651
|
Scheffzek K, Klebe C, Fritz-Wolf K, Kabsch W, Wittinghofer A. Crystal structure of the nuclear Ras-related protein Ran in its GDP-bound form. Nature 1995; 374:378-81. [PMID: 7885480 DOI: 10.1038/374378a0] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Ran proteins constitute a distinct branch of the superfamily of Ras-related GTP-binding proteins which function as molecular switches cycling between GTP-bound 'on' and GDP-bound 'off' states. Ran is located predominantly in the nucleus of eukaryotic cells and is involved in the nuclear import of proteins as well as in control of DNA synthesis and of cell-cycle progression. We report here the crystal structure at 2.3 A resolution of human Ran (Mr 24K) complexed with GDP and Mg2+. This structure reveals a similarity with the Ras core (G-domain) but with significant variations in regions involved in GDP and Mg2+ coordination (switch I and switch II regions in Ras), suggesting that there could be major conformational changes upon GTP binding. In addition to the G-domain, an extended chain and an alpha-helix were identified at the carboxy terminus. The amino-terminal (amino-acid residues MAAQGEP) stretch and the acidic tail (DEDDDL) appear to be flexible in the crystal structure.
Collapse
Affiliation(s)
- K Scheffzek
- Max-Planck-Institut für molekulare Physiologie, Abteilung Strukturelle Biologie, Dortmund, Germany
| | | | | | | | | |
Collapse
|
652
|
Cornish VW, Mendel D, Schultz PG. Untersuchungen von Struktur und Funktion von Proteinen mit einem erweiterten genetischen Code. Angew Chem Int Ed Engl 1995. [DOI: 10.1002/ange.19951070604] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
653
|
Ishima R, Nagayama K. Protein backbone dynamics revealed by quasi spectral density function analysis of amide N-15 nuclei. Biochemistry 1995; 34:3162-71. [PMID: 7880811 DOI: 10.1021/bi00010a005] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Spectral density functions J(0), J(omega N), and J(omega H + omega N) of individual amide N-15 nuclei in proteins were approximated by a quasi spectral density function (QSDF). Using this function, the backbone dynamics were analyzed for seven protein systems on which data have been published. We defined J(0; omega N) as the difference between the J(0) and the J(omega N) values, which describes motions slower than 50 (or 60) MHz, and J(omega N; omega H+N) as the difference between the J(omega N) and the J(omega H + omega N) values, which describes motions slower than 450 (or 540) MHz. The QSDF analysis can easily extract the J(0; omega N) of protein backbones, which have often some relation to biologically relevant reactions. Flexible N-terminal regions in eglin c and glucose permease IIA and a loop region in eglin c showed smaller values of both the J(0; omega N) and the J(omega N; omega H+N) as compared with the other regions, indicating increases in motions faster than nanosecond. The values of the J(0; omega N) for the backbone of the FK506 binding protein showed a large variation in the apoprotein but fell in a very narrow range after the binding of FK506. Characteristic increase or decrease in the values of J(0) and J(omega N) was observed in two or three residues located between secondary structures.
Collapse
Affiliation(s)
- R Ishima
- Nagayama Protein Array Project, ERATO, JRDC, Tsukuba Research Consortium, Japan
| | | |
Collapse
|
654
|
Sung YJ, Carter M, Zhong JM, Hwang YW. Mutagenesis of the H-ras p21 at glycine-60 residue disrupts GTP-induced conformational change. Biochemistry 1995; 34:3470-7. [PMID: 7880841 DOI: 10.1021/bi00010a040] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The function of Gly-60, the conserved glycine in the DXXG domain of v-H-ras, was examined by site-directed mutagenesis. It was found that while the G60A (Gly-60 to Ala substitution) mutation has little effect on the interaction of H-ras with guanine nucleotides, it completely abolishes the biological activity of v-H-ras. The G60A mutation also exerts little effect on the interaction of H-ras with SDC25C (a guanine nucleotide exchange factor) and GAP. However, the G60A mutation does lower the ability of H-ras to bind Raf. GTP induces an enhancement of fluorescence emission in complexes consisting of H-ras and the fluorescent dye 8-anilino-1-naphthalenesulfonic acid. This enhancement is blocked by the G60A mutation. On the basis of these observations, we propose that the GTP-induced conformational change of H-ras, a process required for H-ras activities, is impaired by the G60A mutation.
Collapse
Affiliation(s)
- Y J Sung
- Molecular Biology Department, New York State Institute for Basic Research in Developmental Disabilities, Staten Island 10314
| | | | | | | |
Collapse
|
655
|
Fujita-Yoshigaki J, Shirouzu M, Ito Y, Hattori S, Furuyama S, Nishimura S, Yokoyama S. A constitutive effector region on the C-terminal side of switch I of the Ras protein. J Biol Chem 1995; 270:4661-7. [PMID: 7876237 DOI: 10.1074/jbc.270.9.4661] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The "switch I" region (Asp30-Asp38) of the Ras protein takes remarkably different conformations between the GDP- and GTP-bound forms and coincides with the so-called "effector region." As for a region on the C-terminal side of switch I, the V45E and G48C mutants of Ras failed to promote neurite outgrowth of PC12 cells (Fujita-Yoshigaki, J., Shirouzu, M., Koide, H., Nishimura, S., and Yokoyama, S. (1991) FEBS Lett. 294, 187-190). In the present study, we performed alanine-scanning mutagenesis within the region Lys42-Ile55 of Ras and found that the K42A, I46A, G48A, E49A, and L53A mutations significantly reduced the neurite-inducing activity. This is an effector region by definition, but its conformation is known to be unaffected by GDP-->GTP exchange. So, this region is referred to as a "constitutive" effector (Ec) region, distinguished from switch I, a "switch" effector (Es) region. The Ec region mutants exhibiting no neurite-inducing activity were found to be correlatably unable to activate mitogen-activated protein (MAP) kinase in PC12 cells. Therefore, the Ec region is essential for the MAP kinase activation in PC12 cells, whereas mutations in this region only negligibly affect the binding of Ras to Raf-1 (Shirouzu, M., Koide, H., Fujita-Yoshigaki, J., Oshio, H., Toyama, Y., Yamasaki, K., Fuhrman, S. A., Villafranca, E., Kaziro, Y., and Yokoyama, S. (1994) Oncogene 9, 2153-2157).
Collapse
Affiliation(s)
- J Fujita-Yoshigaki
- Department of Biophysics and Biochemistry, School of Science, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
656
|
Yaskowiak ES, March PE. Small clusters of divergent amino acids surrounding the effector domain mediate the varied phenotypes of EF-G and LepA expression. Mol Microbiol 1995; 15:943-53. [PMID: 7596295 DOI: 10.1111/j.1365-2958.1995.tb02363.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Elongation factors G, Tu, and related proteins (including LepA) form a distinct subgroup within the GTPase superfamily. This observation is based primarily upon amino acid comparisons of the effector region (G2) of the GTP-binding domain. To examine the functional importance of the highly conserved elongation factor G2 domain a series of chimeric proteins were constructed between Escherichia coli EF-G and Micrococcus luteus EF-G, and between E. coli EF-G and LepA (a protein of unknown function). The M. luteus EF-G/E. coli EF-G hybrid, M. luteus EF-G, and E. coli EF-G efficiently complemented EF-G function in an E. coli strain (PEM101) harbouring a temperature-sensitive mutation in fusA (the gene encoding EF-G). A comparison of the amino acid sequences of the M. luteus EF-G and E. coli EF-G indicated that groups of divergent amino acid residues (amino acids 1-9 and 72-80) were not important for function. LepA and LepA/EF-G chimeric proteins were tested for the ability to complement EF-G function in vivo, for cross-linking to 8-azido-[gamma-32P]-GTP in vitro and for fusidic acid-dependent co-sedimentation with 70S ribosomes. With one exception, all chimeras could be readily cross-linked to azido-GTP in an EF-G-like manner, indicating that hybrid protein construction did not generally result in improperly folded GTP-binding domains. However, the inability of such chimeras to complement EF-G function in vivo indicates that the effector domains are not functionally interchangeable. All LepA/EF-G chimeric proteins were severely defective in fusidic acid-dependent complex formation with 70S ribosomes. A comparison of the amino acid sequences of all three proteins suggests that residues 30-33, 43-48, and 63-66 of E. coli EF-G are important for EF-G specific ribosome-associated function.
