-PHP.B transduction efficiency in the CNS of marmosets was comparable to that of AAV9 vectors.
Collapse
Affiliation(s)
- Yasunori Matsuzaki
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Ayumu Konno
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Ryuta Mochizuki
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Yoichiro Shinohara
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Keisuke Nitta
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Yukihiro Okada
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan; Research Program for Neural Signalling, Division of Endocrinology, Metabolism and Signal Research, Gunma University Initiative for Advanced Research, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| |
Collapse
|
657
|
Grimm D, Büning H. Small But Increasingly Mighty: Latest Advances in AAV Vector Research, Design, and Evolution. Hum Gene Ther 2017; 28:1075-1086. [DOI: 10.1089/hum.2017.172] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Dirk Grimm
- Heidelberg University Hospital, Cluster of Excellence CellNetworks, Department of Infectious Diseases, Virology, Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
658
|
Widespread functional opsin transduction in the rat cortex via convection-enhanced delivery optimized for horizontal spread. J Neurosci Methods 2017; 291:69-82. [DOI: 10.1016/j.jneumeth.2017.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 11/20/2022]
|
659
|
Piguet F, Alves S, Cartier N. Clinical Gene Therapy for Neurodegenerative Diseases: Past, Present, and Future. Hum Gene Ther 2017; 28:988-1003. [DOI: 10.1089/hum.2017.160] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Françoise Piguet
- Translational Medicine and Neurogenetics Department, Institut de Genetique et de Biologie Moleculaire et Cellulaire, Strasbourg, France
- Inserm U596, Illkirch, France; CNRS, UMR7104, Illkirch, France
- Faculte des Sciences de la Vie, Universite de Strasbourg, Strasbourg, France
| | | | - Nathalie Cartier
- INSERM/CEA UMR1169, MIRCen Fontenay aux Roses, France
- Universite Paris-Sud, Orsay, France
| |
Collapse
|
660
|
Rindt H, Tom CM, Lorson CL, Mattis VB. Optimization of trans-Splicing for Huntington's Disease RNA Therapy. Front Neurosci 2017; 11:544. [PMID: 29066943 PMCID: PMC5641306 DOI: 10.3389/fnins.2017.00544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/19/2017] [Indexed: 11/16/2022] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder caused by a polyglutamine (polyQ) expansion in exon 1 of the Huntingtin (HTT) gene. We have previously demonstrated that spliceosome-mediated trans-splicing is a viable molecular strategy to specifically reduce and repair mutant HTT (mtHTT). Here, the targeted tethering efficacy of the pre-mRNA trans-splicing modules (PTM) in HTT was optimized. Various PTMs that targeted the 3′ end of HTT intron 1 or the intron 1 branch point were shown trans-splice into an HTT mini-gene, as well as the endogenous HTT pre-mRNA. PTMs that specifically target the endogenous intron 1 branch point increased the trans-splicing efficacy from 1–5 to 10–15%. Furthermore, lentiviral expression of PTMs in a human HD patient iPSC-derived neural culture significantly reversed two previously established polyQ-length dependent phenotypes. These results suggest that pre-mRNA repair of mtHTT could hold therapeutic benefit and it demonstrates an alternative platform to correct the mRNA product produced by the mtHTT allele in the context of HD.
Collapse
Affiliation(s)
- Hansjörg Rindt
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Colton M Tom
- Cedars-Sinai Medical Center, Board of Governors Regenerative Medicine Institute, Los Angeles, CA, United States
| | - Christian L Lorson
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Virginia B Mattis
- Cedars-Sinai Medical Center, Board of Governors Regenerative Medicine Institute, Los Angeles, CA, United States
| |
Collapse
|
661
|
Abstract
Gene suppression approaches have emerged over the last 20 years as a novel therapeutic approach for the treatment of neurodegenerative diseases. These include RNA interference and anti-sense oligonucleotides, both of which act at the post-transcriptional level, and genome-editing techniques, which aim to repair the responsible mutant gene. All serve to inhibit the expression of disease-causing proteins, leading to the potential prevention or even reversal of the disease phenotype. In this review we summarise the main developments in gene suppression strategies, using examples from Huntington's disease and other inherited causes of neurodegeneration, and explore how these might illuminate a path to tackle other proteinopathy-associated dementias in the future.
Collapse
Affiliation(s)
- Rhia Ghosh
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK.
| | - Sarah J Tabrizi
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK.
| |
Collapse
|
662
|
Wild EJ, Tabrizi SJ. Therapies targeting DNA and RNA in Huntington's disease. Lancet Neurol 2017; 16:837-847. [PMID: 28920889 PMCID: PMC5604739 DOI: 10.1016/s1474-4422(17)30280-6] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/23/2017] [Accepted: 07/12/2017] [Indexed: 01/12/2023]
Abstract
No disease-slowing treatment exists for Huntington's disease, but its monogenic inheritance makes it an appealing candidate for the development of therapies targeting processes close to its genetic cause. Huntington's disease is caused by CAG repeat expansions in the HTT gene, which encodes the huntingtin protein; development of therapies to target HTT transcription and the translation of its mRNA is therefore an area of intense investigation. Huntingtin-lowering strategies include antisense oligonucleotides and RNA interference targeting mRNA, and zinc finger transcriptional repressors and CRISPR-Cas9 methods aiming to reduce transcription by targeting DNA. An intrathecally delivered antisense oligonucleotide that aims to lower huntingtin is now well into its first human clinical trial, with other antisense oligonucleotides expected to enter trials in the next 1-2 years and virally delivered RNA interference and zinc finger transcriptional repressors in advanced testing in animal models. Recent advances in the design and delivery of therapies to target HTT RNA and DNA are expected to improve their efficacy, safety, tolerability, and duration of effect in future studies.
Collapse
Affiliation(s)
- Edward J Wild
- Huntington's Disease Centre, University College London Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK.
| | - Sarah J Tabrizi
- Huntington's Disease Centre, University College London Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
663
|
Di Meo I, Marchet S, Lamperti C, Zeviani M, Viscomi C. AAV9-based gene therapy partially ameliorates the clinical phenotype of a mouse model of Leigh syndrome. Gene Ther 2017; 24:661-667. [PMID: 28753212 PMCID: PMC5658670 DOI: 10.1038/gt.2017.53] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/18/2017] [Accepted: 06/13/2017] [Indexed: 02/02/2023]
Abstract
Leigh syndrome (LS) is the most common infantile mitochondrial encephalopathy. No treatment is currently available for this condition. Mice lacking Ndufs4, encoding NADH: ubiquinone oxidoreductase iron-sulfur protein 4 (NDUFS4) recapitulates the main findings of complex I (cI)-related LS, including severe multisystemic cI deficiency and progressive neurodegeneration. In order to develop a gene therapy approach for LS, we used here an AAV2/9 vector carrying the human NDUFS4 coding sequence (hNDUFS4). We administered AAV2/9-hNDUFS4 by intravenous (IV) and/or intracerebroventricular (ICV) routes to either newborn or young Ndufs4-/- mice. We found that IV administration alone was only able to correct the cI deficiency in peripheral organs, whereas ICV administration partially corrected the deficiency in the brain. However, both treatments failed to improve the clinical phenotype or to prolong the lifespan of Ndufs4-/- mice. In contrast, combined IV and ICV treatments resulted, along with increased cI activity, in the amelioration of the rotarod performance and in a significant prolongation of the lifespan. Our results indicate that extraneurological organs have an important role in LS pathogenesis and provide an insight into current limitations of adeno-associated virus (AAV)-mediated gene therapy in multisystem disorders. These findings warrant future investigations to develop new vectors able to efficiently target multiple organs.
Collapse
Affiliation(s)
- I Di Meo
- IRCCS Foundation Neurological Institute ‘C. Besta’, Milan, Italy
| | - S Marchet
- IRCCS Foundation Neurological Institute ‘C. Besta’, Milan, Italy
| | - C Lamperti
- IRCCS Foundation Neurological Institute ‘C. Besta’, Milan, Italy
| | - M Zeviani
- University of Cambridge/Medical Research Council, Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - C Viscomi
- University of Cambridge/Medical Research Council, Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| |
Collapse
|
664
|
Mingozzi F, High KA. Overcoming the Host Immune Response to Adeno-Associated Virus Gene Delivery Vectors: The Race Between Clearance, Tolerance, Neutralization, and Escape. Annu Rev Virol 2017; 4:511-534. [PMID: 28961410 DOI: 10.1146/annurev-virology-101416-041936] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immune responses in gene therapy with adeno-associated virus (AAV) vectors have been the object of almost two decades of study. Although preclinical models helped to define and predict certain aspects of interactions between the vector and the host immune system, most of our current knowledge has come from clinical trials. These studies have allowed development of effective interventions for modulating immunotoxicities associated with vector administration, resulting in therapeutic advances. However, the road to full understanding and effective modulation of immune responses in gene therapy is still long; the determinants of the balance between tolerance and immunogenicity in AAV vector-mediated gene transfer are not fully understood, and effective solutions for overcoming preexisting neutralizing antibodies are still lacking. However, despite these challenges, the goal of reliably delivering effective gene-based treatments is now in sight.
