651
|
Abstract
There is increasing evidence that the gut microbiome, which consists of trillions of microbes representing over 1,000 species of bacteria with over 3 million genes, significantly impacts intestinal health and disease. The gut microbiota not only is capable of promoting intestinal homeostasis and antitumor responses but can also contribute to chronic dysregulated inflammation as well as have genotoxic effects that lead to carcinogenesis. Whether the gut microbiota maintains health or promotes colon cancer may ultimately depend on the composition of the gut microbiome and the balance within the microbial community of protective and detrimental bacterial populations. Disturbances in the normal balanced state of a healthful microbiome, known as dysbiosis, have been observed in patients with colorectal cancer (CRC); however, whether these alterations precede and cause CRC remains to be determined. Nonetheless, studies in mice strongly suggest that the gut microbiota can modulate susceptibility to CRC, and therefore may serve as both biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Grace Y. Chen
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
652
|
Wu Y, Wu J, Chen T, Li Q, Peng W, Li H, Tang X, Fu X. Fusobacterium nucleatum Potentiates Intestinal Tumorigenesis in Mice via a Toll-Like Receptor 4/p21-Activated Kinase 1 Cascade. Dig Dis Sci 2018; 63:1210-1218. [PMID: 29508166 DOI: 10.1007/s10620-018-4999-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 02/23/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND The underlying pathogenic mechanism of Fusobacterium nucleatum in the carcinogenesis of colorectal cancer has been poorly understood. METHODS Using C57BL/6-ApcMin/+ mice, we investigated gut microbial structures with F. nucleatum, antibiotics, and Toll-like receptor 4 (TLR4) antagonist TAK-242 treatment. In addition, we measured intestinal tumor formation and the expression of TLR4, p21-activated kinase 1 (PAK1), phosphorylated-PAK1 (p-PAK1), phosphorylated-β-catenin S675 (p-β-catenin S675), and cyclin D1 in mice with different treatments. RESULTS Fusobacterium nucleatum and antibiotics treatment altered gut microbial structures in mice. In addition, F. nucleatum invaded into the intestinal mucosa in large amounts but were less abundant in the feces of F. nucleatum-fed mice. The average number and size of intestinal tumors in F. nucleatum groups was significantly increased compared to control groups in ApcMin/+ mice (P < 0.05). The expression of TLR4, PAK1, p-PAK1, p-β-catenin S675, and cyclin D1 was significantly increased in F. nucleatum groups compared to the control groups (P < 0.05). Moreover, TAK-242 significantly decreased the average number and size of intestinal tumors compared to F. nucleatum groups (P < 0.05). The expression of p-PAK1, p-β-catenin S675, and cyclin D1 was also significantly decreased in the TAK-242-treated group compared to F. nucleatum groups (P < 0.05). CONCLUSIONS Fusobacterium nucleatum potentiates intestinal tumorigenesis in ApcMin/+ mice via a TLR4/p-PAK1/p-β-catenin S675 cascade. Fusobacterium nucleatum-induced intestinal tumorigenesis can be inhibited by TAK-242, implicating TLR4 as a potential target for the prevention and therapy of F. nucleatum-related colorectal cancer.
Collapse
Affiliation(s)
- Yaxin Wu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Endoscopy Center, The Affiliated Hospital of Southwest Medical University, Street Taiping 25#, Luzhou, 646000, Sichuan, China
| | - Jiao Wu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Endoscopy Center, The Affiliated Hospital of Southwest Medical University, Street Taiping 25#, Luzhou, 646000, Sichuan, China
| | - Ting Chen
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Endoscopy Center, The Affiliated Hospital of Southwest Medical University, Street Taiping 25#, Luzhou, 646000, Sichuan, China
| | - Qing Li
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Endoscopy Center, The Affiliated Hospital of Southwest Medical University, Street Taiping 25#, Luzhou, 646000, Sichuan, China
| | - Wei Peng
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Endoscopy Center, The Affiliated Hospital of Southwest Medical University, Street Taiping 25#, Luzhou, 646000, Sichuan, China
| | - Huan Li
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Endoscopy Center, The Affiliated Hospital of Southwest Medical University, Street Taiping 25#, Luzhou, 646000, Sichuan, China
| | - Xiaowei Tang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiangsheng Fu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Endoscopy Center, The Affiliated Hospital of Southwest Medical University, Street Taiping 25#, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
653
|
Koi M, Okita Y, Carethers JM. Fusobacterium nucleatum Infection in Colorectal Cancer: Linking Inflammation, DNA Mismatch Repair and Genetic and Epigenetic Alterations. J Anus Rectum Colon 2018; 2:37-46. [PMID: 30116794 PMCID: PMC6090547 DOI: 10.23922/jarc.2017-055] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 01/30/2018] [Indexed: 12/13/2022] Open
Abstract
It has been recently reported that the population of Fusobacterium, particularly Fusobacterium nucleatum (Fn), is overrepresented in colorectal cancers and adenomas. The promoting effects of Fn infection on adenoma and/or carcinoma formation have been shown in ApcMin/+mice. Characteristics of Fn-associated CRC were identified through studies using human CRC cohorts, and include right-sided colon location, CpG island methylation phenotype-high (CIMP-H), high level of microsatellite instability (MSI-H), and poor patient prognosis. A subset of Fn-associated CRC exhibits a low level of microsatellite instability (MSI-L) and elevated microsatellite alterations in selected tetra-nucleotide repeats (EMAST) induced by translocation of MSH3 from the nucleus to the cytoplasm in response to oxidative DNA damage or inflammatory signals. The association between CIMP/MSI-H and Fn-infection can be explained by the role of the mismatch repair (MMR) protein complex formed between MSH2 and MSH6 (MutSα) to repair aberrant bases generated by ROS to form 7,8-dihydro-8-oxo-guanine (8-oxoG). Clustered 8-oxoGs formed at CpG-rich regions including promoters by ROS is refractory to base excision repair (BER). Under these conditions, MutSα initiates repair in cooperation with DNA methyltransferases (DNMTs) and the polycomb repressive complex 4 (PRC4). DNMTs at damaged sites methylate CpG islands to repress transcription of target genes and promote repair reactions. Thus, continuous generation of ROS through chronic Fn infection may initiate 1) CIMP-positive adenoma and carcinoma in an MSH2/MSH6-dependent manner, and/or 2) MSI-L/EMAST CRC in an MSH3-dependent manner. The poor prognosis of Fn-associated CRC can be explained by Fn-induced immune-evasion and/or chemo-resistance.
Collapse
Affiliation(s)
- Minoru Koi
- Division of Gastroenterology, Department of Internal Medicine, and Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yoshiki Okita
- Division of Gastroenterology, Department of Internal Medicine, and Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - John M Carethers
- Division of Gastroenterology, Department of Internal Medicine, and Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
654
|
Zhang S, Cai S, Ma Y. Association between Fusobacterium nucleatum and colorectal cancer: Progress and future directions. J Cancer 2018; 9:1652-1659. [PMID: 29760804 PMCID: PMC5950595 DOI: 10.7150/jca.24048] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/06/2018] [Indexed: 02/06/2023] Open
Abstract
The initiation and progression of colorectal cancer (CRC) involves genetic and epigenetic alterations influenced by dietary and environmental factors. Increasing evidence has linked the intestinal microbiota and colorectal cancer. More recently, Fusobacterium nucleatum (Fn), an opportunistic commensal anaerobe in the oral cavity, has been associated with CRC. Several research teams have reported an overabundance of Fn in human CRC and have elucidated the possible mechanisms by which Fn is involved in colorectal carcinogenesis in vitro and in mouse models. However, the mechanisms by which Fn promotes colorectal carcinogenesis remain unclear. To provide new perspectives for early diagnosis, the identification of high risk populations and treatment for colorectal cancer, this review will summarize the relative research progresses regarding the relationship between Fn and colorectal cancer.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Sanjun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| |
Collapse
|
655
|
Flemer B, Herlihy M, O'Riordain M, Shanahan F, O'Toole PW. Tumour-associated and non-tumour-associated microbiota: Addendum. Gut Microbes 2018; 9:369-373. [PMID: 29420132 PMCID: PMC6219647 DOI: 10.1080/19490976.2018.1435246] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In a recent study1 we reported that tissue-associated microbial Co-abundance Groups (CAGs) were differentially associated with colorectal cancer (CRC). Two of the CAGs, which we named Pathogen CAG and Prevotella CAG, were correlated with a gene expression signature indicative of a TH17 response. A TH17 response has been associated with decreased survival in patients with CRC2, and members of the Pathogen CAG such as Fusobacterium nucleatum, Escherichia coli and Bacteroides fragilis have been repeatedly reported to be associated with CRC-development. Thus we hypothesized that the abundance of these CAGs may be associated with poor survival. In this Addendum we extend our analysis of the at-surgery microbiota to microbiota profiles obtained after surgery for CRC which we analyzed in the context of survival data for patients with CRC. Surprisingly we found that high tissue-associated abundance of the previously defined Prevotella- and Pathogen-CAGs at surgery was associated with longer survival. Furthermore, we detected an association of the Bacteroidetes CAG in pre-surgery faecal microbiota with stability of the microbiota after surgery.
Collapse
Affiliation(s)
- Burkhardt Flemer
- APC Microbiome Institute, Cork, Ireland,Schools of Microbiology and Medicine, Cork, Ireland
| | - Maeve Herlihy
- School of Medicine, University College Cork, National University of Ireland, Ireland
| | - Micheal O'Riordain
- School of Medicine, University College Cork, National University of Ireland, Ireland
| | - Fergus Shanahan
- APC Microbiome Institute, Cork, Ireland,School of Medicine, University College Cork, National University of Ireland, Ireland
| | - Paul W. O'Toole
- APC Microbiome Institute, Cork, Ireland,Schools of Microbiology and Medicine, Cork, Ireland,CONTACT Paul W. O'Toole Ph.D Microbial Genomics School of Microbiology & APC Microbiome Institute Room447 Food Science Building, University College Cork, T12 YN60 Cork, Ireland
| |
Collapse
|
656
|
Sahan AZ, Hazra TK, Das S. The Pivotal Role of DNA Repair in Infection Mediated-Inflammation and Cancer. Front Microbiol 2018; 9:663. [PMID: 29696001 PMCID: PMC5904280 DOI: 10.3389/fmicb.2018.00663] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/21/2018] [Indexed: 12/19/2022] Open
Abstract
Pathogenic and commensal microbes induce various levels of inflammation and metabolic disease in the host. Inflammation caused by infection leads to increased production of reactive oxygen species (ROS) and subsequent oxidative DNA damage. These in turn cause further inflammation and exacerbation of DNA damage, and pose a risk for cancer development. Helicobacter pylori-mediated inflammation has been implicated in gastric cancer in many previously established studies, and Fusobacterium nucleatum presence has been observed with greater intensity in colorectal cancer patients. Despite ambiguity in the exact mechanism, infection-mediated inflammation may have a link to cancer development through an accumulation of potentially mutagenic DNA damage in surrounding cells. The multiple DNA repair pathways such as base excision, nucleotide excision, and mismatch repair that are employed by cells are vital in the abatement of accumulated mutations that can lead to carcinogenesis. For this reason, understanding the role of DNA repair as an important cellular mechanism in combatting the development of cancer will be essential to characterizing the effect of infection on DNA repair proteins and to identifying early cancer biomarkers that may be targeted for cancer therapies and treatments.