Collapse
Affiliation(s)
- E S Yaskowiak
- School of Microbiology and Immunology, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
657
|
Robinson JM, Badwey JA. The NADPH oxidase complex of phagocytic leukocytes: a biochemical and cytochemical view. Histochem Cell Biol 1995; 103:163-80. [PMID: 7553130 DOI: 10.1007/bf01454021] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The NADPH oxidase complex catalyzes the formation of superoxide (O2.-) in phagocytic leukocytes. This paper reviews recent advances in our understanding of this enzyme system. Recent studies have defined conditions for reconstitution of this enzymatic activity with purified proteins in a cell-free system. The role of the individual proteins that make up the active complex, their regulation and the effects of mutations in these proteins are discussed. While these studies represent major achievements, it is clear from cytochemical investigations that additional levels of complexity exist in the modulation of the NADPH oxidase complex in vivo. A major role for cytochemical analysis in understanding the cell biological aspects of the generation of reactive oxygen species is discussed.
Collapse
Affiliation(s)
- J M Robinson
- Department of Cell Biology, Neurobiology, and Anatomy, Columbus 43210, USA
| | | |
Collapse
|
658
|
Segal M, Marbach I, Willumsen BM, Levitzki A. Two distinct regions of Ras participate in functional interaction with GDP-GTP exchangers. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 228:96-101. [PMID: 7883018 DOI: 10.1111/j.1432-1033.1995.0096o.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have previously implemented a combined genetic/biochemical approach, for analysis of insertion-deletion mutants, to identify sites of Harvey-Ras participating in the interaction with guanine nucleotide exchangers, using the yeast Cdc25 as a model exchanger. We showed that positions 101-106 may be required for catalyzed exchange. We here present a further improved strategy to define more precisely the residues on Ras participating in this interaction. Non-conservative replacements at positions 103 or 105 abolished response to Cdc25 while substitutions at positions 102 or 104 were partially affected. The same substitutions had no effect on coupling to adenylyl cyclase. Since the strategy enables us to assess Ras functional interaction with both the exchanger and effector simultaneously, we have also examined the effect of substitutions in the distal part of the switch II region (amino acids 69-78). In contrast to other reports, substitutions at positions 69 or 73 prevented Cdc25 response while mutations at position 74 did not prevent this interaction. However, all these substitutions partly affected cyclase activation. These findings establish the crucial role of the 102-105 region in the catalyzed exchange reaction and suggest that the 69-74 area would be required for the functional interaction with both exchangers and effector molecules.
Collapse
Affiliation(s)
- M Segal
- Department of Biological Chemistry, Hebrew University of Jerusalem, Israel
| | | | | | | |
Collapse
|
659
|
Soto-Cruz I, Magee AI. Effect of synthetic peptides representing the hypervariable region of p21ras on Xenopus laevis oocyte maturation. Biochem J 1995; 306 ( Pt 1):11-4. [PMID: 7864796 PMCID: PMC1136474 DOI: 10.1042/bj3060011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The carboxy-terminal hypervariable regions of p21ras proteins have been highly conserved throughout evolution but no function has been assigned to them yet. This region has been suggested as a possible candidate for receptor recognition. We have tested the possibility of this region being involved in p21ras biological function. Synthetic peptides corresponding to the hypervariable domains of p21N-ras and p21K(B)-ras were microinjected into Xenopus oocytes to assess their effect on oocyte maturation. The K(B)-ras peptide inhibited insulin-dependent but not progesterone-dependent maturation, in contrast with the N-ras peptide which did not inhibit maturation significantly. A control peptide, with the same amino acid composition as the K(B)-ras peptide but with a scrambled sequence, and poly(D,L-lysine) were inactive. Pentalysine had partial activity which may be due to its mimicking the lysine-rich stretch of the K(B)-ras sequence. The data support the hypothesis that the K(B)-ras gene product specifically is involved in transducing the insulin and/or insulin-like growth factor 1 signal.
Collapse
Affiliation(s)
- I Soto-Cruz
- Laboratory of Eukaryotic Molecular Genetics, National Institute for Medical Research, Mill Hill, London, U.K
| | | |
Collapse
|
660
|
Casari G, Sander C, Valencia A. A method to predict functional residues in proteins. NATURE STRUCTURAL BIOLOGY 1995; 2:171-8. [PMID: 7749921 DOI: 10.1038/nsb0295-171] [Citation(s) in RCA: 298] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The biological activity of a protein typically depends on the presence of a small number of functional residues. Identifying these residues from the amino acid sequences alone would be useful. Classically, strictly conserved residues are predicted to be functional but often conservation patterns are more complicated. Here, we present a novel method that exploits such patterns for the prediction of functional residues. The method uses a simple but powerful representation of entire proteins, as well as sequence residues as vectors in a generalised 'sequence space'. Projection of these vectors onto a lower-dimensional space reveals groups of residues specific for particular subfamilies that are predicted to be directly involved in protein function. Based on the method we present testable predictions for sets of functional residues in SH2 domains and in the conserved box of cyclins.
Collapse
|
661
|
Rensland H, John J, Linke R, Simon I, Schlichting I, Wittinghofer A, Goody RS. Substrate and product structural requirements for binding of nucleotides to H-ras p21: the mechanism of discrimination between guanosine and adenosine nucleotides. Biochemistry 1995; 34:593-9. [PMID: 7819254 DOI: 10.1021/bi00002a026] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The interaction of the protein product of the H-ras oncogene with a series of nucleoside di- and triphosphates has been examined to investigate the tolerance of the active site to departures from the GTP or GDP structures. Nucleotides which bind relatively strongly could be used as competitors of GDP in a simple filter binding assay to give semiquantitave estimates of their affinities. For more weakly binding nucleotides or to obtain quantitative data, a transient kinetic method was used which was based on determination of the association and dissociation rate constants. The results obtained indicate that substantial modification of the sugar or phosphate structure is tolerated with little or moderate loss of affinity, but that large losses in affinity occur on modification of the base structure. In particular, replacing the guanine by an adenine residue leads to a dramatic loss of affinity. Thus, discrimination against ATP and ADP is very high (relative affinities of ATP and GTP 1:10(7)). This is due not only to loss of positive (stabilizing) interactions, but especially to the introduction of negative ones.
Collapse
Affiliation(s)
- H Rensland
- Abetilung Physikalische Biochemie, Max-Planck-Institut für molekulare Physiologie, Dortmund, FRG
| | | | | | | | | | | | | |
Collapse
|
662
|
Poullet P, Créchet JB, Bernardi A, Parmeggiani A. Properties of the catalytic domain of sdc25p, a yeast GDP/GTP exchange factor of Ras proteins. Complexation with wild-type Ras2p, [S24N]Ras2p and [R80D, N81D]Ras2p. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 227:537-44. [PMID: 7851434 DOI: 10.1111/j.1432-1033.1995.tb20421.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The catalytic domain of the Saccharomyces cerevisiae SDC25 gene product, including the last 550 C-terminal residues (Sdc25p-C), was produced as an Escherichia coli recombinant protein fused with glutathione S-transferase. The highly purified (greater than 95%) stable fusion protein, obtained by affinity chromatography, was very active in enhancing the dissociation rate or the GDP/GTP exchange of the GDP complex of Ras2p or human H-ras p21. This activity was further increased (three times) by glutathione S-transferase cleavage with thrombin. The stimulation of the guanine nucleotide release by Sdc25p-C was stronger for Ras2p.GDP than Ras2p.GTP, an effect that was less pronounced in the case of the p21 complexes. The association rate of the Ras2p.GDP (GTP) complex was also enhanced by Sdc25p-C. Monovalent and divalent salts inhibit the nucleotide-releasing activity of Sdc25p-C. Retention phenomena occurring on gel-filtration chromatography hindered the use of highly purified Sdc25p-C to study the formation of stable complexes with Ras2p. For this purpose, Sdc25p-C was produced as a non-glutathione-S-transferase fusion protein via pTTQ19. Upon partial purification, this product yielded a 54-kDa truncated form of Sdc25p-C (truncated Sdc25p-C) showing the same specific activity as the 64-kDa Sdc25p-C protein. On gel filtration, truncated Sdc25p-C and nucleotide-free Ras2p (or p21) formed a stable 1:1 stoichiometric complex that was dissociated by increasing concentrations of GDP. The properties of this complex were analyzed by using the mutant [S24N]Ras2p, the homologue of [S17N]p21 known to induce a dominant negative phenotype, [R80D, N81D]Ras2p, a recessive negative mutant insensitive to the truncated form of Sdc25p-C in vitro. The complex with [S24N]Ras2p was greater than 100-fold less sensitive to the dissociating effect of GDP, whereas [R80D, N81D]Ras2p was unable to form a stable complex with truncated Sdc25p-C. These results strongly suggest that the residues R80 and N81 are situated in or closely associated with the Ras2p specific site binding Sdc25p.