Collapse
Affiliation(s)
- Federico Mingozzi
- Genethon and INSERM U951, 91000 Evry, France; .,University Pierre and Marie Curie Paris 6 and INSERM U974, 75651 Paris, France
| | | |
Collapse
|
665
|
Greenbaum A, Jang MJ, Challis C, Gradinaru V. Q&A: How can advances in tissue clearing and optogenetics contribute to our understanding of normal and diseased biology? BMC Biol 2017; 15:87. [PMID: 28946882 PMCID: PMC5613628 DOI: 10.1186/s12915-017-0421-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mammalian organs comprise a variety of cells that interact with each other and have distinct biological roles. Access to evaluate and perturb intact biological systems at the cellular and molecular levels is essential to fully understand their functioning in normal and diseased conditions, yet technical limitations have constrained most research to small pieces of tissue. Tissue clearing and optogenetics can help overcome this hurdle: tissue clearing affords optical interrogation of whole organs at the molecular level, and optogenetics enables the scalable control and measurement of cellular activity with light. In this Q&A, we delineate recent advances and practical challenges associated with these two techniques when applied body-wide.
Collapse
Affiliation(s)
- Alon Greenbaum
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Min J Jang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Collin Challis
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
666
|
In Vivo Selection of a Computationally Designed SCHEMA AAV Library Yields a Novel Variant for Infection of Adult Neural Stem Cells in the SVZ. Mol Ther 2017; 26:304-319. [PMID: 28988711 DOI: 10.1016/j.ymthe.2017.09.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/29/2017] [Accepted: 09/03/2017] [Indexed: 01/17/2023] Open
Abstract
Directed evolution continues to expand the capabilities of complex biomolecules for a range of applications, such as adeno-associated virus vectors for gene therapy; however, advances in library design and selection strategies are key to develop variants that overcome barriers to clinical translation. To address this need, we applied structure-guided SCHEMA recombination of the multimeric adeno-associated virus (AAV) capsid to generate a highly diversified chimeric library with minimal structural disruption. A stringent in vivo Cre-dependent selection strategy was implemented to identify variants that transduce adult neural stem cells (NSCs) in the subventricular zone. A novel variant, SCH9, infected 60% of NSCs and mediated 24-fold higher GFP expression and a 12-fold greater transduction volume than AAV9. SCH9 utilizes both galactose and heparan sulfate as cell surface receptors and exhibits increased resistance to neutralizing antibodies. These results establish the SCHEMA library as a valuable tool for directed evolution and SCH9 as an effective gene delivery vector to investigate subventricular NSCs.
Collapse
|
667
|
Sloan SA, Darmanis S, Huber N, Khan TA, Birey F, Caneda C, Reimer R, Quake SR, Barres BA, Paşca SP. Human Astrocyte Maturation Captured in 3D Cerebral Cortical Spheroids Derived from Pluripotent Stem Cells. Neuron 2017; 95:779-790.e6. [PMID: 28817799 DOI: 10.1016/j.neuron.2017.07.035] [Citation(s) in RCA: 400] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/15/2017] [Accepted: 07/28/2017] [Indexed: 12/21/2022]
Abstract
There is significant need to develop physiologically relevant models for investigating human astrocytes in health and disease. Here, we present an approach for generating astrocyte lineage cells in a three-dimensional (3D) cytoarchitecture using human cerebral cortical spheroids (hCSs) derived from pluripotent stem cells. We acutely purified astrocyte-lineage cells from hCSs at varying stages up to 20 months in vitro using immunopanning and cell sorting and performed high-depth bulk and single-cell RNA sequencing to directly compare them to purified primary human brain cells. We found that hCS-derived glia closely resemble primary human fetal astrocytes and that, over time in vitro, they transition from a predominantly fetal to an increasingly mature astrocyte state. Transcriptional changes in astrocytes are accompanied by alterations in phagocytic capacity and effects on neuronal calcium signaling. These findings suggest that hCS-derived astrocytes closely resemble primary human astrocytes and can be used for studying development and modeling disease.
Collapse
Affiliation(s)
- Steven A Sloan
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Spyros Darmanis
- Departments of Bioengineering and Applied Physics, Stanford University and Chan Zuckerberg Biohub, Stanford, CA 94305, USA
| | - Nina Huber
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Themasap A Khan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fikri Birey
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christine Caneda
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Richard Reimer
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephen R Quake
- Departments of Bioengineering and Applied Physics, Stanford University and Chan Zuckerberg Biohub, Stanford, CA 94305, USA
| | - Ben A Barres
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sergiu P Paşca
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
668
|
Shorter J. Engineering therapeutic protein disaggregases. Mol Biol Cell 2017; 27:1556-60. [PMID: 27255695 PMCID: PMC4865313 DOI: 10.1091/mbc.e15-10-0693] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/23/2016] [Indexed: 11/11/2022] Open
Abstract
Therapeutic agents are urgently required to cure several common and fatal neurodegenerative disorders caused by protein misfolding and aggregation, including amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD). Protein disaggregases that reverse protein misfolding and restore proteins to native structure, function, and localization could mitigate neurodegeneration by simultaneously reversing 1) any toxic gain of function of the misfolded form and 2) any loss of function due to misfolding. Potentiated variants of Hsp104, a hexameric AAA+ ATPase and protein disaggregase from yeast, have been engineered to robustly disaggregate misfolded proteins connected with ALS (e.g., TDP-43 and FUS) and PD (e.g., α-synuclein). However, Hsp104 has no metazoan homologue. Metazoa possess protein disaggregase systems distinct from Hsp104, including Hsp110, Hsp70, and Hsp40, as well as HtrA1, which might be harnessed to reverse deleterious protein misfolding. Nevertheless, vicissitudes of aging, environment, or genetics conspire to negate these disaggregase systems in neurodegenerative disease. Thus, engineering potentiated human protein disaggregases or isolating small-molecule enhancers of their activity could yield transformative therapeutics for ALS, PD, and AD.
Collapse
Affiliation(s)
- James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
669
|
Sloan SA, Darmanis S, Huber N, Khan TA, Birey F, Caneda C, Reimer R, Quake SR, Barres BA, Paşca SP. Human Astrocyte Maturation Captured in 3D Cerebral Cortical Spheroids Derived from Pluripotent Stem Cells. Neuron 2017. [PMID: 28817799 DOI: 10.1016/j.neuron.2017.07.035.human] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
There is significant need to develop physiologically relevant models for investigating human astrocytes in health and disease. Here, we present an approach for generating astrocyte lineage cells in a three-dimensional (3D) cytoarchitecture using human cerebral cortical spheroids (hCSs) derived from pluripotent stem cells. We acutely purified astrocyte-lineage cells from hCSs at varying stages up to 20 months in vitro using immunopanning and cell sorting and performed high-depth bulk and single-cell RNA sequencing to directly compare them to purified primary human brain cells. We found that hCS-derived glia closely resemble primary human fetal astrocytes and that, over time in vitro, they transition from a predominantly fetal to an increasingly mature astrocyte state. Transcriptional changes in astrocytes are accompanied by alterations in phagocytic capacity and effects on neuronal calcium signaling. These findings suggest that hCS-derived astrocytes closely resemble primary human astrocytes and can be used for studying development and modeling disease.
