651
|
Mostaghel EA, Plymate S. New hormonal therapies for castration-resistant prostate cancer. Endocrinol Metab Clin North Am 2011; 40:625-42, x. [PMID: 21889725 PMCID: PMC3167094 DOI: 10.1016/j.ecl.2011.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Continued activation of the androgen receptor (AR) axis despite castration remains a critical force in the development of castration-resistant prostate cancer (CRPC). Therapeutic strategies designed to more effectively ablate tumoral androgen activity are required to improve clinical efficacy and prevent disease progression. Tumor-based alterations in expression and activity of the AR and in steroidogenic pathways mediating ligand generation facilitate the development of CRPC. This article reviews AR and ligand-dependent mechanisms underlying CRPC progression and the status of novel hormonal therapies targeting the AR axis that are currently in clinical and preclinical development.
Collapse
Affiliation(s)
- Elahe A Mostaghel
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
652
|
Cai C, Chen S, Ng P, Bubley GJ, Nelson PS, Mostaghel EA, Marck B, Matsumoto AM, Simon NI, Wang H, Chen S, Balk SP. Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors. Cancer Res 2011; 71:6503-13. [PMID: 21868758 DOI: 10.1158/0008-5472.can-11-0532] [Citation(s) in RCA: 350] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Relapse of castration-resistant prostate cancer (CRPC) that occurs after androgen deprivation therapy of primary prostate cancer can be mediated by reactivation of the androgen receptor (AR). One important mechanism mediating this AR reactivation is intratumoral conversion of the weak adrenal androgens DHEA and androstenedione into the AR ligands testosterone and dihydrotestosterone. DHEA and androstenedione are synthesized by the adrenals through the sequential actions of the cytochrome P450 enzymes CYP11A1 and CYP17A1, so that CYP17A1 inhibitors such as abiraterone are effective therapies for CRPC. However, the significance of intratumoral CYP17A1 and de novo androgen synthesis from cholesterol in CRPC, and the mechanisms contributing to CYP17A1 inhibitor resistance/relapse, remain to be determined. We report that AR activity in castration-resistant VCaP tumor xenografts can be restored through CYP17A1-dependent de novo androgen synthesis, and that abiraterone treatment of these xenografts imposes selective pressure for increased intratumoral expression of CYP17A1, thereby generating a mechanism for development of resistance to CYP17A1 inhibitors. Supporting the clinical relevance of this mechanism, we found that intratumoral expression of CYP17A1 was markedly increased in tumor biopsies from CRPC patients after CYP17A1 inhibitor therapy. We further show that CRPC cells expressing a progesterone responsive T877A mutant AR are not CYP17A1 dependent, but that AR activity in these cells is still steroid dependent and mediated by upstream CYP11A1-dependent intraturmoral pregnenolone/progesterone synthesis. Together, our results indicate that CRPCs resistant to CYP17A1 inhibition may remain steroid dependent and therefore responsive to therapies that can further suppress de novo intratumoral steroid synthesis.
Collapse
Affiliation(s)
- Changmeng Cai
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
653
|
Ryan CJ, Tindall DJ. Androgen receptor rediscovered: the new biology and targeting the androgen receptor therapeutically. J Clin Oncol 2011; 29:3651-8. [PMID: 21859989 DOI: 10.1200/jco.2011.35.2005] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Discoveries over the past decade suggest that castration-resistant prostate cancer (CRPC) is sensitive, but not resistant to, further manipulation of the androgen-androgen receptor (AR) axis. Several new therapies that target this axis have demonstrated clinical activity. In this article, preclinical and clinical findings occurring in the field of AR-targeted therapies are reviewed. Reviews of scientific and clinical development are divided into those occurring prereceptor (androgen production and conversion) and at the level of the receptor (AR aberrations and therapies targeting AR directly). Intracrine androgen production and AR amplification, among others, are among the principal aberrancies driving CRPC growth. Phase III data with abiraterone acetate and phase II data with MDV-3100, along with other similar therapies, confirm for the clinician that the scientific findings related to persistent AR signaling in a castrate milieu can be harnessed to produce significant clinical benefit for patients with the disease. Studies aimed at optimizing the timing of their use and exploring the mechanisms of resistance to these therapies are under way. The clinical success of therapies that directly target androgen synthesis as well as the most common aberrancies of the AR confirm that prostate cancer retains dependence on AR signaling, even in the castrate state.
Collapse
Affiliation(s)
- Charles J Ryan
- UCSF Helen Diller Family Comprehensive Cancer Center, 1600 Divisadero St, San Francisco, CA 94115, USA.
| | | |
Collapse
|
654
|
Hong SK, Kim JH, Lin MF, Park JI. The Raf/MEK/extracellular signal-regulated kinase 1/2 pathway can mediate growth inhibitory and differentiation signaling via androgen receptor downregulation in prostate cancer cells. Exp Cell Res 2011; 317:2671-82. [PMID: 21871886 DOI: 10.1016/j.yexcr.2011.08.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 12/18/2022]
Abstract
Upregulated ERK1/2 activity is correlated with androgen receptor (AR) downregulation in certain prostate cancer (PCa) that exhibits androgen deprivation-induced neuroendocrine differentiation, but its functional relevance requires elucidation. We found that sustained ERK1/2 activation using active Raf or MEK1/2 mutants is sufficient to induce AR downregulation at mRNA and protein levels in LNCaP. Downregulation of AR protein, but not mRNA, was blocked by proteasome inhibitors, MG132 and bortezomib, indicating that the pathway regulation is mediated at multiple points. Ectopic expression of a constitutively active AR inhibited Raf/MEK/ERK-mediated regulation of the differentiation markers, neuron-specific enolase and neutral endopeptidase, and the cyclin-dependent kinase inhibitors, p16(INK4A) and p21(CIP1), but not Rb phosphorylation and E2F1 expression, indicating that AR has a specific role in the pathway-mediated differentiation and growth inhibitory signaling. However, despite the sufficient role of Raf/MEK/ERK, its inhibition using U0126 or ERK1/2 knockdown could not block androgen deprivation-induced AR downregulation in an LNCaP neuroendocrine differentiation model, suggesting that additional signaling pathways are involved in the regulation. We additionally report that sustained Raf/MEK/ERK activity can downregulate full length as well as hormone binding domain-deficient AR isoforms in androgen-refractory C4-2 and CWR22Rv1, but not in LAPC4 and MDA-PCa-2b. Our study demonstrates a novel role of the Raf/MEK/ERK pathway in regulating AR expression in certain PCa types and provides an insight into PCa responses to its aberrant activation.
Collapse
Affiliation(s)
- Seung-Keun Hong
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
655
|
Advances in small molecule inhibitors of androgen receptor for the treatment of advanced prostate cancer. World J Urol 2011; 30:311-8. [PMID: 21833557 DOI: 10.1007/s00345-011-0745-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 07/29/2011] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Current treatments for localized prostate cancer include brachytherapy, external beam radiation, surgery, and active surveillance. Unfortunately, 20-40% of prostate cancer patients will experience recurrence and require hormonal therapies. These therapies involve androgen ablation by chemical or surgical castration and application of antiandrogens. Hormonal therapy is initially effective, but will inevitably fail and the disease will progress to lethal castration-resistant prostate cancer (CRPC) from which patients succumb within 2 years. CRPC is considered to be dependent on transcriptionally active androgen receptors (AR). This article reviews recent advances in the discovery and development of small molecule inhibitors of AR. METHODS A PubMed database search was performed for articles focused on small molecule inhibitors of AR for potential development for the treatment of prostate cancer. Compounds with broad effects on other pathways were not included. RESULTS Currently, there are several novel antiandrogens being tested in the clinic that have improved affinity for the AR and work by different mechanisms to the current battery of approved antiandrogens that are discussed. Small molecule inhibitors that interact with regions other than the AR ligand-binding pocket have been also been discovered. These small molecules include allosteric inhibitors of the LBD, compounds that alter AR conformation, and antagonists to the AR NTD and are highlighted. CONCLUSIONS CRPC is dependent upon transcriptionally active AR. Survival improvement may be achieved by complete blockade of all AR activity using novel small molecule inhibitors with unique mechanisms of action.