Collapse
Affiliation(s)
- P Poullet
- Structure Diverse d'Interventions no. 61840 du Centre National de la Recherche Scientifique, Laboratoire de Biochimie, Ecole Polytechnique, Palaiseau, France
| | | | | | | |
Collapse
|
663
|
Wolf G, Neilson EG. Cellular biology of tubulointerstitial growth. CURRENT TOPICS IN PATHOLOGY. ERGEBNISSE DER PATHOLOGIE 1995; 88:69-97. [PMID: 7614851 DOI: 10.1007/978-3-642-79517-6_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The study of tubular growth has certainly become more complex since Pierre-Rayers's time and is progressing toward a molecular dissection of regulatory events. Understanding the mechanisms of tubular growth is important, because these cells represent the bulk of the nephron, and there is convincing evidence of a link between tubular hypertrophy and the progression of renal disease with irreversible tubulointerstitial fibrosis as an end point. Two tubular growth responses can be distinguished: hypertrophy and hyperplasia. These fundamentally different patterns of growth indicate that diverse molecular mechanisms may be involved in inducing distinct growth responses. It is likely that cytokines and polypeptide growth factors play a role in tubular hypertrophy and hyperplasia. Probably, a combination of growth factors including inhibitory polypeptides like TGF beta, rather than a single factor, is necessary for differentiated tubular growth responses. Such factors bind to their receptors, and signals are transduced to the nucleus by various second messengers involving protein kinases, cyclic nucleotides, Ca++, and inositolphosphates. The phosphorylation of nuclear trans-acting factors resulting in an expression of immediate early genes may be the common pathway of many of these mediators. Finally, whether the cell is to proliferate or to remain in the G1-phase of the cell cycle is determined by the very complex cascade phosphorylation of kinases and their associations with different cyclins. How the induction of immediate early genes is linked to events of the cell cycle is currently incompletely understood. Negative regulation of growth through protein growth suppressors like the retinoblastoma gene product or the expression of special genes only during cell rest may be mandatory for the fine tuning of tubular growth.
Collapse
Affiliation(s)
- G Wolf
- Department of Internal Medicine, University of Frankfurt, Germany
| | | |
Collapse
|
664
|
Chatterjee D, Liu CJ, Northey D, Teicher BA. Molecular characterization of the in vivo alkylating agent resistant murine EMT-6 mammary carcinoma tumors. Cancer Chemother Pharmacol 1995; 35:423-31. [PMID: 7850925 DOI: 10.1007/s002800050257] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The expression of several early-response genes and genes associated with malignant disease was assessed in the EMT-6/parent tumor and the EMT-6/CTX and EMT-6/CDDP in vivo resistant tumor lines growing as tumors or as monolayers in culture. In the absence of treatment the levels of mRNA for the genes c-jun, c-fos, c-myc, Ha-ras and p53 were increased in the EMT-6/CTX and EMT-6/CDDP as compared with the EMT-6/parent tumor, whereas the expression of erb-2 was similar in all three tumors. Although the cells from each of the three tumors show increased expression of early response genes after exposure to cisplatin (CDDP; 100 microM, 2 h) or 4-Hydroxyperoxycyclophosphamide (4-HC; 100 microM, 2 h) in culture, in mRNA extracted from tumor tissue these changes are absent or very small. Both C-jun and erb-2 were detectable in liver. There was increased expression of both of these genes in the livers of tumor-bearing animals as compared with non-tumor-bearing animals. The highest expression of both c-jun and erb-2 occurred in the livers of animals bearing the EMT-6/CDDP tumor. Treatment of the animals with CDDP or cyclophosphamide, in general, resulted in increased expression of both genes at 6 h post treatment. The increased expression of these genes may impart metabolic changes in the tumors and/or hosts that contribute to the resistance of these tumors to specific antitumor alkylating agents.
Collapse
MESH Headings
- Alkylating Agents/toxicity
- Animals
- Blotting, Northern
- Cisplatin/pharmacology
- DNA Probes
- Drug Resistance, Multiple/genetics
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Genes, erbB-2/genetics
- Genes, fos/genetics
- Genes, jun/genetics
- Genes, myc/genetics
- Genes, ras/genetics
- Image Processing, Computer-Assisted
- Liver/drug effects
- Liver/metabolism
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mice
- Mice, Inbred BALB C
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- D Chatterjee
- Dana-Farber Cancer Institute, Joint Center for Radiation Therapy, Boston, MA 02115
| | | | | | | |
Collapse
|
665
|
Roberts DM, Garrett MD, Novick PJ. Purification of GDP dissociation stimulator Dss4 from recombinant bacteria. Methods Enzymol 1995; 257:84-92. [PMID: 8583942 DOI: 10.1016/s0076-6879(95)57013-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- D M Roberts
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
666
|
Schweins T, Geyer M, Scheffzek K, Warshel A, Kalbitzer HR, Wittinghofer A. Substrate-assisted catalysis as a mechanism for GTP hydrolysis of p21ras and other GTP-binding proteins. NATURE STRUCTURAL BIOLOGY 1995; 2:36-44. [PMID: 7719852 DOI: 10.1038/nsb0195-36] [Citation(s) in RCA: 230] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Despite many advances in understanding the structure and function of GTP-binding proteins the mechanism by which these molecules switch from the GTP-bound on-state to the GDP-bound off-state is still poorly understood. Theoretical studies suggest that the activation of the nucleophilic water which hydrolyzes GTP needs a general base. Such a base could not be located in any of the many GTP-binding proteins. Here we present a unique type of linear free energy relationships that not only supports a mechanism for p21ras in which the substrate GTP itself acts as the catalytic base driving the GTPase reaction but can also help to explain why certain mutants of p21ras are oncogenic and others are not.
Collapse
Affiliation(s)
- T Schweins
- Max-Planck-Institut für molekulare Physiologie, Abteilung Strukturelle Biologie, Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
667
|
The Srp54 GTPase is essential for protein export in the fission yeast Schizosaccharomyces pombe. Mol Cell Biol 1994. [PMID: 7969124 DOI: 10.1128/mcb.14.12.7839] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signal recognition particle (SRP) is a cytoplasmic ribonucleoprotein required for targeting a subset of presecretory proteins to the endoplasmic reticulum (ER) membrane. Here we report the results of a series of experiments to define the function of the Schizosaccharomyces pombe homolog of the 54-kDa subunit of mammalian SRP. One-step gene disruption reveals that the Srp54 protein, like SRP RNA, is essential for viability in S. pombe. Precursor to the secretory protein acid phosphatase accumulates in cells in which Srp54 synthesis has been repressed under the control of a regulated promoter, indicating that S. pombe SRP functions in protein targeting. In common with other Srp54 homologs, the S. pombe protein has a modular structure consisting of an amino-terminal G (GTPase) domain and a carboxyl-terminal M (methionine-rich) domain. We have analyzed the effects of 17 site-specific mutations designed to alter the function of each of the four GTPase consensus motifs individually. Several alleles, including some with relatively conservative amino acid substitutions, confer lethal or conditional phenotypes, indicating that GTP binding and hydrolysis are critical to the in vivo role of the protein. Two mutations (R to L at position 194 [R194L] and R194H) which were designed, by analogy to oncogenic mutations in rats, to dramatically decrease the catalytic rate and one (T248N) predicted to alter nucleotide binding specificity produce proteins that are unable to support growth at 18 degrees C. Consistent with its design, the R194L mutant hydrolyzes GTP at a reduced rate relative to wild-type Srp54 in enzymatic assays on immunoprecipitated proteins. In strains that also contain wild-type srp54, this mutant protein, as well as others designed to be locked in a GTP-bound conformation, exhibits temperature-dependent dominant inhibitory effects on growth, while a mutant predicted to be GDP locked does not interfere with the function of the wild-type protein. These results form the basis of a simple model for the role of GTP hydrolysis by Srp54 during the SRP cycle.