Collapse
Affiliation(s)
- Steven A Sloan
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Spyros Darmanis
- Departments of Bioengineering and Applied Physics, Stanford University and Chan Zuckerberg Biohub, Stanford, CA 94305, USA
| | - Nina Huber
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Themasap A Khan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fikri Birey
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christine Caneda
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Richard Reimer
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephen R Quake
- Departments of Bioengineering and Applied Physics, Stanford University and Chan Zuckerberg Biohub, Stanford, CA 94305, USA
| | - Ben A Barres
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sergiu P Paşca
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
670
|
Morabito G, Giannelli SG, Ordazzo G, Bido S, Castoldi V, Indrigo M, Cabassi T, Cattaneo S, Luoni M, Cancellieri C, Sessa A, Bacigaluppi M, Taverna S, Leocani L, Lanciego JL, Broccoli V. AAV-PHP.B-Mediated Global-Scale Expression in the Mouse Nervous System Enables GBA1 Gene Therapy for Wide Protection from Synucleinopathy. Mol Ther 2017; 25:2727-2742. [PMID: 28882452 DOI: 10.1016/j.ymthe.2017.08.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/05/2017] [Accepted: 08/07/2017] [Indexed: 02/06/2023] Open
Abstract
The lack of technology for direct global-scale targeting of the adult mouse nervous system has hindered research on brain processing and dysfunctions. Currently, gene transfer is normally achieved by intraparenchymal viral injections, but these injections target a restricted brain area. Herein, we demonstrated that intravenous delivery of adeno-associated virus (AAV)-PHP.B viral particles permeated and diffused throughout the neural parenchyma, targeting both the central and the peripheral nervous system in a global pattern. We then established multiple procedures of viral transduction to control gene expression or inactivate gene function exclusively in the adult nervous system and assessed the underlying behavioral effects. Building on these results, we established an effective gene therapy strategy to counteract the widespread accumulation of α-synuclein deposits throughout the forebrain in a mouse model of synucleinopathy. Transduction of A53T-SCNA transgenic mice with AAV-PHP.B-GBA1 restored physiological levels of the enzyme, reduced α-synuclein pathology, and produced significant behavioral recovery. Finally, we provided evidence that AAV-PHP.B brain penetration does not lead to evident dysfunctions in blood-brain barrier integrity or permeability. Altogether, the AAV-PHP.B viral platform enables non-invasive, widespread, and long-lasting global neural expression of therapeutic genes, such as GBA1, providing an invaluable approach to treat neurodegenerative diseases with diffuse brain pathology such as synucleinopathies.
Collapse
Affiliation(s)
- Giuseppe Morabito
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; University of Milano-Bicocca, 20126 Milan, Italy
| | - Serena G Giannelli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gabriele Ordazzo
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Simone Bido
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Valerio Castoldi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy; University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Marzia Indrigo
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Tommaso Cabassi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Stefano Cattaneo
- Neuroimmunology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Mirko Luoni
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Cinzia Cancellieri
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandro Sessa
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marco Bacigaluppi
- Neuroimmunology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Taverna
- Neuroimmunology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), San Raffaele Scientific Institute, Milan, Italy; University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - José L Lanciego
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas (CiberNed), Pamplona, Spain
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; National Research Council (CNR), Institute of Neuroscience, 20129 Milan, Italy.
| |
Collapse
|
671
|
Systemic gene delivery transduces the enteric nervous system of guinea pigs and cynomolgus macaques. Gene Ther 2017; 24:640-648. [PMID: 28771235 PMCID: PMC5658254 DOI: 10.1038/gt.2017.72] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/16/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022]
Abstract
Characterization of adeno-associated viral vector (AAV) mediated gene delivery to the enteric nervous system (ENS) was recently described in mice and rats. In these proof-of-concept experiments, we show that intravenous injections of clinically relevant AAVs can transduce the ENS in guinea pigs and non-human primates. Neonatal guinea pigs were given intravenous injections of either AAV8 or AAV9 vectors that contained a green fluorescent protein (GFP) expression cassette or PBS. Piglets were euthanized three weeks post-injection and tissues were harvested for immunofluorescent analysis. GFP expression was detected in myenteric and submucosal neurons along the length of the gastrointestinal tract in AAV8 injected guinea pigs. GFP positive neurons were found in dorsal motor nucleus of the vagus and dorsal root ganglia. Less transduction occurred in AAV9 treated tissues. Gastrointestinal tissues were analyzed from young cynomolgus macaques that received systemic injection of AAV9 GFP. GFP expression was detected in myenteric neurons of the stomach, small and large intestine. These data demonstrate that ENS gene delivery translates to larger species. This work develops tools for the field of neurogastroenterology to explore gut physiology and anatomy using emerging technologies such as optogenetics and gene editing. It also provides a basis to develop novel therapies for chronic gut disorders.
Collapse
|
672
|
Chan KY, Jang MJ, Yoo BB, Greenbaum A, Ravi N, Wu WL, Sánchez-Guardado L, Lois C, Mazmanian SK, Deverman BE, Gradinaru V. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci 2017; 20:1172-1179. [PMID: 28671695 PMCID: PMC5529245 DOI: 10.1038/nn.4593] [Citation(s) in RCA: 961] [Impact Index Per Article: 120.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/20/2017] [Indexed: 12/13/2022]
Abstract
Adeno-associated viruses (AAVs) are commonly used for in vivo gene transfer. Nevertheless, AAVs that provide efficient transduction across specific organs or cell populations are needed. Here, we describe AAV-PHP.eB and AAV-PHP.S, capsids that efficiently transduce the central and peripheral nervous systems, respectively. In the adult mouse, intravenous administration of 1 × 1011 vector genomes (vg) of AAV-PHP.eB transduced 69% of cortical and 55% of striatal neurons, while 1 × 1012 vg of AAV-PHP.S transduced 82% of dorsal root ganglion neurons, as well as cardiac and enteric neurons. The efficiency of these vectors facilitates robust cotransduction and stochastic, multicolor labeling for individual cell morphology studies. To support such efforts, we provide methods for labeling a tunable fraction of cells without compromising color diversity. Furthermore, when used with cell-type-specific promoters and enhancers, these AAVs enable efficient and targetable genetic modification of cells throughout the nervous system of transgenic and non-transgenic animals.
Collapse
Affiliation(s)
- Ken Y Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Min J Jang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bryan B Yoo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alon Greenbaum
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Namita Ravi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Wei-Li Wu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Luis Sánchez-Guardado
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Carlos Lois
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sarkis K Mazmanian
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Benjamin E Deverman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
673
|
Hanna P, Rajendran PS, Ajijola OA, Vaseghi M, Andrew Armour J, Ardell JL, Shivkumar K. Cardiac neuroanatomy - Imaging nerves to define functional control. Auton Neurosci 2017; 207:48-58. [PMID: 28802636 DOI: 10.1016/j.autneu.2017.07.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/22/2017] [Accepted: 07/28/2017] [Indexed: 01/08/2023]
Abstract
The autonomic nervous system regulates normal cardiovascular function and plays a critical role in the pathophysiology of cardiovascular disease. Further understanding of the interplay between the autonomic nervous system and cardiovascular system holds promise for the development of neuroscience-based cardiovascular therapeutics. To this end, techniques to image myocardial innervation will help provide a basis for understanding the fundamental underpinnings of cardiac neural control. In this review, we detail the evolution of gross and microscopic anatomical studies for functional mapping of cardiac neuroanatomy.
Collapse
Affiliation(s)
- Peter Hanna
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Pradeep S Rajendran
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Molecular, Cellular & Integrative Physiology Program, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Olujimi A Ajijola
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Marmar Vaseghi
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - J Andrew Armour
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Jefrrey L Ardell
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Molecular, Cellular & Integrative Physiology Program, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Kalyanam Shivkumar
- University of California Los Angeles (UCLA) Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Molecular, Cellular & Integrative Physiology Program, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
674
|
Vectored Intracerebral Immunization with the Anti-Tau Monoclonal Antibody PHF1 Markedly Reduces Tau Pathology in Mutant Tau Transgenic Mice. J Neurosci 2017; 36:12425-12435. [PMID: 27927959 DOI: 10.1523/jneurosci.2016-16.2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/07/2016] [Accepted: 10/14/2016] [Indexed: 12/31/2022] Open
Abstract
Passive immunization with anti-tau monoclonal antibodies has been shown by several laboratories to reduce age-dependent tau pathology and neurodegeneration in mutant tau transgenic mice. These studies have used repeated high weekly doses of various tau antibodies administered systemically for several months and have reported reduced tau pathology of ∼40-50% in various brain regions. Here we show that direct intrahippocampal administration of the adeno-associated virus (AAV)-vectored anti-phospho-tau antibody PHF1 to P301S tau transgenic mice results in high and durable antibody expression, primarily in neurons. Hippocampal antibody levels achieved after AAV delivery were ∼50-fold more than those reported following repeated systemic administration. In contrast to systemic passive immunization, we observed markedly reduced (≥80-90%) hippocampal insoluble pathological tau species and neurofibrillary tangles following a single dose of AAV-vectored PHF1 compared with mice treated with an AAV-IgG control vector. Moreover, the hippocampal atrophy observed in untreated P301S mice was fully rescued by treatment with the AAV-vectored PHF1 antibody. Vectored passive immunotherapy with an anti-tau monoclonal antibody may represent a viable therapeutic strategy for treating or preventing such tauopathies as frontotemporal dementia, progressive supranuclear palsy, or Alzheimer's disease. SIGNIFICANCE STATEMENT We have used an adeno-associated viral (AAV) vector to deliver the genes encoding an anti-phospho-tau monoclonal antibody, PHF1, directly to the brain of mice that develop neurodegeneration due to a tau mutation that causes frontotemporal dementia (FTD). When administered systemically, PHF1 has been shown to modestly reduce tau pathology and neurodegeneration. Since such antibodies do not readily cross the blood-brain barrier, we used an AAV vector to deliver antibody directly to the hippocampus and observed much higher antibody levels and a much greater reduction in tau pathology. Using AAV vectors to deliver antibodies like PHF1 directly to brain may constitute a novel approach to treating various neurodegenerative disorders, such as FTD and Alzheimer's disease.