Collapse
|
656
|
Shiota M, Takeuchi A, Song Y, Yokomizo A, Kashiwagi E, Uchiumi T, Kuroiwa K, Tatsugami K, Fujimoto N, Oda Y, Naito S. Y-box binding protein-1 promotes castration-resistant prostate cancer growth via androgen receptor expression. Endocr Relat Cancer 2011; 18:505-17. [PMID: 21652770 DOI: 10.1530/erc-11-0017] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The androgen receptor (AR) is well known to play a central role in the pathogenesis of prostate cancer (PCa). In several studies, AR was overexpressed in castration-resistant PCa (CRPC). However, the mechanism of AR overexpression in CRPC is not fully elucidated. Y-box binding protein-1 (YB-1) is a pleiotropic transcription factor that is upregulated in CPRC. We aimed to elucidate the role of YB-1 in castration resistance of PCa and identify therapeutic potential of targeting YB-1. Using immunohistochemistry, we found that nuclear YB-1 expression significantly correlated with the Gleason score and AR expression in PCa tissues. In PCa cells, YB-1 regulated AR expression at the transcriptional level. Furthermore, YB-1 expression and nuclear localization were upregulated in CRPC cells. Overexpression of AR, as well as YB-1, conferred castration-resistant growth in LNCaP and 22Rv1 cells. Conversely, knocking down YB-1 resulted in suppressed cell growth and induced apoptosis, which was more efficient than knocking down AR in LNCaP cells. In other types of PCa cells, such as CRPC cells, knocking down YB-1 resulted in a significant reduction of cell growth. In conclusion, these findings suggested that YB-1 induces castration resistance in androgen-dependent PCa cells via AR expression. Thus, YB-1 may be a promising therapeutic target for PCa, as well as CRPC.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
657
|
Shiota M, Yokomizo A, Naito S. Increased androgen receptor transcription: a cause of castration-resistant prostate cancer and a possible therapeutic target. J Mol Endocrinol 2011; 47:R25-41. [PMID: 21504942 DOI: 10.1530/jme-11-0018] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Few effective therapies exist for the treatment of castration-resistant prostate cancer (CRPC). Recent evidence suggests that CRPC may be caused by augmented androgen/androgen receptor (AR) signaling, generally involving AR overexpression. Aberrant androgen/AR signaling associated with AR overexpression also plays a key role in prostate carcinogenesis. Although AR overexpression could be attributed to gene amplification, only 10-20% of CRPCs exhibit AR gene amplification, and aberrant AR expression in the remaining instances of CRPC is thought to be attributed to transcriptional, translational, and post-translational mechanisms. Overexpression of AR at the protein level, as well as the mRNA level, has been found in CRPC, suggesting a key role for transcriptional regulation of AR expression. Since the analysis of the AR promoter region in the 1990s, several transcription factors have been reported to regulate AR transcription. In this review, we discuss the molecules involved in the control of AR gene expression, with emphasis on its transcriptional control by transcription factors in prostate cancer. We also consider the therapeutic potential of targeting AR expression.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
658
|
Mostaghel EA, Marck BT, Plymate SR, Vessella RL, Balk S, Matsumoto AM, Nelson PS, Montgomery RB. Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clin Cancer Res 2011; 17:5913-25. [PMID: 21807635 DOI: 10.1158/1078-0432.ccr-11-0728] [Citation(s) in RCA: 469] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Abiraterone is a potent inhibitor of the steroidogenic enzyme CYP17A1 and suppresses tumor growth in patients with castration-resistant prostate cancer (CRPC). The effectiveness of abiraterone in reducing tumor androgens is not known, nor have mechanisms contributing to abiraterone resistance been established. EXPERIMENTAL DESIGN We treated human CRPC xenografts with abiraterone and measured tumor growth, tissue androgens, androgen receptor (AR) levels, and steroidogenic gene expression versus controls. RESULTS Abiraterone suppressed serum PSA levels and improved survival in two distinct CRPC xenografts: median survival of LuCaP35CR improved from 17 to 39 days (HR = 3.6, P = 0.0014) and LuCaP23CR from 14 to 24 days (HR = 2.5, P = 0.0048). Abiraterone strongly suppressed tumor androgens, with testosterone (T) decreasing from 0.49 ± 0.22 to 0.03 ± 0.01 pg/mg (P < 0.0001), and from 0.69 ± 0.36 to 0.03 ± 0.01 pg/mg (P = 0.002) in abiraterone-treated 23CR and 35CR, respectively, with comparable decreases in tissue DHT. Treatment was associated with increased expression of full-length AR (AR(FL)) and truncated AR variants (AR(FL) 2.3-fold, P = 0.008 and AR(del567es) 2.7-fold, P = 0.036 in 23 CR; AR(FL) 3.4-fold, P = 0.001 and AR(V7) 3.1-fold, P = 0.0003 in 35CR), and increased expression of the abiraterone target CYP17A1 (∼2.1-fold, P = 0.0001 and P = 0.028 in 23CR and 35CR, respectively) and transcript changes in other enzymes modulating steroid metabolism. CONCLUSIONS These studies indicate that abiraterone reduces CRPC growth via suppression of intratumoral androgens and that resistance to abiraterone may occur through mechanisms that include upregulation of CYP17A1, and/or induction of AR and AR splice variants that confer ligand-independent AR transactivation.
Collapse
Affiliation(s)
- Elahe A Mostaghel
- Division of Clinical Research and Human Biology, Fred Hutchinson Cancer Research Center; Department of Medicine, University of Washington, Seattle, Washington, USA.
| | | | | | | | | | | | | | | |
Collapse
|
659
|
Androgen receptor and its splice variants in prostate cancer. Cell Mol Life Sci 2011; 68:3971-81. [PMID: 21748469 DOI: 10.1007/s00018-011-0766-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/23/2011] [Accepted: 06/27/2011] [Indexed: 12/16/2022]
Abstract
Androgen receptor (AR) is a transcription factor that becomes active upon binding to androgens via its ligand-binding domain (LBD) or in response to signaling cascades initiated by growth factors and cytokines. The activity of AR requires regions within the N-terminal domain (NTD) in a manner that is distinct from the activation of related steroid hormone receptors. Unequivocal evidence has been amassed to consider that the AR axis is the most critical pathway for the progression of prostate cancer. Qualitatively distinct insights into AR pathobiology have been garnered including that AR-regulated gene expression is stage-specifically modulated during disease progression and that the ligand requirement for AR activity could be rendered dispensable because of the expression of constitutively active AR splice variants that are devoid of LBD. The recent appreciation of the clinical challenge that stems from non-gonadal androgens that are not inhibited by traditional hormonal therapies has been tangibly translated into the development of more potent drugs that can potentially lead towards achieving an androgen-free environment. The pre-clinical evidence that proves that AR NTD is a druggable target also forecasts a further paradigm shift in the management of advanced prostate cancer. These advancements together with the identification of more robust AR antagonists and their promising clinical outcome have renewed the hope that targeting the AR pathway remains a sound strategy in the clinical management of prostate cancer. Here, we address these developments with a greater emphasis on the rapidly growing literature on AR splice variants.
Collapse
|
660
|
Guo Z, Qiu Y. A new trick of an old molecule: androgen receptor splice variants taking the stage?! Int J Biol Sci 2011; 7:815-22. [PMID: 21750650 PMCID: PMC3133889 DOI: 10.7150/ijbs.7.815] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 06/20/2011] [Indexed: 11/07/2022] Open
Abstract
Prostate cancer is the second leading cause of cancer-related death in American men. Although most prostate cancers are initially androgen-dependent and respond to androgen ablation therapy, majority of them eventually relapse and progress into incurable castration-resistant (or hormone refractory) prostate cancer. The underlying mechanisms are the focus of intensive investigation for development of more effective treatment. Mounting evidence from both clinical and basic research has demonstrated that the activity of the androgen receptor (AR) is still required for castration-resistant prostate cancer. Multiple mechanisms by which AR is re-activated under androgen-depleted conditions may be involved in the development of castration resistance. The recent identification of AR splicing variants may add another layer of complexity in AR biology. The present review summarizes recent progress in study of AR splicing variants in prostate cancer.
Collapse
Affiliation(s)
- Zhiyong Guo
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
661
|
Sivanandam A, Murthy S, Chinnakannu K, Bai VU, Kim SH, Barrack ER, Menon M, Reddy GPV. Calmodulin protects androgen receptor from calpain-mediated breakdown in prostate cancer cells. J Cell Physiol 2011; 226:1889-96. [PMID: 21506119 DOI: 10.1002/jcp.22516] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although inactivation of the androgen receptor (AR) by androgen-ablation or anti-androgen treatment has been frontline therapy for disseminated prostate cancer for over 60 years, it is not curative because castration-resistant prostate cancer cells retain AR activity. Therefore, curative strategy should include targeted elimination of AR protein. Since AR binds to calmodulin (CaM), and since CaM-binding proteins are targets of calpain (Cpn)-mediated proteolysis, we studied the role of CaM and Cpn in AR breakdown in prostate cancer cells. Whereas the treatment of prostate cancer cells individually with anti-CaM drug or calcimycin, which increases intracellular Ca(++) and activates Cpn, led to minimal AR breakdown, combined treatment led to a precipitous decrease in AR protein levels. This decrease in AR protein occurred without noticeable changes in AR mRNA levels, suggesting an increase in AR protein turnover rather than inhibition of AR mRNA expression. Thus, CaM inactivation seems to sensitize AR to Cpn-mediated breakdown in prostate cancer cells. Consistent with this possibility, purified recombinant human AR (rhAR) underwent proteolysis in the presence of purified Cpn, and the addition of purified CaM to the incubation blocked rhAR proteolysis. Together, these observations demonstrate that AR is a Cpn target and AR-bound CaM plays an important role in protecting AR from Cpn-mediated breakdown in prostate cancer cells. These observations raise an intriguing possibility that anti-CaM drugs in combination with Cpn-activating agents may offer a curative strategy for the treatment of prostate cancer, which relies on AR for growth and survival.
Collapse
Affiliation(s)
- Arun Sivanandam
- Vattikuti Urology Institute, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | | | |
Collapse
|
662
|
Nicholson TM, Ricke WA. Androgens and estrogens in benign prostatic hyperplasia: past, present and future. Differentiation 2011; 82:184-99. [PMID: 21620560 DOI: 10.1016/j.diff.2011.04.006] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 04/19/2011] [Accepted: 04/26/2011] [Indexed: 01/28/2023]
Abstract
Benign prostatic hyperplasia (BPH) and associated lower urinary tract symptoms (LUTS) are common clinical problems in urology. While the precise molecular etiology remains unclear, sex steroids have been implicated in the development and maintenance of BPH. Sufficient data exists linking androgens and androgen receptor pathways to BPH and use of androgen reducing compounds, such as 5α-reductase inhibitors which block the conversion of testosterone into dihydrotestosterone, are a component of the standard of care for men with LUTS attributed to an enlarged prostate. However, BPH is a multifactorial disease and not all men respond well to currently available treatments, suggesting factors other than androgens are involved. Testosterone, the primary circulating androgen in men, can also be metabolized via CYP19/aromatase into the potent estrogen, estradiol-17β. The prostate is an estrogen target tissue and estrogens directly and indirectly affect growth and differentiation of prostate. The precise role of endogenous and exogenous estrogens in directly affecting prostate growth and differentiation in the context of BPH is an understudied area. Estrogens and selective estrogen receptor modulators (SERMs) have been shown to promote or inhibit prostate proliferation signifying potential roles in BPH. Recent research has demonstrated that estrogen receptor signaling pathways may be important in the development and maintenance of BPH and LUTS; however, new models are needed to genetically dissect estrogen regulated molecular mechanisms involved in BPH. More work is needed to identify estrogens and associated signaling pathways in BPH in order to target BPH with dietary and therapeutic SERMs.
Collapse
Affiliation(s)
- Tristan M Nicholson
- University of Rochester School of Medicine & Dentistry, Rochester, NY, United States
| | | |
Collapse
|
663
|
Li J, Cao B, Liu X, Fu X, Xiong Z, Chen L, Sartor O, Dong Y, Zhang H. Berberine suppresses androgen receptor signaling in prostate cancer. Mol Cancer Ther 2011; 10:1346-56. [PMID: 21613449 DOI: 10.1158/1535-7163.mct-10-0985] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The androgen receptor (AR) is critical in the normal development and function of the prostate, as well as in prostate carcinogenesis. Androgen deprivation therapy is the mainstay in the treatment of advanced prostate cancer; however, after an initial response, the disease inevitably progresses to castration-resistant prostate cancer (CRPC). Recent evidence suggests that continued AR activation, sometimes in a ligand-independent manner, is commonly associated with the development of CRPC. Thus, novel agents targeting the AR are urgently needed as a strategic step in developing new therapies for this disease state. In this study, we investigated the effect of berberine on AR signaling in prostate cancer. We report that berberine decreased the transcriptional activity of AR. Berberine did not affect AR mRNA expression, but induced AR protein degradation. Several ligand-binding, domain-truncated AR splice variants have been identified, and these variants are believed to promote the development of CRPC in patients. Interestingly, we found that these variants were more susceptible to berberine-induced degradation than the full-length AR. Furthermore, although the growth of LNCaP xenografts in nude mice was inhibited by berberine, and AR expression was reduced in the tumors, the morphology and AR expression in normal prostates were not affected. This study is the first to show that berberine suppresses AR signaling and suggests that berberine, or its derivatives, presents a promising agent for the prevention and/or treatment of prostate cancer.