Collapse
|
668
|
Affiliation(s)
- G H Jossart
- Deparment of Surgery, UCSF/Mount Zion Medical Center
| | | |
Collapse
|
669
|
Welsh KM, Trach KA, Folger C, Hoch JA. Biochemical characterization of the essential GTP-binding protein Obg of Bacillus subtilis. J Bacteriol 1994; 176:7161-8. [PMID: 7961487 PMCID: PMC197103 DOI: 10.1128/jb.176.23.7161-7168.1994] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
An essential guanine nucleotide-binding protein, Obg, of Bacillus subtilis has been characterized with respect to its enzymatic activity for GTP. The protein was seen to hydrolyze GTP with a Km of 5.4 microM and a kcat of 0.0061 min-1 at 37 degrees C. GDP was a competitive inhibitor of this hydrolysis, with an inhibition constant of 1.7 microM at 37 degrees C. The dissociation constant for GDP from the Obg protein was 0.5 microM at 4 degrees C and was estimated to be 1.3 microM at 37 degrees C. Approximately 80% of the purified protein was capable of binding GDP. In addition to hydrolysis of GTP, Obg was seen to autophosphorylate with this substrate. Subsequent release of the covalent phosphate proceeds at too slow a rate to account for the overall rate of GTP hydrolysis, indicating that in vitro hydrolysis does not proceed via the observed phosphoamidate intermediate. It was speculated that the phosphorylated form of the enzyme may represent either a switched-on or a switched-off configuration, either of which may be normally induced by an effector molecule. This enzyme from a temperature-sensitive mutant of Obg did not show significantly altered GTPase activity at the nonpermissive temperature.
Collapse
Affiliation(s)
- K M Welsh
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92037
| | | | | | | |
Collapse
|
670
|
Althoff SM, Stevens SW, Wise JA. The Srp54 GTPase is essential for protein export in the fission yeast Schizosaccharomyces pombe. Mol Cell Biol 1994; 14:7839-54. [PMID: 7969124 PMCID: PMC359323 DOI: 10.1128/mcb.14.12.7839-7854.1994] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Signal recognition particle (SRP) is a cytoplasmic ribonucleoprotein required for targeting a subset of presecretory proteins to the endoplasmic reticulum (ER) membrane. Here we report the results of a series of experiments to define the function of the Schizosaccharomyces pombe homolog of the 54-kDa subunit of mammalian SRP. One-step gene disruption reveals that the Srp54 protein, like SRP RNA, is essential for viability in S. pombe. Precursor to the secretory protein acid phosphatase accumulates in cells in which Srp54 synthesis has been repressed under the control of a regulated promoter, indicating that S. pombe SRP functions in protein targeting. In common with other Srp54 homologs, the S. pombe protein has a modular structure consisting of an amino-terminal G (GTPase) domain and a carboxyl-terminal M (methionine-rich) domain. We have analyzed the effects of 17 site-specific mutations designed to alter the function of each of the four GTPase consensus motifs individually. Several alleles, including some with relatively conservative amino acid substitutions, confer lethal or conditional phenotypes, indicating that GTP binding and hydrolysis are critical to the in vivo role of the protein. Two mutations (R to L at position 194 [R194L] and R194H) which were designed, by analogy to oncogenic mutations in rats, to dramatically decrease the catalytic rate and one (T248N) predicted to alter nucleotide binding specificity produce proteins that are unable to support growth at 18 degrees C. Consistent with its design, the R194L mutant hydrolyzes GTP at a reduced rate relative to wild-type Srp54 in enzymatic assays on immunoprecipitated proteins. In strains that also contain wild-type srp54, this mutant protein, as well as others designed to be locked in a GTP-bound conformation, exhibits temperature-dependent dominant inhibitory effects on growth, while a mutant predicted to be GDP locked does not interfere with the function of the wild-type protein. These results form the basis of a simple model for the role of GTP hydrolysis by Srp54 during the SRP cycle.
Collapse
Affiliation(s)
- S M Althoff
- Department of Biochemistry, University of Illinois, Urbana 61801
| | | | | |
Collapse
|
671
|
Abstract
In mitogenically stimulated cells, a specific complex forms between the Ras GTPase-activating protein (RasGAP) and the cellular protein p190. We have previously reported that p190 contains a carboxy-terminal domain that functions as a GAP for the Rho family GTPases. Thus, the RasGAP-p190 complex may serve to couple Ras- and Rho-mediated signalling pathways. In addition to its RhoGAP domain, p190 contains an amino-terminal domain that contains sequence motifs found in all known GTPases. Here, we report that p190 binds GTP and GDP through this conserved domain and that the structural requirements for binding are similar to those seen with other GTPases. While the purified protein is unable to hydrolyze GTP, we detect an activity in cell lysates that can promote GTP hydrolysis by p190. A mutated form of p190 that fails to bind nucleotide retains its RasGAP binding and RhoGAP activities, indicating that GTP binding by p190 is not required for these functions. The sequence of p190 in the GTP-binding domain, which shares structural features with both the Ras-like small GTPases and the larger G proteins, suggests that this protein defines a novel class of guanine nucleotide-binding proteins.
Collapse
|
672
|
Freeman JL, Kreck ML, Uhlinger DJ, Lambeth JD. Ras effector-homologue region on Rac regulates protein associations in the neutrophil respiratory burst oxidase complex. Biochemistry 1994; 33:13431-5. [PMID: 7947751 DOI: 10.1021/bi00249a031] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Rac, a small molecular weight GTPase in the Ras superfamily, participates in the activation of the multicomponent superoxide-generating NADPH oxidase of human neutrophils. Rac is 30% identical to Ras overall, but is 75% identical within the sequence corresponding to the effector region of Ras, which regulates mitogenesis through interactions with the protein kinase Raf1. We investigated the role of this region in Rac1 using site-directed mutagenesis. In a cell-free semirecombinant NADPH oxidase system, mutants in the 26, 33, 38, and 45 amino acids showed 20-110-fold reduced binding to the oxidase complex as judged by EC50 values and reduced (44-80%) maximal activities in superoxide generation. Only the GTP gamma S-bound form associated, since the GDP-bound form of Rac neither activated alone nor competed with GTP gamma S-Rac. EC50 values for neither p47-phox nor p67-phox were affected when mutant Racs were used in place of Rac. Data indicate direct binding of the Rac effector region to one or more components of the respiratory burst oxidase. Results indicate a general role for conserved effector-equivalent regions in small GTPases in the regulation of protein-protein interactions.
Collapse
Affiliation(s)
- J L Freeman
- Department of Biochemistry, Emory University Medical School, Atlanta, Georgia 30322
| | | | | | | |
Collapse
|
673
|
Foster R, Hu KQ, Shaywitz DA, Settleman J. p190 RhoGAP, the major RasGAP-associated protein, binds GTP directly. Mol Cell Biol 1994; 14:7173-81. [PMID: 7935432 PMCID: PMC359251 DOI: 10.1128/mcb.14.11.7173-7181.1994] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In mitogenically stimulated cells, a specific complex forms between the Ras GTPase-activating protein (RasGAP) and the cellular protein p190. We have previously reported that p190 contains a carboxy-terminal domain that functions as a GAP for the Rho family GTPases. Thus, the RasGAP-p190 complex may serve to couple Ras- and Rho-mediated signalling pathways. In addition to its RhoGAP domain, p190 contains an amino-terminal domain that contains sequence motifs found in all known GTPases. Here, we report that p190 binds GTP and GDP through this conserved domain and that the structural requirements for binding are similar to those seen with other GTPases. While the purified protein is unable to hydrolyze GTP, we detect an activity in cell lysates that can promote GTP hydrolysis by p190. A mutated form of p190 that fails to bind nucleotide retains its RasGAP binding and RhoGAP activities, indicating that GTP binding by p190 is not required for these functions. The sequence of p190 in the GTP-binding domain, which shares structural features with both the Ras-like small GTPases and the larger G proteins, suggests that this protein defines a novel class of guanine nucleotide-binding proteins.