Collapse
|
675
|
Nitta K, Matsuzaki Y, Konno A, Hirai H. Minimal Purkinje Cell-Specific PCP2/L7 Promoter Virally Available for Rodents and Non-human Primates. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 6:159-170. [PMID: 28828391 PMCID: PMC5552061 DOI: 10.1016/j.omtm.2017.07.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/24/2017] [Indexed: 01/10/2023]
Abstract
Cell-type-specific promoters in combination with viral vectors and gene-editing technology permit efficient gene manipulation in specific cell populations. Cerebellar Purkinje cells play a pivotal role in cerebellar functions. Although the Purkinje cell-specific L7 promoter is widely used for the generation of transgenic mice, it remains unsuitable for viral vectors because of its large size (3 kb) and exceedingly weak promoter activity. Here, we found that the 0.8-kb region (named here as L7-6) upstream of the transcription initiation codon in the first exon was alone sufficient as a Purkinje cell-specific promoter, presenting a far stronger promoter activity over the original 3-kb L7 promoter with a sustained significant specificity to Purkinje cells. Intravenous injection of adeno-associated virus vectors that are highly permeable to the blood-brain barrier confirmed the Purkinje cell specificity of the L7-6 in the CNS. The features of the L7-6 were also preserved in the marmoset, a non-human primate. The high sequence homology of the L7-6 among mouse, marmoset, and human suggests the preservation of the promoter strength and Purkinje cell specificity features also in humans. These findings suggest that L7-6 will facilitate the cerebellar research targeting the pathophysiology and gene therapy of cerebellar disorders.
Collapse
Affiliation(s)
- Keisuke Nitta
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan.,Department of Ophthalmology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Yasunori Matsuzaki
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Ayumu Konno
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan.,Research Program for Neural Signalling, Division of Endocrinology, Metabolism and Signal Research, Gunma University Initiative for Advanced Research, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
676
|
|
677
|
Wegmann S, Bennett RE, Amaral AS, Hyman BT. Studying tau protein propagation and pathology in the mouse brain using adeno-associated viruses. Methods Cell Biol 2017; 141:307-322. [PMID: 28882310 DOI: 10.1016/bs.mcb.2017.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The progressive spread of pathological brain lesions containing aggregated tau protein is a hallmark of Alzheimer's disease and other neurodegenerative diseases. In AD, this process follows a distinct pattern along neuronal connections from the entorhinal cortex to hippocampal areas and further on through the limbic system. In other tauopathies, the spread of tau appears less hierarchical throughout the brain, and also nonpathological tau is reported to cross-synaptic connections in the brain. To be able to study the process of cell-to-cell transport of tau and the associated neurotoxicity in the brain in vivo, adeno-associated virus-mediated expression of tau can be used to express different forms of tau in distinct brain areas in rodent models. As an example, we describe how the expression of FTD-mutant human tauP301L in the entorhinal cortex of wild-type mice can be used to study the propagation of tau to connected neurons and to determine pathological consequences such as tau hyperphosphorylation, misfolding, and gliosis. The approach described can easily be translated to study other aggregating and/or propagating proteins in the brain such as synuclein, Abeta, or SOD1.
Collapse
Affiliation(s)
- Susanne Wegmann
- Massachusetts General Hospital, Harvard Medical School, Mass. Institute for Neurodegenerative Diseases (MIND), Boston, MA, United States.
| | - Rachel E Bennett
- Massachusetts General Hospital, Harvard Medical School, Mass. Institute for Neurodegenerative Diseases (MIND), Boston, MA, United States
| | - Ana S Amaral
- Massachusetts General Hospital, Harvard Medical School, Mass. Institute for Neurodegenerative Diseases (MIND), Boston, MA, United States
| | - Bradley T Hyman
- Massachusetts General Hospital, Harvard Medical School, Mass. Institute for Neurodegenerative Diseases (MIND), Boston, MA, United States
| |
Collapse
|
678
|
Allen WE, Kauvar IV, Chen MZ, Richman EB, Yang SJ, Chan K, Gradinaru V, Deverman BE, Luo L, Deisseroth K. Global Representations of Goal-Directed Behavior in Distinct Cell Types of Mouse Neocortex. Neuron 2017; 94:891-907.e6. [PMID: 28521139 PMCID: PMC5723385 DOI: 10.1016/j.neuron.2017.04.017] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 01/26/2017] [Accepted: 04/11/2017] [Indexed: 11/27/2022]
Abstract
The successful planning and execution of adaptive behaviors in mammals may require long-range coordination of neural networks throughout cerebral cortex. The neuronal implementation of signals that could orchestrate cortex-wide activity remains unclear. Here, we develop and apply methods for cortex-wide Ca2+ imaging in mice performing decision-making behavior and identify a global cortical representation of task engagement encoded in the activity dynamics of both single cells and superficial neuropil distributed across the majority of dorsal cortex. The activity of multiple molecularly defined cell types was found to reflect this representation with type-specific dynamics. Focal optogenetic inhibition tiled across cortex revealed a crucial role for frontal cortex in triggering this cortex-wide phenomenon; local inhibition of this region blocked both the cortex-wide response to task-initiating cues and the voluntary behavior. These findings reveal cell-type-specific processes in cortex for globally representing goal-directed behavior and identify a major cortical node that gates the global broadcast of task-related information.
Collapse
Affiliation(s)
- William E Allen
- Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Isaac V Kauvar
- Electrical Engineering Graduate Program, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Michael Z Chen
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Ethan B Richman
- Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Samuel J Yang
- Electrical Engineering Graduate Program, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Ken Chan
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Benjamin E Deverman
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Liqun Luo
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
679
|
Optimization of design and production strategies for novel adeno-associated viral display peptide libraries. Gene Ther 2017. [PMID: 28622288 DOI: 10.1038/gt.2017.51] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Libraries displaying random peptides on the surface of adeno-associated virus (AAV) are powerful tools for the generation of target-specific gene therapy vectors. However, for unknown reasons the success rate of AAV library screenings is variable and the influence of the production procedure has not been thoroughly evaluated. During library screenings, the capsid variants with the most favorable tropism are enriched over several selection rounds on a target of choice and identified by subsequent sequencing of the encapsidated viral genomes encoding the library capsids with targeting peptide insertions. Thus, a high capsid-genome correlation is crucial to obtain the correct information about the selected capsid variants. Producing AAV libraries by a two-step protocol with pseudotyped library transfer shuttles has been proposed as one way to ensure such a correlation. Here we show that AAV2 libraries produced by such a protocol via transfer shuttles display an unexpected additional bias in the amino-acid composition which confers increased heparin affinity and thus similarity to wildtype AAV2 tropism. This bias may fundamentally impair the intended use of AAV libraries, discouraging the use of transfer shuttles for the production of AAV libraries in the future.
Collapse
|
680
|
Li H, Chen G. In Vivo Reprogramming for CNS Repair: Regenerating Neurons from Endogenous Glial Cells. Neuron 2017; 91:728-738. [PMID: 27537482 DOI: 10.1016/j.neuron.2016.08.004] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuroregeneration in the CNS has proven to be difficult despite decades of research. The old dogma that CNS neurons cannot be regenerated in the adult mammalian brain has been overturned; however, endogenous adult neurogenesis appears to be insufficient for brain repair. Stem cell therapy once held promise for generating large quantities of neurons in the CNS, but immunorejection and long-term functional integration remain major hurdles. In this Perspective, we discuss the use of in vivo reprogramming as an emerging technology to regenerate functional neurons from endogenous glial cells inside the brain and spinal cord. Besides the CNS, in vivo reprogramming has been demonstrated successfully in the pancreas, heart, and liver and may be adopted in other organs. Although challenges remain for translating this technology into clinical therapies, we anticipate that in vivo reprogramming may revolutionize regenerative medicine by using a patient's own internal cells for tissue repair.
