701
|
Wennekamp S, Hiiragi T. Stochastic processes in the development of pluripotency in vivo. Biotechnol J 2012; 7:737-44. [PMID: 22539446 DOI: 10.1002/biot.201100357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/28/2012] [Accepted: 03/06/2012] [Indexed: 11/10/2022]
Abstract
The divergence of the pluripotent inner cell mass and extraembryonic trophectoderm from an apparently homogenous population of cells is a decisive event in mammalian preimplantation development. While three models have been proposed to explain early cellular differentiation in the mouse embryo, the initial cue generating asymmetry within the embryo remains elusive. Recently, unexpected heterogeneity in the expression of crucial transcription factors within the blastocyst has raised the intriguing possibility that a stochastic component is involved in lineage divergence. Unraveling the molecular dynamics and developmental function of the observed heterogeneity awaits further investigations at the single-cell level using quantitative live-imaging with appropriate reporter lines. The possible involvement of dynamic heterogeneity in the establishment, maintenance and resolution of pluripotency makes this topic highly relevant not only to developmental biology, but also to stem cell research and regenerative medicine. In this review, we discuss the possible involvement of stochastic processes in lineage divergence and the establishment of pluripotency in vivo, based on recent data from mouse embryology and stem cell research.
Collapse
|
702
|
Altered subcellular localization of transcription factor TEAD4 regulates first mammalian cell lineage commitment. Proc Natl Acad Sci U S A 2012; 109:7362-7. [PMID: 22529382 DOI: 10.1073/pnas.1201595109] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the preimplantation mouse embryo, TEAD4 is critical to establishing the trophectoderm (TE)-specific transcriptional program and segregating TE from the inner cell mass (ICM). However, TEAD4 is expressed in the TE and the ICM. Thus, differential function of TEAD4 rather than expression itself regulates specification of the first two cell lineages. We used ChIP sequencing to define genomewide TEAD4 target genes and asked how transcription of TEAD4 target genes is specifically maintained in the TE. Our analyses revealed an evolutionarily conserved mechanism, in which lack of nuclear localization of TEAD4 impairs the TE-specific transcriptional program in inner blastomeres, thereby allowing their maturation toward the ICM lineage. Restoration of TEAD4 nuclear localization maintains the TE-specific transcriptional program in the inner blastomeres and prevents segregation of the TE and ICM lineages and blastocyst formation. We propose that altered subcellular localization of TEAD4 in blastomeres dictates first mammalian cell fate specification.
Collapse
|
703
|
Bedzhov I, Liszewska E, Kanzler B, Stemmler MP. Igf1r signaling is indispensable for preimplantation development and is activated via a novel function of E-cadherin. PLoS Genet 2012; 8:e1002609. [PMID: 22479204 PMCID: PMC3315466 DOI: 10.1371/journal.pgen.1002609] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 02/05/2012] [Indexed: 01/26/2023] Open
Abstract
Insulin-like growth factor I receptor (Igf1r) signaling controls proliferation, differentiation, growth, and cell survival in many tissues; and its deregulated activity is involved in tumorigenesis. Although important during fetal growth and postnatal life, a function for the Igf pathway during preimplantation development has not been described. We show that abrogating Igf1r signaling with specific inhibitors blocks trophectoderm formation and compromises embryo survival during murine blastocyst formation. In normal embryos total Igf1r is present throughout the membrane, whereas the activated form is found exclusively at cell contact sites, colocalizing with E-cadherin. Using genetic domain switching, we show a requirement for E-cadherin to maintain proper activation of Igf1r. Embryos expressing exclusively a cadherin chimera with N-cadherin extracellular and E-cadherin intracellular domains (NcEc) fail to form a trophectoderm and cells die by apoptosis. In contrast, homozygous mutant embryos expressing a reverse-structured chimera (EcNc) show trophectoderm survival and blastocoel cavitation, indicating a crucial and non-substitutable role of the E-cadherin ectodomain for these processes. Strikingly, blastocyst formation can be rescued in homozygous NcEc embryos by restoring Igf1r signaling, which enhances cell survival. Hence, perturbation of E-cadherin extracellular integrity, independent of its cell-adhesion function, blocked Igf1r signaling and induced cell death in the trophectoderm. Our results reveal an important and yet undiscovered function of Igf1r during preimplantation development mediated by a unique physical interaction between Igf1r and E-cadherin indispensable for proper receptor activation and anti-apoptotic signaling. We provide novel insights into how ligand-dependent Igf1r activity is additionally gated to sense developmental potential in utero and into a bifunctional role of adhesion molecules in contact formation and signaling. One of the most important steps during mammalian development is the formation of a blastocyst before implantation. Proper blastocyst development is fundamentally reliant on the function of the E-cadherin adhesion molecule, which cannot be replaced by another highly related member of the cadherin family. We have addressed the question of how E-cadherin unfolds its unique function during this central embryonic process. We generated mouse mutants that allow specific domain swapping of extra- and intracellular protein domains of E-cadherin with the corresponding portion of N-cadherin. Upon E-cadherin (Cdh1) depletion, apoptosis is induced in cells that are required to form the trophectoderm, the outer cells of a functional blastocyst. Uncoupling of the two E-cadherin domains demonstrated that specifically the presence of the extracellular domain is indispensable in providing essential survival cues. To establish a proper trophectoderm the insulin-like growth factor I receptor (Igf1r) is intimately connected to the E-cadherin–mediated suppression of apoptosis. By interaction of the two proteins Igf1r is efficiently activated to allow embryo survival, blastocyst formation, and implantation. This novel and adhesion-independent function of E-cadherin may serve as paradigm for bifunctionality of adhesion molecules and how they are particularly utilized to interpret signal transduction activities in specific cellular contexts.
Collapse
Affiliation(s)
| | | | | | - Marc P. Stemmler
- Department of Molecular Embryology, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- * E-mail:
| |
Collapse
|
704
|
Kuckenberg P, Kubaczka C, Schorle H. The role of transcription factor Tcfap2c/TFAP2C in trophectoderm development. Reprod Biomed Online 2012; 25:12-20. [PMID: 22560121 DOI: 10.1016/j.rbmo.2012.02.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/23/2012] [Accepted: 02/22/2012] [Indexed: 11/17/2022]
Abstract
In recent years, knowledge regarding the genetic and epigenetic programmes governing specification, maintenance and differentiation of the extraembryonic lineage has advanced substantially. Establishment and analysis of mice deficient in genes implicated in trophoblast lineage and the option to generate and manipulate murine stem cell lines from the inner cell mass and the trophectoderm in vitro represent major advances. The activating enhancer binding protein 2 (AP2) family of transcription factors is expressed during mammalian development and in certain malignant diseases. This article summarizes the data regarding expression and function of murine Tcfap2 and human TFAP2 in extraembryonic development and differentiation. It also presents a model integrating Tcfap2c into the framework of trophoblast development and highlights the requirement of Tcfap2c to maintain trophoblast stem cells. With regard to human trophoblast cell-lineage restriction, the role of TFAP2C in lineage specification and maintenance is speculated upon. Furthermore, an overview of target genes of AP2 in mouse and human affecting placenta development and function is provided and the evidence suggesting that defects in regulating TFAP2 members might contribute to placental defects is discussed.
Collapse
Affiliation(s)
- Peter Kuckenberg
- Institute of Pathology, Department of Developmental Pathology, University of Bonn, Germany
| | | | | |
Collapse
|
705
|
Abstract
This review summarises current knowledge about the specification, commitment and maintenance of the trophoblast lineage in mice and cattle. Results from gene expression studies, in vivo loss-of-function models and in vitro systems using trophoblast and embryonic stem cells have been assimilated into a model seeking to explain trophoblast ontogeny via gene regulatory networks. While trophoblast differentiation is quite distinct between cattle and mice, as would be expected from their different modes of implantation, recent studies have demonstrated that differences arise much earlier during trophoblast development.