Collapse
Affiliation(s)
- Jing Li
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
664
|
Farooqi AA, Bhatti S. Getting personal with prostate cancer: adding new pieces to an incomplete jigsaw puzzle. Urol Int 2011; 87:127-33. [PMID: 21540577 DOI: 10.1159/000327723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prostate cancer is a multifaceted molecular anomaly that is insurmountable to date because of the orchestrated network of negative regulators that drive carcinogenesis. A substantial fraction of information has been added that gives yet an unclear snapshot of therapeutic interventions in prostate cancer. Increasing sophisticated interpretations point towards some important aspects of prostate cancer aggressiveness like microRNAs, prostate cancer stem cells and TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) refractoriness. In this review, we will evaluate the push and pull between oncomirs and tumor suppressors in tipping the scales of cancer. Furthermore, multicomponent rational drug designs with a claim to overcome stumbling blocks will be discussed. Translation of the outcomes achieved in the understanding of carcinogenesis at the patient's bedside is possibly the principal challenge in cancer research.
Collapse
Affiliation(s)
- Ammad A Farooqi
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan. ammadahmad638 @ yahoo.com
| | | |
Collapse
|
665
|
Knudsen KE, Kelly WK. Outsmarting androgen receptor: creative approaches for targeting aberrant androgen signaling in advanced prostate cancer. Expert Rev Endocrinol Metab 2011; 6:483-493. [PMID: 22389648 PMCID: PMC3289283 DOI: 10.1586/eem.11.33] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Prostatic adenocarcinomas are reliant on androgen receptor (AR) activity for survival and progression. Therefore, first-line therapeutic intervention for disseminated disease entails the use of AR-directed therapeutics, achieved through androgen deprivation and direct AR antagonists. While initially effective, recurrent, 'castrate-resistant' prostate cancers arise, for which there is no durable means of treatment. An abundance of clinical study and preclinical modeling has led to the revelation that restored AR activity is a major driver of therapeutic failure and castrate-resistant prostate cancer development. The mechanisms underpinning AR reactivation have been identified, providing the foundation for a new era of drug discovery and rapid translation into the clinic. As will be reviewed in this article, these creative new ways of suppressing AR show early promise.
Collapse
Affiliation(s)
- Karen E Knudsen
- Kimmel Cancer Center, Thomas Jefferson University, 233 10th Street, BLSB 1008, Philadelphia, PA 19107, USA
| | - William Kevin Kelly
- Solid Tumor Oncology, 834 Chestnut Street, Ben Franklin House, Suite 314, Philadelphia, PA 19107, USA
| |
Collapse
|
666
|
Expression of androgen receptor splice variants in prostate cancer bone metastases is associated with castration-resistance and short survival. PLoS One 2011; 6:e19059. [PMID: 21552559 PMCID: PMC3084247 DOI: 10.1371/journal.pone.0019059] [Citation(s) in RCA: 386] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 03/23/2011] [Indexed: 11/28/2022] Open
Abstract
Background Constitutively active androgen receptor variants (AR-V) lacking the ligand binding domain (LBD) may promote the development of castration-resistant prostate cancer (CRPC). The expression of AR-Vs in the clinically most important metastatic site, the bone, has, however, not been well documented. Our aim was therefore to compare levels of AR-Vs in hormone-naive (HN) and CRPC bone metastases in comparison to primary PC and non-malignant prostate tissue, as well as in relation to AR protein expression, whole-genome transcription profiles and patient survival. Methodology/Principal Findings Hormone-naïve (n = 10) and CRPC bone metastases samples (n = 30) were obtained from 40 patients at metastasis surgery. Non-malignant and malignant prostate samples were acquired from 13 prostatectomized men. Levels of full length AR (ARfl) and AR-Vs termed AR-V1, AR-V7, and AR-V567es mRNA were measured with RT-PCR and whole-genome transcription profiles with an Illumina Beadchip array. Protein levels were examined by Western blotting and immunohistochemistry. Transcripts for ARfl, AR-V1, and AR-V7 were detected in most primary tumors and metastases, and levels were significantly increased in CRPC bone metastases. The AR-V567es transcript was detected in 23% of the CRPC bone metastases only. A sub-group of CRPC bone metastases expressed LBD-truncated AR proteins at levels comparable to the ARfl. Detectable AR-V567es and/or AR-V7 mRNA in the upper quartile, seen in 1/3 of all CRPC bone metastases, was associated with a high nuclear AR immunostaining score, disturbed cell cycle regulation and short survival. Conclusions/Significance Expression of AR-Vs is increased in CRPC compared to HN bone metastases and associated with a particularly poor prognosis. Further studies are needed to test if patients expressing such AR-Vs in their bone metastases benefit more from drugs acting on or down-stream of these AR-Vs than from therapies inhibiting androgen synthesis.
Collapse
|
667
|
Sartor O. Potential synergistic implications for stromal-targeted radiopharmaceuticals in bone-metastatic prostate cancer. Asian J Androl 2011; 13:366-8. [PMID: 21499278 DOI: 10.1038/aja.2011.23] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Genetic heterogeneity and chemotherapy-resistant 'stem cells' represent two of the most pressing issues in devising new strategies for the treatment of advanced prostate cancer. Though curative strategies have long been present for men with localized disease, metastatic prostate cancer is currently incurable. Though substantial improvements in outcomes are now possible through the utilization of newly approved therapies, novel combinations are clearly needed. Herein we describe potentially synergistic interactions between bone stromal-targeted radiopharmaceuticals and other therapies for treatment of bone-metastatic prostate cancer. Radiation has long been known to synergize with cytotoxic chemotherapies and recent data also suggest the possibility of synergy when combining radiation and immune-based strategies. Combination therapies will be required to substantially improve survival for men with castrate-resistant metastatic prostate cancer and we hypothesize that bone-targeted radiopharmaceuticals will play an important role in this process.
Collapse
Affiliation(s)
- Oliver Sartor
- Department of Medicine, Tulane Medical School, New Orleans, LA 70115, USA.
| |
Collapse
|
668
|
Lamont KR, Tindall DJ. Minireview: Alternative activation pathways for the androgen receptor in prostate cancer. Mol Endocrinol 2011; 25:897-907. [PMID: 21436259 DOI: 10.1210/me.2010-0469] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Advanced prostate tumors, which are androgen dependent, are often initially treated in the clinic with hormone ablation therapy, either through surgical castration or administration of small-molecule antiandrogens. Most tumors respond favorably to these treatments, exhibiting regression of the tumor, amelioration of symptoms, and a decrease of prostate-specific antigen in patient sera. However, with time, the majority of tumors recur in a more aggressive, castration-resistant (CR) phenotype. Currently, no effective treatment exists for this stage of the cancer, and patients ultimately succumb to metastatic disease. The androgen receptor (AR), which is a member of the nuclear hormone receptor superfamily of proteins, is the transcription factor that is responsible for mediating the effects of androgens upon target tissues, and it has been demonstrated to play a central role in the development and progression of prostate cancer. Despite CR tumor cells being able to continue to grow after hormonal therapy in which testosterone and dihydrotestosterone are markedly reduced, they still require the expression and activity of the AR. The AR can become transactivated in this low-androgen environment through a number of different mechanisms, including amplification and mutation of the receptor, cross talk with other signaling pathways, and altered regulation by coregulatory proteins. This review will summarize the most current data regarding non-ligand-mediated activation of the AR in prostate cancer cells. Developing work in this field aims to more clearly elucidate the signals that drive AR activity independently of androgens in CR disease so that better therapeutic targets can be developed for patients with this stage of highly aggressive prostate carcinoma.
Collapse
Affiliation(s)
- Kristin R Lamont
- Department of Urology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, Minnesota 55901, USA
| | | |
Collapse
|
669
|
Östling P, Leivonen SK, Aakula A, Kohonen P, Mäkelä R, Hagman Z, Edsjö A, Kangaspeska S, Edgren H, Nicorici D, Bjartell A, Ceder Y, Perälä M, Kallioniemi O. Systematic analysis of microRNAs targeting the androgen receptor in prostate cancer cells. Cancer Res 2011; 71:1956-67. [PMID: 21343391 DOI: 10.1158/0008-5472.can-10-2421] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Androgen receptor (AR) is expressed in all stages of prostate cancer progression, including in castration-resistant tumors. Eliminating AR function continues to represent a focus of therapeutic investigation, but AR regulatory mechanisms remain poorly understood. To systematically characterize mechanisms involving microRNAs (miRNAs), we conducted a gain-of function screen of 1129 miRNA molecules in a panel of human prostate cancer cell lines and quantified changes in AR protein content using protein lysate microarrays. In this way, we defined 71 unique miRNAs that influenced the level of AR in human prostate cancer cells. RNA sequencing data revealed that the 3'UTR of AR (and other genes) is much longer than currently used in miRNA target prediction programs. Our own analyses predicted that most of the miRNA regulation of AR would target an extended 6 kb 3'UTR. 3'UTR-binding assays validated 13 miRNAs that are able to regulate this long AR 3'UTR (miR-135b, miR-185, miR-297, miR-299-3p, miR-34a, miR-34c, miR-371-3p, miR-421, miR-449a, miR-449b, miR-634, miR-654-5p, and miR-9). Fifteen AR downregulating miRNAs decreased androgen-induced proliferation of prostate cancer cells. In particular, analysis of clinical prostate cancers confirmed a negative correlation of miR-34a and miR-34c expression with AR levels. Our findings establish that miRNAs interacting with the long 3'UTR of the AR gene are important regulators of AR protein levels, with implications for developing new therapeutic strategies to inhibit AR function and androgen-dependent cell growth.
Collapse
Affiliation(s)
- Päivi Östling
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
670
|
Abstract
Prostate cancer is a major health problem as it continues to be the most frequently diagnosed cancer in men in the Western world. While improved early detection significantly decreased mortality, prostate cancer still remains the second leading cause of cancer-related death in Western men. Understanding the mechanisms of prostate cancer initiation and progression should have a significant impact on development of novel therapeutic approaches that can help to combat this disease. The recent explosion of novel high-throughput genetic technologies together with studies in animal models and human tissues allowed a comprehensive analysis and functional validation of the molecular changes. This chapter will summarize and discuss recently identified critical genetic and epigenetic changes that drive prostate cancer initiation and progression. These discoveries should help concentrate the efforts of drug development on key pathways and molecules, and finally translate the knowledge that is gained from mechanistic studies into effective treatments.