Collapse
Affiliation(s)
- Ayse Z Sahan
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Tapas K Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Soumita Das
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
657
|
Yamaoka Y, Suehiro Y, Hashimoto S, Hoshida T, Fujimoto M, Watanabe M, Imanaga D, Sakai K, Matsumoto T, Nishioka M, Takami T, Suzuki N, Hazama S, Nagano H, Sakaida I, Yamasaki T. Fusobacterium nucleatum as a prognostic marker of colorectal cancer in a Japanese population. J Gastroenterol 2018; 53:517-524. [PMID: 28823057 DOI: 10.1007/s00535-017-1382-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/08/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Accumulating evidence shows an overabundance of Fusobacterium nucleatum in colorectal tumor tissues. However, the correlation between the absolute copy number of F. nucleatum in colorectal cancer tissues and colorectal cancer progression is unclear from previous reports. Therefore, we performed a study to compare the abundance of F. nucleatum in colorectal tissues with clinicopathologic and molecular features of colorectal cancer. METHODS We collected 100 colorectal cancer tissues and 72 matched normal-appearing mucosal tissues. Absolute copy numbers of F. nucleatum were measured by droplet digital PCR. RESULTS The detection rates of F. nucleatum were 63.9% (46/72) in normal-appearing mucosal tissues and 75.0% (75/100) in CRC tissue samples. The median copy number of F. nucleatum was 0.4/ng DNA in the normal-appearing colorectal mucosa in patients with colorectal cancer and 1.9/ng DNA in the colorectal cancer tissues (P = 0.0031). F. nucleatum copy numbers in stage IV colorectal cancer tissues were significantly higher than those in the normal-appearing mucosa in patients with colorectal cancer (P = 0.0016). The abundance of F. nucleatum in colorectal cancer tissues correlated with tumor size and KRAS mutation and was significantly associated with shorter overall survival times; this trend was notable in the patients with stage IV colorectal cancer. Focusing on normal-appearing mucosa in the patients with colorectal cancer, the F. nucleatum copy number was significantly higher in the patients with stage IV rather than stages I-III. CONCLUSION These results suggest that determining F. nucleatum levels may help predict clinical outcomes in colorectal cancer patients. Further confirmatory studies using independent datasets are required to confirm our findings.
Collapse
Affiliation(s)
- Yuko Yamaoka
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yutaka Suehiro
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Shinichi Hashimoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Tomomi Hoshida
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | | | | | | | - Kouhei Sakai
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan.,Department of Gastroenterology, Showa Hospital, Shimonoseki, Japan
| | - Toshihiko Matsumoto
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | | | - Taro Takami
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shoichi Hazama
- Department of Translational Research and Developmental Therapeutics Against Cancer, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Isao Sakaida
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Takahiro Yamasaki
- Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami Kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
658
|
Shang FM, Liu HL. Fusobacterium nucleatum and colorectal cancer: A review. World J Gastrointest Oncol 2018; 10:71-81. [PMID: 29564037 PMCID: PMC5852398 DOI: 10.4251/wjgo.v10.i3.71] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/09/2018] [Accepted: 03/06/2018] [Indexed: 02/05/2023] Open
Abstract
Fusobacterium nucleatum (F. nucleatum) is a Gram-negative obligate anaerobe bacterium in the oral cavity and plays a role in several oral diseases, including periodontitis and gingivitis. Recently, several studies have reported that the level of F. nucleatum is significantly elevated in human colorectal adenomas and carcinomas compared to that in adjacent normal tissue. Several researchers have also demonstrated that F. nucleatum is obviously associated with colorectal cancer and promotes the development of colorectal neoplasms. In this review, we have summarized the recent reports on F. nucleatum and its role in colorectal cancer and have highlighted the methods of detecting F. nucleatum in colorectal cancer, the underlying mechanisms of pathogenesis, immunity status, and colorectal cancer prevention strategies that target F. nucleatum.
Collapse
Affiliation(s)
- Fu-Mei Shang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Hong-Li Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
659
|
Abstract
As part of the <ext-link ext-link-type="uri" xlink:href="https://osf.io/e81xl/wiki/home/">Reproducibility Project: Cancer Biology</ext-link>, we published a Registered Report (Repass et al., 2016), that described how we intended to replicate an experiment from the paper 'Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma' (Castellarin et al., 2012). Here we report the results. When measuring Fusobacterium nucleatum DNA by qPCR in colorectal carcinoma (CRC), adjacent normal tissue, and separate matched control tissue, we did not detect a signal for F. nucleatum in most samples: 25% of CRCs, 15% of adjacent normal, and 0% of matched control tissue were positive based on quantitative PCR (qPCR) and confirmed by sequencing of the qPCR products. When only samples with detectable F. nucleatum in CRC and adjacent normal tissue were compared, the difference was not statistically significant, while the original study reported a statistically significant increase in F. nucleatum expression in CRC compared to adjacent normal tissue (Figure 2; Castellarin et al., 2012). Finally, we report a meta-analysis of the result, which suggests F. nucleatum expression is increased in CRC, but is confounded by the inability to detect F. nucleatum in most samples. The difference in F. nucleatum expression between CRC and adjacent normal tissues was thus smaller than the original study, and not detected in most samples.
Collapse
|
660
|
Zhu G, Huang Q, Huang Y, Zheng W, Hua J, Yang S, Zhuang J, Wang J, Ye J. Lipopolysaccharide increases the release of VEGF-C that enhances cell motility and promotes lymphangiogenesis and lymphatic metastasis through the TLR4- NF-κB/JNK pathways in colorectal cancer. Oncotarget 2018; 7:73711-73724. [PMID: 27713159 PMCID: PMC5342009 DOI: 10.18632/oncotarget.12449] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/21/2016] [Indexed: 12/20/2022] Open
Abstract
Lipopolysaccharide (LPS) exists in the outer membrane of Gram-negative bacteria. Colorectal normal epithelium and colorectal cancer cells in situ are continuously exposed to LPS from intestinal bacteria, while little is known about the influence of LPS on colorectal cancer progression and metastasis. In this study, we investigated the potential role of LPS on colorectal cancer progression and metastasis as well as the underlying mechanisms. We measured higher LPS concentration in colorectal cancer tissues and even higher LPS concentration in colorectal cancer tissues with lymph node metastasis. LPS significantly enhanced cancer cell motility and promoted human dermal lymphatic endothelial cells' (HDLECs') capacity of tube-like formation in vitro, as well as accelerates lymphangiogenesis and lymph node metastasis in nude mice. Furthermore, we demonstrated LPS notably increased the expression of VEGF-C in a time-dependent and concentration-dependent manner. VEGF-C is a key regulator for lymphangiogenesis and lymph node metastasis. By constructing lentivirus-mediated shVEGF-C cells, VEGF-C down-regulation suppressed LPS' promotive effect on cancer cell motility and HDLEC tube-like formation capacity. In addition, we found TLR4- NF-κB/JNK signal pathways were important for LPS to increase VEGF-C expression. All these result suggested a critical role for LPS in migration, invasion, lymphangiogenesis and lymph node metastasis of colorectal cancer, providing evidence that LPS increased VEGF-C secretion to promote cell motility and lymphangiogenesis via TLR4- NF-κB/JNK signaling.
Collapse
Affiliation(s)
- Guangwei Zhu
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China
| | - Qiang Huang
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China
| | - Yongjian Huang
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China
| | - Wei Zheng
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China
| | - Jin Hua
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China
| | - Shugang Yang
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China
| | - Jinfu Zhuang
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China
| | - Jinzhou Wang
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China
| | - Jianxin Ye
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
661
|
Maisonneuve C, Irrazabal T, Martin A, Girardin SE, Philpott DJ. The Impact of the Gut Microbiome on Colorectal Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018. [DOI: 10.1146/annurev-cancerbio-030617-050240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Charles Maisonneuve
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;,
| | - Thergiory Irrazabal
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;,
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;,
| | - Stephen E. Girardin
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;,
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Dana J. Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada;,
| |
Collapse
|
662
|
Meng C, Bai C, Brown TD, Hood LE, Tian Q. Human Gut Microbiota and Gastrointestinal Cancer. GENOMICS PROTEOMICS & BIOINFORMATICS 2018. [PMID: 29474889 DOI: 10.1016/j.gpb.2017.06.002.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Human gut microbiota play an essential role in both healthy and diseased states of humans. In the past decade, the interactions between microorganisms and tumors have attracted much attention in the efforts to understand various features of the complex microbial communities, as well as the possible mechanisms through which the microbiota are involved in cancer prevention, carcinogenesis, and anti-cancer therapy. A large number of studies have indicated that microbial dysbiosis contributes to cancer susceptibility via multiple pathways. Further studies have suggested that the microbiota and their associated metabolites are not only closely related to carcinogenesis by inducing inflammation and immune dysregulation, which lead to genetic instability, but also interfere with the pharmacodynamics of anticancer agents. In this article, we mainly reviewed the influence of gut microbiota on cancers in the gastrointestinal (GI) tract (including esophageal, gastric, colorectal, liver, and pancreatic cancers) and the regulation of microbiota by diet, prebiotics, probiotics, synbiotics, antibiotics, or the Traditional Chinese Medicine. We also proposed some new strategies in the prevention and treatment of GI cancers that could be explored in the future. We hope that this review could provide a comprehensive overview of the studies on the interactions between the gut microbiota and GI cancers, which are likely to yield translational opportunities to reduce cancer morbidity and mortality by improving prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Changting Meng
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Oncology, Peking Union Medical College Hospital, Beijing 100730, China
| | - Chunmei Bai
- Department of Oncology, Peking Union Medical College Hospital, Beijing 100730, China
| | | | - Leroy E Hood
- Institute for Systems Biology, Seattle, WA 98109, USA; Swedish Cancer Institute, Seattle, WA 98104, USA
| | - Qiang Tian
- Institute for Systems Biology, Seattle, WA 98109, USA; P4 Medicine Institute, Seattle, WA 98109, USA.
| |
Collapse
|
663
|
Zou S, Fang L, Lee MH. Dysbiosis of gut microbiota in promoting the development of colorectal cancer. Gastroenterol Rep (Oxf) 2018; 6:1-12. [PMID: 29479437 PMCID: PMC5806407 DOI: 10.1093/gastro/gox031] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022] Open
Abstract
Gastrointestinal microbiome, containing at least 100 trillion bacteria, resides in the mucosal surface of human intestine. Recent studies show that perturbations in the microbiota may influence physiology and link to a number of diseases, including colon tumorigenesis. Colorectal cancer (CRC), the third most common cancer, is the disease resulting from multi-genes and multi-factors, but the mechanistic details between gut microenvironment and CRC remain poorly characterized. Thanks to new technologies such as metagenome sequencing, progress in large-scale analysis of the genetic and metabolic profile of gut microbial has been possible, which has facilitated studies about microbiota composition, taxonomic alterations and host interactions. Different bacterial species and their metabolites play critical roles in the development of CRC. Also, microbiota is important in the inflammatory response and immune processes deregulation during the development and progression of CRC. This review summarizes current studies regarding the association between gastrointestinal microbiota and the development of CRC, which provides insights into the therapeutic strategy of CRC.
Collapse
Affiliation(s)
- Shaomin Zou
- Research Institute of Gastroenterology, Sun Yat-sen University, Guangzhou 510020, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510020, China
| | - Lekun Fang
- Research Institute of Gastroenterology, Sun Yat-sen University, Guangzhou 510020, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510020, China
| | - Mong-Hong Lee
- Research Institute of Gastroenterology, Sun Yat-sen University, Guangzhou 510020, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510020, China
| |
Collapse
|
664
|
Meng C, Bai C, Brown TD, Hood LE, Tian Q. Human Gut Microbiota and Gastrointestinal Cancer. GENOMICS, PROTEOMICS & BIOINFORMATICS 2018; 16:33-49. [PMID: 29474889 PMCID: PMC6000254 DOI: 10.1016/j.gpb.2017.06.002] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 06/08/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023]
Abstract
Human gut microbiota play an essential role in both healthy and diseased states of humans. In the past decade, the interactions between microorganisms and tumors have attracted much attention in the efforts to understand various features of the complex microbial communities, as well as the possible mechanisms through which the microbiota are involved in cancer prevention, carcinogenesis, and anti-cancer therapy. A large number of studies have indicated that microbial dysbiosis contributes to cancer susceptibility via multiple pathways. Further studies have suggested that the microbiota and their associated metabolites are not only closely related to carcinogenesis by inducing inflammation and immune dysregulation, which lead to genetic instability, but also interfere with the pharmacodynamics of anticancer agents. In this article, we mainly reviewed the influence of gut microbiota on cancers in the gastrointestinal (GI) tract (including esophageal, gastric, colorectal, liver, and pancreatic cancers) and the regulation of microbiota by diet, prebiotics, probiotics, synbiotics, antibiotics, or the Traditional Chinese Medicine. We also proposed some new strategies in the prevention and treatment of GI cancers that could be explored in the future. We hope that this review could provide a comprehensive overview of the studies on the interactions between the gut microbiota and GI cancers, which are likely to yield translational opportunities to reduce cancer morbidity and mortality by improving prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Changting Meng
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Oncology, Peking Union Medical College Hospital, Beijing 100730, China
| | - Chunmei Bai
- Department of Oncology, Peking Union Medical College Hospital, Beijing 100730, China
| | | | - Leroy E Hood
- Institute for Systems Biology, Seattle, WA 98109, USA; Swedish Cancer Institute, Seattle, WA 98104, USA
| | - Qiang Tian
- Institute for Systems Biology, Seattle, WA 98109, USA; P4 Medicine Institute, Seattle, WA 98109, USA.