Collapse
|
706
|
Jansson L, Larsson J. Normal hematopoietic stem cell function in mice with enforced expression of the Hippo signaling effector YAP1. PLoS One 2012; 7:e32013. [PMID: 22363786 PMCID: PMC3283704 DOI: 10.1371/journal.pone.0032013] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/17/2012] [Indexed: 11/18/2022] Open
Abstract
The Hippo pathway has recently been implicated in the regulation of organ size and stem cells in multiple tissues. The transcriptional cofactor yes-associated protein 1 (Yap1) is the most downstream effector of Hippo signaling and is functionally repressed by the upstream components of the pathway. Overexpression of YAP1 stimulates proliferation of stem and progenitor cells in many tissues, consistent with inhibition of Hippo signaling. To study the role of Hippo signaling in hematopoietic stem cells (HSCs), we created a transgenic model with inducible YAP1 expression exclusively within the hematopoietic system. Following 3 months induction, examination of blood and bone marrow in the induced mice revealed no changes in the distribution of the hematopoietic lineages compared to control mice. Moreover, the progenitor cell compartment was unaltered as determined by colony forming assays and immunophenotyping. To address whether YAP1 affects the quantity and function of HSCs we performed competitive transplantation experiments. We show that ectopic YAP1 expression does not influence HSC function neither during steady state nor in situations of hematopoietic stress. This is in sharp contrast to effects seen on stem- and progenitor cells in other organs and suggests highly tissue specific functions of the Hippo pathway in regulation of stem cells.
Collapse
Affiliation(s)
- Lina Jansson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Jonas Larsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
707
|
Frankenberg S, Gerbe F, Bessonnard S, Belville C, Pouchin P, Bardot O, Chazaud C. Primitive endoderm differentiates via a three-step mechanism involving Nanog and RTK signaling. Dev Cell 2012; 21:1005-13. [PMID: 22172669 DOI: 10.1016/j.devcel.2011.10.019] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 07/20/2011] [Accepted: 10/26/2011] [Indexed: 12/13/2022]
Abstract
During preimplantation mouse development, the inner cell mass (ICM) differentiates into two cell lineages--the epiblast and the primitive endoderm (PrE)--whose precursors are identifiable by reciprocal expression of Nanog and Gata6, respectively. PrE formation depends on Nanog by a non-cell-autonomous mechanism. To decipher early cell- and non-cell-autonomous effects, we performed a mosaic knockdown of Nanog and found that this is sufficient to induce a PrE fate cell autonomously. Strikingly, in Nanog null embryos, Gata6 expression is maintained, showing that initiation of the PrE program is Nanog independent. Treatment of Nanog null embryos with pharmacological inhibitors revealed that RTK dependency of Gata6 expression is initially direct but later indirect via Nanog repression. Moreover, we found that subsequent expression of Sox17 and Gata4--later markers of the PrE--depends on the presence of Fgf4 produced by Nanog-expressing cells. Thus, our results reveal three distinct phases in the PrE differentiation program.
Collapse
Affiliation(s)
- Stephen Frankenberg
- GReD; INSERM U931; CNRS UMR6247; Clermont University, 28 Place Dunant, 63001 Clermont-Ferrand, France
| | | | | | | | | | | | | |
Collapse
|
708
|
Zhao B, Li L, Wang L, Wang CY, Yu J, Guan KL. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev 2012; 26:54-68. [PMID: 22215811 DOI: 10.1101/gad.173435.111] [Citation(s) in RCA: 624] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell attachment to the extracellular matrix (ECM) is crucial to cell physiology such as polarity, motility, and proliferation. In normal cells, loss of attachment to the ECM induces a specific type of apoptosis, termed anoikis. Resistance to anoikis in cancer cells promotes their survival in circulation and dispersion to distant anatomic sites, leading to tumor metastasis. The Yes-associated protein (YAP) transcription coactivator is a human oncogene and a key regulator of organ size. The Hippo tumor suppressor pathway phosphorylates and inhibits YAP. However, little is known about the signals that regulate the Hippo pathway. Here we report that through cytoskeleton reorganization, cell detachment activates the Hippo pathway kinases Lats1/2 and leads to YAP phosphorylation and inhibition. The detachment-induced YAP inactivation is required for anoikis in nontransformed cells, whereas in cancer cells with deregulation of the Hippo pathway, knockdown of YAP and TAZ restores anoikis. Furthermore, we provided evidence that Lats1/2 expression level is indeed significantly down-regulated in metastatic prostate cancer. Our findings provide a novel connection between cell attachment and anoikis through the Hippo pathway and have important implications in cancer therapeutics.
Collapse
Affiliation(s)
- Bin Zhao
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | | | | |
Collapse
|
709
|
Tao H, Inoue KI, Kiyonari H, Bassuk AG, Axelrod JD, Sasaki H, Aizawa S, Ueno N. Nuclear localization of Prickle2 is required to establish cell polarity during early mouse embryogenesis. Dev Biol 2012; 364:138-48. [PMID: 22333836 DOI: 10.1016/j.ydbio.2012.01.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/29/2012] [Accepted: 01/30/2012] [Indexed: 12/27/2022]
Abstract
The establishment of trophectoderm (TE) manifests as the formation of epithelium, and is dependent on many structural and regulatory components that are commonly found and function in many epithelial tissues. However, the mechanism of TE formation is currently not well understood. Prickle1 (Pk1), a core component of the planar cell polarity (PCP) pathway, is essential for epiblast polarization before gastrulation, yet the roles of Pk family members in early mouse embryogenesis are obscure. Here we found that Pk2(-/-) embryos died at E3.0-3.5 without forming the blastocyst cavity and not maintained epithelial integrity of TE. These phenotypes were due to loss of the apical-basal (AB) polarity that underlies the asymmetric redistribution of microtubule networks and proper accumulation of AB polarity components on each membrane during compaction. In addition, we found GTP-bound active form of nuclear RhoA was decreased in Pk2(-/-) embryos during compaction. We further show that the first cell fate decision was disrupted in Pk2(-/-) embryos. Interestingly, Pk2 localized to the nucleus from the 2-cell to around the 16-cell stage despite its cytoplasmic function previously reported. Inhibiting farnesylation blocked Pk2's nuclear localization and disrupted AB cell polarity, suggesting that Pk2 farnesylation is essential for its nuclear localization and function. The cell polarity phenotype was efficiently rescued by nuclear but not cytoplasmic Pk2, demonstrating the nuclear localization of Pk2 is critical for its function.
Collapse
Affiliation(s)
- Hirotaka Tao
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology (CDB), Chuo-ku, Kobe, Japan
| | | | | | | | | | | | | | | |
Collapse
|
710
|
Varelas X, Wrana JL. Coordinating developmental signaling: novel roles for the Hippo pathway. Trends Cell Biol 2012; 22:88-96. [DOI: 10.1016/j.tcb.2011.10.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/13/2011] [Accepted: 10/16/2011] [Indexed: 01/15/2023]
|
711
|
Mizuno T, Murakami H, Fujii M, Ishiguro F, Tanaka I, Kondo Y, Akatsuka S, Toyokuni S, Yokoi K, Osada H, Sekido Y. YAP induces malignant mesothelioma cell proliferation by upregulating transcription of cell cycle-promoting genes. Oncogene 2012; 31:5117-22. [PMID: 22286761 DOI: 10.1038/onc.2012.5] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Malignant mesothelioma (MM) shows frequent inactivation of the neurofibromatosis type 2 (NF2) -tumor-suppressor gene. Recent studies have documented that the Hippo signaling pathway, a downstream cascade of Merlin (a product of NF2), has a key role in organ size control and carcinogenesis by regulating cell proliferation and apoptosis. We previously reported that MMs show overexpression of Yes-associated protein (YAP) transcriptional coactivator, the main downstream effector of the Hippo signaling pathway, which results from the inactivation of NF2, LATS2 and/or SAV1 genes (the latter two encoding core components of the mammalian Hippo pathway) or amplification of YAP itself. However, the detailed roles of YAP remain unclear, especially the target genes of YAP that enhance MM cell growth and survival. Here, we demonstrated that YAP-knockdown inhibited cell motility, invasion and anchorage-independent growth as well as cell proliferation of MM cells in vitro. We analyzed genes commonly regulated by YAP in three MM cell lines with constitutive YAP-activation, and found that the major subsets of YAP-upregulating genes encode cell cycle regulators. Among them, YAP directly induced the transcription of CCND1 and FOXM1, in cooperation with TEAD transcription factor. We also found that knockdown of CCND1 and FOXM1 suppressed MM cell proliferation, although the inhibitory effects were less evident than those of YAP knockdown. These results indicate that constitutive YAP activation in MM cells promotes cell cycle progression giving more aggressive phenotypes to MM cells.