Collapse
Affiliation(s)
- Beatrice S Knudsen
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | |
Collapse
|
671
|
Sadar MD. Small molecule inhibitors targeting the "achilles' heel" of androgen receptor activity. Cancer Res 2011; 71:1208-13. [PMID: 21285252 DOI: 10.1158/0008-5472.can_10-3398] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Androgen ablation therapy remains the gold standard for the treatment of advanced prostate cancer, but unfortunately, it is not curative, and eventually the disease will return as lethal castration-resistant prostate cancer (CRPC). Mounting evidence supports the concept that development of CRPC is causally related to continued transactivation of androgen receptor (AR). All current therapies that target the AR are dependent on the presence of its C-terminal ligand-binding domain (LBD). However, it is the N-terminal domain (NTD) of the AR that is the "Achilles' heel" of AR activity, with AF-1 being essential for AR activity regardless of androgen. Recent efforts to develop drugs to the AR NTD have yielded EPI-001, a small molecule, sintokamide peptides, and decoys to the AR NTD with EPI-001, the best characterized and most promising for clinical development based upon specificity, low toxicity, and cytoreductive antitumor activity.
Collapse
Affiliation(s)
- Marianne D Sadar
- Department of Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada.
| |
Collapse
|
672
|
Li Y, Alsagabi M, Fan D, Bova GS, Tewfik AH, Dehm SM. Intragenic rearrangement and altered RNA splicing of the androgen receptor in a cell-based model of prostate cancer progression. Cancer Res 2011; 71:2108-17. [PMID: 21248069 DOI: 10.1158/0008-5472.can-10-1998] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Androgen depletion for advanced prostate cancer (PCa) targets activity of the androgen receptor (AR), a steroid receptor transcription factor required for PCa growth. The emergence of lethal castration-resistant PCa (CRPCa) is marked by aberrant reactivation of the AR despite ongoing androgen depletion. Recently, alternative splicing has been described as a mechanism giving rise to COOH-terminally truncated, constitutively active AR isoforms that can support the CRPCa phenotype. However, the pathologic origin of these truncated AR isoforms is unknown. The goal of this study was to investigate alterations in AR expression arising in a cell-based model of PCa progression driven by truncated AR isoform activity. We show that stable, high-level expression of truncated AR isoforms in 22Rv1 CRPCa cells is associated with intragenic rearrangement of an approximately 35-kb AR genomic segment harboring a cluster of previously described alternative AR exons. Analysis of genomic data from clinical specimens indicated that related AR intragenic copy number alterations occurred in CRPCa in the context of AR amplification. Cloning of the break fusion junction in 22Rv1 cells revealed long interspersed nuclear elements (LINE-1) flanking the rearranged segment and a DNA repair signature consistent with microhomology-mediated, break-induced replication. This rearrangement served as a marker for the emergence of a rare subpopulation of CRPCa cells expressing high levels of truncated AR isoforms during PCa progression in vitro. Together, these data provide the first report of AR intragenic rearrangements in CRPCa and an association with pathologic expression of truncated AR isoforms in a cell-based model of PCa progression.
Collapse
Affiliation(s)
- Yingming Li
- Department of Electrical and Computer Engineering, Masonic Cancer Center, University of Minnesota, Twin Cities, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
673
|
Sharifi N, McPhaul MJ, Auchus RJ. "Getting from here to there"--mechanisms and limitations to the activation of the androgen receptor in castration-resistant prostate cancer. J Investig Med 2010; 58:938-44. [PMID: 21030877 PMCID: PMC5589138 DOI: 10.231/jim.0b013e3181ff6bb8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Despite the clinical regression that typifies the initial response of advanced prostate cancer to gonadal testosterone depletion, tumors eventually progress. However, evidence supports the concept that signaling via the androgen receptor (AR) is important in progression to castration-resistant prostate cancer (CRPC).Steroid hormones are synthesized from cholesterol in a series of tightly regulated steps involving the cleavage of carbon-carbon bonds, the introduction of functional groups derived from activated molecular oxygen, and the oxidation and reduction of carbon-carbon and carbon-oxygen bonds. In the adrenal cortex and gonads, steroidogenesis is tightly regulated, very efficient, and highly directional. In contrast, steroid metabolism in peripheral tissues is characterized by competing enzymes and pathways, low efficiency, and great variability. Many steps are mechanistically and functionally irreversible, but some are not, and the repertoire of specific enzymes, intracellular redox state, and access to hormone precursors all contribute to steroid flux and accumulation.The investigation of steroid metabolizing enzymes in CRPC often assumes that the pathways and the patterns of metabolism mirror those defined in the adrenals and the gonads and validated by human deficiency syndromes. Unfortunately, several potential pathways using different enzymes might contribute substantially to androgen synthesis in CRPC. Finally, a number of mechanisms have been reported by which the AR is activated independent of ligand. Recent observations have suggested that AR forms with constitutive activity occur in CRPC, stimulating transcription without a requirement for ligand. This overview outlines a broad view of how the mechanisms by which the AR may be activated, whether by alternate pathways of androgen synthesis or the production of alternate forms of the AR, with an emphasis on what aspects must be accounted for when using model systems to explore the biology of human prostate cancer.
Collapse
Affiliation(s)
- Nima Sharifi
- Divisions of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| | | | | |
Collapse
|
674
|
Shen MM, Abate-Shen C. Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 2010; 24:1967-2000. [PMID: 20844012 DOI: 10.1101/gad.1965810] [Citation(s) in RCA: 712] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite much recent progress, prostate cancer continues to represent a major cause of cancer-related mortality and morbidity in men. Since early studies on the role of the androgen receptor that led to the advent of androgen deprivation therapy in the 1940s, there has long been intensive interest in the basic mechanisms underlying prostate cancer initiation and progression, as well as the potential to target these processes for therapeutic intervention. Here, we present an overview of major themes in prostate cancer research, focusing on current knowledge of principal events in cancer initiation and progression. We discuss recent advances, including new insights into the mechanisms of castration resistance, identification of stem cells and tumor-initiating cells, and development of mouse models for preclinical evaluation of novel therapuetics. Overall, we highlight the tremendous research progress made in recent years, and underscore the challenges that lie ahead.
Collapse
Affiliation(s)
- Michael M Shen
- Department of Medicine, Columbia University Medical Center, New York, New York 10032, USA.
| | | |
Collapse
|
675
|
Mashima T, Okabe S, Seimiya H. Pharmacological targeting of constitutively active truncated androgen receptor by nigericin and suppression of hormone-refractory prostate cancer cell growth. Mol Pharmacol 2010; 78:846-54. [PMID: 20709811 DOI: 10.1124/mol.110.064790] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
In prostate cancer, blockade of androgen receptor (AR) signaling confers a therapeutic benefit. Nevertheless, this standard therapy allows relapse of hormone-refractory prostate cancer (HRPC) with a poor prognosis. HRPC cells often express variant ARs, such as point-mutated alleles and splicing isoforms, resulting in androgen-independent cell growth and resistance to antiandrogen (e.g., flutamide). However, a pharmacological strategy to block such aberrant ARs remains to be established. Here, we established a reporter system that monitors AR-mediated activation of a prostate-specific antigen (PSA) promoter. Our chemical library screening revealed that the antibiotic nigericin inhibits AR-mediated activation of the PSA promoter and PSA production in prostate cancer cells. Nigericin suppressed the androgen-dependent LNCaP cell growth even though the cells expressed a flutamide-resistant mutant AR. These effects were caused by AR suppression at the mRNA and post-translational levels. In HRPC 22Rv1 cells, which express the full-length AR and the constitutively active, truncated ARs lacking the carboxyl-terminal ligand-binding domain, small interfering RNA-mediated knockdown of both AR isoforms efficiently suppressed the androgen-independent cell growth, whereas knockdown of the full-length AR alone had no significant effect. It is noteworthy that nigericin was able to mimic the knockdown of both AR isoforms: it reduced the expression of the full-length and the truncated ARs, and it induced G(1) cell-cycle arrest and apoptosis of 22Rv1 cells. These observations suggest that nigericin-like compounds that suppress AR expression at the mRNA level could be applied as new-type therapeutic agents that inhibit a broad spectrum of AR variants in HRPC.
Collapse
MESH Headings
- Androgen Receptor Antagonists/pharmacology
- Antibiotics, Antineoplastic/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drug Resistance, Neoplasm
- Drug Screening Assays, Antitumor
- Gene Knockdown Techniques
- Genes, Reporter
- Humans
- Male
- Nigericin/pharmacology
- Promoter Regions, Genetic
- Prostate-Specific Antigen/biosynthesis
- Prostate-Specific Antigen/genetics
- Prostatic Neoplasms/pathology
- Protein Isoforms/biosynthesis
- Protein Isoforms/genetics
- Protein Isoforms/physiology
- Protein Processing, Post-Translational
- RNA, Messenger/biosynthesis
- RNA, Small Interfering/genetics
- Receptors, Androgen/biosynthesis
- Receptors, Androgen/genetics
- Receptors, Androgen/physiology
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Tetsuo Mashima
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | | | | |
Collapse
|
676
|
Hara T. [Research and development of hormone-related anti-prostate cancer drugs-17, 20-lyase inhibitors for prostate cancer]. Nihon Yakurigaku Zasshi 2010; 136:192-197. [PMID: 20948153 DOI: 10.1254/fpj.136.192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
|
677
|
Abstract
Prostate cancer represents a major health problem in men worldwide. Androgens are required for the growth and maintenance of the prostate. Androgens act by binding to the androgen receptor (AR), a nuclear receptor transcription factor present in the prostate tissues. Most prostate tumors also retain their androgen dependence; therefore, androgen ablation is usually the preferred initial therapeutic approach for the treatment of advanced prostate cancer patients. This review summarizes the current information regarding the role of androgens in prostate cancer.