Collapse
Affiliation(s)
- Hedong Li
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Gong Chen
- Department of Biology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
681
|
Gao Y, Geng L, Chen VP, Brimijoin S. Therapeutic Delivery of Butyrylcholinesterase by Brain-Wide Viral Gene Transfer to Mice. Molecules 2017; 22:molecules22071145. [PMID: 28698452 PMCID: PMC5963683 DOI: 10.3390/molecules22071145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 12/03/2022] Open
Abstract
Recent research shows that butyrylcholinesterase (BChE) is not simply a liver enzyme that detoxifies bioactive esters in food and medications. In fact, in pursuing other goals, we recently found that it has an equally important role in regulating the peptide hormone ghrelin and its impact on hunger, obesity, and emotions. Here, we present and examine means of manipulating brain BChE levels by viral gene transfer, either regionally or globally, to modulate ghrelin signaling for long-term therapeutic purposes and to set the stage for exploring the neurophysiological impact of such an intervention.
Collapse
Affiliation(s)
- Yang Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA.
| | - Liyi Geng
- Department of Molecular Pharmacology and Experimental Therapeutics, Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA.
| | - Vicky Ping Chen
- Department of Molecular Pharmacology and Experimental Therapeutics, Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA.
| | - Stephen Brimijoin
- Department of Molecular Pharmacology and Experimental Therapeutics, Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
682
|
Jennings CG, Landman R, Zhou Y, Sharma J, Hyman J, Movshon JA, Qiu Z, Roberts AC, Roe AW, Wang X, Zhou H, Wang L, Zhang F, Desimone R, Feng G. Opportunities and challenges in modeling human brain disorders in transgenic primates. Nat Neurosci 2017; 19:1123-30. [PMID: 27571191 DOI: 10.1038/nn.4362] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/19/2016] [Indexed: 12/15/2022]
Abstract
Molecular genetic tools have had a profound impact on neuroscience, but until recently their application has largely been confined to a few model species, most notably mouse, zebrafish, Drosophila melanogaster and Caenorhabditis elegans. With the development of new genome engineering technologies such as CRISPR, it is becoming increasingly feasible to apply these molecular tools in a wider range of species, including nonhuman primates. This will lead to many opportunities for brain research, but it will also pose challenges. Here we identify some of these opportunities and challenges in light of recent and foreseeable technological advances and offer some suggestions. Our main focus is on the creation of new primate disease models for understanding the pathological mechanisms of brain disorders and for developing new approaches to effective treatment. However, we also emphasize that primate genetic models have great potential to address many fundamental questions about brain function, providing an essential foundation for future progress in disease research.
Collapse
Affiliation(s)
- Charles G Jennings
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rogier Landman
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Yang Zhou
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jitendra Sharma
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Julia Hyman
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - J Anthony Movshon
- Center for Neural Science, New York University, New York, New York, USA
| | - Zilong Qiu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, Hangzhou, China
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Huihui Zhou
- The Brain Cognition and Brain Disease Institute (BCBDI) for Collaboration Research of SIAT at CAS and McGovern Institute at MIT, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Science, Shenzhen, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI) for Collaboration Research of SIAT at CAS and McGovern Institute at MIT, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Science, Shenzhen, China
| | - Feng Zhang
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Robert Desimone
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
683
|
Baruteau J, Waddington SN, Alexander IE, Gissen P. Gene therapy for monogenic liver diseases: clinical successes, current challenges and future prospects. J Inherit Metab Dis 2017; 40:497-517. [PMID: 28567541 PMCID: PMC5500673 DOI: 10.1007/s10545-017-0053-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 02/08/2023]
Abstract
Over the last decade, pioneering liver-directed gene therapy trials for haemophilia B have achieved sustained clinical improvement after a single systemic injection of adeno-associated virus (AAV) derived vectors encoding the human factor IX cDNA. These trials demonstrate the potential of AAV technology to provide long-lasting clinical benefit in the treatment of monogenic liver disorders. Indeed, with more than ten ongoing or planned clinical trials for haemophilia A and B and dozens of trials planned for other inherited genetic/metabolic liver diseases, clinical translation is expanding rapidly. Gene therapy is likely to become an option for routine care of a subset of severe inherited genetic/metabolic liver diseases in the relatively near term. In this review, we aim to summarise the milestones in the development of gene therapy, present the different vector tools and their clinical applications for liver-directed gene therapy. AAV-derived vectors are emerging as the leading candidates for clinical translation of gene delivery to the liver. Therefore, we focus on clinical applications of AAV vectors in providing the most recent update on clinical outcomes of completed and ongoing gene therapy trials and comment on the current challenges that the field is facing for large-scale clinical translation. There is clearly an urgent need for more efficient therapies in many severe monogenic liver disorders, which will require careful risk-benefit analysis for each indication, especially in paediatrics.
Collapse
Affiliation(s)
- Julien Baruteau
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, UK.
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK.
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, London, UK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ian E Alexander
- Gene Therapy Research Unit, The Children's Hospital at Westmead and Children's Medical Research Institute, Westmead, Australia
- Discipline of Child and Adolescent Health, University of Sydney, Sydney, Australia
| | - Paul Gissen
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
684
|
Choudhury SR, Hudry E, Maguire CA, Sena-Esteves M, Breakefield XO, Grandi P. Viral vectors for therapy of neurologic diseases. Neuropharmacology 2017; 120:63-80. [PMID: 26905292 PMCID: PMC5929167 DOI: 10.1016/j.neuropharm.2016.02.013] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/07/2016] [Accepted: 02/15/2016] [Indexed: 12/21/2022]
Abstract
Neurological disorders - disorders of the brain, spine and associated nerves - are a leading contributor to global disease burden with a shockingly large associated economic cost. Various treatment approaches - pharmaceutical medication, device-based therapy, physiotherapy, surgical intervention, among others - have been explored to alleviate the resulting extent of human suffering. In recent years, gene therapy using viral vectors - encoding a therapeutic gene or inhibitory RNA into a "gutted" viral capsid and supplying it to the nervous system - has emerged as a clinically viable option for therapy of brain disorders. In this Review, we provide an overview of the current state and advances in the field of viral vector-mediated gene therapy for neurological disorders. Vector tools and delivery methods have evolved considerably over recent years, with the goal of providing greater and safer genetic access to the central nervous system. Better etiological understanding of brain disorders has concurrently led to identification of improved therapeutic targets. We focus on the vector technology, as well as preclinical and clinical progress made thus far for brain cancer and various neurodegenerative and neurometabolic disorders, and point out the challenges and limitations that accompany this new medical modality. Finally, we explore the directions that neurological gene therapy is likely to evolve towards in the future. This article is part of the Special Issue entitled "Beyond small molecules for neurological disorders".
Collapse
Affiliation(s)
- Sourav R Choudhury
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Eloise Hudry
- Alzheimer's Disease Research Unit, Harvard Medical School & Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | - Casey A Maguire
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA.
| | - Miguel Sena-Esteves
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Xandra O Breakefield
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA.
| | - Paola Grandi
- Department of Neurological Surgery, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15219, USA.