| |
Collapse
|
665
|
Koi M, Tseng-Rogenski SS, Carethers JM. Inflammation-associated microsatellite alterations: Mechanisms and significance in the prognosis of patients with colorectal cancer. World J Gastrointest Oncol 2018; 10:1-14. [PMID: 29375743 PMCID: PMC5767788 DOI: 10.4251/wjgo.v10.i1.1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 02/05/2023] Open
Abstract
Microsatellite alterations within genomic DNA frameshift as a result of defective DNA mismatch repair (MMR). About 15% of sporadic colorectal cancers (CRCs) manifest hypermethylation of the DNA MMR gene MLH1, resulting in mono- and di-nucleotide frameshifts to classify it as microsatellite instability-high (MSI-H) and hypermutated, and due to frameshifts at coding microsatellites generating neo-antigens, produce a robust protective immune response that can be enhanced with immune checkpoint blockade. More commonly, approximately 50% of sporadic non-MSI-H CRCs demonstrate frameshifts at di- and tetra-nucleotide microsatellites to classify it as MSI-low/elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) as a result of functional somatic inactivation of the DNA MMR protein MSH3 via a nuclear-to-cytosolic displacement. The trigger for MSH3 displacement appears to be inflammation and/or oxidative stress, and unlike MSI-H CRC patients, patients with MSI-L/EMAST CRCs show poor prognosis. These inflammatory-associated microsatellite alterations are a consequence of the local tumor microenvironment, and in theory, if the microenvironment is manipulated to lower inflammation, the microsatellite alterations and MSH3 dysfunction should be corrected. Here we describe the mechanisms and significance of inflammatory-associated microsatellite alterations, and propose three areas to deeply explore the consequences and prevention of inflammation's effect upon the DNA MMR system.
Collapse
Affiliation(s)
- Minoru Koi
- Division of Gastroenterology, Department of Internal Medicine and Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109-5368, United States
| | - Stephanie S Tseng-Rogenski
- Division of Gastroenterology, Department of Internal Medicine and Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109-5368, United States
| | - John M Carethers
- Division of Gastroenterology, Department of Internal Medicine and Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109-5368, United States
| |
Collapse
|
666
|
Gorkiewicz G, Moschen A. Gut microbiome: a new player in gastrointestinal disease. Virchows Arch 2018; 472:159-172. [PMID: 29243124 PMCID: PMC5849673 DOI: 10.1007/s00428-017-2277-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023]
Abstract
The gastrointestinal (GI) tract harbors a diverse and host-specific gut microbial community. Whereas host-microbe interactions are based on homeostasis and mutualism, the microbiome also contributes to disease development. In this review, we summarize recent findings connecting the GI microbiome with GI disease. Starting with a description of biochemical factors shaping microbial compositions in each gut segment along the longitudinal axis, improved histological techniques enabling high resolution visualization of the spatial microbiome structure are highlighted. Subsequently, inflammatory and neoplastic diseases of the esophagus, stomach, and small and large intestines are discussed and the respective changes in microbiome compositions summarized. Finally, approaches aiming to restore disturbed microbiome compositions thereby promoting health are discussed.
Collapse
Affiliation(s)
- Gregor Gorkiewicz
- Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Alexander Moschen
- Christian Doppler Laboratory for Mucosal Immunology & Division of Internal Medicine I, Department of Medicine, Medical University Innsbruck, Peter-Mayr-Strasse 1, 6020 Innsbruck, Austria
| |
Collapse
|
667
|
Hussan H, Clinton SK, Roberts K, Bailey MT. Fusobacterium's link to colorectal neoplasia sequenced: A systematic review and future insights. World J Gastroenterol 2017; 23:8626-8650. [PMID: 29358871 PMCID: PMC5752723 DOI: 10.3748/wjg.v23.i48.8626] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/09/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To critically evaluate previous scientific evidence on Fusobacterium's role in colorectal neoplasia development. METHODS Two independent investigators systematically reviewed all original scientific articles published between January, 2000, and July, 2017, using PubMed, EMBASE, and MEDLINE. A total of 355 articles were screened at the abstract level. Of these, only original scientific human, animal, and in vitro studies investigating Fusobacterium and its relationship with colorectal cancer (CRC) were included in the analysis. Abstracts, review articles, studies investigating other colonic diseases, and studies written in other languages than English were excluded from our analysis. Ninety articles were included after removing duplicates, resolving disagreements between the two reviewers, and applying the above criteria. RESULTS Studies have consistently identified positive associations between Fusobacterium, especially Fusobacterium nucleatum (F. nucleatum), and CRC. Stronger associations were seen in CRCs proximal to the splenic flexure and CpG island methylator phenotype (CIMP)-high CRCs. There was evidence of temporality and a biological gradient, with increased F. nucleatum DNA detection and quantity along the traditional adenoma-carcinoma sequence and in CIMP-high CRC precursors. Diet may have a differential impact on colonic F. nucleatum enrichment; evidence suggests that high fiber diet may reduce the risk of a subset of CRCs that are F. nucleatum DNA-positive. Data also suggest shorter CRC and disease-specific survival with increased amount of F. nucleatum DNA in CRC tissue. The pathophysiology of enrichment of F. nucleatum and other Fusobacterium species in colonic tissue is unclear; however, the virulence factors and changes to the local colonic environment with disruption of the protective mucus layer may contribute. The presence of a host lectin (Gal-GalNAc) in the colonic epithelium may also mediate F. nucleatum attachment to CRC and precursors through interaction with an F. nucleatum protein, fibroblast activation protein 2 (FAP2). The clinical significance of detection or enrichment of Fusobacterium in colorectal neoplasia is ambiguous, but data suggest a procarcinogenic effect of F. nucleatum, likely due to activation of oncogenic and inflammatory pathways and modulation of the tumor immune environment. This is hypothesized to be mediated by certain F. nucleatum strains carrying invasive properties and virulence factors such as FadA and FAP. CONCLUSION Evidence suggests a potential active role of Fusobacterium, specifically F. nucleatum, in CRC. Future prospective and experimental human studies would fill an important gap in this literature.
Collapse
Affiliation(s)
- Hisham Hussan
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States
| | - Steven K Clinton
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States
| | - Kristen Roberts
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Michael T Bailey
- Department of Pediatrics, OSU College of Medicine And Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, United States
| |
Collapse
|
668
|
Zimmermann A, Knecht H, Häsler R, Zissel G, Gaede KI, Hofmann S, Nebel A, Müller-Quernheim J, Schreiber S, Fischer A. Atopobium and Fusobacterium as novel candidates for sarcoidosis-associated microbiota. Eur Respir J 2017; 50:50/6/1600746. [PMID: 29242257 DOI: 10.1183/13993003.00746-2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/28/2017] [Indexed: 01/20/2023]
Abstract
Sarcoidosis is a granulomatous disease that mainly affects the lung. A role of microbial factors in disease pathogenesis is assumed, but has not been investigated systematically in a large cohort.This cross-sectional study compared the lung microbiota of 71 patients with sarcoidosis, 15 patients with idiopathic pulmonary fibrosis (non-infectious controls) and 10 healthy controls (HCs). Next-generation sequencing of 16S DNA was used on bronchoalveolar lavage samples to characterise the microbial composition, which was analysed for diversity and indicator species. Host genotypes for 13 known sarcoidosis risk variants were determined and correlated with microbial parameters.The microbial composition differed significantly between sarcoidosis and HC samples (redundancy analysis ANOVA, p=0.025) and between radiographic Scadding types. Atopobium spp. was detected in 68% of sarcoidosis samples, but not in HC samples. Fusobacterium spp. was significantly more abundant in sarcoidosis samples compared with those from HCs. Mycobacteria were found in two of 71 sarcoidosis samples. Host-genotype analysis revealed an association of the rs2076530 (BTNL2) risk allele with a decrease in bacterial burden (p=0.002).Our results indicate Scadding type-dependent microbiota in sarcoidosis BAL samples. Atopobium spp. and Fusobacterium spp. were identified as sarcoidosis-associated bacteria, which may enable new insights into the pathogenesis and treatment of the disease.
Collapse
Affiliation(s)
- Alexandra Zimmermann
- Institute of Clinical Molecular Biology, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Henrik Knecht
- Institute of Clinical Molecular Biology, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Gernot Zissel
- Dept of Pneumology, University of Freiburg, Freiburg, Germany
| | - Karoline I Gaede
- BioMaterialBank Nord, Dept of Medicine, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany.,Airway Research Center North, Member of the German Center for Lung Research
| | - Sylvia Hofmann
- Dept of Conservation Biology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany.,Clinic of Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Annegret Fischer
- Institute of Clinical Molecular Biology, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
669
|
Bruneau A, Baylatry MT, Joly AC, Sokol H. [Gut microbiota: What impact on colorectal carcinogenesis and treatment?]. Bull Cancer 2017; 105:70-80. [PMID: 29217301 DOI: 10.1016/j.bulcan.2017.10.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023]
Abstract
The gut microbiota, composed of 1014 microorganisms, is now considered as a "hidden organ", regarding to its digestive, metabolic and immune functions, which are helpful to its host. For the last 15 years, advances in molecular biology have highlighted the association of gut microbiota dysbiosis with several diseases, including colorectal cancer. An increased abundance of some bacteria (including Fusobacterium nucleatum, Bacteroides fragilis, Escherichia coli) is associated with cancer, whereas others seem to be protective (Faecalibacterium prausnitzii). Several mechanisms, which are species-specific, are involved in colorectal carcinogenesis. Most of the time, bacterial toxins are involved in pro-inflammatory processes and in activation of angiogenesis and cellular proliferation pathways. The identification of these bacteria leads to envisage the gut microbiota as potential screening tool for colorectal cancer. Recent studies showed a relation between the gut microbiota and the efficacy and toxicity of chemotherapies (oxaliplatin, irinotecan) and immunotherapies (including ipilimumab). Therapeutic approaches targeting the gut microbiota are now available (probiotics, fecal microbiota transplantation…). New therapeutic strategy combining both chemotherapy and/or immunotherapy with an adjuvant treatment targeting the gut microbiota can now be developed in order to improve treatment response and tolerance.
Collapse
Affiliation(s)
- Antoine Bruneau
- AP-HP, hôpital Saint-Antoine, pharmacie hospitaliere, 184, rue du faubourg Saint-Antoine, 75012 Paris, France
| | - Minh-Tam Baylatry
- AP-HP, hôpital Saint-Antoine, pharmacie hospitaliere, 184, rue du faubourg Saint-Antoine, 75012 Paris, France
| | - Anne Christine Joly
- AP-HP, hôpital Saint-Antoine, pharmacie hospitaliere, 184, rue du faubourg Saint-Antoine, 75012 Paris, France
| | - Harry Sokol
- AP-HP, hôpital Saint-Antoine, service de gastro-entérologie et nutrition, 184, rue du faubourg Saint-Antoine, 75571 Paris, France.
| |
Collapse
|
670
|
Bullman S, Pedamallu CS, Sicinska E, Clancy TE, Zhang X, Cai D, Neuberg D, Huang K, Guevara F, Nelson T, Chipashvili O, Hagan T, Walker M, Ramachandran A, Diosdado B, Serna G, Mulet N, Landolfi S, Ramon Y Cajal S, Fasani R, Aguirre AJ, Ng K, Élez E, Ogino S, Tabernero J, Fuchs CS, Hahn WC, Nuciforo P, Meyerson M. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 2017; 358:1443-1448. [PMID: 29170280 DOI: 10.1126/science.aal5240] [Citation(s) in RCA: 1012] [Impact Index Per Article: 126.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 08/17/2017] [Accepted: 11/13/2017] [Indexed: 12/12/2022]
Abstract
Colorectal cancers comprise a complex mixture of malignant cells, nontransformed cells, and microorganisms. Fusobacterium nucleatum is among the most prevalent bacterial species in colorectal cancer tissues. Here we show that colonization of human colorectal cancers with Fusobacterium and its associated microbiome-including Bacteroides, Selenomonas, and Prevotella species-is maintained in distal metastases, demonstrating microbiome stability between paired primary and metastatic tumors. In situ hybridization analysis revealed that Fusobacterium is predominantly associated with cancer cells in the metastatic lesions. Mouse xenografts of human primary colorectal adenocarcinomas were found to retain viable Fusobacterium and its associated microbiome through successive passages. Treatment of mice bearing a colon cancer xenograft with the antibiotic metronidazole reduced Fusobacterium load, cancer cell proliferation, and overall tumor growth. These observations argue for further investigation of antimicrobial interventions as a potential treatment for patients with Fusobacterium-associated colorectal cancer.