Collapse
Affiliation(s)
- Sujit Basu
- Department of Pathology, Ohio State University, Columbus, OH 43210 USA
| | - Donald J. Tindall
- Departments of Urology and Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| |
Collapse
|
678
|
Tang Y, Li X, Liu Z, Simoneau AR, Xie J, Zi X. Flavokawain B, a kava chalcone, induces apoptosis via up-regulation of death-receptor 5 and Bim expression in androgen receptor negative, hormonal refractory prostate cancer cell lines and reduces tumor growth. Int J Cancer 2010; 127:1758-68. [PMID: 20112340 DOI: 10.1002/ijc.25210] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Limited success has been achieved in extending the survival of patients with metastatic and hormone-refractory prostate cancer (HRPC). There is a strong need for novel agents in the treatment and prevention of HRPC. We have shown that flavokawain B (FKB), a kava chalcone, is about 4- to 12-fold more effective in reducing the cell viabilities of androgen receptor (AR)-negative, HRPC cell lines DU145 and PC-3 than AR-positive, hormone-sensitive prostate cancer cell lines LAPC4 and LNCaP, with minimal effect on normal prostatic epithelial and stromal cells. FKB induces apoptosis with an associated increased expression of proapoptotic proteins: death receptor-5, Bim and Puma and a decreased expression of inhibitors of apoptosis protein: XIAP and survivin. Among them, Bim expression was significantly induced by FKB as early as 4 hr of the treatment. Knockdown of Bim expression by short-hairpin RNAs attenuates the inhibitory effect on anchorage-dependent and -independent growth and caspase cleavages induced by FKB. These findings suggest that the effect of FKB, at least in part, requires Bim expression. In addition, FKB synergizes with TRAIL for markedly enhanced induction of apoptosis. Furthermore, FKB treatment of mice bearing DU145 xenograft tumors results in tumor growth inhibition and increases Bim expression in tumor tissues. Together, these results suggest robust mechanisms for FKB induction of apoptosis preferentially for HRPC and the potential usefulness of FKB for prevention and treatment of HRPC in an adjuvant setting.
Collapse
Affiliation(s)
- Yaxiong Tang
- Department of Urology, University of California, Irvine, Orange, CA 92868, USA
| | | | | | | | | | | |
Collapse
|
679
|
Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proc Natl Acad Sci U S A 2010; 107:16759-65. [PMID: 20823238 DOI: 10.1073/pnas.1012443107] [Citation(s) in RCA: 501] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Androgen receptor (AR) splice variants lacking the ligand binding domain (ARVs), originally isolated from prostate cancer cell lines derived from a single patient, are detected in normal and malignant human prostate tissue, with the highest levels observed in late stage, castration-resistant prostate cancer. The most studied variant (called AR-V7 or AR3) activates AR reporter genes in the absence of ligand and therefore, could play a role in castration resistance. To explore the range of potential ARVs, we screened additional human and murine prostate cancer models using conventional and next generation sequencing technologies and detected several structurally diverse AR isoforms. Some, like AR-V7/AR3, display gain of function, whereas others have dominant interfering activity. We also find that ARV expression increases acutely in response to androgen withdrawal, is suppressed by testosterone, and in some models, is coupled to full-length AR (AR-FL) mRNA production. As expected, constitutively active, ligand-independent ARVs such as AR-V7/AR3 are sufficient to confer anchorage-independent (in vitro) and castration-resistant (in vivo) growth. Surprisingly, this growth is blocked by ligand binding domain-targeted antiandrogens, such as MDV3100, or by selective siRNA silencing of AR-FL, indicating that the growth-promoting effects of ARVs are mediated through AR-FL. These data indicate that the increase in ARV expression in castrate-resistant prostate cancer is an acute response to castration rather than clonal expansion of castration or antiandrogen-resistant cells expressing gain of function ARVs, and furthermore, they provide a strategy to overcome ARV function in the clinic.
Collapse
|
680
|
Leung YK, Lam HM, Wu S, Song D, Levin L, Cheng L, Wu CL, Ho SM. Estrogen receptor beta2 and beta5 are associated with poor prognosis in prostate cancer, and promote cancer cell migration and invasion. Endocr Relat Cancer 2010; 17:675-89. [PMID: 20501637 PMCID: PMC2891483 DOI: 10.1677/erc-09-0294] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Estrogens play a pivotal role in the development and progression of prostate cancer (PCa). Their actions are mediated by estrogen receptors (ERs), particularly ERbeta in the prostate epithelium. With the discovery of ERbeta isoforms, data from previous studies that focused principally on the wild-type ERbeta (ERbeta1) may not be adequate in explaining the still controversial role of ERbeta(s) in prostate carcinogenesis. In this study, using newly generated isoform-specific antibodies, immunohistochemistry (IHC) was performed on a tumor microarray comprised of 144 specimens. IHC results were correlated with pathological and clinical follow-up data to delineate the distinct roles of ERbeta1, ERbeta2, and ERbeta5 in PCa. ERbeta2 was commonly found in the cytoplasm and was the most abundant isoform followed by ERbeta1 localized predominantly in the nucleus, and ERbeta5 was primarily located in the cytoplasm. Logistic regression analyses demonstrated that nuclear ERbeta2 (nERbeta2) is an independent prognostic marker for prostate specific antigen (PSA) failure and postoperative metastasis (POM). In a Kaplan-Meier analysis, the combined expression of both nERbeta2 and cytoplasmic ERbeta5 identified a group of patients with the shortest POM-free survival. Cox proportional hazard models revealed that nERbeta2 predicted shorter time to POM. In concordance with IHC data, stable, ectopic expression of ERbeta2 or ERbeta5 enhanced PCa cell invasiveness but only PCa cells expressing ERbeta5 exhibited augmented cell migration. This is the first study to uncover a metastasis-promoting role of ERbeta2 and ERbeta5 in PCa, and show that the two isoforms, singularly and conjointly, have prognostic values for PCa progression. These findings may aid future clinical management of PCa.
Collapse
Affiliation(s)
- Yuet-Kin Leung
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental HealthCollege of Medicine, University of Cincinnati Medical CenterCincinnati, Ohio, 45267USA
- Center for Environmental GeneticsCollege of Medicine, University of Cincinnati Medical CenterCincinnati, Ohio, 45267USA
- Cancer CenterCollege of Medicine, University of Cincinnati Medical CenterCincinnati, Ohio, 45267USA
| | - Hung-Ming Lam
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental HealthCollege of Medicine, University of Cincinnati Medical CenterCincinnati, Ohio, 45267USA
| | - Shulin Wu
- Department of PathologyMassachusetts General Hospital and Harvard Medical SchoolBoston, Massachusetts, 02114USA
| | - Dan Song
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental HealthCollege of Medicine, University of Cincinnati Medical CenterCincinnati, Ohio, 45267USA
| | - Linda Levin
- Division of Epidemiology and Biostatistics, Department of Environmental HealthCollege of Medicine, University of Cincinnati Medical CenterCincinnati, Ohio, 45267USA
| | - Liang Cheng
- Department of Pathology and Laboratory MedicineIndiana UniversityIndianapolis, Indiana, 46202USA
| | - Chin-Lee Wu
- Department of PathologyMassachusetts General Hospital and Harvard Medical SchoolBoston, Massachusetts, 02114USA
| | - Shuk-Mei Ho
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental HealthCollege of Medicine, University of Cincinnati Medical CenterCincinnati, Ohio, 45267USA
- Center for Environmental GeneticsCollege of Medicine, University of Cincinnati Medical CenterCincinnati, Ohio, 45267USA
- Cancer CenterCollege of Medicine, University of Cincinnati Medical CenterCincinnati, Ohio, 45267USA
- (Correspondence should be addressed to S-M Ho at Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, College of Medicine, University of Cincinnati Medical Center; )
| |
Collapse
|
681
|
Koochekpour S. Androgen receptor signaling and mutations in prostate cancer. Asian J Androl 2010; 12:639-57. [PMID: 20711217 PMCID: PMC3006239 DOI: 10.1038/aja.2010.89] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 07/02/2010] [Accepted: 07/14/2010] [Indexed: 12/19/2022] Open
Abstract
Normal and neoplastic growth of the prostate gland are dependent on androgen receptor (AR) expression and function. Androgenic activation of the AR, in association with its coregulatory factors, is the classical pathway that leads to transcriptional activity of AR target genes. Alternatively, cytoplasmic signaling crosstalk of AR by growth factors, neurotrophic peptides, cytokines or nonandrogenic hormones may have important roles in prostate carcinogenesis and in metastatic or androgen-independent (AI) progression of the disease. In addition, cross-modulation by various nuclear transcription factors acting through basal transcriptional machinery could positively or negatively affect the AR or AR target genes expression and activity. Androgen ablation leads to an initial favorable response in a significant number of patients; however, almost invariably patients relapse with an aggressive form of the disease known as castration-resistant or hormone-refractory prostate cancer (PCa). Understanding critical molecular events that lead PCa cells to resist androgen-deprivation therapy is essential in developing successful treatments for hormone-refractory disease. In a significant number of hormone-refractory patients, the AR is overexpressed, mutated or genomically amplified. These genetic alterations maintain an active presence for a highly sensitive AR, which is responsive to androgens, antiandrogens or nonandrogenic hormones and collectively confer a selective growth advantage to PCa cells. This review provides a brief synopsis of the AR structure, AR coregulators, posttranslational modifications of AR, duality of AR function in prostate epithelial and stromal cells, AR-dependent signaling, genetic changes in the form of somatic and germline mutations and their known functional significance in PCa cells and tissues.
Collapse
Affiliation(s)
- Shahriar Koochekpour
- Department of Urology and Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
682
|
Hu R, Denmeade SR, Luo J. Molecular processes leading to aberrant androgen receptor signaling and castration resistance in prostate cancer. Expert Rev Endocrinol Metab 2010; 5:753-764. [PMID: 21318111 PMCID: PMC3035007 DOI: 10.1586/eem.10.49] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hormone therapies targeting androgen receptor signaling are the mainstay of treatment for patients with advanced prostate cancer. The length of clinical remission induced by hormone therapies varies substantially among treated patients. Why some patients progress rapidly after treatment while others benefit with prolonged remission is a question that remains unsolved. The androgen receptor signaling pathway is the key molecular determinant of castration resistance, and a key target for prostate cancer drug design. Recent advances in characterizing molecular processes leading to the development of castration-resistant prostate cancer, including the discovery of multiple androgen receptor splicing variants, offer opportunities for rational development of new clinical tools or approaches to predict, monitor or control/prevent prostate cancer progression in the castrate setting.