Collapse
Affiliation(s)
- T Mizuno
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
712
|
Qin H, Blaschke K, Wei G, Ohi Y, Blouin L, Qi Z, Yu J, Yeh RF, Hebrok M, Ramalho-Santos M. Transcriptional analysis of pluripotency reveals the Hippo pathway as a barrier to reprogramming. Hum Mol Genet 2012; 21:2054-67. [PMID: 22286172 DOI: 10.1093/hmg/dds023] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pluripotent stem cells are derived from culture of early embryos or the germline and can be induced by reprogramming of somatic cells. Barriers to reprogramming that stabilize the differentiated state and have tumor suppression functions are expected to exist. However, we have a limited understanding of what such barriers might be. To find novel barriers to reprogramming to pluripotency, we compared the transcriptional profiles of the mouse germline with pluripotent and somatic cells, in vivo and in vitro. There is a remarkable global expression of the transcriptional program for pluripotency in primordial germ cells (PGCs). We identify parallels between PGC reprogramming to pluripotency and human germ cell tumorigenesis, including the loss of LATS2, a tumor suppressor kinase of the Hippo pathway. We show that knockdown of LATS2 increases the efficiency of induction of pluripotency in human cells. LATS2 RNAi, unlike p53 RNAi, specifically enhances the generation of fully reprogrammed iPS cells without accelerating cell proliferation. We further show that LATS2 represses reprogramming in human cells by post-transcriptionally antagonizing TAZ but not YAP, two downstream effectors of the Hippo pathway. These results reveal transcriptional parallels between germ cell transformation and the generation of iPS cells and indicate that the Hippo pathway constitutes a barrier to cellular reprogramming.
Collapse
Affiliation(s)
- Han Qin
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Diabetes Center, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
713
|
Imajo M, Miyatake K, Iimura A, Miyamoto A, Nishida E. A molecular mechanism that links Hippo signalling to the inhibition of Wnt/β-catenin signalling. EMBO J 2012; 31:1109-22. [PMID: 22234184 DOI: 10.1038/emboj.2011.487] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 12/06/2011] [Indexed: 12/18/2022] Open
Abstract
The Hippo signalling pathway has emerged as a key regulator of organ size, tissue homeostasis, and patterning. Recent studies have shown that two effectors in this pathway, YAP/TAZ, modulate Wnt/β-catenin signalling through their interaction with β-catenin or Dishevelled, depending on biological contexts. Here, we identify a novel mechanism through which Hippo signalling inhibits Wnt/β-catenin signalling. We show that YAP and TAZ, the transcriptional co-activators in the Hippo pathway, suppress Wnt signalling without suppressing the stability of β-catenin but through preventing its nuclear translocation. Our results show that YAP/TAZ binds to β-catenin, thereby suppressing Wnt-target gene expression, and that the Hippo pathway-stimulated phosphorylation of YAP, which induces cytoplasmic translocation of YAP, is required for the YAP-mediated inhibition of Wnt/β-catenin signalling. We also find that downregulation of Hippo signalling correlates with upregulation of β-catenin signalling in colorectal cancers. Remarkably, our analysis demonstrates that phosphorylated YAP suppresses nuclear translocation of β-catenin by directly binding to it in the cytoplasm. These results provide a novel mechanism, in which Hippo signalling antagonizes Wnt signalling by regulating nuclear translocation of β-catenin.
Collapse
Affiliation(s)
- Masamichi Imajo
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
714
|
Abstract
Early development of the mouse comprises a sequence of cell fate decisions in which cells are guided along a pathway of restricted potential and increasing specialisation. The first choice faced by cells of the embryo is whether to become trophectoderm (TE) or inner cell mass (ICM); TE is an extra-embryonic tissue which will form the embryonic portion of the placenta, whilst ICM gives rise to cells responsible for generating the foetus. In the second cell fate decision, the ICM is further refined into pluripotent cells forming the future body of the embryo, epiblast (EPI) and extra-embryonic primitive endoderm (PE), a tissue essential for patterning the embryo and establishing the developmental circulation. Understanding this early lineage segregation is critical for informing attempts to capture pluripotency and direct cell fate in vitro. Unlike the predictability of nonmammalian cell fate, development of the mouse embryo retains the flexibility to adapt to changing circumstances during development. Here we describe these first cell fate decisions, how they can be biased whilst maintaining flexibility and, finally, some of the molecular circuitry underlying early fate choice.
Collapse
Affiliation(s)
- Samantha A Morris
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
715
|
Marikawa Y, Alarcon VB. Creation of trophectoderm, the first epithelium, in mouse preimplantation development. Results Probl Cell Differ 2012; 55:165-84. [PMID: 22918806 DOI: 10.1007/978-3-642-30406-4_9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Trophectoderm (TE) is the first cell type that emerges during development and plays pivotal roles in the viviparous mode of reproduction in placental mammals. TE adopts typical epithelium morphology to surround a fluid-filled cavity, whose expansion is critical for hatching and efficient interaction with the uterine endometrium for implantation. TE also differentiates into trophoblast cells to construct the placenta. This chapter is an overview of the cellular and molecular mechanisms that control the critical aspects of TE formation, namely, the formation of the blastocyst cavity, the expression of key transcription factors, and the roles of cell polarity in the specification of the TE lineage. Current gaps in our knowledge and challenging issues are also discussed that should be addressed in future investigations in order to further advance our understanding of the mechanisms of TE formation.
Collapse
Affiliation(s)
- Yusuke Marikawa
- University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA.
| | | |
Collapse
|
716
|
Xenopoulos P, Kang M, Hadjantonakis AK. Cell lineage allocation within the inner cell mass of the mouse blastocyst. Results Probl Cell Differ 2012; 55:185-202. [PMID: 22918807 DOI: 10.1007/978-3-642-30406-4_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
At the time of implantation, the early mouse embryo consists of three distinct cell lineages: the epiblast (EPI), primitive endoderm (PrE), and trophectoderm (TE). Here we will focus on the EPI and PrE cell lineages, which arise within the inner cell mass (ICM) of the blastocyst. Though still poorly understood, our current understanding of the mechanisms underlying this lineage allocation will be discussed. It was originally thought that lineage choice was strictly controlled by the position of a cell within the ICM. However, it is now believed that the EPI and PrE lineages are defined both by their position and by the expression of lineage-specific transcription factors. Interestingly, these lineage-specific transcription factors are initially co-expressed in early ICM cells, suggesting an initial multi-lineage priming state. Thereafter, lineage-specific transcription factors display a mutually exclusive salt-and-pepper distribution that reflects cell specification of the EPI or PrE fates. Later on, lineage segregation and likely commitment are completed with the sequestration of PrE cells to the surface of the ICM, which lies at the blastocyst cavity roof. We discuss recent advances that have focused on elucidating how the salt-and-pepper pattern is established and then resolved within the ICM, leading to the correct apposition of cell lineages in preparation for implantation.
Collapse
|
717
|
Takaoka K, Hamada H. Cell fate decisions and axis determination in the early mouse embryo. Development 2012; 139:3-14. [DOI: 10.1242/dev.060095] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mouse embryo generates multiple cell lineages, as well as its future body axes in the early phase of its development. The early cell fate decisions lead to the generation of three lineages in the pre-implantation embryo: the epiblast, the primitive endoderm and the trophectoderm. Shortly after implantation, the anterior-posterior axis is firmly established. Recent studies have provided a better understanding of how the earliest cell fate decisions are regulated in the pre-implantation embryo, and how and when the body axes are established in the pregastrulation embryo. In this review, we address the timing of the first cell fate decisions and of the establishment of embryonic polarity, and we ask how far back one can trace their origins.