| |
Collapse
|
685
|
Zhuo C, Hou W, Lin C, Hu L, Li J. Potential Value of Genomic Copy Number Variations in Schizophrenia. Front Mol Neurosci 2017; 10:204. [PMID: 28680393 PMCID: PMC5478687 DOI: 10.3389/fnmol.2017.00204] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/09/2017] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a devastating neuropsychiatric disorder affecting approximately 1% of the global population, and the disease has imposed a considerable burden on families and society. Although, the exact cause of schizophrenia remains unknown, several lines of scientific evidence have revealed that genetic variants are strongly correlated with the development and early onset of the disease. In fact, the heritability among patients suffering from schizophrenia is as high as 80%. Genomic copy number variations (CNVs) are one of the main forms of genomic variations, ubiquitously occurring in the human genome. An increasing number of studies have shown that CNVs account for population diversity and genetically related diseases, including schizophrenia. The last decade has witnessed rapid advances in the development of novel genomic technologies, which have led to the identification of schizophrenia-associated CNVs, insight into the roles of the affected genes in their intervals in schizophrenia, and successful manipulation of the target CNVs. In this review, we focus on the recent discoveries of important CNVs that are associated with schizophrenia and outline the potential values that the study of CNVs will bring to the areas of schizophrenia research, diagnosis, and therapy. Furthermore, with the help of the novel genetic tool known as the Clustered Regularly Interspaced Short Palindromic Repeats-associated nuclease 9 (CRISPR/Cas9) system, the pathogenic CNVs as genomic defects could be corrected. In conclusion, the recent novel findings of schizophrenia-associated CNVs offer an exciting opportunity for schizophrenia research to decipher the pathological mechanisms underlying the onset and development of schizophrenia as well as to provide potential clinical applications in genetic counseling, diagnosis, and therapy for this complex mental disease.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Department of Psychological Medicine, Wenzhou Seventh People's HospitalWenzhou, China.,Department of Psychological Medicine, Tianjin Anding HospitalTianjin, China
| | - Weihong Hou
- Department of Biology, University of North Carolina at CharlotteCharlotte, NC, United States.,Department of Biochemistry and Molecular Biology, Zhengzhou UniversityZhengzhou, China
| | - Chongguang Lin
- Department of Psychological Medicine, Wenzhou Seventh People's HospitalWenzhou, China
| | - Lirong Hu
- Department of Psychological Medicine, Wenzhou Seventh People's HospitalWenzhou, China
| | - Jie Li
- Department of Psychological Medicine, Tianjin Anding HospitalTianjin, China
| |
Collapse
|
686
|
Gadalla KK, Vudhironarit T, Hector RD, Sinnett S, Bahey NG, Bailey ME, Gray SJ, Cobb SR. Development of a Novel AAV Gene Therapy Cassette with Improved Safety Features and Efficacy in a Mouse Model of Rett Syndrome. Mol Ther Methods Clin Dev 2017; 5:180-190. [PMID: 28497075 PMCID: PMC5423329 DOI: 10.1016/j.omtm.2017.04.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022]
Abstract
Rett syndrome (RTT), caused by loss-of-function mutations in the MECP2 gene, is a neurological disorder characterized by severe impairment of motor and cognitive functions. The aim of this study was to investigate the impact of vector design, dosage, and delivery route on the efficacy and safety of gene augmentation therapy in mouse models of RTT. Our results show that AAV-mediated delivery of MECP2 to Mecp2 null mice by systemic administration, and utilizing a minimal endogenous promoter, was associated with a narrow therapeutic window and resulted in liver toxicity at higher doses. Lower doses of this vector significantly extended the survival of mice lacking MeCP2 or expressing a mutant T158M allele but had no impact on RTT-like neurological phenotypes. Modifying vector design by incorporating an extended Mecp2 promoter and additional regulatory 3' UTR elements significantly reduced hepatic toxicity after systemic administration. Moreover, direct cerebroventricular injection of this vector into neonatal Mecp2-null mice resulted in high brain transduction efficiency, increased survival and body weight, and an amelioration of RTT-like phenotypes. Our results show that controlling levels of MeCP2 expression in the liver is achievable through modification of the expression cassette. However, it also highlights the importance of achieving high brain transduction to impact the RTT-like phenotypes.
Collapse
Affiliation(s)
- Kamal K.E. Gadalla
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Thishnapha Vudhironarit
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ralph D. Hector
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sarah Sinnett
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Noha G. Bahey
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Histology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Mark E.S. Bailey
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Steven J. Gray
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Stuart R. Cobb
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
687
|
DiEuliis D, Giordano J. Why Gene Editors Like CRISPR/Cas May Be a Game-Changer for Neuroweapons. Health Secur 2017; 15:296-302. [PMID: 28574731 DOI: 10.1089/hs.2016.0120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This year marks the Eighth Review Conference (RevCon) of the Biological Toxins and Weapons Convention (BWC). At the same time, ongoing international efforts to further and more deeply investigate the brain's complex neuronal circuitry are creating unprecedented capabilities to both understand and control neurological processes of thought, emotion, and behavior. These advances have tremendous promise for human health, but the potential for their misuse has also been noted, with most discussions centering on research and development of agents that are addressed by existing BWC and Chemical Weapons Convention (CWC) proscriptions. In this article, we discuss the dual-use possibilities fostered by employing emergent biotechnologic techniques and tools-specifically, novel gene editors like clustered regular interspaced short palindromic repeats (CRISPR)-to produce neuroweapons. Based on our analyses, we posit the strong likelihood that development of genetically modified or created neurotropic substances will advance apace with other gene-based therapeutics, and we assert that this represents a novel-and realizable-path to creating potential neuroweapons. In light of this, we propose that it will be important to re-address current categorizations of weaponizable tools and substances, so as to better inform and generate tractable policy to enable improved surveillance and governance of novel neuroweapons.
Collapse
|
688
|
Cortese FAB, Aguiar S, Santostasi G. Induced Cell Turnover: A Novel Therapeutic Modality for In Situ Tissue Regeneration. Hum Gene Ther 2017; 28:703-716. [PMID: 28557533 DOI: 10.1089/hum.2016.167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Induced cell turnover (ICT) is a theoretical intervention in which the targeted ablation of damaged, diseased, and/or nonfunctional cells is coupled with replacement by partially differentiated induced pluripotent stem cells in a gradual and multiphasic manner. Tissue-specific ablation can be achieved using pro-apoptotic small molecule cocktails, peptide mimetics, and/or tissue-tropic adeno-associated virus-delivered suicide genes driven by cell type-specific promoters. Replenishment with new cells can be mediated by systemic administration of cells engineered for homing, robustness, and even enhanced function and disease resistance. Otherwise, the controlled release of cells can be achieved using implanted biodegradable scaffolds, hydrogels, and polymer matrixes. In theory, ICT would enable in situ tissue regeneration without the need for surgical transplantation of organs produced ex vivo, and addresses non-transplantable tissues (such as the vasculature, lymph nodes, and the nervous system). This article outlines several complimentary strategies for overcoming barriers to ICT in an effort to stimulate further research at this promising interface of cell therapy, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Francesco Albert Bosco Cortese
- 1 Biogerontology Research Foundation, Oxford, United Kingdom .,2 Department of Biomedical and Molecular Sciences, Queen's University School of Medicine, Queen's University, Kingston, Canada
| | - Sebastian Aguiar
- 3 Neurobiology Department, Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Giovanni Santostasi
- 4 Department of Neurology, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| |
Collapse
|
689
|
Wykes RC, Lignani G. Gene therapy and editing: Novel potential treatments for neuronal channelopathies. Neuropharmacology 2017; 132:108-117. [PMID: 28564577 DOI: 10.1016/j.neuropharm.2017.05.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 01/14/2023]
Abstract
Pharmaceutical treatment can be inadequate, non-effective, or intolerable for many people suffering from a neuronal channelopathy. Development of novel treatment options, particularly those with the potential to be curative is warranted. Gene therapy approaches can permit cell-specific modification of neuronal and circuit excitability and have been investigated experimentally as a therapy for numerous neurological disorders, with clinical trials for several neurodegenerative diseases ongoing. Channelopathies can arise from a wide array of gene mutations; however they usually result in periods of aberrant network excitability. Therefore gene therapy strategies based on up or downregulation of genes that modulate neuronal excitability may be effective therapy for a wide range of neuronal channelopathies. As many channelopathies are paroxysmal in nature, optogenetic or chemogenetic approaches may be well suited to treat the symptoms of these diseases. Recent advances in gene-editing technologies such as the CRISPR-Cas9 system could in the future result in entirely novel treatment for a channelopathy by repairing disease-causing channel mutations at the germline level. As the brain may develop and wire abnormally as a consequence of an inherited or de novo channelopathy, the choice of optimal gene therapy or gene editing strategy will depend on the time of intervention (germline, neonatal or adult). This article is part of the Special Issue entitled 'Channelopathies.'