Collapse
Affiliation(s)
- Rong Hu
- Johns Hopkins University, 600 North Wolfe Street, 411 Marburg Building, Baltimore, MD 21287, USA
| | | | - Jun Luo
- Johns Hopkins University, 600 North Wolfe Street, 411 Marburg Building, Baltimore, MD 21287, USA
| |
Collapse
|
683
|
Sun S, Sprenger CC, Vessella RL, Haugk K, Soriano K, Mostaghel EA, Page ST, Coleman IM, Nguyen HM, Sun H, Nelson PS, Plymate SR. Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Invest 2010; 120:2715-30. [PMID: 20644256 PMCID: PMC2912187 DOI: 10.1172/jci41824] [Citation(s) in RCA: 577] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 06/02/2010] [Indexed: 11/17/2022] Open
Abstract
Progression of prostate cancer following castration is associated with increased androgen receptor (AR) expression and signaling despite AR blockade. Recent studies suggest that these activities are due to the generation of constitutively active AR splice variants, but the mechanisms by which these splice variants could mediate such effects are not fully understood. Here we have identified what we believe to be a novel human AR splice variant in which exons 5, 6, and 7 are deleted (ARv567es) and demonstrated that this variant can contribute to cancer progression in human prostate cancer xenograft models in mice following castration. We determined that, in human prostate cancer cell lines, ARv567es functioned as a constitutively active receptor, increased expression of full-length AR (ARfl), and enhanced the transcriptional activity of AR. In human xenografts, human prostate cancer cells transfected with ARv567es cDNA formed tumors that were resistant to castration. Furthermore, the ratio of ARv567es to ARfl expression within the xenografts positively correlated with resistance to castration. Importantly, we also detected ARv567es frequently in human prostate cancer metastases. In summary, these data indicate that constitutively active AR splice variants can contribute to the development of castration-resistant prostate cancers and may serve as biomarkers for patients who are likely to suffer from early recurrence and are candidates for therapies directly targeting the AR rather than ligand.
Collapse
Affiliation(s)
- Shihua Sun
- Department of Medicine and
Department of Urology, University of Washington School of Medicine, Seattle, Washington, USA.
Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.
Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Michael E. DeBakey Veterans Affairs Medical Center and Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Cynthia C.T. Sprenger
- Department of Medicine and
Department of Urology, University of Washington School of Medicine, Seattle, Washington, USA.
Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.
Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Michael E. DeBakey Veterans Affairs Medical Center and Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Robert L. Vessella
- Department of Medicine and
Department of Urology, University of Washington School of Medicine, Seattle, Washington, USA.
Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.
Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Michael E. DeBakey Veterans Affairs Medical Center and Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Kathleen Haugk
- Department of Medicine and
Department of Urology, University of Washington School of Medicine, Seattle, Washington, USA.
Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.
Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Michael E. DeBakey Veterans Affairs Medical Center and Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Kathryn Soriano
- Department of Medicine and
Department of Urology, University of Washington School of Medicine, Seattle, Washington, USA.
Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.
Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Michael E. DeBakey Veterans Affairs Medical Center and Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Elahe A. Mostaghel
- Department of Medicine and
Department of Urology, University of Washington School of Medicine, Seattle, Washington, USA.
Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.
Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Michael E. DeBakey Veterans Affairs Medical Center and Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Stephanie T. Page
- Department of Medicine and
Department of Urology, University of Washington School of Medicine, Seattle, Washington, USA.
Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.
Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Michael E. DeBakey Veterans Affairs Medical Center and Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Ilsa M. Coleman
- Department of Medicine and
Department of Urology, University of Washington School of Medicine, Seattle, Washington, USA.
Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.
Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Michael E. DeBakey Veterans Affairs Medical Center and Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Holly M. Nguyen
- Department of Medicine and
Department of Urology, University of Washington School of Medicine, Seattle, Washington, USA.
Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.
Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Michael E. DeBakey Veterans Affairs Medical Center and Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Huiying Sun
- Department of Medicine and
Department of Urology, University of Washington School of Medicine, Seattle, Washington, USA.
Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.
Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Michael E. DeBakey Veterans Affairs Medical Center and Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Peter S. Nelson
- Department of Medicine and
Department of Urology, University of Washington School of Medicine, Seattle, Washington, USA.
Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.
Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Michael E. DeBakey Veterans Affairs Medical Center and Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Stephen R. Plymate
- Department of Medicine and
Department of Urology, University of Washington School of Medicine, Seattle, Washington, USA.
Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.
Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Michael E. DeBakey Veterans Affairs Medical Center and Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
684
|
Yamaoka M, Hara T, Kusaka M. Overcoming persistent dependency on androgen signaling after progression to castration-resistant prostate cancer. Clin Cancer Res 2010; 16:4319-24. [PMID: 20647476 DOI: 10.1158/1078-0432.ccr-10-0255] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Prostate cancer is the most common form of cancer in males in the United States, and the second leading cause of cancer death. Initially, most cases of prostate cancer respond well to hormone therapy; however, resistance often develops rapidly, leading to castration-resistant prostate cancer (CRPC). Several mechanisms for castration resistance have been proposed, of which the most significant seems to be the "intracrine" production of androgens from adrenal androgen or intratumorally via the de novo route. This mechanism stimulates disease progression through reactivation of androgen receptor signaling in patients who have previously undergone castration therapy. 17,20-lyase is essential for androgen synthesis in both the adrenal glands and CRPC tissue, and some 17,20-lyase inhibitors and second-generation anti-androgens that were developed to treat CRPC are currently under clinical investigation, with encouraging preliminary data reported so far. However, resistance to some of these therapies has already been noted. The study of circulating tumor cells will likely be important not only to identify patients likely to receive benefit from this therapeutic approach, but also to further understand the molecular mechanisms of resistance.
Collapse
Affiliation(s)
- Masuo Yamaoka
- Takeda Pharmaceutical Company Limited, Tsukuba, Japan.
| | | | | |
Collapse
|
685
|
Cheng J, Wu Y, Mohler JL, Ip C. The transcriptomics of de novo androgen biosynthesis in prostate cancer cells following androgen reduction. Cancer Biol Ther 2010; 9:1033-42. [PMID: 20404538 DOI: 10.4161/cbt.9.12.11876] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The progression of prostate cancer to the castration-recurrent phenotype remains a major problem medically. The present study examined the transcriptomics of de novo androgen synthesis as a potential mechanism to escape from dependence on circulating androgen. VCaP, LNCaP and LAPC4 cells were acclimated to 1 nM testosterone for five generations before subjecting them to a reduced level of 0.03 nM testosterone. Changes in gene expression were quantified using qRT-PCR. Analyses of the cholesterol biosynthesis pathway and the Δ4, Δ5 and backdoor steroidogenic pathways were carried out. VCaP cells showed no change in the transcriptome of cholesterol biosynthesis. However, several receptors for cholesterol transport were upregulated. The Δ4 and Δ5 steroidogenic pathways, but not the backdoor pathway, were stimulated. Additionally, androgen receptor (AR) expression was increased. Taken together, the above changes might allow recovery of AR activity to a near normal level. In contrast, LNCaP cells showed only minimal adjustment in the transcriptome of steroidogenesis. LAPC4 cells were equally unresponsive to boosting the machinery of androgen production. In brief, our results suggest that the VCaP model is an appropriate model for further investigation of targeting the androgen-AR axis to block the emergence of castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Jinrong Cheng
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | | | |
Collapse
|
686
|
Dai B, Chen H, Guo S, Yang X, Linn DE, Sun F, Li W, Guo Z, Xu K, Kim O, Kong X, Melamed J, Qiu S, Chen H, Qiu Y. Compensatory upregulation of tyrosine kinase Etk/BMX in response to androgen deprivation promotes castration-resistant growth of prostate cancer cells. Cancer Res 2010; 70:5587-96. [PMID: 20570899 DOI: 10.1158/0008-5472.can-09-4610] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously showed that targeted expression of non-receptor tyrosine kinase Etk/BMX in mouse prostate induces prostate intraepithelial neoplasia, implying a possible causal role of Etk in prostate cancer development and progression. Here, we report that Etk is upregulated in both human and mouse prostates in response to androgen ablation. Etk expression seems to be differentially regulated by androgen and interleukin 6 (IL-6), which is possibly mediated by the androgen receptor (AR) in prostate cancer cells. Our immunohistochemical analysis of tissue microarrays containing 112 human prostate tumor samples revealed that Etk expression is elevated in hormone-resistant prostate cancer and positively correlated with tyrosine phosphorylation of AR (Pearson correlation coefficient rho = 0.71, P < 0.0001). AR tyrosine phosphorylation is increased in Etk-overexpressing cells, suggesting that Etk may be another tyrosine kinase, in addition to Src and Ack-1, which can phosphorylate AR. We also showed that Etk can directly interact with AR through its Src homology 2 domain, and such interaction may prevent the association of AR with Mdm2, leading to stabilization of AR under androgen-depleted conditions. Overexpression of Etk in androgen-sensitive LNCaP cells promotes tumor growth while knocking down Etk expression in hormone-insensitive prostate cancer cells by a specific shRNA that inhibits tumor growth under androgen-depleted conditions. Taken together, our data suggest that Etk may be a component of the adaptive compensatory mechanism activated by androgen ablation in prostate and may play a role in hormone resistance, at least in part, through direct modulation of the AR signaling pathway.
Collapse
Affiliation(s)
- Bojie Dai
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
687
|
Andersen RJ, Mawji NR, Wang J, Wang G, Haile S, Myung JK, Watt K, Tam T, Yang YC, Bañuelos CA, Williams DE, McEwan IJ, Wang Y, Sadar MD. Regression of castrate-recurrent prostate cancer by a small-molecule inhibitor of the amino-terminus domain of the androgen receptor. Cancer Cell 2010; 17:535-46. [PMID: 20541699 DOI: 10.1016/j.ccr.2010.04.027] [Citation(s) in RCA: 403] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/27/2010] [Accepted: 05/10/2010] [Indexed: 11/25/2022]
Abstract
Castration-recurrent prostate cancer (CRPC) is suspected to depend on androgen receptor (AR). The AF-1 region in the amino-terminal domain (NTD) of AR contains most, if not all, of the transcriptional activity. Here we identify EPI-001, a small molecule that blocked transactivation of the NTD and was specific for inhibition of AR without attenuating transcriptional activities of related steroid receptors. EPI-001 interacted with the AF-1 region, inhibited protein-protein interactions with AR, and reduced AR interaction with androgen-response elements on target genes. Importantly, EPI-001 blocked androgen-induced proliferation and caused cytoreduction of CRPC in xenografts dependent on AR for growth and survival without causing toxicity.