Collapse
Affiliation(s)
- Katsuyoshi Takaoka
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, 1-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- CREST, Japan Science and Technology Corporation (JST), 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Hamada
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, 1-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- CREST, Japan Science and Technology Corporation (JST), 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
718
|
Donnard E, Barbosa-Silva A, Guedes RLM, Fernandes GR, Velloso H, Kohn MJ, Andrade-Navarro MA, Ortega JM. Preimplantation development regulatory pathway construction through a text-mining approach. BMC Genomics 2011; 12 Suppl 4:S3. [PMID: 22369103 PMCID: PMC3287586 DOI: 10.1186/1471-2164-12-s4-s3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background The integration of sequencing and gene interaction data and subsequent generation of pathways and networks contained in databases such as KEGG Pathway is essential for the comprehension of complex biological processes. We noticed the absence of a chart or pathway describing the well-studied preimplantation development stages; furthermore, not all genes involved in the process have entries in KEGG Orthology, important information for knowledge application with relation to other organisms. Results In this work we sought to develop the regulatory pathway for the preimplantation development stage using text-mining tools such as Medline Ranker and PESCADOR to reveal biointeractions among the genes involved in this process. The genes present in the resulting pathway were also used as seeds for software developed by our group called SeedServer to create clusters of homologous genes. These homologues allowed the determination of the last common ancestor for each gene and revealed that the preimplantation development pathway consists of a conserved ancient core of genes with the addition of modern elements. Conclusions The generation of regulatory pathways through text-mining tools allows the integration of data generated by several studies for a more complete visualization of complex biological processes. Using the genes in this pathway as “seeds” for the generation of clusters of homologues, the pathway can be visualized for other organisms. The clustering of homologous genes together with determination of the ancestry leads to a better understanding of the evolution of such process.
Collapse
Affiliation(s)
- Elisa Donnard
- Laboratório Biodados, Dept. de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte - MG, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
719
|
Yamakoshi S, Bai R, Chaen T, Ideta A, Aoyagi Y, Sakurai T, Konno T, Imakawa K. Expression of mesenchymal-related genes by the bovine trophectoderm following conceptus attachment to the endometrial epithelium. Reproduction 2011; 143:377-87. [PMID: 22157247 DOI: 10.1530/rep-11-0364] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the course of experiments to identify and characterize the factors that function in bovine conceptuses during peri-attachment periods, various transcripts related to the epithelial-mesenchymal transition (EMT) were found. In this study, RNA was extracted from different sets of days 17, 20, and 22 (day 0=day of estrous) bovine conceptuses and subjected to real-time PCR analysis as well as Western blotting, from which abundances of N-cadherin (CDH2), vimentin, matrix metalloproteinase 2 (gelatinase A, 72 kDa gelatinase, 72 kDa type IV collagenase) (MMP2), and matrix metallopeptidase 9 (gelatinase B, 92 kDa gelatinase, 92 kDa type IV collagenase) (MMP9) mRNAs were determined on day 22, concurrent with (CDH1) mRNA and protein downregulation. Transcription factors in EMT processes were then analyzed and changes in snail homolog 2 (Drosophila) (SNAI), zinc finger E-box binding homeobox 1 (ZEB1), zinc finger E-box binding homeobox 2 (ZEB2), twist homolog 1 (Drosophila) (TWIST1), twist homolog 2 (Drosophila) (TWIST2), and Kruppel-like factor 8 (KLF8) transcripts were found in day 22 conceptuses, while confirming SNAI2 expression by Western blotting. Immunohistochemical analysis revealed that the day 22 trophectoderm expressed the mesenchymal markers N-cadherin and vimentin as well as the epithelial marker cytokeratin. In attempts to identify the molecular mechanisms by which the trophectoderm expressed EMT-related genes, growth factor receptors associated with EMT were analyzed. Upregulation of the growth factor receptor transcripts, fibroblast growth factor receptor 1 (FGFR1), platelet-derived growth factor receptor, alpha polypeptide (PDGFRA), platelet-derived growth factor receptor, beta polypeptide (PDGFRB), and transforming growth factor, beta receptor II (70/80 kDa) (TGFBR2) mRNAs, was found on day 22. The analysis was extended to determine the integrin (ITG) transcripts and found high levels of integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor) (ITGA4), integrin, alpha 8 (ITGA8), integrin, beta 3 (platelet glycoprotein IIIa, antigen CD61) (ITGB3), and integrin, beta 5 (ITGB5) mRNAs on day 22. These observations indicate that after the conceptus-endometrium attachment, EMT-related transcripts as well as the epithelial marker cytokeratin were present in the bovine trophectoderm and suggest that the implantation process for noninvasive trophoblasts requires not only extracellular matrix expression but also partial EMT.
Collapse
Affiliation(s)
- Sachiko Yamakoshi
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | |
Collapse
|
720
|
Asanoma K, Kubota K, Chakraborty D, Renaud SJ, Wake N, Fukushima K, Soares MJ, Rumi MAK. SATB homeobox proteins regulate trophoblast stem cell renewal and differentiation. J Biol Chem 2011; 287:2257-68. [PMID: 22123820 DOI: 10.1074/jbc.m111.287128] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The morphogenesis of the hemochorial placenta is dependent upon the precise expansion and differentiation of trophoblast stem (TS) cells. SATB homeobox 1 (SATB1) and SATB2 are related proteins that have been implicated as regulators of some stem cell populations. SATB1 is highly expressed in TS cells, which prompted an investigation of SATB1 and the related SATB2 as regulators of TS cells. SATB1 and SATB2 were highly expressed in rat TS cells maintained in the stem state and rapidly declined following induction of differentiation. SATB proteins were also present within the rat placenta during early stages of its morphogenesis and disappeared as gestation advanced. Silencing Satb1 or Satb2 expression decreased TS cell self-renewal and increased differentiation, whereas ectopic expression of SATB proteins promoted TS cell expansion and blunted differentiation. Eomes, a key transcriptional regulator of TS cells, was identified as a target for SATB proteins. SATB knockdown decreased Eomes transcript levels and promoter activity, whereas SATB ectopic expression increased Eomes transcript levels and promoter activity. Electrophoretic mobility shift assay as well as chromatin immunoprecipitation analyses demonstrated that SATB proteins physically associate with a regulatory site within the Eomes promoter. We conclude that SATB proteins promote TS cell renewal and inhibit differentiation. These actions are mediated in part by regulating the expression of the TS cell stem-associated transcription factor, EOMES.
Collapse
Affiliation(s)
- Kazuo Asanoma
- Institute for Reproductive Health and Regenerative Medicine, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | |
Collapse
|
721
|
Xin M, Kim Y, Sutherland LB, Qi X, McAnally J, Schwartz RJ, Richardson JA, Bassel-Duby R, Olson EN. Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci Signal 2011; 4:ra70. [PMID: 22028467 DOI: 10.1126/scisignal.2002278] [Citation(s) in RCA: 414] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Hippo signaling pathway regulates growth of the heart and other tissues. Hippo pathway kinases influence the activity of various targets, including the transcriptional coactivator Yap, but the specific role of Yap in heart growth has not been investigated. We show that Yap is necessary and sufficient for embryonic cardiac growth in mice. Deletion of Yap in the embryonic mouse heart impeded cardiomyocyte proliferation, causing myocardial hypoplasia and lethality at embryonic stage 10.5. Conversely, forced expression of a constitutively active form of Yap in the embryonic heart increased cardiomyocyte number and heart size. Yap activated the insulin-like growth factor (IGF) signaling pathway in cardiomyocytes, resulting in inactivation of glycogen synthase kinase 3β, which led to increased abundance of β-catenin, a positive regulator of cardiac growth. Our results point to Yap as a critical downstream effector of the Hippo pathway in the control of cardiomyocyte proliferation and a nexus for coupling the IGF, Wnt, and Hippo signaling pathways with the developmental program for heart growth.