Collapse
Affiliation(s)
- Susan Bullman
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chandra S Pedamallu
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ewa Sicinska
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas E Clancy
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaoyang Zhang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Diana Cai
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Donna Neuberg
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine Huang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Fatima Guevara
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy Nelson
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Otari Chipashvili
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy Hagan
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Mark Walker
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Aruna Ramachandran
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Begoña Diosdado
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Garazi Serna
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, CIBERONC, Universitat Autònoma de Barcelona, Spain
| | - Nuria Mulet
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, CIBERONC, Universitat Autònoma de Barcelona, Spain
| | - Stefania Landolfi
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, CIBERONC, Universitat Autònoma de Barcelona, Spain
| | - Santiago Ramon Y Cajal
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, CIBERONC, Universitat Autònoma de Barcelona, Spain
| | - Roberta Fasani
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, CIBERONC, Universitat Autònoma de Barcelona, Spain
| | - Andrew J Aguirre
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kimmie Ng
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Elena Élez
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, CIBERONC, Universitat Autònoma de Barcelona, Spain
| | - Shuji Ogino
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.,Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Josep Tabernero
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, CIBERONC, Universitat Autònoma de Barcelona, Spain
| | - Charles S Fuchs
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - William C Hahn
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Paolo Nuciforo
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, CIBERONC, Universitat Autònoma de Barcelona, Spain
| | - Matthew Meyerson
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
671
|
Cammarota G, Ianiro G. Gut Microbiota and Cancer Patients: A Broad-Ranging Relationship. Mayo Clin Proc 2017; 92:1605-1607. [PMID: 29101928 DOI: 10.1016/j.mayocp.2017.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Giovanni Cammarota
- Gastroenterology Area, Fondazione Policlinico Universitario Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Gianluca Ianiro
- Gastroenterology Area, Fondazione Policlinico Universitario Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
672
|
|
673
|
Yan X, Liu L, Li H, Qin H, Sun Z. Clinical significance of Fusobacterium nucleatum, epithelial-mesenchymal transition, and cancer stem cell markers in stage III/IV colorectal cancer patients. Onco Targets Ther 2017; 10:5031-5046. [PMID: 29081665 PMCID: PMC5652912 DOI: 10.2147/ott.s145949] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is a common digestive malignancy and emerging studies have closely linked its initiation and development with gut microbiota changes. Fusobacterium nucleatum (Fn) has been recently identified as a pathogenic bacteria for CRC; however, its prognostic significance for patients is poorly investigated and is less for patients within late stage. Therefore, in this study, we made efforts to analyze its level and prognostic significance in a retrospective cohort of 280 stage III/IV CRC patients. We found that the Fn level was abnormally high in tumor tissues and correlated with tumor invasion, lymph node metastasis status, and distant metastasis. We also identified it as an independent adverse prognostic factor for cancer-specific survival (CSS) and disease-free survival (DFS). The following subgroup analysis indicated that Fn level could stratify CSS and DFS in stage IIIB/C and IV patients but failed in stage IIIA patients. In addition, stage III/IV patients with low Fn level were found to benefit more from adjuvant chemotherapy than those with high Fn level, in terms of DFS. Finally, we analyzed the expression and clinical significance of epithelial-to-mesenchymal transition (EMT) markers (E-cadherin and N-cadherin) and cancer stem cell (CSC) markers (Nanog, Oct-4, and Sox-2) in CRC tissues. The results indicated that N-cadherin, Nanog, Oct-4, and Sox-2 were adverse prognostic factors in these patients, while the opposite was true for E-cadherin. More importantly, expression of E-cadherin, N-cadherin, and Nanog was significantly correlated with Fn level in tumor tissues, suggesting the potential involvement of Fn in EMT-CSC cross talk during CRC progression. Taken together, these findings indicate that Fn is a novel predictive biomarker for clinical management in stage III/IV patients, and targeting Fn may be an effective adjuvant approach for preventing CRC metastasis and chemotherapy resistance.
Collapse
Affiliation(s)
- Xuebing Yan
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Liguo Liu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital
| | - Hao Li
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Huanlong Qin
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Zhenliang Sun
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine.,Central Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, South Campus, Shanghai, China
| |
Collapse
|
674
|
Amitay EL, Werner S, Vital M, Pieper DH, Höfler D, Gierse IJ, Butt J, Balavarca Y, Cuk K, Brenner H. Fusobacterium and colorectal cancer: causal factor or passenger? Results from a large colorectal cancer screening study. Carcinogenesis 2017; 38:781-788. [PMID: 28582482 DOI: 10.1093/carcin/bgx053] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 06/01/2017] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer is a leading cause of morbidity and mortality worldwide in both men and women. The gut microbiome is increasingly recognized as having an important role in human health and disease. Fusobacterium has been identified in former studies as a leading gut bacterium associated with colorectal cancer, but it is still not clear if it plays an oncogenic role. In the current study, fecal samples were collected prior to bowel preparation from participants of screening colonoscopy in the German BliTz study. Using 16S rRNA gene analysis, we examined the presence and relative abundance of Fusobacterium in fecal samples from 500 participants, including 46, 113, 110 and 231 individuals with colorectal cancer, advanced adenomas, non-advanced adenomas and without any neoplasms, respectively. We found that the abundance of Fusobacterium in feces was strongly associated with the presence of colorectal cancer (P-value < 0.0001). This was confirmed by PCR at the species level for Fusobacterium nucleatum. However, no association was seen with the presence of advanced adenomas (P-value = 0.80) or non-advanced adenomas (P-value = 0.80), nor were there any associations observed with dietary or lifestyle habits. Although a causal role cannot be ruled out, our observations, based on fecal microbiome, support the hypothesis that Fusobacterium is a passenger that multiplies in the more favorable conditions caused by the malignant tumor rather than a causal factor in colorectal cancer development.
Collapse
Affiliation(s)
- Efrat L Amitay
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Centre (DKFZ), Heidelberg 69120, Germany
| | - Simone Werner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Centre (DKFZ), Heidelberg 69120, Germany
| | - Marius Vital
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research (HZI), Braunschweig 38124, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research (HZI), Braunschweig 38124, Germany
| | - Daniela Höfler
- Division of Molecular Diagnostics of Oncogenic Infections, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Indra-Jasmin Gierse
- Division of Molecular Diagnostics of Oncogenic Infections, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Julia Butt
- Division of Molecular Diagnostics of Oncogenic Infections, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Yesilda Balavarca
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg 69120, Germany
| | - Katarina Cuk
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Centre (DKFZ), Heidelberg 69120, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Centre (DKFZ), Heidelberg 69120, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg 69120, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| |
Collapse
|
675
|
Chen J, Pitmon E, Wang K. Microbiome, inflammation and colorectal cancer. Semin Immunol 2017; 32:43-53. [PMID: 28982615 DOI: 10.1016/j.smim.2017.09.006] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/05/2017] [Accepted: 09/16/2017] [Indexed: 02/06/2023]
Abstract
Chronic inflammation is linked to the development of multiple cancers, including those of the colon. Inflammation in the gut induces carcinogenic mutagenesis and promotes colorectal cancer initiation. Additionally, myeloid and lymphoid cells infiltrate established tumors and propagate so called "tumor-elicited inflammation", which in turn favors cancer development by supporting the survival and proliferation of cancer cells. In addition to the interaction between cancer cells and tumor infiltrating immune cells, the gut also hosts trillions of bacteria and other microbes, whose roles in colorectal inflammation and cancer have only been appreciated in the past decade or so. Commensal and pathobiotic bacteria promote colorectal cancer development by exploiting tumor surface barrier defects following cancer initiation, by invading normal colonic tissue and inducing local inflammation, and by generating genotoxicity against colonic epithelial cells to accelerate their oncogenic transformation. On the other hand, a balanced population of microbiota is important for the prevention of colorectal cancer due to their roles in providing certain bacterial metabolites and inhibiting intestinal inflammation. In this review we summarize our current knowledge regarding the link between microbiota, inflammation, and colorectal cancer, and aim to delineate the mechanisms by which gut microbiome and inflammatory cytokines regulate colorectal tumorigenesis.
Collapse
Affiliation(s)
- Ju Chen
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, United States
| | - Elise Pitmon
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, United States
| | - Kepeng Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, United States.
| |
Collapse
|
676
|
陆 颖, 曾 悦, 胡 国, 王 兴. [High-throughput sequencing for analysis of structural change of intestinal microbiota in patients with colorectal adenoma]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1156-1163. [PMID: 28951355 PMCID: PMC6765500 DOI: 10.3969/j.issn.1673-4254.2017.09.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the taxonomic richness and diversity of gut microbiota in patients with colorectal adenoma and elucidate the role of gut microorganisms in precancerous lesions in the colon and rectum. METHOD Adenomatous tissues from 31 patients with colorectal adenoma and normal intestinal mucosal tissues from 20 healthy control subjects were collected through colonoscopy. The total bacterial genomic DNA was extracted, and the V3-V4 hypervariable region in bacterial 16S rRNA gene was amplified using polymerase chain reaction and sequenced on an Illumina MiSeq platform. RESULTS Patients with colorectal adenomas had a higher alpha diversity and richness indices compared to the healthy controls (P<0.01). The mucosal microbiota in colorectal adenoma tissue showed a distinctive structural difference from that in normal intestinal mucosal tissues. At the phylum level, a large decrease in Firmicutes with concomitant relative expansion of Proteobacteria was observed in patients with colorectal adenomas, resulting in a significant decrease in the Firmicutes/Bacteroidetes ratio (P<0.01). At the genus level, Lactococcus and Pseudomonas were enriched whereas Enterococcus, Bacillus, and Solibacillus were reduced obviously in the preneoplastic tissues (P<0.01). We also found a similar gut microbiome composition between low-grade and high-grade intraepithelial neoplasia; the ratio of Escherichia-Shigella tended to increase in high-grade intraepithelial neoplasia, but this change was not statistically significant (P%0.28). CONCLUSION Significant changes in the structure of the intestinal flora occur in patients with colorectal adenomas, indicating that the association of dysbiosis of the gut microbiota with the occurrence of a pro-oncogenic microenvironment.
Collapse
Affiliation(s)
- 颖影 陆
- />南京医科大学附属上海一院临床医学院消化内科,上海 201620Department of Gastroenterology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, China
| | - 悦 曾
- />南京医科大学附属上海一院临床医学院消化内科,上海 201620Department of Gastroenterology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, China
| | - 国勇 胡
- />南京医科大学附属上海一院临床医学院消化内科,上海 201620Department of Gastroenterology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, China
| | - 兴鹏 王
- />南京医科大学附属上海一院临床医学院消化内科,上海 201620Department of Gastroenterology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, China
| |
Collapse
|
677
|
Raskov H, Burcharth J, Pommergaard HC. Linking Gut Microbiota to Colorectal Cancer. J Cancer 2017; 8:3378-3395. [PMID: 29151921 PMCID: PMC5687151 DOI: 10.7150/jca.20497] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/10/2017] [Indexed: 02/06/2023] Open
Abstract
Pre-clinical and clinical data produce mounting evidence that the microbiota is strongly associated with colorectal carcinogenesis. Dysbiosis may change the course of carcinogenesis as microbial actions seem to impact genetic and epigenetic alterations leading to dysplasia, clonal expansion and malignant transformation. Initiation and promotion of colorectal cancer may result from direct bacterial actions, bacterial metabolites and inflammatory pathways. Newer aspects of microbiota and colorectal cancer include quorum sensing, biofilm formation, sidedness and effects/countereffects of microbiota and probiotics on chemotherapy. In the future, targeting the microbiota will probably be a powerful weapon in the battle against CRC as gut microbiology, genomics and metabolomics promise to uncover important linkages between microbiota and intestinal health.