Collapse
Affiliation(s)
- R C Wykes
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, UCL, London, UK.
| | - G Lignani
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, UCL, London, UK.
| |
Collapse
|
690
|
Keeler AM, ElMallah MK, Flotte TR. Gene Therapy 2017: Progress and Future Directions. Clin Transl Sci 2017; 10:242-248. [PMID: 28383804 PMCID: PMC5504480 DOI: 10.1111/cts.12466] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/29/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
- A M Keeler
- Horae Gene Therapy Center and Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - M K ElMallah
- Horae Gene Therapy Center and Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - T R Flotte
- Horae Gene Therapy Center and Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
691
|
Hillier D, Fiscella M, Drinnenberg A, Trenholm S, Rompani SB, Raics Z, Katona G, Juettner J, Hierlemann A, Rozsa B, Roska B. Causal evidence for retina-dependent and -independent visual motion computations in mouse cortex. Nat Neurosci 2017; 20:960-968. [PMID: 28530661 PMCID: PMC5490790 DOI: 10.1038/nn.4566] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 04/22/2017] [Indexed: 12/14/2022]
Abstract
How neuronal computations in the sensory periphery contribute to computations in the cortex is not well understood. We examined this question in the context of visual-motion processing in the retina and primary visual cortex (V1) of mice. We disrupted retinal direction selectivity, either exclusively along the horizontal axis using FRMD7 mutants or along all directions by ablating starburst amacrine cells, and monitored neuronal activity in layer 2/3 of V1 during stimulation with visual motion. In control mice, we found an over-representation of cortical cells preferring posterior visual motion, the dominant motion direction an animal experiences when it moves forward. In mice with disrupted retinal direction selectivity, the over-representation of posterior-motion-preferring cortical cells disappeared, and their responses at higher stimulus speeds were reduced. This work reveals the existence of two functionally distinct, sensory-periphery-dependent and -independent computations of visual motion in the cortex.
Collapse
Affiliation(s)
- Daniel Hillier
- Neural Circuits Laboratory, Friedrich Miescher Institute, Basel, Switzerland
| | - Michele Fiscella
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Antonia Drinnenberg
- Neural Circuits Laboratory, Friedrich Miescher Institute, Basel, Switzerland
| | - Stuart Trenholm
- Neural Circuits Laboratory, Friedrich Miescher Institute, Basel, Switzerland
| | - Santiago B Rompani
- Neural Circuits Laboratory, Friedrich Miescher Institute, Basel, Switzerland
| | - Zoltan Raics
- Neural Circuits Laboratory, Friedrich Miescher Institute, Basel, Switzerland
| | - Gergely Katona
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,The Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Josephine Juettner
- Neural Circuits Laboratory, Friedrich Miescher Institute, Basel, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Balazs Rozsa
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Botond Roska
- Neural Circuits Laboratory, Friedrich Miescher Institute, Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland
| |
Collapse
|
692
|
Assembly of functionally integrated human forebrain spheroids. Nature 2017; 545:54-59. [PMID: 28445465 PMCID: PMC5805137 DOI: 10.1038/nature22330] [Citation(s) in RCA: 874] [Impact Index Per Article: 109.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/04/2017] [Indexed: 12/12/2022]
Abstract
The development of the nervous system involves a coordinated succession
of events including the migration of GABAergic neurons from ventral to dorsal
forebrain and their integration into cortical circuits. However, these
interregional interactions have not yet been modelled with human cells. Here, we
generate from human pluripotent cells three-dimensional spheroids resembling
either the dorsal or ventral forebrain and containing cortical glutamatergic or
GABAergic neurons. These subdomain-specific forebrain spheroids can be assembled
to recapitulate the saltatory migration of interneurons similar to migration in
fetal forebrain. Using this system, we find that in Timothy syndrome– a
neurodevelopmental disorder that is caused by mutations in the CaV1.2
calcium channel, interneurons display abnormal migratory saltations. We also
show that after migration, interneurons functionally integrate with
glutamatergic neurons to form a microphysiological system. We anticipate that
this approach will be useful for studying development and disease, and for
deriving spheroids that resemble other brain regions to assemble circuits
in vitro.
Collapse
|
693
|
Denny CA, Lebois E, Ramirez S. From Engrams to Pathologies of the Brain. Front Neural Circuits 2017; 11:23. [PMID: 28439228 PMCID: PMC5383718 DOI: 10.3389/fncir.2017.00023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/21/2017] [Indexed: 12/24/2022] Open
Abstract
Memories are the experiential threads that tie our past to the present. The biological realization of a memory is termed an engram—the enduring biochemical and physiological processes that enable learning and retrieval. The past decade has witnessed an explosion of engram research that suggests we are closing in on boundary conditions for what qualifies as the physical manifestation of memory. In this review, we provide a brief history of engram research, followed by an overview of the many rodent models available to probe memory with intersectional strategies that have yielded unprecedented spatial and temporal resolution over defined sets of cells. We then discuss the limitations and controversies surrounding engram research and subsequently attempt to reconcile many of these views both with data and by proposing a conceptual shift in the strategies utilized to study memory. We finally bridge this literature with human memory research and disorders of the brain and end by providing an experimental blueprint for future engram studies in mammals. Collectively, we believe that we are in an era of neuroscience where engram research has transitioned from ephemeral and philosophical concepts to provisional, tractable, experimental frameworks for studying the cellular, circuit and behavioral manifestations of memory.
Collapse
Affiliation(s)
- Christine A Denny
- Department of Psychiatry, Columbia UniversityNew York, NY, USA.,Division of Integrative Neuroscience, New York State Psychiatric Institute (NYSPI)/Research Foundation for Mental Hygiene, Inc. (RFMH)New York, NY, USA
| | - Evan Lebois
- Neuroscience and Pain Research Unit, Pfizer Inc.Cambridge, MA, USA
| | - Steve Ramirez
- Center for Brain Science, Harvard UniversityCambridge, MA, USA
| |
Collapse
|
694
|
Valdmanis PN, Kay MA. Future of rAAV Gene Therapy: Platform for RNAi, Gene Editing, and Beyond. Hum Gene Ther 2017; 28:361-372. [PMID: 28073291 PMCID: PMC5399734 DOI: 10.1089/hum.2016.171] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/20/2016] [Indexed: 12/24/2022] Open
Abstract
The use of recombinant adeno-associated viruses (rAAVs) ushered in a new millennium of gene transfer for therapeutic treatment of a number of conditions, including congenital blindness, hemophilia, and spinal muscular atrophy. rAAV vectors have remarkable staying power from a therapeutic standpoint, withstanding several ebbs and flows. As new technologies such as clustered regularly interspaced short palindromic repeat genome editing emerge, it is now the delivery tool-the AAV vector-that is the stalwart. The long-standing safety of this vector in a multitude of clinical settings makes rAAV a selling point in the advancement of approaches for gene replacement, gene knockdown, gene editing, and genome modification/engineering. The research community is building on these advances to develop more tailored delivery approaches and to tweak the genome in new and unique ways. Intertwining these approaches with newly engineered rAAV vectors is greatly expanding the available tools to manipulate gene expression with a therapeutic intent.
Collapse
Affiliation(s)
- Paul N. Valdmanis
- Departments of Pediatrics and Genetics, Stanford University, Stanford, California
| | - Mark A. Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, California
| |
Collapse
|
695
|
Kim CK, Adhikari A, Deisseroth K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat Rev Neurosci 2017; 18:222-235. [PMID: 28303019 PMCID: PMC5708544 DOI: 10.1038/nrn.2017.15] [Citation(s) in RCA: 455] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Modern optogenetics can be tuned to evoke activity that corresponds to naturally occurring local or global activity in timing, magnitude or individual-cell patterning. This outcome has been facilitated not only by the development of core features of optogenetics over the past 10 years (microbial-opsin variants, opsin-targeting strategies and light-targeting devices) but also by the recent integration of optogenetics with complementary technologies, spanning electrophysiology, activity imaging and anatomical methods for structural and molecular analysis. This integrated approach now supports optogenetic identification of the native, necessary and sufficient causal underpinnings of physiology and behaviour on acute or chronic timescales and across cellular, circuit-level or brain-wide spatial scales.
Collapse
Affiliation(s)
- Christina K Kim
- Neurosciences Program, Stanford University, 318 Campus Drive, Stanford, California 94305, USA
| | - Avishek Adhikari
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, California 94305, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, California 94305, USA
- Howard Hughes Medical Institute, Stanford University, 318 Campus Drive, Stanford, California 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, 318 Campus Drive, Stanford, California 94305, USA
| |
Collapse
|
696
|
Nondestructive nanostraw intracellular sampling for longitudinal cell monitoring. Proc Natl Acad Sci U S A 2017; 114:E1866-E1874. [PMID: 28223521 DOI: 10.1073/pnas.1615375114] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Here, we report a method for time-resolved, longitudinal extraction and quantitative measurement of intracellular proteins and mRNA from a variety of cell types. Cytosolic contents were repeatedly sampled from the same cell or population of cells for more than 5 d through a cell-culture substrate, incorporating hollow 150-nm-diameter nanostraws (NS) within a defined sampling region. Once extracted, the cellular contents were analyzed with conventional methods, including fluorescence, enzymatic assays (ELISA), and quantitative real-time PCR. This process was nondestructive with >95% cell viability after sampling, enabling long-term analysis. It is important to note that the measured quantities from the cell extract were found to constitute a statistically significant representation of the actual contents within the cells. Of 48 mRNA sequences analyzed from a population of cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs), 41 were accurately quantified. The NS platform samples from a select subpopulation of cells within a larger culture, allowing native cell-to-cell contact and communication even during vigorous activity such as cardiomyocyte beating. This platform was applied both to cell lines and to primary cells, including CHO cells, hiPSC-CMs, and human astrocytes derived in 3D cortical spheroids. By tracking the same cell or group of cells over time, this method offers an avenue to understand dynamic cell behavior, including processes such as induced pluripotency and differentiation.