Collapse
Affiliation(s)
- Mei Xin
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
722
|
Laprise P. Emerging role for epithelial polarity proteins of the Crumbs family as potential tumor suppressors. J Biomed Biotechnol 2011; 2011:868217. [PMID: 21912482 PMCID: PMC3168773 DOI: 10.1155/2011/868217] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/09/2011] [Indexed: 12/21/2022] Open
Abstract
Defects in apical-basal polarity regulation are associated with tissue overgrowth and tumorogenesis, yet the molecular mechanisms linking epithelial polarity regulators to hyperplasia or neoplasia remain elusive. In addition, exploration of the expression and function of the full complement of proteins required for the polarized architecture of epithelial cells in the context of cancer is awaited. This paper provides an overview of recent studies performed on Drosophila and vertebrates showing that apical polarity proteins of the Crumbs family act to repress tissue growth and epithelial to mesenchymal transition. Thus, these proteins emerge as potential tumor suppressors. Interestingly, analysis of the molecular function of Crumbs proteins reveals a function for these polarity regulators in junctional complexes stability and control of signaling pathways regulating proliferation and apoptosis. Thereby, these studies provide a molecular basis explaining how regulation of epithelial polarity is coupled to tumorogenesis.
Collapse
Affiliation(s)
- Patrick Laprise
- Department of Molecular Biology, Medical Biochemistry and Pathology/Cancer Research Center, Laval University and CRCHUQ-Hôtel-Dieu de Québec, 9 McMahon, Québec, QC, Canada G1R 2J6.
| |
Collapse
|
723
|
Abstract
The Hippo pathway, a signaling cascade that controls cell cycle progression, apoptosis and cell differentiation, has emerged as a fundamental regulator of many physiological and pathological processes. Recent studies have revealed a complex network of interactions directing Hippo pathway activity, and have connected this pathway with other key signaling pathways. Such crosstalk has uncovered novel roles for Hippo signaling, including regulation of TGFβ/SMAD and WNT/β-catenin pathways. This review highlights some of the recent findings in the Hippo field with an emphasis on how the Hippo pathway is integrated with other pathways to mediate diverse processes.
Collapse
|
724
|
Wada KI, Itoga K, Okano T, Yonemura S, Sasaki H. Hippo pathway regulation by cell morphology and stress fibers. Development 2011; 138:3907-14. [PMID: 21831922 DOI: 10.1242/dev.070987] [Citation(s) in RCA: 684] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Hippo signaling pathway plays an important role in regulation of cell proliferation. Cell density regulates the Hippo pathway in cultured cells; however, the mechanism by which cells detect density remains unclear. In this study, we demonstrated that changes in cell morphology are a key factor. Morphological manipulation of single cells without cell-cell contact resulted in flat spread or round compact cells with nuclear or cytoplasmic Yap, respectively. Stress fibers increased in response to expanded cell areas, and F-actin regulated Yap downstream of cell morphology. Cell morphology- and F-actin-regulated phosphorylation of Yap, and the effects of F-actin were suppressed by modulation of Lats. Our results suggest that cell morphology is an important factor in the regulation of the Hippo pathway, which is mediated by stress fibers consisting of F-actin acting upstream of, or on Lats, and that cells can detect density through their resulting morphology. This cell morphology (stress-fiber)-mediated mechanism probably cooperates with a cell-cell contact (adhesion)-mediated mechanism involving the Hippo pathway to achieve density-dependent control of cell proliferation.
Collapse
Affiliation(s)
- Ken-Ichi Wada
- Department of Cell Fate Control, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | | | | | |
Collapse
|
725
|
Zhao B, Tumaneng K, Guan KL. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol 2011; 13:877-83. [PMID: 21808241 DOI: 10.1038/ncb2303] [Citation(s) in RCA: 949] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Precise control of organ size is crucial during animal development and regeneration. In Drosophila and mammals, studies over the past decade have uncovered a critical role for the Hippo tumour-suppressor pathway in the regulation of organ size. Dysregulation of this pathway leads to massive overgrowth of tissue. The Hippo signalling pathway is highly conserved and limits organ size by phosphorylating and inhibiting the transcription co-activators YAP and TAZ in mammals and Yki in Drosophila, key regulators of proliferation and apoptosis. The Hippo pathway also has a critical role in the self-renewal and expansion of stem cells and tissue-specific progenitor cells, and has important functions in tissue regeneration. Emerging evidence shows that the Hippo pathway is regulated by cell polarity, cell adhesion and cell junction proteins. In this review we summarize current understanding of the composition and regulation of the Hippo pathway, and discuss how cell polarity and cell adhesion proteins inform the role of this pathway in organ size control and regeneration.
Collapse
Affiliation(s)
- Bin Zhao
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | | |
Collapse
|
726
|
Yki/YAP, Sd/TEAD and Hth/MEIS control tissue specification in the Drosophila eye disc epithelium. PLoS One 2011; 6:e22278. [PMID: 21811580 PMCID: PMC3139632 DOI: 10.1371/journal.pone.0022278] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 06/17/2011] [Indexed: 11/19/2022] Open
Abstract
During animal development, accurate control of tissue specification and growth are critical to generate organisms of reproducible shape and size. The eye-antennal disc epithelium of Drosophila is a powerful model system to identify the signaling pathway and transcription factors that mediate and coordinate these processes. We show here that the Yorkie (Yki) pathway plays a major role in tissue specification within the developing fly eye disc epithelium at a time when organ primordia and regional identity domains are specified. RNAi-mediated inactivation of Yki, or its partner Scalloped (Sd), or increased activity of the upstream negative regulators of Yki cause a dramatic reorganization of the eye disc fate map leading to specification of the entire disc epithelium into retina. On the contrary, constitutive expression of Yki suppresses eye formation in a Sd-dependent fashion. We also show that knockdown of the transcription factor Homothorax (Hth), known to partner Yki in some developmental contexts, also induces an ectopic retina domain, that Yki and Scalloped regulate Hth expression, and that the gain-of-function activity of Yki is partially dependent on Hth. Our results support a critical role for Yki- and its partners Sd and Hth - in shaping the fate map of the eye epithelium independently of its universal role as a regulator of proliferation and survival.
Collapse
|
727
|
Understanding the molecular circuitry of cell lineage specification in the early mouse embryo. Genes (Basel) 2011; 2:420-48. [PMID: 24710206 PMCID: PMC3927619 DOI: 10.3390/genes2030420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 06/24/2011] [Accepted: 07/05/2011] [Indexed: 11/16/2022] Open
Abstract
Pluripotent stem cells hold great promise for cell-based therapies in regenerative medicine. However, critical to understanding and exploiting mechanisms of cell lineage specification, epigenetic reprogramming, and the optimal environment for maintaining and differentiating pluripotent stem cells is a fundamental knowledge of how these events occur in normal embryogenesis. The early mouse embryo has provided an excellent model to interrogate events crucial in cell lineage commitment and plasticity, as well as for embryo-derived lineage-specific stem cells and induced pluripotent stem (iPS) cells. Here we provide an overview of cell lineage specification in the early (preimplantation) mouse embryo focusing on the transcriptional circuitry and epigenetic marks necessary for successive differentiation events leading to the formation of the blastocyst.
Collapse
|
728
|
E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc Natl Acad Sci U S A 2011; 108:11930-5. [PMID: 21730131 DOI: 10.1073/pnas.1103345108] [Citation(s) in RCA: 544] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Contact inhibition of cell growth is essential for embryonic development and maintenance of tissue architecture in adult organisms, and the growth of tumors is characterized by a loss of contact inhibition of proliferation. The recently identified Hippo signaling pathway has been implicated in contact inhibition of proliferation as well as organ size control. The modulation of the phosphorylation and nuclear localization of Yes-associated protein (YAP) by the highly conserved kinase cascade of the Hippo signaling pathway has been intensively studied. However, cell-surface receptors regulating the Hippo signaling pathway in mammals are not well understood. In this study, we show that Hippo signaling pathway components are required for E-cadherin-dependent contact inhibition of proliferation. Knockdown of the Hippo signaling components or overexpression of YAP inhibits the decrease in cell proliferation caused by E-cadherin homophilic binding at the cell surface, independent of other cell-cell interactions. We also demonstrate that the E-cadherin/catenin complex functions as an upstream regulator of the Hippo signaling pathway in mammalian cells. Expression of E-cadherin in MDA-MB-231 cells restores the density-dependent regulation of YAP nuclear exclusion. Knockdown of β-catenin in densely cultured MCF10A cells, which mainly depletes E-cadherin-bound β-catenin, induces a decrease in the phosphorylation of S127 residue of YAP and its nuclear accumulation. Moreover, E-cadherin homophilic binding independent of other cell interactions is sufficient to control the subcellular localization of YAP. Therefore, Our results indicate that, in addition to its role in cell-cell adhesion, E-cadherin-mediated cell-cell contact directly regulates the Hippo signaling pathway to control cell proliferation.