Collapse
Affiliation(s)
- Hans Raskov
- Speciallægecentret ved Diakonissestiftelsen, Frederiksberg, Denmark
| | - Jakob Burcharth
- Department of Surgery, Zealand University Hospital, University of Copenhagen, Denmark
| | | |
Collapse
|
678
|
Yamamura K, Baba Y, Miyake K, Nakamura K, Shigaki H, Mima K, Kurashige J, Ishimoto T, Iwatsuki M, Sakamoto Y, Yamashita Y, Yoshida N, Watanabe M, Baba H. Fusobacterium nucleatum in gastroenterological cancer: Evaluation of measurement methods using quantitative polymerase chain reaction and a literature review. Oncol Lett 2017; 14:6373-6378. [PMID: 29151903 PMCID: PMC5678348 DOI: 10.3892/ol.2017.7001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 02/13/2017] [Indexed: 02/07/2023] Open
Abstract
The human microbiome Fusobacterium nucleatum, which primarily inhabits the oral cavity, causes periodontal disease and has also been implicated in the development of colorectal cancer. However, whether F. nucleatum is present in other gastroenterological cancer tissues remains to be elucidated. The present study evaluated whether quantitative polymerase chain reaction (qPCR) assays were able to detect F. nucleatum DNA and measure the quantity of F. nucleatum DNA in esophageal, gastric, pancreatic and liver cancer tissues. The accuracy of the qPCR assay was determined from a calibration curve using DNA extracted from cells from the oral cavity. Formalin-fixed paraffin-embedded (FFPE) tumor tissues from 20 patients with gastroenterological [esophageal (squamous cell carcinoma), gastric, colorectal, pancreatic and liver] cancer and 20 matched normal tissues were evaluated for F. nucleatum DNA content. The cycle threshold values in the qPCR assay for F. nucleatum and solute carrier organic anion transporter family member 2A1 (reference sample) decreased linearly with the quantity of input DNA (r2>0.99). The F. nucleatum detection rate in esophageal, gastric and colorectal cancer tissues were 20% (4/20), 10% (2/20) and 45% (9/20), respectively. F. nucleatum was not detected in liver and pancreatic cancer tissues. The qPCR results from the frozen and FFPE tissues were consistent. Notably, F. nucleatum was detected at a higher level in superficial areas compared with the invasive areas. F. nucleatum in esophageal, gastric and colorectal cancer tissues was evaluated by qPCR using FFPE tissues. F. nucleatum may be involved in the development of esophageal, gastric and colorectal cancer.
Collapse
Affiliation(s)
- Kensuke Yamamura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Keisuke Miyake
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kenichi Nakamura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hironobu Shigaki
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Junji Kurashige
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yasuo Sakamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoichi Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
679
|
Eklöf V, Löfgren-Burström A, Zingmark C, Edin S, Larsson P, Karling P, Alexeyev O, Rutegård J, Wikberg ML, Palmqvist R. Cancer-associated fecal microbial markers in colorectal cancer detection. Int J Cancer 2017; 141:2528-2536. [PMID: 28833079 PMCID: PMC5697688 DOI: 10.1002/ijc.31011] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/07/2017] [Accepted: 07/20/2017] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer death in the western world. An effective screening program leading to early detection of disease would severely reduce the mortality of CRC. Alterations in the gut microbiota have been linked to CRC, but the potential of microbial markers for use in CRC screening has been largely unstudied. We used a nested case–control study of 238 study subjects to explore the use of microbial markers for clbA+ bacteria harboring the pks pathogenicity island, afa‐C+ diffusely adherent Escherichia coli harboring the afa‐1 operon, and Fusobacterium nucleatum in stool as potential screening markers for CRC. We found that individual markers for clbA+ bacteria and F. nucleatum were more abundant in stool of patients with CRC, and could predict cancer with a relatively high specificity (81.5% and 76.9%, respectively) and with a sensitivity of 56.4% and 69.2%, respectively. In a combined test of clbA+ bacteria and F. nucleatum, CRC was detected with a specificity of 63.1% and a sensitivity of 84.6%. Our findings support a potential value of microbial factors in stool as putative noninvasive biomarkers for CRC detection. We propose that microbial markers may represent an important future screening strategy for CRC, selecting patients with a “high‐risk” microbial pattern to other further diagnostic procedures such as colonoscopy. What's new? Nobody looks forward to a colonoscopy, and now a pair of telltale bacteria could help people avoid them. Researchers know that microbial changes occur in colorectal cancer, and have hoped these microbial changes could provide less invasive screening tools to detect tumors. These authors conducted a nested case–control study investigating 3 bacterial markers in 238 patients. Two of the markers, clbA+ bacteria and Fusobacterium nucleatum, successfully predicted colorectal cancer with high sensitivity, particularly when tested together.
Collapse
Affiliation(s)
- Vincy Eklöf
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | | | - Carl Zingmark
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Sofia Edin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Pär Larsson
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Pontus Karling
- Department of Public Health and Clinical Medicine, Medicine, Umeå University, Umeå, Sweden
| | - Oleg Alexeyev
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Jörgen Rutegård
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Umeå, Sweden
| | - Maria L Wikberg
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| |
Collapse
|
680
|
Guo SH, Wang HF, Nian ZG, Wang YD, Zeng QY, Zhang G. Immunization with alkyl hydroperoxide reductase subunit C reduces Fusobacterium nucleatum load in the intestinal tract. Sci Rep 2017; 7:10566. [PMID: 28874771 PMCID: PMC5585165 DOI: 10.1038/s41598-017-11127-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/18/2017] [Indexed: 12/19/2022] Open
Abstract
Fusobacterium nucleatum (Fn) is an important tumour-associated bacterium in colorectal cancer (CRC). The antioxidant protein alkyl hydroperoxide reductase subunit C (AhpC) can induce strong antibacterial immune response during various pathogen infections. Our study aimed to evaluate the efficacy of Fn-AhpC as a candidate vaccine. In this work, by western blot analysis, we showed that Fn-AhpC recombinant protein could be recognized specifically by antibodies present in the sera of CRC patients; using the mouse Fn-infection model, we observed that systemic prophylactic immunization with AhpC/alum conferred significant protection against infection in 77.3% of mice. In addition, we measured the anti-AhpC antibody level in the sera of CRC patients and found that there was no obvious increase of anti-AhpC antibodies in the early-stage CRC group. Furthermore, we treated Fn with the sera from both immunized mice and CRC patients and found that sera with high anti-AhpC antibodies titre could inhibit Fn growth. In conclusion, our findings support the use of AhpC as a potential vaccine candidate against inhabitation or infection of Fn in the intestinal tract, which could provide a practical strategy for the prevention of CRC associated with Fn infection.
Collapse
Affiliation(s)
- Song-He Guo
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hai-Fang Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Gang Nian
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yi-Dan Wang
- Department of School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Qiu-Yao Zeng
- Department of Clinical Laboratory Medicine, Sun Yat-sen University cancer center, Guangzhou, China, Guangzhou, China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
681
|
Diet, Gut Microbiota, and Colorectal Cancer Prevention: A Review of Potential Mechanisms and Promising Targets for Future Research. CURRENT COLORECTAL CANCER REPORTS 2017; 13:429-439. [PMID: 29333111 DOI: 10.1007/s11888-017-0389-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Diet plays an important role in the development of colorectal cancer. Emerging data have implicated the gut microbiota in colorectal cancer. Diet is a major determinant for the gut microbial structure and function. Therefore, it has been hypothesized that alterations in gut microbes and their metabolites may contribute to the influence of diet on the development of colorectal cancer. We review several major dietary factors that have been linked to gut microbiota and colorectal cancer, including major dietary patterns, fiber, red meat and sulfur, and obesity. Most of the epidemiologic evidence derives from cross-sectional or short-term, highly controlled feeding studies that are limited in size. Therefore, high-quality large-scale prospective studies with dietary data collected over the life course and comprehensive gut microbial composition and function assessed well prior to neoplastic occurrence are critically needed to identify microbiome-based interventions that may complement or optimize current diet-based strategies for colorectal cancer prevention and management.
Collapse
|
682
|
Koi M, Carethers JM. The colorectal cancer immune microenvironment and approach to immunotherapies. Future Oncol 2017; 13:1633-1647. [PMID: 28829193 DOI: 10.2217/fon-2017-0145] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Minoru Koi
- Division of Gastroenterology, Department of Internal Medicine & Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - John M Carethers
- Division of Gastroenterology, Department of Internal Medicine & Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
683
|
Zanzoni A, Spinelli L, Braham S, Brun C. Perturbed human sub-networks by Fusobacterium nucleatum candidate virulence proteins. MICROBIOME 2017; 5:89. [PMID: 28793925 PMCID: PMC5551000 DOI: 10.1186/s40168-017-0307-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 07/13/2017] [Indexed: 05/10/2023]
Abstract
BACKGROUND Fusobacterium nucleatum is a gram-negative anaerobic species residing in the oral cavity and implicated in several inflammatory processes in the human body. Although F. nucleatum abundance is increased in inflammatory bowel disease subjects and is prevalent in colorectal cancer patients, the causal role of the bacterium in gastrointestinal disorders and the mechanistic details of host cell functions subversion are not fully understood. RESULTS We devised a computational strategy to identify putative secreted F. nucleatum proteins (FusoSecretome) and to infer their interactions with human proteins based on the presence of host molecular mimicry elements. FusoSecretome proteins share similar features with known bacterial virulence factors thereby highlighting their pathogenic potential. We show that they interact with human proteins that participate in infection-related cellular processes and localize in established cellular districts of the host-pathogen interface. Our network-based analysis identified 31 functional modules in the human interactome preferentially targeted by 138 FusoSecretome proteins, among which we selected 26 as main candidate virulence proteins, representing both putative and known virulence proteins. Finally, six of the preferentially targeted functional modules are implicated in the onset and progression of inflammatory bowel diseases and colorectal cancer. CONCLUSIONS Overall, our computational analysis identified candidate virulence proteins potentially involved in the F. nucleatum-human cross-talk in the context of gastrointestinal diseases.
Collapse
Affiliation(s)
- Andreas Zanzoni
- Aix-Marseille Université, Inserm, TAGC UMR_S1090, Marseille, France.
| | - Lionel Spinelli
- Aix-Marseille Université, Inserm, TAGC UMR_S1090, Marseille, France
| | - Shérazade Braham
- Aix-Marseille Université, Inserm, TAGC UMR_S1090, Marseille, France
| | - Christine Brun
- Aix-Marseille Université, Inserm, TAGC UMR_S1090, Marseille, France
- CNRS, Marseille, France
| |
Collapse
|
684
|
Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, Qian Y, Kryczek I, Sun D, Nagarsheth N, Chen Y, Chen H, Hong J, Zou W, Fang JY. Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy. Cell 2017; 170:548-563.e16. [PMID: 28753429 DOI: 10.1016/j.cell.2017.07.008] [Citation(s) in RCA: 1417] [Impact Index Per Article: 177.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 05/11/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023]
Abstract
Gut microbiota are linked to chronic inflammation and carcinogenesis. Chemotherapy failure is the major cause of recurrence and poor prognosis in colorectal cancer patients. Here, we investigated the contribution of gut microbiota to chemoresistance in patients with colorectal cancer. We found that Fusobacterium (F.) nucleatum was abundant in colorectal cancer tissues in patients with recurrence post chemotherapy, and was associated with patient clinicopathological characterisitcs. Furthermore, our bioinformatic and functional studies demonstrated that F. nucleatum promoted colorectal cancer resistance to chemotherapy. Mechanistically, F. nucleatum targeted TLR4 and MYD88 innate immune signaling and specific microRNAs to activate the autophagy pathway and alter colorectal cancer chemotherapeutic response. Thus, F. nucleatum orchestrates a molecular network of the Toll-like receptor, microRNAs, and autophagy to clinically, biologically, and mechanistically control colorectal cancer chemoresistance. Measuring and targeting F. nucleatum and its associated pathway will yield valuable insight into clinical management and may ameliorate colorectal cancer patient outcomes.