Collapse
MESH Headings
- Androgen Receptor Antagonists
- Androgens/pharmacology
- Animals
- Antineoplastic Agents, Hormonal/adverse effects
- Antineoplastic Agents, Hormonal/pharmacology
- Antineoplastic Agents, Hormonal/therapeutic use
- Apoptosis/drug effects
- Benzhydryl Compounds/adverse effects
- Benzhydryl Compounds/pharmacology
- Benzhydryl Compounds/therapeutic use
- CREB-Binding Protein/metabolism
- Castration
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Chlorohydrins/adverse effects
- Chlorohydrins/pharmacology
- Chlorohydrins/therapeutic use
- DNA/genetics
- DNA/metabolism
- Gene Expression/drug effects
- Humans
- Ligands
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Molecular Structure
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/pathology
- Prostate/anatomy & histology
- Prostate/drug effects
- Prostate/pathology
- Prostate-Specific Antigen/blood
- Prostate-Specific Antigen/genetics
- Prostate-Specific Antigen/metabolism
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/surgery
- Protein Binding/drug effects
- Protein Binding/genetics
- Protein Conformation/drug effects
- Protein Interaction Domains and Motifs/drug effects
- Protein Multimerization/drug effects
- Receptors, Androgen/metabolism
- Receptors, Steroid/drug effects
- Response Elements/genetics
- Serine Endopeptidases/genetics
- Transcriptional Activation/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Raymond J Andersen
- Chemistry and Earth & Ocean Sciences, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
688
|
Sharifi N. New agents and strategies for the hormonal treatment of castration-resistant prostate cancer. Expert Opin Investig Drugs 2010; 19:837-46. [DOI: 10.1517/13543784.2010.494178] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
689
|
Suikki HE, Kujala PM, Tammela TLJ, van Weerden WM, Vessella RL, Visakorpi T. Genetic alterations and changes in expression of histone demethylases in prostate cancer. Prostate 2010; 70:889-98. [PMID: 20127736 DOI: 10.1002/pros.21123] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Histone demethylases LSD1, JHDM2A, and GASC1 have been suggested to function as androgen receptor co-activators, and to be involved in prostate cancer (PC) progression. We aim to identify genetic alterations and changes in expression of these genes in PC. METHODS PC cell lines, xenografts as well as clinical specimens were screened for mutations using denaturating high-performance liquid chromatography and sequencing, and for expression alterations by using quantitative RT-PCR and immunohistochemistry. RESULTS Only known single nucleotide polymorphisms, but no mutations, were found in these genes. JHDMA2 mRNA expression was slightly increased (P < 0.05) in PC compared with benign prostate hyperplasia (BPH), whereas the expression of GASC1 was slightly higher (P < 0.05) in castration-resistant PC (CRPC) compared with untreated PC or BPH. The mRNA expression of LSD1 was not altered in PC. The expression of LSD1 protein was somewhat, although not statistically significantly (P = 0.0521) lower in CRPC compared with untreated PC. In prostatectomy specimens, the level of LSD1 protein expression was associated with low pT-stage (P = 0.0402), but not with Gleason score or progression-free survival. CONCLUSIONS As no genetic alterations and only very modest expression changes were found, it is unlikely that LSD1, JHDM2A, or GASC1 play a major role in the progression of PC.
Collapse
Affiliation(s)
- Hanna E Suikki
- Institute of Medical Technology, University of Tampere, Tampere, Finland
| | | | | | | | | | | |
Collapse
|
690
|
Knudsen KE, Penning TM. Partners in crime: deregulation of AR activity and androgen synthesis in prostate cancer. Trends Endocrinol Metab 2010; 21:315-24. [PMID: 20138542 PMCID: PMC2862880 DOI: 10.1016/j.tem.2010.01.002] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/22/2009] [Accepted: 01/06/2010] [Indexed: 01/26/2023]
Abstract
Prostate cancer remains a leading cause of cancer death, as there are no durable means to treat advanced disease. Treatment of non-organ-confined prostate cancer hinges on its androgen dependence. First-line therapeutic strategies suppress androgen receptor (AR) activity, via androgen ablation and direct AR antagonists, whereas initially effective, incurable, 'castration-resistant' tumors arise as a result of resurgent AR activity. Alterations of AR and/or associated regulatory networks are known to restore receptor activity and support resultant therapy-resistant tumor progression. However, recent evidence also reveals an unexpected contribution of the AR ligand, indicating that alterations in pathways controlling androgen synthesis support castration-resistant AR activity. In this report, the mechanisms underlying the lethal pairing of AR deregulation and aberrant androgen synthesis in prostate cancer progression will be discussed.
Collapse
Affiliation(s)
- Karen E Knudsen
- Kimmel Cancer Center, Department of Cancer Biology and Department of Urology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
691
|
Abstract
The biological action of androgenic male sex steroid hormones in prostate tissue is mediated by the androgen receptor, a nuclear transcription factor. The transcriptional program of androgenic signaling in the prostate consists of thousands of gene targets whose products play a role in almost all cellular functions, including cellular proliferation, survival, lipid metabolism, and differentiation. This review will provide a summary of the most recent data regarding androgen-regulated target genes and modulation of androgen receptor activity, especially with regard to androgen-dependent and castration-recurrent prostate cancer.
Collapse
Affiliation(s)
- Kristin R Lamont
- Department of Urology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
692
|
Chen M, Feuerstein MA, Levina E, Baghel PS, Carkner RD, Tanner MJ, Shtutman M, Vacherot F, Terry S, de la Taille A, Buttyan R. Hedgehog/Gli supports androgen signaling in androgen deprived and androgen independent prostate cancer cells. Mol Cancer 2010; 9:89. [PMID: 20420697 PMCID: PMC2873440 DOI: 10.1186/1476-4598-9-89] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 04/26/2010] [Indexed: 11/16/2022] Open
Abstract
Background Castration resistant prostate cancer (CRPC) develops as a consequence of hormone therapies used to deplete androgens in advanced prostate cancer patients. CRPC cells are able to grow in a low androgen environment and this is associated with anomalous activity of their endogenous androgen receptor (AR) despite the low systemic androgen levels in the patients. Therefore, the reactivated tumor cell androgen signaling pathway is thought to provide a target for control of CRPC. Previously, we reported that Hedgehog (Hh) signaling was conditionally activated by androgen deprivation in androgen sensitive prostate cancer cells and here we studied the potential for cross-talk between Hh and androgen signaling activities in androgen deprived and androgen independent (AI) prostate cancer cells. Results Treatment of a variety of androgen-deprived or AI prostate cancer cells with the Hh inhibitor, cyclopamine, resulted in dose-dependent modulation of the expression of genes that are regulated by androgen. The effect of cyclopamine on endogenous androgen-regulated gene expression in androgen deprived and AI prostate cancer cells was consistent with the suppressive effects of cyclopamine on the expression of a reporter gene (luciferase) from two different androgen-dependent promoters. Similarly, reduction of smoothened (Smo) expression with siRNA co-suppressed expression of androgen-inducible KLK2 and KLK3 in androgen deprived cells without affecting the expression of androgen receptor (AR) mRNA or protein. Cyclopamine also prevented the outgrowth of AI cells from androgen growth-dependent parental LNCaP cells and suppressed the growth of an overt AI-LNCaP variant whereas supplemental androgen (R1881) restored growth to the AI cells in the presence of cyclopamine. Conversely, overexpression of Gli1 or Gli2 in LNCaP cells enhanced AR-specific gene expression in the absence of androgen. Overexpressed Gli1/Gli2 also enabled parental LNCaP cells to grow in androgen depleted medium. AR protein co-immunoprecipitates with Gli2 protein from transfected 293T cell lysates. Conclusions Collectively, our results indicate that Hh/Gli signaling supports androgen signaling and AI growth in prostate cancer cells in a low androgen environment. The finding that Gli2 co-immunoprecipitates with AR protein suggests that an interaction between these proteins might be the basis for Hedgehog/Gli support of androgen signaling under this condition.
Collapse
Affiliation(s)
- Mengqian Chen
- The Ordway Research Institute, Albany, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
693
|
Gao L, Alumkal J. Epigenetic regulation of androgen receptor signaling in prostate cancer. Epigenetics 2010; 5:100-4. [PMID: 20160483 DOI: 10.4161/epi.5.2.10778] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer is the most common cancer in men in the United States, and it is the second leading cause of cancer-related death in American men. The Androgen receptor (AR), a nuclear hormone and transcription factor, is the most therapeutically relevant target in this disease. While most efforts in the clinic are still directed at lowering levels of androgens that activate AR, resistance to androgen deprivation eventually develops, and most prostate cancer deaths are attributable to this castration-resistant form of this disease. Recent work has shed light on the importance of epigenetic events including facilitation of AR signaling by histone-modifying enzymes and also on the role that enzymes such as HDAC6 play in stabilizing AR in prostate cancer cells. Herein, we summarize recent findings on the role of epigenetic enzymes in AR signaling and highlight examples on how interdiction of critical epigenetic enzymes may attenuate AR action in prostate cancer.
Collapse
Affiliation(s)
- Lina Gao
- Division of Hematology and Oncology, Knight Cancer Institute, Both at Oregon Health & Science University, Portland, OR, USA
| | | |
Collapse
|
694
|
Chen H, Libertini SJ, Wang Y, Kung HJ, Ghosh P, Mudryj M. ERK regulates calpain 2-induced androgen receptor proteolysis in CWR22 relapsed prostate tumor cell lines. J Biol Chem 2009; 285:2368-74. [PMID: 19946123 DOI: 10.1074/jbc.m109.049379] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Androgen ablation therapy is effective in treating androgen-dependent prostate tumors; however, tumors that can proliferate in castrate levels of androgen eventually arise. We previously reported that in CWR22Rv1 (Rv1) cells, the protease calpain 2 can cleave the androgen receptor (AR) into a constitutively active approximately 80,000 low molecular weight (LMW) form. In this study, we further dissect the mechanisms that produce the AR LMW forms using Rv1 cells and the related CWR22-R1 (R1) cells. The 39-amino acid insertional mutation in the Rv1-AR (E3DM-AR) sensitizes this AR to calpain 2 proteolysis. R1 cells encode the same AR molecule as the parental CWR22 xenograft. Using calpain 2 small interfering RNA and calpeptin, we find that calpain 2 plays a role in the generation of the LMW-AR in R1 cells. Furthermore, LMW-AR expression is regulated by the activation of calpain 2 by ERK 1 and 2. Inhibition of ERK phosphorylation or small interfering RNA-mediated decrease of ERK expression reduces LMW-AR levels in R1 cells. Conversely, activation of the MAPK pathway results in increased ERK phosphorylation and increased levels of LMW-AR. Finally, analyses of human tumor samples found that LMW-AR levels are higher in tumors that have an increased calpain/calpastatin ratio and/or increased levels of phospho-ERK (pERK). This suggests that a higher calpain/calpastatin ratio collaborates with activated ERK to promote the generation of the LMW-AR.