Collapse
|
729
|
Oct4 protein remains in trophectoderm until late stages of mouse blastocyst development. Reprod Biol 2011; 11:145-56. [DOI: 10.1016/s1642-431x(12)60051-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
730
|
|
731
|
Transcription factor TEAD4 regulates expression of myogenin and the unfolded protein response genes during C2C12 cell differentiation. Cell Death Differ 2011; 19:220-31. [PMID: 21701496 DOI: 10.1038/cdd.2011.87] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The TEAD (1-4) transcription factors comprise the conserved TEA/ATTS DNA-binding domain recognising the MCAT element in the promoters of muscle-specific genes. Despite extensive genetic analysis, the function of TEAD factors in muscle differentiation has proved elusive due to redundancy among the family members. Expression of the TEA/ATTS DNA-binding domain that acts as a dominant negative repressor of TEAD factors in C2C12 myoblasts inhibits their differentiation, whereas selective shRNA knockdown of TEAD4 results in abnormal differentiation characterised by the formation of shortened myotubes. Chromatin immunoprecipitation coupled to array hybridisation shows that TEAD4 occupies 867 promoters including those of myogenic miRNAs. We show that TEAD factors directly induce Myogenin, CDKN1A and Caveolin 3 expression to promote myoblast differentiation. RNA-seq identifies a set of genes whose expression is strongly reduced upon TEAD4 knockdown among which are structural and regulatory proteins and those required for the unfolded protein response. In contrast, TEAD4 represses expression of the growth factor CTGF (connective tissue growth factor) to promote differentiation. Together these results show that TEAD factor activity is essential for normal C2C12 cell differentiation and suggest a role for TEAD4 in regulating expression of the unfolded protein response genes.
Collapse
|
732
|
Nettersheim D, Gillis AJM, Looijenga LHJ, Schorle H. TGF-β1, EGF and FGF4 synergistically induce differentiation of the seminoma cell line TCam-2 into a cell type resembling mixed non-seminoma. ACTA ACUST UNITED AC 2011; 34:e189-203. [DOI: 10.1111/j.1365-2605.2011.01172.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
733
|
Yes-associated protein 65 (YAP) expands neural progenitors and regulates Pax3 expression in the neural plate border zone. PLoS One 2011; 6:e20309. [PMID: 21687713 PMCID: PMC3110623 DOI: 10.1371/journal.pone.0020309] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 04/27/2011] [Indexed: 11/19/2022] Open
Abstract
Yes-associated protein 65 (YAP) contains multiple protein-protein interaction domains and functions as both a transcriptional co-activator and as a scaffolding protein. Mouse embryos lacking YAP did not survive past embryonic day 8.5 and showed signs of defective yolk sac vasculogenesis, chorioallantoic fusion, and anterior-posterior (A-P) axis elongation. Given that the YAP knockout mouse defects might be due in part to nutritional deficiencies, we sought to better characterize a role for YAP during early development using embryos that develop externally. YAP morpholino (MO)-mediated loss-of-function in both frog and fish resulted in incomplete epiboly at gastrulation and impaired axis formation, similar to the mouse phenotype. In frog, germ layer specific genes were expressed, but they were temporally delayed. YAP MO-mediated partial knockdown in frog allowed a shortened axis to form. YAP gain-of-function in Xenopus expanded the progenitor populations in the neural plate (sox2+) and neural plate border zone (pax3+), while inhibiting the expression of later markers of tissues derived from the neural plate border zone (neural crest, pre-placodal ectoderm, hatching gland), as well as epidermis and somitic muscle. YAP directly regulates pax3 expression via association with TEAD1 (N-TEF) at a highly conserved, previously undescribed, TEAD-binding site within the 5′ regulatory region of pax3. Structure/function analyses revealed that the PDZ-binding motif of YAP contributes to the inhibition of epidermal and somitic muscle differentiation, but a complete, intact YAP protein is required for expansion of the neural plate and neural plate border zone progenitor pools. These results provide a thorough analysis of YAP mediated gene expression changes in loss- and gain-of-function experiments. Furthermore, this is the first report to use YAP structure-function analyzes to determine which portion of YAP is involved in specific gene expression changes and the first to show direct in vivo evidence of YAP's role in regulating pax3 neural crest expression.
Collapse
|
734
|
Role of mouse maternal Cdx2: what’s the debate all about? Reprod Biomed Online 2011; 22:516-8; discussion 519-20. [DOI: 10.1016/j.rbmo.2011.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 02/07/2011] [Indexed: 10/18/2022]
|
735
|
Littwin T, Denker HW. Segregation during cleavage in the mammalian embryo? A critical comparison of whole-mount/CLSM and section immunohistochemistry casts doubts on segregation of axis-relevant leptin domains in the rabbit. Histochem Cell Biol 2011; 135:553-70. [PMID: 21626127 DOI: 10.1007/s00418-011-0816-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2011] [Indexed: 11/30/2022]
Abstract
Segregation of certain cytoplasmic molecules during cleavage and blastocyst formation that was previously reported to occur in the human and the mouse (Antczak and Van Blerkom Mol Hum Reprod 3:1067-1086, 1997; Antczak and Van Blerkom Hum Reprod 14:429-447, 1999) has been reinvestigated in the rabbit model. Additional methodology was used and two approaches were compared: (1) whole-mount immunohistochemistry followed by confocal laser scanning microscopy (WM-IHC/CLSM) versus (2) IHC performed on histological sections of resin-embedded material (S-IHC). This study concentrates on leptin and cytoskeletal proteins (actin and cytokeratins). With S-IHC, leptin was localized predominantly on the surface of blastomeres which is facing the perivitelline space, and in the extracellular embryonic coats, without any polar asymmetry being detectable along (presumptive) embryonic axes. A polar distribution of leptin with a pattern that could be interpreted as predictive of the prospective embryonic-abembryonic axis was seen only with WM-IHC/CLSM, not with S-IHC, although the latter gave excellent resolution. With both techniques, no differences between blastomeres were detected with respect to actin and cytokeratin patterns, an increased expression of cytokeratin in trophoblast cells occurring no earlier than at blastocyst formation. Artifacts that can occur with the two methodological approaches are critically discussed, as is the possible significance of the findings for theories on the differentiation of trophoblast versus embryoblast and on axis formation in early mammalian development. It is concluded that these data call for cautioning when studying distribution patterns of diffusible molecules with WM-IHC/CLSM technology, whereas patterns obtained with S-IHC are more reliable. Specifically these data cast doubts on previous claims that leptin IHC would allow to monitor cytoplasmic domain segregation occurring during cleavage as an element of early embryonic pattern/axis formation.
Collapse
Affiliation(s)
- T Littwin
- Institut für Anatomie, Lehrstuhl für Anatomie und Entwicklungsbiologie, Universität Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany.
| | | |
Collapse
|
736
|
Abstract
The establishment and maintenance of apico–basal cell polarity is a pre-requisite for the formation of a functioning epithelial tissue. Many lines of evidence suggest that cell polarity perturbations favour cancer formation, even though the mechanistic basis for this link remains unclear. Studies in Drosophila have uncovered complex interactions between the conserved Hpo (Hippo) tumour suppressor pathway and apico–basal polarity determinants. The Hpo pathway is a crucial growth regulatory network whose inactivation in Drosophila epithelial tissues induces massive overproliferation. Its core consists of a phosphorylation cascade (comprising the kinases Hpo and Warts) that mediates the inactivation of the pro-growth transcriptional co-activator Yki [Yorkie; YAP (Yes-associated protein) in mammals]. Several apically located proteins, such as Merlin, Expanded or Kibra, have been identified as upstream regulators of the Hpo pathway, leading to the notion that an apical multi-molecular complex modulates core kinase activity and promotes Yki/YAP inactivation. In the present review, we explore the links between apico–basal polarity and Hpo signalling. We focus on the regulation of Yki/YAP by apical proteins, but also on how the Hpo pathway might in turn influence apical domain size as part of a regulatory feedback loop.