Collapse
Affiliation(s)
- R Foster
- Massachusetts General Hospital Cancer Center, Charlestown 02129
| | | | | | | |
Collapse
|
674
|
Duyvis MG, Wassink H, Haaker H. Pre-steady-state MgATP-dependent proton production and electron transfer by nitrogenase from Azotobacter vinelandii. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 225:881-90. [PMID: 7957225 DOI: 10.1111/j.1432-1033.1994.0881b.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
MgATP-dependent pre-steady-state proton production by nitrogenase from Azotobacter vinelandii was studied by monitoring the absorbance changes at 572 nm of the pH indicator o-cresolsulphonphtalein in a weakly buffered solution. The absorbance changes are characterized by a constant phase, a single exponential decrease and a linear decrease. The observed rate constant for the single exponential MgATP-dependent proton production by reduced nitrogenase proteins at 20.0 degrees C is 14 +/- 4 s-1. No proton production with a rate constant comparable to the observed rate constant of electron transfer (kobs approximately 100 s-1) was detected. The extent of the observed MgATP-dependent proton production is determined by the redox state of the nitrogenase proteins before mixing with MgATP; less protons are produced when more electrons are transferred from the Fe protein to the MoFe protein. Values of 2.7 +/- 0.3 mol H+produced/mol MoFe protein with oxidized Fe protein, and 1.1 +/- 0.1 mol H+produced/mol MoFe protein with reduced Fe protein, were found. The data are interpreted to mean that protons are taken up after electron transfer from the Fe protein to the MoFe protein; the ratio electrons(transferred)/H-uptake was calculated to be 1.2 +/- 0.2. After mixing the nitrogenase proteins with MgADP, proton production takes place as well. The proton-production curve did not have a constant phase and the observed rate constant of the single exponential reaction is higher, compared to MgATP-dependent proton production (kobs approximately 35 s-1). The amount of protons produced depends also on the redox state of the Fe protein; no proton production was observed with the oxidized Fe protein; with dithionite-reduced Fe protein a value of 3.1 +/- 0.4 mol H+produced/mol MoFe protein was found (or 0.5 +/- 0.1 mol H+/mol Fe protein). Similar results were obtained when only the Fe protein was mixed with MgADP, but the observed absorbance changes were smaller; mixing of dithionite-reduced Fe protein with MgADP resulted in the production of 0.17 +/- 0.05 mol H+/mol Fe protein. All reported absorbance changes were absent when the experiments were performed in a buffered solution. The series of events that occur after mixing of the nitrogenase proteins with MgATP will be presented and discussed. In the case of the reduced Fe protein, electron transfer takes place at a rate of 100 s-1, which is followed by H+ production (kobs approximately 14 s-1). When there is no electron transfer (oxidized Fe protein) the rate constant of the MgATP-induced proton production decreases.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M G Duyvis
- Department of Biochemistry, Agricultural University, Wageningen, The Netherlands
| | | | | |
Collapse
|
675
|
Hou Y, Yaskowiak ES, March PE. Carboxyl-terminal amino acid residues in elongation factor G essential for ribosome association and translocation. J Bacteriol 1994; 176:7038-44. [PMID: 7961469 PMCID: PMC197078 DOI: 10.1128/jb.176.22.7038-7044.1994] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The translocation of ribosomes on mRNA is carried out by cellular machinery that has been extremely well conserved across the entire spectrum of living species. This process requires elongation factor G (EF-G, or EF-2 in archaebacteria and eukaryotes), which is a member of the GTPase superfamily. Using genetic techniques, we have identified a series of mutated alleles of fusA (the Escherichia coli gene that encodes EF-G) that were unable to support protein synthesis in vivo. These alleles encode proteins with point mutations at codons 495 (a variant with a Q-to-P change at codon 495 [Q495P]), 502 (G502D), and 563 (G563D) and a nonsense mutation at codon 608. Biochemical analyses demonstrated that EF-G Q495P, G502D, and delta 608-703 were not disrupted in guanine nucleotide binding but were deficient in ribosome-dependent GTP hydrolysis and guanine nucleotide-dependent ribosome association. We propose that all of these mutations are present in a domain that is essential for ribosome association and that GTP hydrolysis was deficient as a secondary consequence of impaired binding to 70S ribosomes.
Collapse
Affiliation(s)
- Y Hou
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854
| | | | | |
Collapse
|
676
|
Funato T, Shitara T, Tone T, Jiao L, Kashani-Sabet M, Scanlon KJ. Suppression of H-ras-mediated transformation in NIH3T3 cells by a ras ribozyme. Biochem Pharmacol 1994; 48:1471-5. [PMID: 7945447 DOI: 10.1016/0006-2952(94)90572-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Murine NIH3T3 cells were used to study the effect of ribozymes on H-ras-mediated transformation. Parental 3T3 cells were transfected with the activated H-ras gene. H-ras-transformed cells had altered morphology and increased colony formation in soft agar in contrast to untransfected 3T3 cells. A hammerhead ribozyme (site-specific ribonuclease) designed to cleave codon 12 (GUC) of the activated H-ras RNA was expressed in transformed cells. 3T3 clones expressing the ras ribozyme displayed decreased expression of activated H-ras RNA. The ras ribozyme reversed the transformed phenotype to resemble that of untransfected 3T3 cells. Furthermore, 3T3 cells containing the ras ribozyme were shown to suppress transformation when they were subsequently transfected with activated H-ras. Insertion of a mutant ribozyme largely devoid of cleaving capacity into H-ras-transformed cells resulted in smaller reductions in H-ras gene expression and colony formation in soft agar when compared with the ras ribozyme. Finally, the ras ribozyme alone did not perturb normal 3T3 cell growth. This study suggests the possible utility of anti-oncogene ribozymes as suppressors of tumor cell growth as well as inhibitors of cellular transformation.
Collapse
Affiliation(s)
- T Funato
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA 91010
| | | | | | | | | | | |
Collapse
|
677
|
Berger G, Quarck R, Tenza D, Levy-Toledano S, de Gunzburg J, Cramer EM. Ultrastructural localization of the small GTP-binding protein Rap1 in human platelets and megakaryocytes. Br J Haematol 1994; 88:372-82. [PMID: 7803284 DOI: 10.1111/j.1365-2141.1994.tb05033.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several functions have been proposed for Rap1B in human platelets, including the regulation of phospholipase (PL) C gamma and Ca2+ ATPase. However, its localization is largely unknown. In the present study we have investigated the subcellular distribution of Rap1 by immunocytochemical techniques using affinity purified polyclonal antibodies raised against residues 121-137 common to the 95% homologous Rap1A and Rap1B proteins. By immunofluorescence, a positive labelling was obtained on intact resting platelets and was abolished after adsorption of the antibodies with the control peptide. Immunoelectron microscopy was then used to further define the subcellular localization of Rap1B in platelets and megakaryocytes (MK). In resting cells, immunolabelling for Rap1B was associated with the plasma membrane, mostly at its inner face, and lined the membrane of the open canalicular system (OCS). Some labelling was also found outlining the alpha-granules, identified as such by a double labelling with an anti-GPIIb-IIIa. On thrombasthenic platelets the same localization was observed. When platelets were stimulated by thrombin, immunolabelling for Rap1B was redistributed to the zones of fusion of the granules with the OCS, and to the plasma membrane with a higher concentration on pseudopods. Human MK expressed Rap1 and the staining revealed the association of the protein with the demarcation membranes and alpha-granules. This study presents a first approach to the localization of a small GTP binding-protein Rap1B in whole platelets and MK, and shows its association with both the plasma and OCS membranes, as well as with the alpha-granule membranes.