Collapse
Affiliation(s)
- Honglin Chen
- Department of Medical Microbiology and Immunology, University of California, Davis, California 19616, USA
| | | | | | | | | | | |
Collapse
|
695
|
Abstract
Hormone-refractory prostate cancer is the result of regrowth of prostate cancer cells that have adapted to the hormone-deprived environment of the prostate. The process by which castration-resistant prostate cancer (CRPC) cells are generated appears to be varied. The complex mechanism of hormone resistance has been the topic of research in most laboratories that have analyzed the process from different angles. This review compiles research findings that explain the methods of development of hormone resistance in prostate cancer. Research data show many different processes to be involved in the acquisition of hormone resistance. Interestingly, one observes interdependence between these processes, indicating a complex network at play in the development of hormone resistance. Cytokines such as IL-6 have been shown to initiate an alternative signaling pathway, compared with the androgen receptor signaling pathway, in CRPC. IL-6 has been proposed to be the effector of the intracrine signaling pathway by influencing the levels of metabolic enzymes. Neuroendocrine cells are present at low levels in normal prostate, and signify the transitory phase of normal hormone-sensitive cells to hormone-refractory cells. IL-6 induces growth of neuroendocrine cells or neuroendocrine-like features in cells in CRPC. The increased presence of neuroendocrine cells in CRPC signifies a change in the prostate cell microenvironment. The stromal microenvironment also influences the development of CRPC in the hormone-refractory stage. In addition, intracrine androgen metabolic enzymes play a significant role in the development of the hormone refractory process. Despite hormone ablation, there is a residual level of hormones in cells due to active intracrine metabolic pathways. It is acknowledged that the androgen receptor plays the most influential role in development of prostate cancer. In addition to mutation and amplification, the androgen receptor has been characterized and shown to differ in sequence in CRPC compared with the androgen-sensitive prostate cancer cells. These variants of the androgen receptor through sequence changes may preserve the basic function of the molecule, but have far-reaching consequences on the cell as a whole. A multicombinatorial drug treatment approach has been suggested to target these multiple pathways in an effort to reduce the possibility of recurrence of CRPC.
Collapse
Affiliation(s)
- Smitha S Dutt
- University of California School of Medicine at Davis, CA, USA
| | - Allen C Gao
- Department of Urology and Cancer Center, Research III Bldg, Suite 1300, University of California School of Medicine at Davis, 4645 2nd Ave, Sacramento, CA 95817, USA, Tel.: +1 916 734 8718, Fax: +1 916 734 8714
| |
Collapse
|
696
|
Comstock CE, Augello MA, Benito RP, Karch J, Tran TH, Utama FE, Tindall EA, Wang Y, Burd CJ, Groh EM, Hoang HN, Giles GG, Severi G, Hayes VM, Henderson BE, Marchand LL, Kolonel LN, Haiman CA, Baffa R, Gomella LG, Knudsen ES, Rui H, Henshall SM, Sutherland RL, Knudsen KE. Cyclin D1 splice variants: polymorphism, risk, and isoform-specific regulation in prostate cancer. Clin Cancer Res 2009; 15:5338-49. [PMID: 19706803 PMCID: PMC2849314 DOI: 10.1158/1078-0432.ccr-08-2865] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Alternative CCND1 splicing results in cyclin D1b, which has specialized, protumorigenic functions in prostate not shared by the cyclin D1a (full length) isoform. Here, the frequency, tumor relevance, and mechanisms controlling cyclin D1b were challenged. EXPERIMENTAL DESIGN First, relative expression of both cyclin D1 isoforms was determined in prostate adenocarcinomas. Second, relevance of the androgen axis was determined. Third, minigenes were created to interrogate the role of the G/A870 polymorphism (within the splice site), and findings were validated in primary tissue. Fourth, the effect of G/A870 on cancer risk was assessed in two large case-control studies. RESULTS Cyclin D1b is induced in tumors, and a significant subset expressed this isoform in the absence of detectable cyclin D1a. Accordingly, the isoforms showed noncorrelated expression patterns, and hormone status did not alter splicing. Whereas G/A870 was not independently predictive of cancer risk, A870 predisposed for transcript-b production in cells and in normal prostate. The influence of A870 on overall transcript-b levels was relieved in tumors, indicating that aberrations in tumorigenesis likely alter the influence of the polymorphism. CONCLUSIONS These studies reveal that cyclin D1b is specifically elevated in prostate tumorigenesis. Cyclin D1b expression patterns are distinct from that observed with cyclin D1a. The A870 allele predisposes for transcript-b production in a context-specific manner. Although A870 does not independently predict cancer risk, tumor cells can bypass the influence of the polymorphism. These findings have major implications for the analyses of D-cyclin function in the prostate and provide the foundation for future studies directed at identifying potential modifiers of the G/A870 polymorphism.
Collapse
Affiliation(s)
- Clay E.S. Comstock
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia Pennsylvania
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia Pennsylvania
| | - Michael A. Augello
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia Pennsylvania
| | - Ruth Pe Benito
- Cancer Research Program, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, Australia
| | - Jason Karch
- Department of Cell and Cancer Biology, University of Cincinnati, Cincinnati, Ohio
| | - Thai H. Tran
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia Pennsylvania
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia Pennsylvania
| | - Fransiscus E. Utama
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia Pennsylvania
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia Pennsylvania
| | - Elizabeth A. Tindall
- Cancer Research Program, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, Australia
- Cancer Genetics, Children's Cancer Institute Australia for Medical Research, University of New South Wales, Randwick, NSW, Australia
| | - Ying Wang
- Department of Cell and Cancer Biology, University of Cincinnati, Cincinnati, Ohio
| | - Craig J. Burd
- National Institutes of Environmental Health Science, Research Triangle Park, North Carolina
| | - Eric M. Groh
- Department of Cell and Cancer Biology, University of Cincinnati, Cincinnati, Ohio
| | - Hoa N. Hoang
- The Cancer Council of Victoria, Carlton, Melbourne, Victoria, Australia
| | - Graham G. Giles
- The Cancer Council of Victoria, Carlton, Melbourne, Victoria, Australia
| | - Gianluca Severi
- The Cancer Council of Victoria, Carlton, Melbourne, Victoria, Australia
| | - Vanessa M. Hayes
- Cancer Research Program, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, Australia
- Cancer Genetics, Children's Cancer Institute Australia for Medical Research, University of New South Wales, Randwick, NSW, Australia
| | - Brian E. Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Loic Le Marchand
- Epidemiology Program, Cancer Research Center, University of Hawaii, Honolulu, Hawaii
| | - Laurence N. Kolonel
- Epidemiology Program, Cancer Research Center, University of Hawaii, Honolulu, Hawaii
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Raffaele Baffa
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia Pennsylvania
- Department Urology, Thomas Jefferson University, Philadelphia Pennsylvania
| | - Leonard G. Gomella
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia Pennsylvania
- Department Urology, Thomas Jefferson University, Philadelphia Pennsylvania
| | - Erik S. Knudsen
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia Pennsylvania
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia Pennsylvania
| | - Hallgeir Rui
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia Pennsylvania
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia Pennsylvania
| | - Susan M. Henshall
- Cancer Research Program, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, Australia
| | - Robert L. Sutherland
- Cancer Research Program, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, Australia
| | - Karen E. Knudsen
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia Pennsylvania
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia Pennsylvania
- Department Urology, Thomas Jefferson University, Philadelphia Pennsylvania
| |
Collapse
|
697
|
Nacusi LP, Tindall DJ. Androgen receptor abnormalities in castration-recurrent prostate cancer. Expert Rev Endocrinol Metab 2009; 4:417-422. [PMID: 20228873 PMCID: PMC2835169 DOI: 10.1586/eem.09.34] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The androgen receptor (AR) plays a critical role in prostate cancer (PCa) development and progression. Despite the success of androgen-deprivation therapy, remission occurs in almost all cases. This stage of the disease is called castration-recurrent PCa (CRPC). CRPC cells adapt to low circulating levels of androgens, and active AR is maintained by numerous cellular mechanisms. Some mutations in the AR make it more responsive to lower androgen levels or other steroids. Furthermore, in this advance stage of the disease, PCa cells express the enzymes necessary for de novo synthesis of androgens. AR is also activated in a ligand-independent manner. Therefore, it is important to understand the mechanisms of AR activation and its deregulation during CRPC. The purpose of this article is to discuss mechanisms that are involved in modulation of AR activity and specificity.
Collapse
Affiliation(s)
- Lucas P Nacusi
- Departments of Biochemistry, Molecular Biology and Urology Research, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA, Tel.: +1 507 266 4205, Fax: +1 507 284 2384
| | - Donald J Tindall
- Author for correspondence: Departments of Biochemistry, Molecular Biology and Urology Research, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA, Tel.: +1 507 284 8139, Fax: +1 507 284 2384,
| |
Collapse
|
698
|
Vis AN, Schröder FH. Key targets of hormonal treatment of prostate cancer. Part 1: the androgen receptor and steroidogenic pathways. BJU Int 2009; 104:438-48. [PMID: 19558559 DOI: 10.1111/j.1464-410x.2009.08695.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Knowledge of the molecular and cellular changes that occur during the transition of hormone-naïve to castration-resistant prostate cancer (CRPC) is increasing rapidly. This might provide a window of opportunity for (future) drug development, and for treating patients with these potential devastating states of disease. The objective of this review is to provide an understanding of the mechanisms that prostate cancer cells use to bypass androgen-deprived conditions. METHODS We searched PubMed for experimental and clinical studies that describe the molecular changes that lead to CRPC. RESULTS CRPC remains dependent on a functional androgen receptor (AR), AR-mediated processes, and on the availability of intraprostatic intracellular androgens. CRPCs might acquire different (molecular) mechanisms that enable them to use intracellular androgens more efficiently (AR amplification, AR protein overexpression, AR hypersensitivity), use alternative splice variants of the AR protein to mediate androgen-independent AR functioning, and have altered co-activator and co-repressor gene and protein expression. Furthermore, CRPCs might have the ability to synthesise androgens de novo from available precursors through a renewed and up-regulated synthesis of steroid-hormone converting enzymes. Blocking of enzymes key to de novo androgen synthesis could be an alternative means to treat patients with advanced and/or metastatic disease. CONCLUSION In CRPC, prostate cancer cells still rely on intracellular androgens and on an active AR for growth and survival. CRPCs have gained mechanisms that enable them to use steroids from the circulation more efficiently through altered gene expression, and through a renewed and up-regulated synthesis of steroid hormone-converting enzymes. Additionally, CRPCs might synthesise AR isoforms that enable AR mediated processes independent from available androgens.
Collapse
Affiliation(s)
- André N Vis
- Department of Urology, VU Medical Centre, Amsterdam, The Netherlands.
| | | |
Collapse
|