Collapse
|
737
|
Krupinski P, Chickarmane V, Peterson C. Simulating the mammalian blastocyst--molecular and mechanical interactions pattern the embryo. PLoS Comput Biol 2011; 7:e1001128. [PMID: 21573197 PMCID: PMC3088645 DOI: 10.1371/journal.pcbi.1001128] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 03/31/2011] [Indexed: 11/30/2022] Open
Abstract
Mammalian embryogenesis is a dynamic process involving gene expression and mechanical forces between proliferating cells. The exact nature of these interactions, which determine the lineage patterning of the trophectoderm and endoderm tissues occurring in a highly regulated manner at precise periods during the embryonic development, is an area of debate. We have developed a computational modeling framework for studying this process, by which the combined effects of mechanical and genetic interactions are analyzed within the context of proliferating cells. At a purely mechanical level, we demonstrate that the perpendicular alignment of the animal-vegetal (a-v) and embryonic-abembryonic (eb-ab) axes is a result of minimizing the total elastic conformational energy of the entire collection of cells, which are constrained by the zona pellucida. The coupling of gene expression with the mechanics of cell movement is important for formation of both the trophectoderm and the endoderm. In studying the formation of the trophectoderm, we contrast and compare quantitatively two hypotheses: (1) The position determines gene expression, and (2) the gene expression determines the position. Our model, which couples gene expression with mechanics, suggests that differential adhesion between different cell types is a critical determinant in the robust endoderm formation. In addition to differential adhesion, two different testable hypotheses emerge when considering endoderm formation: (1) A directional force acts on certain cells and moves them into forming the endoderm layer, which separates the blastocoel and the cells of the inner cell mass (ICM). In this case the blastocoel simply acts as a static boundary. (2) The blastocoel dynamically applies pressure upon the cells in contact with it, such that cell segregation in the presence of differential adhesion leads to the endoderm formation. To our knowledge, this is the first attempt to combine cell-based spatial mechanical simulations with genetic networks to explain mammalian embryogenesis. Such a framework provides the means to test hypotheses in a controlled in silico environment. We elucidate by computational means the processes by which the development of the mammalian embryo during its first four to five days occurs, as it is transformed from a single stem cell into hundreds of cells of different tissue types. We are interested in understanding the fundamental processes of how gene expression dynamics within each cell is coupled to the mechanical forces between cells, such that cells move to take up their positions as part of different tissues depending on the genes they express. Recent experiments which track single cell movement and division in conjunction with their gene expression dynamics suggest various hypotheses as to how this coupling functions to pattern the embryo. We have developed a computational model which can test these hypotheses. The model consists of dividing cells, interacting with each other through mechanical forces, within a confinement of embryo boundary. Each cell contains a genetic network of specific genes which influence cell adhesion properties and cell division plane directions. We explicitly simulate the formation of the trophectoderm and endoderm layers of cells which illuminates the principles by which the embryo is robustly patterned.
Collapse
Affiliation(s)
- Pawel Krupinski
- Computational Biology & Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
| | - Vijay Chickarmane
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Carsten Peterson
- Computational Biology & Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
738
|
Lineage mapping the pre-implantation mouse embryo by two-photon microscopy, new insights into the segregation of cell fates. Dev Biol 2011; 355:239-49. [PMID: 21539832 PMCID: PMC3119919 DOI: 10.1016/j.ydbio.2011.04.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 04/14/2011] [Accepted: 04/18/2011] [Indexed: 11/20/2022]
Abstract
The first lineage segregation in the pre-implantation mouse embryo gives rise to cells of the inner cell mass and the trophectoderm. Segregation into these two lineages during the 8-cell to 32-cell stages is accompanied by a significant amount of cell displacement, and as such it has been difficult to accurately track cellular behavior using conventional imaging techniques. Consequently, how cellular behaviors correlate with cell fate choices is still not fully understood. To achieve the high spatial and temporal resolution necessary for tracking individual cell lineages, we utilized two-photon light-scanning microscopy (TPLSM) to visualize and follow every cell in the embryo using fluorescent markers. We found that cells undergoing asymmetric cell fate divisions originate from a unique population of cells that have been previously classified as either outer or inner cells. This imaging technique coupled with a tracking algorithm we developed allows us to show that these cells, which we refer to as intermediate cells, share features of inner cells but exhibit different dynamic behaviors and a tendency to expose their cell surface in the mouse embryo between the fourth and fifth cleavages. We provide an accurate description of the correlation between cell division order and cell fate, and demonstrate that cell cleavage angle is a more accurate indicator of cellular polarity than cell fate. Our studies demonstrate the utility of two-photon imaging in answering questions in the pre-implantation field that have previously been difficult or impossible to address. Our studies provide a framework for the future use of specific markers to track cell fate molecularly and with high accuracy.
Collapse
|
739
|
Szczepanska K, Stanczuk L, Maleszewski M. Isolated mouse inner cell mass is unable to reconstruct trophectoderm. Differentiation 2011; 82:1-8. [PMID: 21514715 DOI: 10.1016/j.diff.2011.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/31/2011] [Accepted: 04/03/2011] [Indexed: 11/17/2022]
Abstract
The ability of ICM to differentiate into TE is still a controversial issue. Many of authors have showed the reconstruction of TE from isolated ICMs. We showed that immunosurgical method is not 100% efficient and that the original TE cells very often remain on the surface of isolated ICMs. We also found that isolated ICM cells cultured in vitro do not express Cdx2, and that the TE is reconstituted from TE cells which have survived immunosurgery. This indicates that very soon after the formation of TE in the blastocyst, the cells of ICM lose the potency to differentiate into trophectoderm.
Collapse
Affiliation(s)
- Katarzyna Szczepanska
- Department of Embryology, Institute of Zoology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | |
Collapse
|
740
|
Reprogramming of Trophoblast Stem Cells into Pluripotent Stem Cells by Oct4. Stem Cells 2011; 29:755-63. [DOI: 10.1002/stem.617] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
741
|
Tamm C, Böwer N, Annerén C. Regulation of mouse embryonic stem cell self-renewal by a Yes–YAP–TEAD2 signaling pathway downstream of LIF. J Cell Sci 2011; 124:1136-44. [DOI: 10.1242/jcs.075796] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The cytoplasmic tyrosine kinase Yes has previously been shown to have an important role in maintaining mouse and human embryonic stem (ES) self-renewal through an unknown pathway downstream of leukemia inhibitory factor (LIF) and one or more factors in serum. Here, we show that TEAD2 and its transcriptional co-activator, the Yes-associated protein YAP, co-operate in a signaling pathway downstream of Yes. We show that YAP, TEAD2 and Yes are highly expressed in self-renewing ES cells, are activated by LIF and serum, and are downregulated when cells are induced to differentiate. We also demonstrate that kinase-active Yes binds and phosphorylates YAP, and activates YAP–TEAD2-dependent transcription. We found that TEAD2 associates directly with the Oct-3/4 promoter. Moreover, activation of the Yes pathway induced activity of the Oct-3/4 and Nanog promoters, whereas suppression of this pathway inhibited promoter activity. Nanog, in turn, suppressed TEAD2-dependent promoter activity, whereas siRNA-mediated knockdown of Nanog induced it, suggesting a negative regulatory feedback loop. Episomal supertransfection of cells with inhibitory TEAD2–EnR induced endodermal differentiation, which suggests that this pathway is necessary for ES cell maintenance.