Collapse
|
697
|
Mockett BG, Richter M, Abraham WC, Müller UC. Therapeutic Potential of Secreted Amyloid Precursor Protein APPsα. Front Mol Neurosci 2017; 10:30. [PMID: 28223920 PMCID: PMC5293819 DOI: 10.3389/fnmol.2017.00030] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/25/2017] [Indexed: 11/26/2022] Open
Abstract
Cleavage of the amyloid precursor protein (APP) by α-secretase generates an extracellularly released fragment termed secreted APP-alpha (APPsα). Not only is this process of interest due to the cleavage of APP within the amyloid-beta sequence, but APPsα itself has many physiological properties that suggest its great potential as a therapeutic target. For example, APPsα is neurotrophic, neuroprotective, neurogenic, a stimulator of protein synthesis and gene expression, and enhances long-term potentiation (LTP) and memory. While most early studies have been conducted in vitro, effectiveness in animal models is now being confirmed. These studies have revealed that either upregulating α-secretase activity, acutely administering APPsα or chronic delivery of APPsα via a gene therapy approach can effectively treat mouse models of Alzheimer's disease (AD) and other disorders such as traumatic head injury. Together these findings suggest the need for intensifying research efforts to harness the therapeutic potential of this multifunctional protein.
Collapse
Affiliation(s)
- Bruce G. Mockett
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of OtagoOtago, New Zealand
| | - Max Richter
- Department of Functional Genomics, Institute for Pharmacy and Molecular Biotechnology, Heidelberg UniversityHeidelberg, Germany
| | - Wickliffe C. Abraham
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of OtagoOtago, New Zealand
| | - Ulrike C. Müller
- Department of Functional Genomics, Institute for Pharmacy and Molecular Biotechnology, Heidelberg UniversityHeidelberg, Germany
| |
Collapse
|
698
|
Zhuo C, Hou W, Hu L, Lin C, Chen C, Lin X. Genomic Editing of Non-Coding RNA Genes with CRISPR/Cas9 Ushers in a Potential Novel Approach to Study and Treat Schizophrenia. Front Mol Neurosci 2017; 10:28. [PMID: 28217082 PMCID: PMC5289958 DOI: 10.3389/fnmol.2017.00028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/23/2017] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia is a genetically related mental illness, in which the majority of genetic alterations occur in the non-coding regions of the human genome. In the past decade, a growing number of regulatory non-coding RNAs (ncRNAs) including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been identified to be strongly associated with schizophrenia. However, the studies of these ncRNAs in the pathophysiology of schizophrenia and the reverting of their genetic defects in restoration of the normal phenotype have been hampered by insufficient technology to manipulate these ncRNA genes effectively as well as a lack of appropriate animal models. Most recently, a revolutionary gene editing technology known as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9; CRISPR/Cas9) has been developed that enable researchers to overcome these challenges. In this review article, we mainly focus on the schizophrenia-related ncRNAs and the use of CRISPR/Cas9-mediated editing on the non-coding regions of the genomic DNA in proving causal relationship between the genetic defects and the pathophysiology of schizophrenia. We subsequently discuss the potential of translating this advanced technology into a clinical therapy for schizophrenia, although the CRISPR/Cas9 technology is currently still in its infancy and immature to put into use in the treatment of diseases. Furthermore, we suggest strategies to accelerate the pace from the bench to the bedside. This review describes the application of the powerful and feasible CRISPR/Cas9 technology to manipulate schizophrenia-associated ncRNA genes. This technology could help researchers tackle this complex health problem and perhaps other genetically related mental disorders due to the overlapping genetic alterations of schizophrenia with other mental illnesses.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Department of Psychiatry, Wenzhou Seventh People's HospitalWenzhou, China; Department of Psychiatry, Tianjin Mental Health Center, Tianjin Anding HospitalTianjin, China; Department of Psychiatry, Tianjin Anning HospitalTianjin, China
| | - Weihong Hou
- Department of Biology, University of North Carolina at Charlotte Charlotte, NC, USA
| | - Lirong Hu
- Department of Psychiatry, Wenzhou Seventh People's Hospital Wenzhou, China
| | - Chongguang Lin
- Department of Psychiatry, Wenzhou Seventh People's Hospital Wenzhou, China
| | - Ce Chen
- Department of Psychiatry, Wenzhou Seventh People's Hospital Wenzhou, China
| | - Xiaodong Lin
- Department of Psychiatry, Wenzhou Seventh People's Hospital Wenzhou, China
| |
Collapse
|
699
|
Brain barriers and brain fluid research in 2016: advances, challenges and controversies. Fluids Barriers CNS 2017; 14:4. [PMID: 28153044 PMCID: PMC5288882 DOI: 10.1186/s12987-017-0052-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 01/18/2017] [Indexed: 12/26/2022] Open
Abstract
This editorial highlights some of the advances that occurred in relation to brain barriers and brain fluid research in 2016. It also aims to raise some of the attendant controversies and challenges in such research.
Collapse
|
700
|
Pignataro D, Sucunza D, Rico AJ, Dopeso-Reyes IG, Roda E, Rodríguez-Perez AI, Labandeira-Garcia JL, Broccoli V, Kato S, Kobayashi K, Lanciego JL. Gene therapy approaches in the non-human primate model of Parkinson's disease. J Neural Transm (Vienna) 2017; 125:575-589. [PMID: 28130586 DOI: 10.1007/s00702-017-1681-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/16/2017] [Indexed: 12/23/2022]
Abstract
The field of gene therapy has recently witnessed a number of major conceptual changes. Besides the traditional thinking that comprises the use of viral vectors for the delivery of a given therapeutic gene, a number of original approaches have been recently envisaged, focused on using vectors carrying genes to further modify basal ganglia circuits of interest. It is expected that these approaches will ultimately induce a therapeutic potential being sustained by gene-induced changes in brain circuits. Among others, at present, it is technically feasible to use viral vectors to (1) achieve a controlled release of neurotrophic factors, (2) conduct either a transient or permanent silencing of any given basal ganglia circuit of interest, (3) perform an in vivo cellular reprogramming by promoting the conversion of resident cells into dopaminergic-like neurons, and (4) improving levodopa efficacy over time by targeting aromatic L-amino acid decarboxylase. Furthermore, extensive research efforts based on viral vectors are currently ongoing in an attempt to better replicate the dopaminergic neurodegeneration phenomena inherent to the progressive intraneuronal aggregation of alpha-synuclein. Finally, a number of incoming strategies will soon emerge over the horizon, these being sustained by the underlying goal of promoting alpha-synuclein clearance, such as, for instance, gene therapy initiatives based on increasing the activity of glucocerebrosidase. To provide adequate proof-of-concept on safety and efficacy and to push forward true translational initiatives based on these different types of gene therapies before entering into clinical trials, the use of non-human primate models undoubtedly plays an instrumental role.
Collapse
Affiliation(s)
- D Pignataro
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Ave 55, Edificio CIMA, 31008, Pamplona, Navarra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - D Sucunza
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Ave 55, Edificio CIMA, 31008, Pamplona, Navarra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - A J Rico
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Ave 55, Edificio CIMA, 31008, Pamplona, Navarra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - I G Dopeso-Reyes
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Ave 55, Edificio CIMA, 31008, Pamplona, Navarra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - E Roda
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Ave 55, Edificio CIMA, 31008, Pamplona, Navarra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - A I Rodríguez-Perez
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - J L Labandeira-Garcia
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - V Broccoli
- Division of Neuroscience, Ospedale San Raffaele, 20132, Milan, Italy
- CNR Institute of Neuroscience, 20129, Milan, Italy
| | - S Kato
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - K Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - José L Lanciego
- Department of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII Ave 55, Edificio CIMA, 31008, Pamplona, Navarra, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|