Collapse
Affiliation(s)
- G Berger
- ISERM U.348, Hôpital Lariboisière, Faculté de Médecine Lariboisière-Saint Louis, Paris, France
| | | | | | | | | | | |
Collapse
|
678
|
Abstract
The recently solved crystal structures of Thermus thermophilus elongation factor G, with and without GDP, reveal a protein of five domains with surprising features which can be correlated with biochemical data to suggest probable functional roles.
Collapse
Affiliation(s)
- F Jurnak
- Department of Biochemistry, University of California, Riverside 92521
| |
Collapse
|
679
|
Iiri T, Herzmark P, Nakamoto JM, van Dop C, Bourne HR. Rapid GDP release from Gs alpha in patients with gain and loss of endocrine function. Nature 1994; 371:164-8. [PMID: 8072545 DOI: 10.1038/371164a0] [Citation(s) in RCA: 197] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Luteinizing hormone stimulates testicular Leydig cells to produce testosterone by binding to a receptor that activates the G protein Gs and adenylyl cyclase. Testotoxicosis is a form of precocious puberty in which the Leydig cells secrete testosterone in the absence of luteinizing hormone, often due to constitutive activation of the luteinizing hormone receptor and (indirectly) Gs (refs 1-4). Here we study two unrelated boys suffering from a paradoxical combination of testotoxicosis and pseudohypoparathyroidism type Ia (PHP-Ia), a condition marked by resistance to hormones acting through cyclic AMP (parathyroid hormone and thyroid-stimulating hormone) as well as a 50% decrease in erythrocyte Gs activity (the remaining 50% is due to the normal Gs allele). In both patients, a mutation in the gene encoding the Gs alpha-subunit replace alanine at position 366 with serine. We show that this alpha s-A366S mutation constitutively activates adenylyl cyclase in vitro, causing hormone-independent cAMP accumulation when expressed in cultured cells, and accounting for the testotoxicosis phenotype (as cAMP stimulates testosterone secretion). Although alpha s-A366S is quite stable at testis temperature, it is rapidly degraded at 37 degrees C explaining the PHP-Ia phenotype caused by loss of Gs activity. In vitro experiments indicate that accelerated release of GDP causes both the constitutive activity and the thermolability of alpha s-A366S.
Collapse
Affiliation(s)
- T Iiri
- Department of Pharmacology, University of California, San Francisco 94143-0450
| | | | | | | | | |
Collapse
|
680
|
Characterization of a 78-residue fragment of c-Raf-1 that comprises a minimal binding domain for the interaction with Ras-GTP. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31795-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
681
|
Welch M, Oosawa K, Aizawa SI, Eisenbach M. Effects of phosphorylation, Mg2+, and conformation of the chemotaxis protein CheY on its binding to the flagellar switch protein FliM. Biochemistry 1994; 33:10470-6. [PMID: 8068685 DOI: 10.1021/bi00200a031] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
CheY is the response regulator of bacterial chemotaxis. Previously, we showed that CheY binds to the flagellar switch protein FliM and that this binding is increased upon phosphorylation of CheY [Welch, M., Oosawa, K., Aizawa, S.-I., & Eisenbach, M. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 8787-8791]. Here, we demonstrate that it is the phosphorylated conformation of CheY, rather than the phosphate group itself, that is recognized and bound by FliM. We found that subsequent to the phosphorylation of CheY, Mg2+ was not required for the binding of CheY to FliM. However, phosphorylation of CheY did cause a change in the coordination properties of Mg2+ in the acid pocket of the protein. This change in the coordination of Mg2+ required the presence of the absolutely conserved residue Lys109. When Lys109 was substituted by arginine, the resulting CheY protein was unable to adopt an active conformation upon phosphorylation, and the protein was not bound by FliM. Surprisingly, the CheY13DK mutant protein, which is active in vivo but cannot be phosphorylated in vitro, exhibited only a low level of FliM binding activity, suggesting that its ability to cause clockwise rotation in the cell is not due to a constitutively high level of FliM binding. On the basis of these findings, we propose a mechanism for CheY activation by phosphorylation.
Collapse
Affiliation(s)
- M Welch
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
682
|
Mau CJ, West CA. Cloning of casbene synthase cDNA: evidence for conserved structural features among terpenoid cyclases in plants. Proc Natl Acad Sci U S A 1994; 91:8497-501. [PMID: 8078910 PMCID: PMC44633 DOI: 10.1073/pnas.91.18.8497] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A near-full-length casbene synthase cDNA clone, pCS7, was isolated by using a partial cDNA clone, pCS4, to probe a lambda gt10 library constructed from poly(A)+ RNA from elicited castor bean seedlings. The cDNA insert had a length of 1983 bases with a polyadenylate tail of 19 bases. Translation of the cDNA sequence revealed an open reading frame encoding a 601-aa protein with a predicted M(r) of 68,960. Search of the GenBank data base with the deduced translation product revealed 42% identity and 65% similarity with 5-epi-aristolochene synthase from tobacco and 31% identity and 53% similarity with limonene synthase from spearmint. Each of the three proteins catalyzes an intramolecular cyclization of a prenyl diphosphate substrate to a specific cyclic terpenoid hydrocarbon product. The proposed reaction mechanisms for the three catalytic processes share common chemical features, even though the products being formed are members of three different classes of terpenoid compounds. Analysis of the alignment of the three proteins suggests that both primary and secondary structural elements are conserved. These similarities suggest that the genes that encode terpenoid cyclization enzymes of this type in angiosperms have undergone divergent evolution from an ancestral progenitor gene. In support of this proposition, the locations of five of the six introns in the casbene synthase gene align very closely with those of the five introns in the 5-epi-aristolochene synthase gene.
Collapse
Affiliation(s)
- C J Mau
- Department of Biology, University of California, Los Angeles 90024
| | | |
Collapse
|
683
|
Abrahams JP, Leslie AG, Lutter R, Walker JE. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature 1994; 370:621-8. [PMID: 8065448 DOI: 10.1038/370621a0] [Citation(s) in RCA: 2275] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the crystal structure of bovine mitochondrial F1-ATPase determined at 2.8 A resolution, the three catalytic beta-subunits differ in conformation and in the bound nucleotide. The structure supports a catalytic mechanism in intact ATP synthase in which the three catalytic subunits are in different states of the catalytic cycle at any instant. Interconversion of the states may be achieved by rotation of the alpha 3 beta 3 subassembly relative to an alpha-helical domain of the gamma-subunit.
Collapse
Affiliation(s)
- J P Abrahams
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | |
Collapse
|
684
|
Wedekind JE, Poyner RR, Reed GH, Rayment I. Chelation of serine 39 to Mg2+ latches a gate at the active site of enolase: structure of the bis(Mg2+) complex of yeast enolase and the intermediate analog phosphonoacetohydroxamate at 2.1-A resolution. Biochemistry 1994; 33:9333-42. [PMID: 8049235 DOI: 10.1021/bi00197a038] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The structure of a new crystal form of enolase from bakers' yeast has been solved to 2.1-A resolution. Crystals were grown from poly(ethylene glycol) and KCl at pH 8.2 in the presence of Mg2+ and a reaction intermediate analog, phosphonoacetohydroxamate (PhAH). Crystals belong to space group C2; have unit cell dimensions a = 123.5 A, b = 73.9 A, and c = 94.8 A with beta = 93.3 degrees; and contain one dimer per asymmetric unit. The structure was solved by molecular replacement from the X-ray coordinates of apoenolase [Stec, B., & Lebioda, L. (1990) J. Mol. Biol. 211, 235-248]. Both essential divalent metal ions are observed to be complexed with the inhibitor. The two Mg2+ ions are 4.05 A apart and are bridged by a mu-oxyl ligand from the carbonyl moiety of PhAH. The "high-affinity" Mg2+ coordinates to the carboxylate side chains of Asp 246, Glu 295, and Asp 320, one water molecule, and the hydroxamate and carbonyl oxygens of PhAH. The second Mg2+ coordinates to a phosphonyl oxygen, two water molecules, and the mu-bridge carbonyl oxygen of PhAH. Coordination schemes with respect to PhAH and water ligands are fully consistent with those of the Mn2+ complexes determined spectroscopically [Poyner, R.R., & Reed, G. H. (1992) Biochemistry 31, 7166-7173]. Remaining ligands for the second Mg2+ are the carbonyl oxygen and gamma-oxygen of Ser 39. Chelation of this Ser residue to Mg2+ effectively "latches" a flexible loop extending from Gly 37 through His 43 and closes off the entrance to the active site. The position of the second Mg2+ in the active site provides new insight into the stereochemistry of substrate binding.