Collapse
Affiliation(s)
- TaChung Yu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute,Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Fangfang Guo
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute,Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Yanan Yu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute,Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Tiantian Sun
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute,Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Dan Ma
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute,Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Jixuan Han
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute,Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Yun Qian
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute,Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China
| | - Ilona Kryczek
- Department of Surgery, the University of Michigan Comprehensive Cancer Center, Graduate programs in Immunology and Cancer Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA, 48109
| | - Danfeng Sun
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute,Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China; Department of Surgery, the University of Michigan Comprehensive Cancer Center, Graduate programs in Immunology and Cancer Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA, 48109
| | - Nisha Nagarsheth
- Department of Surgery, the University of Michigan Comprehensive Cancer Center, Graduate programs in Immunology and Cancer Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA, 48109
| | - Yingxuan Chen
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute,Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China.
| | - Haoyan Chen
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute,Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China.
| | - Jie Hong
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute,Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China.
| | - Weiping Zou
- Department of Surgery, the University of Michigan Comprehensive Cancer Center, Graduate programs in Immunology and Cancer Biology, University of Michigan School of Medicine, Ann Arbor, MI, USA, 48109.
| | - Jing-Yuan Fang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute,Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai 200001, China.
| |
Collapse
|
685
|
Xingqun C, Xin X, Xuedong Z. [Relationship between oral and gut microbes]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:322-327. [PMID: 28675020 DOI: 10.7518/hxkq.2017.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oral cavity and gut are important parts of the human digestive tract. The structure and pathogenesis of oral and gut microbial communities have been extensively investigated. The interaction and pathogenic effects of oral and gut microbiota have also been widely explored. This review aimed to integrate data from literature and discuss the structures and functions of microbial communities in the oral cavity and gut. The mutual colonization and pathogenesis of oral and gut microbes and the relationship between these phenomena and involved systemic diseases are also described.
Collapse
Affiliation(s)
- Cheng Xingqun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xu Xin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhou Xuedong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
686
|
Wong SH, Kwong TNY, Chow TC, Luk AKC, Dai RZW, Nakatsu G, Lam TYT, Zhang L, Wu JCY, Chan FKL, Ng SSM, Wong MCS, Ng SC, Wu WKK, Yu J, Sung JJY. Quantitation of faecal Fusobacterium improves faecal immunochemical test in detecting advanced colorectal neoplasia. Gut 2017; 66:1441-1448. [PMID: 27797940 PMCID: PMC5530471 DOI: 10.1136/gutjnl-2016-312766] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/14/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE There is a need for an improved biomarker for colorectal cancer (CRC) and advanced adenoma. We evaluated faecal microbial markers for clinical use in detecting CRC and advanced adenoma. DESIGN We measured relative abundance of Fusobacterium nucleatum (Fn), Peptostreptococcus anaerobius (Pa) and Parvimonas micra (Pm) by quantitative PCR in 309 subjects, including 104 patients with CRC, 103 patients with advanced adenoma and 102 controls. We evaluated the diagnostic performance of these biomarkers with respect to faecal immunochemical test (FIT), and validated the results in an independent cohort of 181 subjects. RESULTS The abundance was higher for all three individual markers in patients with CRC than controls (p<0.001), and for marker Fn in patients with advanced adenoma than controls (p=0.022). The marker Fn, when combined with FIT, showed superior sensitivity (92.3% vs 73.1%, p<0.001) and area under the receiver-operating characteristic curve (AUC) (0.95 vs 0.86, p<0.001) than stand-alone FIT in detecting CRC in the same patient cohort. This combined test also increased the sensitivity (38.6% vs 15.5%, p<0.001) and AUC (0.65 vs 0.57, p=0.007) for detecting advanced adenoma. The performance gain for both CRC and advanced adenoma was confirmed in the validation cohort (p=0.0014 and p=0.031, respectively). CONCLUSIONS This study identified marker Fn as a valuable marker to improve diagnostic performance of FIT, providing a complementary role to detect lesions missed by FIT alone. This simple approach may improve the clinical utility of the current FIT, and takes one step further towards a non-invasive, potentially more accurate and affordable diagnosis of advanced colorectal neoplasia.
Collapse
Affiliation(s)
- Sunny H Wong
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Institute of Digestive Disease, Hong Kong, Hong Kong
- Faculty of Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Thomas N Y Kwong
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Institute of Digestive Disease, Hong Kong, Hong Kong
- Faculty of Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Tai-Cheong Chow
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Institute of Digestive Disease, Hong Kong, Hong Kong
- Faculty of Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Arthur K C Luk
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Institute of Digestive Disease, Hong Kong, Hong Kong
- Faculty of Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Rudin Z W Dai
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Institute of Digestive Disease, Hong Kong, Hong Kong
- Faculty of Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Geicho Nakatsu
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Institute of Digestive Disease, Hong Kong, Hong Kong
- Faculty of Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Thomas Y T Lam
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Institute of Digestive Disease, Hong Kong, Hong Kong
- Faculty of Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Lin Zhang
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Institute of Digestive Disease, Hong Kong, Hong Kong
- Faculty of Medicine, Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Justin C Y Wu
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Institute of Digestive Disease, Hong Kong, Hong Kong
- Faculty of Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Francis K L Chan
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Institute of Digestive Disease, Hong Kong, Hong Kong
- Faculty of Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Simon S M Ng
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Institute of Digestive Disease, Hong Kong, Hong Kong
- Faculty of Medicine, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Martin C S Wong
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Institute of Digestive Disease, Hong Kong, Hong Kong
- Faculty of Medicine, The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Siew C Ng
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Institute of Digestive Disease, Hong Kong, Hong Kong
- Faculty of Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - William K K Wu
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Institute of Digestive Disease, Hong Kong, Hong Kong
- Faculty of Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- CUHK Shenzhen Research Institute, Shenzhen, China
- Faculty of Medicine, Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Institute of Digestive Disease, Hong Kong, Hong Kong
- Faculty of Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Joseph J Y Sung
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Institute of Digestive Disease, Hong Kong, Hong Kong
- Faculty of Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- CUHK Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
687
|
Masugi Y, Nishihara R, Yang J, Mima K, da Silva A, Shi Y, Inamura K, Cao Y, Song M, Nowak JA, Liao X, Nosho K, Chan AT, Giannakis M, Bass AJ, Hodi FS, Freeman GJ, Rodig S, Fuchs CS, Qian ZR, Ogino S. Tumour CD274 (PD-L1) expression and T cells in colorectal cancer. Gut 2017; 66:1463-1473. [PMID: 27196573 PMCID: PMC5097696 DOI: 10.1136/gutjnl-2016-311421] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/22/2016] [Accepted: 04/03/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Evidence suggests that CD274 (programmed death-ligand 1, B7-H1) immune checkpoint ligand repress antitumour immunity through its interaction with the PDCD1 (programmed cell death 1, PD-1) receptor of T lymphocytes in various tumours. We hypothesised that tumour CD274 expression levels might be inversely associated with T-cell densities in colorectal carcinoma tissue. DESIGN We evaluated tumour CD274 expression by immunohistochemistry in 823 rectal and colon cancer cases within the Nurses' Health Study and Health Professionals Follow-up Study. We conducted multivariable ordinal logistic regression analyses to examine the association of tumour CD274 expression with CD3+, CD8+, CD45RO (PTPRC)+ or FOXP3+ cell density in tumour tissue, controlling for potential confounders including tumour status of microsatellite instability (MSI), CpG island methylator phenotype, long interspersed nucleotide element-1 methylation level and KRAS, BRAF and PIK3CA mutations. RESULTS CD274 expression in tumour cells or stromal cells (including immune cells) was detected in 731 (89%) or 44 (5%) cases, respectively. Tumour CD274 expression level correlated inversely with FOXP3+ cell density in colorectal cancer tissue (outcome) (ptrend=0.0002). For a unit increase in outcome quartile categories, multivariable OR in the highest (vs lowest) CD274 expression score was 0.22 (95% CI 0.10 to 0.47). Tumour CD274 expression was inversely associated with MSI-high status (p=0.001). CD274 expression was not significantly associated with CD3+, CD8+ or CD45RO+ cell density, pathological lymphocytic reactions or patient survival prognosis. CONCLUSIONS Tumour CD274 expression is inversely associated with FOXP3+ cell density in colorectal cancer tissue, suggesting a possible influence of CD274-expressing carcinoma cells on regulatory T cells in the tumour microenvironment.
Collapse
Affiliation(s)
- Yohei Masugi
- Department of Medical Oncology, Dana-Farber Cancer Institute and
Harvard Medical School, Boston, Massachusetts, USA
| | - Reiko Nishihara
- Department of Medical Oncology, Dana-Farber Cancer Institute and
Harvard Medical School, Boston, Massachusetts, USA,Department of Nutrition, Harvard T.H. Chan School of Public Health,
Boston, Massachusetts, USA,Department of Epidemiology, Harvard T.H. Chan School of Public
Health, Boston, Massachusetts, USA,Department of Biostatistics, Harvard T.H. Chan School of Public
Health, Boston, Massachusetts, USA
| | - Juhong Yang
- Department of Medical Oncology, Dana-Farber Cancer Institute and
Harvard Medical School, Boston, Massachusetts, USA,Collaborative Innovation Center of Tianjin for Medical Epigenetics,
Key Laboratory of Hormone and Development, Metabolic Disease Hospital & Tianjin
Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Kosuke Mima
- Department of Medical Oncology, Dana-Farber Cancer Institute and
Harvard Medical School, Boston, Massachusetts, USA
| | - Annacarolina da Silva
- Department of Medical Oncology, Dana-Farber Cancer Institute and
Harvard Medical School, Boston, Massachusetts, USA
| | - Yan Shi
- Department of Medical Oncology, Dana-Farber Cancer Institute and
Harvard Medical School, Boston, Massachusetts, USA
| | - Kentaro Inamura
- Division of Pathology, Cancer Institute, Japanese Foundation For
Cancer Research, Tokyo, Japan
| | - Yin Cao
- Department of Nutrition, Harvard T.H. Chan School of Public Health,
Boston, Massachusetts, USA,Clinical and Translational Epidemiology Unit, Massachusetts General
Hospital and Harvard Medical School, Boston, Massachusetts, USA,Division of Gastroenterology, Massachusetts General Hospital,
Boston, Massachusetts, USA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health,
Boston, Massachusetts, USA,Clinical and Translational Epidemiology Unit, Massachusetts General
Hospital and Harvard Medical School, Boston, Massachusetts, USA,Division of Gastroenterology, Massachusetts General Hospital,
Boston, Massachusetts, USA
| | - Jonathan A. Nowak
- Division of MPE Molecular Pathological Epidemiology, Department of
Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston,
Massachusetts, USA
| | - Xiaoyun Liao
- Department of Medical Oncology, Dana-Farber Cancer Institute and
Harvard Medical School, Boston, Massachusetts, USA,Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston,
Massachusetts, USA
| | - Katsuhiko Nosho
- Department of Gastroenterology, Rheumatology and Clinical
Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Andrew T. Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General
Hospital and Harvard Medical School, Boston, Massachusetts, USA,Division of Gastroenterology, Massachusetts General Hospital,
Boston, Massachusetts, USA,Channing Division of Network Medicine, Department of Medicine,
Brigham and Women’s Hospital and Harvard Medical School, Boston,
Massachusetts, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and
Harvard Medical School, Boston, Massachusetts, USA,Broad Institute of MIT and Harvard, Cambridge, Massachusetts,
USA,Department of Medicine, Brigham and Women’s Hospital and
Harvard Medical School, Boston, Massachusetts, USA
| | - Adam J. Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute and
Harvard Medical School, Boston, Massachusetts, USA,Broad Institute of MIT and Harvard, Cambridge, Massachusetts,
USA,Department of Medicine, Brigham and Women’s Hospital and
Harvard Medical School, Boston, Massachusetts, USA
| | - F. Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute and
Harvard Medical School, Boston, Massachusetts, USA,Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston,
Massachusetts, USA
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute and
Harvard Medical School, Boston, Massachusetts, USA,Department of Medicine, Brigham and Women’s Hospital and
Harvard Medical School, Boston, Massachusetts, USA
| | - Scott Rodig
- Department of Pathology, Brigham and Women’s Hospital and
Harvard Medical School, Boston, Massachusetts, USA
| | - Charles S. Fuchs
- Department of Medical Oncology, Dana-Farber Cancer Institute and
Harvard Medical School, Boston, Massachusetts, USA,Channing Division of Network Medicine, Department of Medicine,
Brigham and Women’s Hospital and Harvard Medical School, Boston,
Massachusetts, USA
| | - Zhi Rong Qian
- Department of Medical Oncology, Dana-Farber Cancer Institute and
Harvard Medical School, Boston, Massachusetts, USA
| | - Shuji Ogino
- Department of Medical Oncology, Dana-Farber Cancer Institute and
Harvard Medical School, Boston, Massachusetts, USA,Department of Epidemiology, Harvard T.H. Chan School of Public
Health, Boston, Massachusetts, USA,Division of MPE Molecular Pathological Epidemiology, Department of
Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston,
Massachusetts, USA
| |
Collapse
|
688
|
Mima K, Ogino S, Nakagawa S, Sawayama H, Kinoshita K, Krashima R, Ishimoto T, Imai K, Iwatsuki M, Hashimoto D, Baba Y, Sakamoto Y, Yamashita YI, Yoshida N, Chikamoto A, Ishiko T, Baba H. The role of intestinal bacteria in the development and progression of gastrointestinal tract neoplasms. Surg Oncol 2017; 26:368-376. [PMID: 29113654 DOI: 10.1016/j.suronc.2017.07.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/09/2017] [Accepted: 07/20/2017] [Indexed: 12/12/2022]
Abstract
More than 100 trillion microorganisms inhabit the human intestinal tract and play important roles in health conditions and diseases, including cancer. Accumulating evidence demonstrates that specific bacteria and bacterial dysbiosis in the gastrointestinal tract can potentiate the development and progression of gastrointestinal tract neoplasms by damaging DNA, activating oncogenic signaling pathways, producing tumor-promoting metabolites such as secondary bile acids, and suppressing antitumor immunity. Other bacterial species have been shown to produce short-chain fatty acids such as butyrate, which can suppress inflammation and carcinogenesis in the gastrointestinal tract. Consistent with these lines of evidence, clinical studies using metagenomic analyses have shown associations of specific bacteria and bacterial dysbiosis with gastrointestinal tract cancers, including esophageal, gastric, and colorectal cancers. Emerging data demonstrate that intestinal bacteria can modulate the efficacy of cancer chemotherapies and novel targeted immunotherapies such as anti-CTLA4 and anti-CD274 therapies, the process of absorption, and the occurrence of complications after gastrointestinal surgery. A better understanding of the mechanisms by which the gut microbiota influence tumor development and progression in the intestine would provide opportunities to develop new prevention and treatment strategies for patients with gastrointestinal tract cancers by targeting the intestinal microflora.