Collapse
Affiliation(s)
- J E Wedekind
- Institute for Enzyme Research, Graduate School, University of Wisconsin, Madison 53705
| | | | | | | |
Collapse
|
685
|
Cherfils J, Moréra S, Lascu I, Véron M, Janin J. X-ray structure of nucleoside diphosphate kinase complexed with thymidine diphosphate and Mg2+ at 2-A resolution. Biochemistry 1994; 33:9062-9. [PMID: 8049207 DOI: 10.1021/bi00197a006] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report the crystal structure of nucleoside diphosphate kinase (NDP kinase) from Dictyostelium discoideum with thymidine diphosphate (dTDP) and Mg2+ bound at the active site. The structure has been refined to an R-factor of 18.3% at 2-A resolution. The base stacks on the aromatic ring of Phe 64 near the protein surface and is wedged between the side chains of Phe 64 and Val 116. The sugar and the pyrophosphate are deeper inside the protein and make numerous H-bonds with protein side chains. There is no backbone interaction with the nucleotide. A Mg2+ ion bridges the alpha- and beta-phosphates and interacts with the protein via water molecules. NDP kinase shows little specificity toward ribonucleotides and deoxyribonucleotides. This property, required by the enzyme biological function, can now be analyzed by comparing the crystal structures of free, ADP-ligated, and dTDP-ligated enzymes. The most significant differences are located in residues 60-64, which adapt their conformation to allow Phe 64 to stack on both types of bases. Nonspecific binding is achieved by the absence of polar interaction between the base and protein atoms. The ribose of ADP and the deoxyribose of dTDP occupy similar positions, their hydroxyl groups interacting with Lys 16 and Asn 119. The H-bond between Lys 16 and the O2' hydroxyl of ADP is replaced by a similar interaction with a water molecule in the dTDP complex. The beta-phosphate position is the same for ADP and dTDP, suggesting that the mechanism of phosphate transfer is the same for all substrates ofNDP kinase.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J Cherfils
- Laboratoire de Biologie Structurale, UMR 9920 CNRS-Université Paris-Sud, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
686
|
Kikuchi A, Williams L. The post-translational modification of ras p21 is important for Raf-1 activation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32126-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
687
|
Schweins T, Langen R, Warshel A. Why have mutagenesis studies not located the general base in ras p21. NATURE STRUCTURAL BIOLOGY 1994; 1:476-84. [PMID: 7664067 DOI: 10.1038/nsb0794-476] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ras p21 plays a major role in the control of cell growth, and oncogenic mutations of this protein have been found in human cancers. Unfortunately, the detailed mode of action of Ras p21 is still unclear, in spite of the great interest in this protein and the availability of its X-ray crystal structure. In particular, mutagenesis studies of different active site residues could not identify the general base for GTP hydrolysis. Here we tackle this question using a computer simulation approach with clear and reliable energy considerations and conclude that the most likely general base is the bound GTP itself. Obviously, the identification of such a general base cannot be easily accomplished by mutagenesis experiments.
Collapse
Affiliation(s)
- T Schweins
- Department of Chemistry, University of Southern California, Los Angeles 90089-0482, USA
| | | | | |
Collapse
|
688
|
De Vendittis E, Fasano O. Energetic aspects of intramolecular coupling between the nucleotide binding site and the distal switch II region of the yeast RAS2 protein. FEBS Lett 1994; 347:133-6. [PMID: 8033990 DOI: 10.1016/0014-5793(94)00521-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have studied the interaction of the yeast RAS2 protein with guanine nucleotides using energetic parameters for the dissociation of RAS.nucleotide complexes. The results indicated that a Gly-->Ser substitution at position 82 led to an altered interaction with GppNHp and, to a lesser extent, also with GDP. It was also possible to conclude that structural perturbation of Gly82 can stimulate nucleotide release by decreasing the energetic barrier for nucleotide dissociation. This, together with the observation that residues 80 and 81 are involved in the response of RAS to nucleotide exchange factors without affecting GDP binding per se, suggests a potential mechanism for exchange factor-stimulated GDP release.
Collapse
Affiliation(s)
- E De Vendittis
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, Italy
| | | |
Collapse
|
689
|
Abstract
In the fission yeast Schizosaccharomyces pombe, ras1 regulates both sexual development (conjugation and sporulation) and cellular morphology. Two types of dominant interfering mutants were isolated in a genetic screen for ras1 mutants that blocked sexual development. The first type of mutation, at Ser-22, analogous to the H-rasAsn-17 mutant (L. A. Feig and G. M. Cooper, Mol. Cell. Biol. 8:3235-3243, 1988), blocked only conjugation, whereas a second type of mutation, at Asp-62, interfered with conjugation, sporulation, and cellular morphology. Analogous mutations at position 64 of Saccharomyces cerevisiae RAS2 or position 57 of human H-ras also resulted in dominant interfering mutants that interfered specifically and more profoundly than mutants of the first type with RAS-associated pathways in both S. pombe or S. cerevisiae. Genetic evidence indicating that both types of interfering mutants function upstream of RAS is provided. Biochemical evidence showing that the mutants are altered in their interaction with the CDC25 class of exchange factors is presented. We show that both H-rasAsn-17 and H-rasTyr-57, compared with wild-type H-ras, are defective in their guanine nucleotide-dependent release from human cdc25 and that this defect is more severe for the H-rasTyr-57 mutant. Such a defect would allow the interfering mutants to remain bound to, thereby sequestering RAS exchange factors. The more severe interference phenotype of this novel interfering mutant suggests that it functions by titrating out other positive regulators of RAS besides those encoded by ste6 and CDC25.
Collapse
|
690
|
Althoff S, Selinger D, Wise JA. Molecular evolution of SRP cycle components: functional implications. Nucleic Acids Res 1994; 22:1933-47. [PMID: 7518075 PMCID: PMC308104 DOI: 10.1093/nar/22.11.1933] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Signal recognition particle (SRP) is a cytoplasmic ribonucleoprotein that targets a subset of nascent presecretory proteins to the endoplasmic reticulum membrane. We have considered the SRP cycle from the perspective of molecular evolution, using recently determined sequences of genes or cDNAs encoding homologs of SRP (7SL) RNA, the Srp54 protein (Srp54p), and the alpha subunit of the SRP receptor (SR alpha) from a broad spectrum of organisms, together with the remaining five polypeptides of mammalian SRP. Our analysis provides insight into the significance of structural variation in SRP RNA and identifies novel conserved motifs in protein components of this pathway. The lack of congruence between an established phylogenetic tree and size variation in 7SL homologs implies the occurrence of several independent events that eliminated more than half the sequence content of this RNA during bacterial evolution. The apparently non-essential structures are domain I, a tRNA-like element that is constant in archaea, varies in size among eucaryotes, and is generally missing in bacteria, and domain III, a tightly base-paired hairpin that is present in all eucaryotic and archeal SRP RNAs but is invariably absent in bacteria. Based on both structural and functional considerations, we propose that the conserved core of SRP consists minimally of the 54 kDa signal sequence-binding protein complexed with the loosely base-paired domain IV helix of SRP RNA, and is also likely to contain a homolog of the Srp68 protein. Comparative sequence analysis of the methionine-rich M domains from a diverse array of Srp54p homologs reveals an extended region of amino acid identity that resembles a recently identified RNA recognition motif. Multiple sequence alignment of the G domains of Srp54p and SR alpha homologs indicates that these two polypeptides exhibit significant similarity even outside the four GTPase consensus motifs, including a block of nine contiguous amino acids in a location analogous to the binding site of the guanine nucleotide dissociation stimulator (GDS) for E. coli EF-Tu. The conservation of this sequence, in combination with the results of earlier genetic and biochemical studies of the SRP cycle, leads us to hypothesize that a component of the Srp68/72p heterodimer serves as the GDS for both Srp54p and SR alpha. Using an iterative alignment procedure, we demonstrate similarity between Srp68p and sequence motifs conserved among GDS proteins for small Ras-related GTPases. The conservation of SRP cycle components in organisms from all three major branches of the phylogenetic tree suggests that this pathway for protein export is of ancient evolutionary origin.