Collapse
Affiliation(s)
- Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Shuji Ogino
- Division of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shigeki Nakagawa
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Sawayama
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Koichi Kinoshita
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Ryuichi Krashima
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Katsunori Imai
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Daisuke Hashimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Yasuo Sakamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Yo-Ichi Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Akira Chikamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Takatoshi Ishiko
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
689
|
Abstract
Colorectal cancer is the second-leading cause of cancer-related deaths in the United States and fourth-leading cause of cancer-related deaths worldwide. While cancer is largely considered to be a disease of genetic and environmental factors, increasing evidence has demonstrated a role for the microbiota (the microorganisms associated with the human body) in shaping inflammatory environments and promoting tumor growth and spread. Herein, we discuss both human data from meta'omics analyses and data from mechanistic studies in cell culture and animal models that support specific bacterial agents as potentiators of tumorigenesis-including Fusobacterium nucleatum, enterotoxigenic Bacteroides fragilis, and colibactin-producing Escherichia coli. Further, we consider how microbes can be used in diagnosing colorectal cancer and manipulating the tumor environment to encourage better patient outcomes in response to immunotherapy treatments.
Collapse
Affiliation(s)
- Caitlin A Brennan
- Departments of Immunology & Infectious Diseases and Genetics & Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115; ,
| | - Wendy S Garrett
- Departments of Immunology & Infectious Diseases and Genetics & Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115; , .,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115.,Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
690
|
Mehta RS, Nishihara R, Cao Y, Song M, Mima K, Qian ZR, Nowak JA, Kosumi K, Hamada T, Masugi Y, Bullman S, Drew DA, Kostic AD, Fung TT, Garrett WS, Huttenhower C, Wu K, Meyerhardt JA, Zhang X, Willett WC, Giovannucci EL, Fuchs CS, Chan AT, Ogino S. Association of Dietary Patterns With Risk of Colorectal Cancer Subtypes Classified by Fusobacterium nucleatum in Tumor Tissue. JAMA Oncol 2017; 3:921-927. [PMID: 28125762 PMCID: PMC5502000 DOI: 10.1001/jamaoncol.2016.6374] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
IMPORTANCE Fusobacterium nucleatum appears to play a role in colorectal carcinogenesis through suppression of the hosts' immune response to tumor. Evidence also suggests that diet influences intestinal F nucleatum. However, the role of F nucleatum in mediating the relationship between diet and the risk of colorectal cancer is unknown. OBJECTIVE To test the hypothesis that the associations of prudent diets (rich in whole grains and dietary fiber) and Western diets (rich in red and processed meat, refined grains, and desserts) with colorectal cancer risk may differ according to the presence of F nucleatum in tumor tissue. DESIGN, SETTING, AND PARTICIPANTS A prospective cohort study was conducted using data from the Nurses' Health Study (June 1, 1980, to June 1, 2012) and the Health Professionals Follow-up Study (June 1, 1986, to June 1, 2012) on a total of 121 700 US female nurses and 51 529 US male health professionals aged 30 to 55 years and 40 to 75 years, respectively (both predominantly white individuals), at enrollment. Data analysis was performed from March 15, 2015, to August 10, 2016. EXPOSURES Prudent and Western diets. MAIN OUTCOMES AND MEASURES Incidence of colorectal carcinoma subclassified by F nucleatum status in tumor tissue, determined by quantitative polymerase chain reaction. RESULTS Of the 173 229 individuals considered for the study, 137 217 were included in the analysis, 47 449 were male (34.6%), and mean (SD) baseline age for men was 54.0 (9.8) years and for women, 46.3 (7.2) years. A total of 1019 incident colon and rectal cancer cases with available F nucleatum data were documented over 26 to 32 years of follow-up, encompassing 3 643 562 person-years. The association of prudent diet with colorectal cancer significantly differed by tissue F nucleatum status (P = .01 for heterogeneity); prudent diet score was associated with a lower risk of F nucleatum-positive cancers (P = .003 for trend; multivariable hazard ratio of 0.43; 95% CI, 0.25-0.72, for the highest vs the lowest prudent score quartile) but not with F nucleatum-negative cancers (P = .47 for trend, the corresponding multivariable hazard ratio of 0.95; 95% CI, 0.77-1.17). There was no significant heterogeneity between the subgroups in relation to Western dietary pattern scores. CONCLUSIONS AND RELEVANCE Prudent diets rich in whole grains and dietary fiber are associated with a lower risk for F nucleatum-positive colorectal cancer but not F nucleatum-negative cancer, supporting a potential role for intestinal microbiota in mediating the association between diet and colorectal neoplasms.
Collapse
Affiliation(s)
- Raaj S Mehta
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston2Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Reiko Nishihara
- Division of MPE Molecular Pathological Epidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts4Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts5Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge6Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts7Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts8Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts9Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Yin Cao
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston2Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston6Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston2Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston6Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kosuke Mima
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Zhi Rong Qian
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jonathan A Nowak
- Division of MPE Molecular Pathological Epidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts4Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Keisuke Kosumi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Tsuyoshi Hamada
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Yohei Masugi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Susan Bullman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston2Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Aleksandar D Kostic
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge
| | - Teresa T Fung
- Program in Dietetics, Simmons College, Boston, Massachusetts
| | - Wendy S Garrett
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge9Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts11Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Xuehong Zhang
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Walter C Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts12Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts7Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts12Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Charles S Fuchs
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts12Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston2Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston5Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge12Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shuji Ogino
- Division of MPE Molecular Pathological Epidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts4Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts7Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts9Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts13Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
691
|
Abstract
Decades of studies have shown that epigenetic alterations play a significant role on cancer development both in vitro and in vivo. However, considering that many cancers harbor mutations at epigenetic modifier genes and that transcription factor-mediated gene regulations are tightly coupled with epigenetic modifications, the majority of epigenetic alterations in cancers could be the consequence of the dysfunction or dysregulation of epigenetic modifiers caused by genetic abnormalities. Therefore, it remains unclear whether bona fide epigenetic abnormalities have causal roles on cancer development. Reprogramming technologies enable us to actively alter epigenetic regulations while preserving genomic information. Taking advantage, recent studies have provided in vivo evidence for the significant impact of epigenetic abnormalities on the initiation, maintenance and progression of cancer cells.
Collapse
Affiliation(s)
- Kenji Ito
- Center for iPS Cell Research & Application, Kyoto University, Kyoto 606-8507, Japan
| | - Yasuhiro Yamada
- Center for iPS Cell Research & Application, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
692
|
Nishihara R, Glass K, Mima K, Hamada T, Nowak JA, Qian ZR, Kraft P, Giovannucci EL, Fuchs CS, Chan AT, Quackenbush J, Ogino S, Onnela JP. Biomarker correlation network in colorectal carcinoma by tumor anatomic location. BMC Bioinformatics 2017. [PMID: 28623901 PMCID: PMC5474023 DOI: 10.1186/s12859-017-1718-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Colorectal carcinoma evolves through a multitude of molecular events including somatic mutations, epigenetic alterations, and aberrant protein expression, influenced by host immune reactions. One way to interrogate the complex carcinogenic process and interactions between aberrant events is to model a biomarker correlation network. Such a network analysis integrates multidimensional tumor biomarker data to identify key molecular events and pathways that are central to an underlying biological process. Due to embryological, physiological, and microbial differences, proximal and distal colorectal cancers have distinct sets of molecular pathological signatures. Given these differences, we hypothesized that a biomarker correlation network might vary by tumor location. Results We performed network analyses of 54 biomarkers, including major mutational events, microsatellite instability (MSI), epigenetic features, protein expression status, and immune reactions using data from 1380 colorectal cancer cases: 690 cases with proximal colon cancer and 690 cases with distal colorectal cancer matched by age and sex. Edges were defined by statistically significant correlations between biomarkers using Spearman correlation analyses. We found that the proximal colon cancer network formed a denser network (total number of edges, n = 173) than the distal colorectal cancer network (n = 95) (P < 0.0001 in permutation tests). The value of the average clustering coefficient was 0.50 in the proximal colon cancer network and 0.30 in the distal colorectal cancer network, indicating the greater clustering tendency of the proximal colon cancer network. In particular, MSI was a key hub, highly connected with other biomarkers in proximal colon cancer, but not in distal colorectal cancer. Among patients with non-MSI-high cancer, BRAF mutation status emerged as a distinct marker with higher connectivity in the network of proximal colon cancer, but not in distal colorectal cancer. Conclusion In proximal colon cancer, tumor biomarkers tended to be correlated with each other, and MSI and BRAF mutation functioned as key molecular characteristics during the carcinogenesis. Our findings highlight the importance of considering multiple correlated pathways for therapeutic targets especially in proximal colon cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1718-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Reiko Nishihara
- Program of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. .,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Kimberly Glass
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kosuke Mima
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Tsuyoshi Hamada
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jonathan A Nowak
- Program of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhi Rong Qian
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Charles S Fuchs
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Yale Cancer Center, New Haven, CT, USA.,Department of Medicine, Yale School of Medicine, New Haven, CT, USA.,Smilow Cancer Hospital, New Haven, CT, USA
| | - Andrew T Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - John Quackenbush
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Shuji Ogino
- Program of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. .,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA. .,Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
| | - Jukka-Pekka Onnela
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
693
|
Gao R, Kong C, Huang L, Li H, Qu X, Liu Z, Lan P, Wang J, Qin H. Mucosa-associated microbiota signature in colorectal cancer. Eur J Clin Microbiol Infect Dis 2017; 36:2073-2083. [PMID: 28600626 DOI: 10.1007/s10096-017-3026-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022]
Abstract
The aim of this study was to explore the gut microbiota profiles of colorectal cancer (CRC) patients and to examine the relationship between gut microbiota and other key molecular factors involved in CRC tumorigenesis. In this study, a 16S rDNA sequencing platform was used to identify possible differences in the microbiota signature between CRC and adjacent normal mucosal tissue. Differences in the microbiota composition in different anatomical colorectal tumor sites and their potential association with KRAS mutation were also explored. In this study, the number of Firmicutes and Actinobacteria decreased, while the number of Fusobacteria increased in the gut of CRC patients. In addition, at the genus level, Fusobacterium was identified as the key contributor to CRC tumorigenesis. In addition, a different distribution of gut microbiota in ascending and descending colon cancer samples was observed. Lipopolysaccharide biosynthesis-associated microbial genes were enriched in tumor tissues. Our study suggests that specific mucosa-associated microbiota signature and function are significantly changed in the gut of CRC patients, which may provide insight into the progression of CRC. These findings could also be of value in the creation of new prevention and treatment strategies for this type of cancer.