Collapse
Affiliation(s)
- S Althoff
- University of Illinois, Department of Biochemistry, Urbana 61801
| | | | | |
Collapse
|
691
|
Abstract
We survey all the known instances of domain movements in proteins for which there is crystallographic evidence for the movement. We explain these domain movements in terms of the repertoire of low-energy conformation changes that are known to occur in proteins. We first describe the basic elements of this repertoire, hinge and shear motions, and then show how the elements of the repertoire can be combined to produce domain movements. We emphasize that the elements used in particular proteins are determined mainly by the structure of the interfaces between the domains.
Collapse
Affiliation(s)
- M Gerstein
- Department of Haematology, Cambridge University, U.K
| | | | | |
Collapse
|
692
|
Abstract
Recently available crystal structures show that some, though not all, GTP-binding proteins have a common 'G-domain' topology, variations on which confer distinct functional properties.
Collapse
Affiliation(s)
- T Schweins
- Max-Planck-Institut für Molekulare Physiologie, Dortmund, Germany
| | | |
Collapse
|
693
|
Haney S, Broach J. Cdc25p, the guanine nucleotide exchange factor for the Ras proteins of Saccharomyces cerevisiae, promotes exchange by stabilizing Ras in a nucleotide-free state. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)89422-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
694
|
Abstract
Several elongation factors involved in protein synthesis are GTPases that share structural and mechanistic homology with the large family of proteins including Ras and heterotrimeric receptor-coupled G proteins. The structure of elongation factor Tu (EF-Tu) from thermophilic bacteria, in its 'active' GTP-bound form, has recently been solved by X-ray crystallography. Comparison of this structure with the structure of Escherichia coli EF-Tu bound to GDP reveals a dramatic conformational change that is dependent on GTPase activity. The mechanism of this conformational change and of GTPase activation are discussed, and a model for the EF-Tu-GTP complex with aminoacyl-tRNA is presented.
Collapse
Affiliation(s)
- M Sprinzl
- Laboratorium für Biochemie, Universität Bayreuth, Germany
| |
Collapse
|
695
|
Jung V, Wei W, Ballester R, Camonis J, Mi S, Van Aelst L, Wigler M, Broek D. Two types of RAS mutants that dominantly interfere with activators of RAS. Mol Cell Biol 1994; 14:3707-18. [PMID: 8196614 PMCID: PMC358738 DOI: 10.1128/mcb.14.6.3707-3718.1994] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In the fission yeast Schizosaccharomyces pombe, ras1 regulates both sexual development (conjugation and sporulation) and cellular morphology. Two types of dominant interfering mutants were isolated in a genetic screen for ras1 mutants that blocked sexual development. The first type of mutation, at Ser-22, analogous to the H-rasAsn-17 mutant (L. A. Feig and G. M. Cooper, Mol. Cell. Biol. 8:3235-3243, 1988), blocked only conjugation, whereas a second type of mutation, at Asp-62, interfered with conjugation, sporulation, and cellular morphology. Analogous mutations at position 64 of Saccharomyces cerevisiae RAS2 or position 57 of human H-ras also resulted in dominant interfering mutants that interfered specifically and more profoundly than mutants of the first type with RAS-associated pathways in both S. pombe or S. cerevisiae. Genetic evidence indicating that both types of interfering mutants function upstream of RAS is provided. Biochemical evidence showing that the mutants are altered in their interaction with the CDC25 class of exchange factors is presented. We show that both H-rasAsn-17 and H-rasTyr-57, compared with wild-type H-ras, are defective in their guanine nucleotide-dependent release from human cdc25 and that this defect is more severe for the H-rasTyr-57 mutant. Such a defect would allow the interfering mutants to remain bound to, thereby sequestering RAS exchange factors. The more severe interference phenotype of this novel interfering mutant suggests that it functions by titrating out other positive regulators of RAS besides those encoded by ste6 and CDC25.
Collapse
Affiliation(s)
- V Jung
- Cold Spring Harbor Laboratory, New York 11724
| | | | | | | | | | | | | | | |
Collapse
|
696
|
Remmers A, Posner R, Neubig R. Fluorescent guanine nucleotide analogs and G protein activation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36714-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
697
|
Panaretto BA. Aspects of growth factor signal transduction in the cell cytoplasm. J Cell Sci 1994; 107 ( Pt 4):747-52. [PMID: 8056834 DOI: 10.1242/jcs.107.4.747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- B A Panaretto
- CSIRO, Division of Animal Production, Blacktown, NSW, Australia
| |
Collapse
|
698
|
Tolskaya EA, Romanova LI, Kolesnikova MS, Gmyl AP, Gorbalenya AE, Agol VI. Genetic studies on the poliovirus 2C protein, an NTPase. A plausible mechanism of guanidine effect on the 2C function and evidence for the importance of 2C oligomerization. J Mol Biol 1994; 236:1310-23. [PMID: 8126722 DOI: 10.1016/0022-2836(94)90060-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Poliovirus RNA replication is known to be inhibited by millimolar concentrations of guanidine. A variety of guanidine-resistant (gr) and guanidine-dependent (gd) poliovirus strains were selected, and mutations responsible for the phenotypic alterations were mapped to distinct loci of the viral NTP-binding pattern containing protein 2C. Together with already published results, our data have demonstrated that the overwhelming majority of guanidine mutants of poliovirus 2C can be assigned to one of the two classes, N (with a change in Asn179) or M (with a change in Met187). As inferred from the structure/function relations in other NTP-binding proteins, both these "main" mutations should reside in a loop adjoining the so-called B motif known to interact with the Mg2+ involved in the NTP splitting. In classes M (always) and N (not infrequently), these B motif mutations were combined with mutations in, or close to, motif A (involved in binding of the NTP phosphate moieties) and/or motif C (another conserved element of a subset of NTP-binding proteins). These data strongly support the notion that the region of polypeptide 2C involved in the NTP utilization is affected by the guanidine mutations and by the presence of the drug itself. The mutations, however, never altered highly conserved amino acid residues assumed to be essential for the NTP binding or splitting. These facts and some other considerations led us to propose that guanidine affects coupling between the NTP binding and/or splitting, on the one hand, and the 2C function (related to conformational changes), on the other. Both N and M classes of mutants contain gr and gd variants, and the gr/gd interconversion as well as modulations of the guanidine phenotype can be caused by additional mutations within each class; sometimes, these additional substitutions are located far away from the "main" mutations. It is suggested that the target for guanidine action involves long-range tertiary interactions. Under conditions restrictive for the individual growth of each parent, efficient reciprocal intra-allelic complementation between guanidine-sensitive (gs) and gd strains (of M or N classes) was observed. The complementation occurred at the level of viral RNA synthesis. These data allowed us to propose that oligomerization of polypeptide 2C is an essential step in the replication of viral genome.
Collapse
Affiliation(s)
- E A Tolskaya
- Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Moscow Region
| | | | | | | | | | | |
Collapse
|
699
|
Law GJ, Northrop AJ. Synthetic peptides to mimic the role of GTP binding proteins in membrane traffic and fusion. Ann N Y Acad Sci 1994; 710:196-208. [PMID: 8154748 DOI: 10.1111/j.1749-6632.1994.tb26628.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- G J Law
- Department of Neurobiology, Babraham Institute, Cambridge, United Kingdom
| | | |
Collapse
|
700
|
Affiliation(s)
- L Wiesmüller
- Heinrich-Pette-Institut für exp. Virologie und Immunologie, Universität Hamburg, F.R.G
| | | |
Collapse
|