Collapse
Affiliation(s)
- R Gao
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, No.301 Yanchang Road, Zhabei District, Shanghai, China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - C Kong
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, No.301 Yanchang Road, Zhabei District, Shanghai, China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - L Huang
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, No.301 Yanchang Road, Zhabei District, Shanghai, China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - H Li
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, No.301 Yanchang Road, Zhabei District, Shanghai, China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - X Qu
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, No.301 Yanchang Road, Zhabei District, Shanghai, China
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Z Liu
- Department of GI Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong Province, China
| | - P Lan
- Department of GI Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong Province, China
| | - J Wang
- Department of GI Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong Province, China
| | - H Qin
- Department of GI Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, No.301 Yanchang Road, Zhabei District, Shanghai, China.
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
694
|
Park HE, Kim JH, Cho NY, Lee HS, Kang GH. Intratumoral Fusobacterium nucleatum abundance correlates with macrophage infiltration and CDKN2A methylation in microsatellite-unstable colorectal carcinoma. Virchows Arch 2017; 471:329-336. [PMID: 28597080 DOI: 10.1007/s00428-017-2171-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/03/2017] [Accepted: 06/02/2017] [Indexed: 12/16/2022]
Abstract
Fusobacterium nucleatum (Fn), a specific species of gut microbiota, has been suggested to be enriched in the microsatellite instability-high (MSI-H) molecular subtype of colorectal carcinomas (CRCs). However, the clinicopathologic and molecular factors that interact with Fn in MSI-H CRCs are poorly understood. In this study, 16S ribosomal RNA gene DNA sequence of Fn was quantitatively measured by real-time polymerase chain reaction in tumor DNA samples from a total of 160 surgically resected MSI-H CRC tissues. Each case was classified into one of the three categories based on the Fn DNA amount: Fn-high, Fn-low, and Fn-negative. The clinicopathologic and molecular associations of Fn in MSI-H CRCs were statistically analyzed. Among the 160 MSI-H CRC samples, 15 (9%), 92 (58%), and 53 (33%) cases were Fn-high, Fn-low, and Fn-negative, respectively. Compared with Fn-low/negative tumors, Fn-high MSI-H CRCs were significantly associated with a high density of CD68+ tumor-infiltrating macrophages (P = 0.019) and promoter CpG island hypermethylation of the CDKN2A (p16) gene (P = 0.008). There were also tendencies toward associations of Fn-high with the BRAF V600E mutation (P = 0.047) and active Crohn-like lymphoid reactions (P = 0.052) in MSI-H CRCs. However, Fn-high was not significantly associated with CD3+ T cell density, CD163+ M2 macrophage density or PD-L1 expression status. In conclusion, high amounts of intratumoral Fn are correlated with increased macrophage infiltration and CDKN2A promoter methylation in MSI-H CRCs.
Collapse
Affiliation(s)
- Hye Eun Park
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Nam-Yun Cho
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Department of Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
695
|
Van Raay T, Allen-Vercoe E. Microbial Interactions and Interventions in Colorectal Cancer. Microbiol Spectr 2017; 5:10.1128/microbiolspec.bad-0004-2016. [PMID: 28643625 PMCID: PMC11687491 DOI: 10.1128/microbiolspec.bad-0004-2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Indexed: 12/14/2022] Open
Abstract
Recently, several lines of evidence that indicate a strong link between the development of colorectal cancer (CRC) and aspects of the gut microbiota have become apparent. However, it remains unclear how changes in the gut microbiota might influence carcinogenesis or how regional organization of the gut might influence the microbiota. In this review, we discuss several leading theories that connect gut microbial dysbiosis with CRC and set this against a backdrop of what is known about proximal-distal gut physiology and the pathways of CRC development and progression. Finally, we discuss the potential for gut microbial modulation therapies, for example, probiotics, antibiotics, and others, to target and improve gut microbial dysbiosis as a strategy for the prevention or treatment of CRC.
Collapse
Affiliation(s)
- Terence Van Raay
- Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Emma Allen-Vercoe
- Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
696
|
Affiliation(s)
- Kjetil Søreide
- Department of Gastrointestinal Surgery and Gastrointestinal Translational Research Unit, Laboratory for Molecular Biology, Stavanger University Hospital, Stavanger, Norway and Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
697
|
Abstract
Evidence is growing that the gut microbiota modulates the host response to chemotherapeutic drugs, with three main clinical outcomes: facilitation of drug efficacy; abrogation and compromise of anticancer effects; and mediation of toxicity. The implication is that gut microbiota are critical to the development of personalized cancer treatment strategies and, therefore, a greater insight into prokaryotic co-metabolism of chemotherapeutic drugs is now required. This thinking is based on evidence from human, animal and in vitro studies that gut bacteria are intimately linked to the pharmacological effects of chemotherapies (5-fluorouracil, cyclophosphamide, irinotecan, oxaliplatin, gemcitabine, methotrexate) and novel targeted immunotherapies such as anti-PD-L1 and anti-CLTA-4 therapies. The gut microbiota modulate these agents through key mechanisms, structured as the 'TIMER' mechanistic framework: Translocation, Immunomodulation, Metabolism, Enzymatic degradation, and Reduced diversity and ecological variation. The gut microbiota can now, therefore, be targeted to improve efficacy and reduce the toxicity of current chemotherapy agents. In this Review, we outline the implications of pharmacomicrobiomics in cancer therapeutics and define how the microbiota might be modified in clinical practice to improve efficacy and reduce the toxic burden of these compounds.
Collapse
|
698
|
Mima K, Nakagawa S, Sawayama H, Ishimoto T, Imai K, Iwatsuki M, Hashimoto D, Baba Y, Yamashita YI, Yoshida N, Chikamoto A, Baba H. The microbiome and hepatobiliary-pancreatic cancers. Cancer Lett 2017; 402:9-15. [PMID: 28527946 DOI: 10.1016/j.canlet.2017.05.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/29/2017] [Accepted: 05/11/2017] [Indexed: 02/07/2023]
Abstract
The human intestinal microbiome encompasses at least 100 trillion microorganisms that can influence host immunity and disease conditions, including cancer. Hepatobiliary and pancreatic cancers have been associated with poor prognosis owing to their high level of tumor invasiveness, distant metastasis, and resistance to conventional treatment options, such as chemotherapy. Accumulating evidence from animal models suggests that specific microbes and microbial dysbiosis can potentiate hepatobiliary-pancreatic tumor development by damaging DNA, activating oncogenic signaling pathways, and producing tumor-promoting metabolites. Emerging evidence suggests that the gut microbiota may influence not only the efficacy of cancer chemotherapies and novel targeted immunotherapies such as anti-CTLA4 and anti-CD274 therapies but also the occurrence of postoperative complications after hepatobiliary and pancreatic surgery, which have been associated with tumor recurrence and worse patient survival in hepatobiliary-pancreatic cancers. Hence, a better understanding of roles of the gut microbiota in the development and progression of hepatobiliary-pancreatic tumors may open opportunities to develop new prevention and treatment strategies for patients with hepatobiliary-pancreatic cancer through manipulating the gut microbiota by diet, lifestyle, antibiotics, and pro- and prebiotics.
Collapse
Affiliation(s)
- Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Shigeki Nakagawa
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Sawayama
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Katsunori Imai
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Daisuke Hashimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Yo-Ichi Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Akira Chikamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
699
|
Abstract
PURPOSE OF REVIEW The growing awareness that the immune system is a key player in the antitumoral response and the excellent clinical results achieved in some settings with anti-programmed cell death 1 (PD1)/programmed death ligand 1 (PDL1) and anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA4) drugs has led to the rise of immunotherapy as a supplement or an alternative to conventional cancer treatment. The high costs associated with these therapies, their significant toxicity and the need to understand and circumvent immune escape mechanisms raise the urgent need for immunological assessment of therapy response. The study of the immunological parameters before, during and after treatment is referred to as immunomonitoring. This review discusses the current knowledge of immunomonitoring markers in gastrointestinal cancers. RECENT FINDINGS The last decade has seen a collaborative effort to standardize the assays performed in clinical trials to assess response to immunotherapy. Since then, multiple studies have been conducted on blood samples, biopsies and surgical specimens to determine their immunological profiles leading to the identification of several immunological markers possessing a predictive value of response to treatment. SUMMARY Future research will focus on detangling the predictive value of immune markers in different therapeutic models, and also to develop new noninvasive means to monitor the immune response of patients. VIDEO ABSTRACT: http://links.lww.com/COON/A20.
Collapse
|
700
|
Chen Y, Peng Y, Yu J, Chen T, Wu Y, Shi L, Li Q, Wu J, Fu X. Invasive Fusobacterium nucleatum activates beta-catenin signaling in colorectal cancer via a TLR4/P-PAK1 cascade. Oncotarget 2017; 8:31802-31814. [PMID: 28423670 PMCID: PMC5458249 DOI: 10.18632/oncotarget.15992] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/20/2017] [Indexed: 12/15/2022] Open
Abstract
The underlying mechanism of Fusobacterium nucleatum (Fn) in the carcinogenesis of colorectal cancer (CRC) is poorly understood. Here, we examined Fn abundance in CRC tissues, as well as β-catenin, TLR4 and PAK1 protein abundance in Fn positive and Fn negative CRCs. Furthermore, we isolated a strain of Fn (F01) from a CRC tissue and examined whether Fn (F01) infection of colon cancer cells activated β-catenin signaling via the TLR4/P-PAK1/P-β-catenin S675 cascade. Invasive Fn was abundant in 62.2% of CRC tissues. TLR4, PAK1 and nuclear β-catenin proteins were more abundant within Fn-positive over Fn-negative CRCs (P < 0.05). Fn and its lipopolysaccharide induced a significant increase in TLR4/P-PAK1/P-β-catenin S675/C-myc/CyclinD1 protein abundance, as well as in the nuclear translocation of β-catenin. Furthermore, inhibition of TLR4 or PAK1 prior to challenge with Fn significantly decreased protein abundance of P-β-catenin S675, C-myc and Cyclin D1, as well as nuclear β-catenin accumulation. Inhibition of TLR4 significantly decreased P-PAK1 protein abundance, and for the first time, we observed an interaction between TLR4 and P-PAK1 using immunoprecipitation. Our data suggest that invasive Fn activates β-catenin signaling via a TLR4/P-PAK1/P-β-catenin S675 cascade in CRC. Furthermore, TLR4 and PAK1 could be potential pharmaceutical targets for the treatment of Fn-related CRCs.
Collapse
Affiliation(s)
- Yongyu Chen
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China
| | - Yan Peng
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China
| | - Jiahui Yu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China
| | - Ting Chen
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China
| | - Yaxin Wu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China
| | - Lei Shi
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China
| | - Qing Li
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China
| | - Jiao Wu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China
| | - Xiangsheng Fu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China
| |
Collapse
|