Collapse
Affiliation(s)
- Christoffer Tamm
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| | - Nathalie Böwer
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| | - Cecilia Annerén
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
742
|
Kuckenberg P, Peitz M, Kubaczka C, Becker A, Egert A, Wardelmann E, Zimmer A, Brüstle O, Schorle H. Lineage conversion of murine extraembryonic trophoblast stem cells to pluripotent stem cells. Mol Cell Biol 2011; 31:1748-56. [PMID: 21300784 PMCID: PMC3126346 DOI: 10.1128/mcb.01047-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 01/27/2011] [Indexed: 01/09/2023] Open
Abstract
In mammals, the first cell fate decision is initialized by cell polarization at the 8- to 16-cell stage of the preimplantation embryo. At this stage, outside cells adopt a trophectoderm (TE) fate, whereas the inside cell population gives rise to the inner cell mass (ICM). Prior to implantation, transcriptional interaction networks and epigenetic modifications divide the extraembryonic and embryonic fate irrevocably. Here, we report that extraembryonic trophoblast stem cell (TSC) lines are converted to induced pluripotent stem cells (TSC-iPSCs) by overexpressing Oct4, Sox2, Klf4, and cMyc. Methylation studies and gene array analyses indicated that TSC-iPSCs had adopted a pluripotent potential. The rate of conversion was lower than those of somatic reprogramming experiments, probably due to the unique genetic network controlling extraembryonic lineage fixation. Both in vitro and in vivo, TSC-iPSCs differentiated into tissues representing all three embryonic germ layers, indicating that somatic cell fate could be induced. Finally, TSC-iPSCs chimerized the embryo proper and contributed to the germ line of mice, indicating that these cells had acquired full somatic differentiation potential. These results lead to a better understanding of the molecular processes that govern the first lineage decision in mammals.
Collapse
Affiliation(s)
- Peter Kuckenberg
- Department of Developmental Pathology, Institute of Pathology, University of Bonn Medical School, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn, 53127 Bonn, Germany
| | - Caroline Kubaczka
- Department of Developmental Pathology, Institute of Pathology, University of Bonn Medical School, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Astrid Becker
- Institute of Molecular Psychiatry, Life and Brain Center, University of Bonn, 53127 Bonn, Germany
| | - Angela Egert
- Department of Developmental Pathology, Institute of Pathology, University of Bonn Medical School, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Eva Wardelmann
- Institute of Pathology, University of Bonn Medical School, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Life and Brain Center, University of Bonn, 53127 Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn, 53127 Bonn, Germany
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University of Bonn Medical School, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| |
Collapse
|
743
|
Berg DK, Smith CS, Pearton DJ, Wells DN, Broadhurst R, Donnison M, Pfeffer PL. Trophectoderm lineage determination in cattle. Dev Cell 2011; 20:244-55. [PMID: 21316591 DOI: 10.1016/j.devcel.2011.01.003] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 11/30/2010] [Accepted: 01/03/2011] [Indexed: 12/21/2022]
Abstract
The trophectoderm (TE) and inner cell mass (ICM) are committed and marked by reciprocal expression of Cdx2 and Oct4 in mouse late blastocysts. We find that the TE is not committed at equivalent stages in cattle, and that bovine Cdx2 is required later, for TE maintenance, but does not repress Oct4 expression. A mouse Oct4 (mOct4) reporter, repressed in mouse TE, remained active in the cattle TE; bovine Oct4 constructs were not repressed in the mouse TE. mOct4 has acquired Tcfap2 binding sites mediating Cdx2-independent repression-cattle, humans, and rabbits do not contain these sites and maintain high Oct4 levels in the TE. Our data suggest that the regulatory circuitry determining ICM/TE identity has been rewired in mice, to allow rapid TE differentiation and early blastocyst implantation. These findings thus emphasize ways in which mice may not be representative of the earliest stages of mammalian development and stem cell biology.
Collapse
Affiliation(s)
- Debra K Berg
- Reproductive Technologies, AgResearch Crown Research Institute, Hamilton 3214, New Zealand
| | | | | | | | | | | | | |
Collapse
|
744
|
Chan SW, Lim CJ, Chen L, Chong YF, Huang C, Song H, Hong W. The Hippo pathway in biological control and cancer development. J Cell Physiol 2011; 226:928-39. [PMID: 20945341 DOI: 10.1002/jcp.22435] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Hippo pathway is an evolutionally conserved protein kinase cascade involved in regulating organ size in vivo and cell contact inhibition in vitro by governing cell proliferation and apoptosis. Deregulation of the Hippo pathway is linked to cancer development. Its first core kinase Warts was identified in Drosophila more than 15 years ago, but it gained much attention when other core components of the pathway were identified 8 years later. Major discoveries of the pathway were made during past several years. The core kinase components Hippo, Salvador, Warts, and Mats in the fly and Mst1/2, WW45, Lats1/2, and Mob1 in mammals phosphorylate and inactivate downstream transcriptional co-activators Yorkie in the fly, Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) in mammals, respectively. Phosphorylated Yorkie, YAP, and TAZ are sequestered in the cytoplasm by interaction with 14-3-3 proteins. Here we review recent progresses of this pathway by focusing on how these proteins communicate with each other and how loss of regulation results in cancers.
Collapse
Affiliation(s)
- Siew Wee Chan
- Cancer and Developmental Cell Biology Division, Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | | | | | | | | | | | | |
Collapse
|
745
|
Kuijk EW, Chuva de Sousa Lopes SM, Geijsen N, Macklon N, Roelen BA. The different shades of mammalian pluripotent stem cells. Hum Reprod Update 2011; 17:254-71. [PMID: 20705693 PMCID: PMC3039219 DOI: 10.1093/humupd/dmq035] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 06/24/2010] [Accepted: 07/13/2010] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Pluripotent stem cells have been derived from a variety of sources such as from the inner cell mass of preimplantation embryos, from primordial germ cells, from teratocarcinomas and from male germ cells. The recent development of induced pluripotent stem cells demonstrates that somatic cells can be reprogrammed to a pluripotent state in vitro. METHODS This review summarizes our current understanding of the origins of mouse and human pluripotent cells. We pay specific attention to transcriptional and epigenetic regulation in pluripotent cells and germ cells. Furthermore, we discuss developmental aspects in the germline that seem to be of importance for the transition of germ cells towards pluripotency. This review is based on literature from the Pubmed database, using Boolean search statements with relevant keywords on the subject. RESULTS There are distinct molecular mechanisms involved in the generation and maintenance of the various pluripotent cell types. Furthermore, there are important similarities and differences between the different categories of pluripotent cells in terms of phenotype and epigenetic modifications. Pluripotent cell lines from various origins differ in growth characteristics, developmental potential, transcriptional activity and epigenetic regulation. Upon derivation, pluripotent stem cells generally acquire new properties, but they often also retain a 'footprint' of their tissue of origin. CONCLUSIONS In order to further our knowledge of the mechanisms underlying self-renewal and pluripotency, a thorough comparison between different pluripotent stem cell types is required. This will progress the use of stem cells in basic biology, drug discovery and future clinical applications.
Collapse
Affiliation(s)
- Ewart W. Kuijk
- Department of Reproductive Medicine and Gynaecology, University Medical Center Utrecht, Utrecht, The Netherlands
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Niels Geijsen
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
- Center for Regenerative Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Boston, MA, USA
| | - Nick Macklon
- Department of Reproductive Medicine and Gynaecology, University Medical Center Utrecht, Utrecht, The Netherlands
- Division of Developmental Origins of Adult Disease, Department of Obstetrics and Gynaecology, University of Southampton, Princess Anne Hospital, Southampton, UK
| | - Bernard A.J. Roelen
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
746
|
Rousso SZ, Schyr RBH, Gur M, Zouela N, Kot-Leibovich H, Shabtai Y, Koutsi-Urshanski N, Baldessari D, Pillemer G, Niehrs C, Fainsod A. Negative autoregulation of Oct3/4 through Cdx1 promotes the onset of gastrulation. Dev Dyn 2011; 240:796-807. [PMID: 21360791 DOI: 10.1002/dvdy.22588] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2011] [Indexed: 12/16/2022] Open
Abstract
Gastrulation marks the onset of germ layer formation from undifferentiated precursor cells maintained by a network including the Pou5f1 gene, Oct3/4. Negative regulation of the undifferentiated state is a prerequisite for germ layer formation and subsequent development. A novel cross-regulatory network was characterized including the Pou5f1 and Cdx1 genes as part of the signals controlling the onset of gastrulation. Of particular interest was the observation that, preceding gastrulation, the Xenopus Oct3/4 factors, Oct60, Oct25, and Oct91, positively regulate Cdx1 expression through FGF signaling, and during gastrulation the Oct3/4 factors become repressors of Cdx1. Cdx1 negatively regulates the Pou5f1 genes during gastrulation, thus contributing to the repression of the network maintaining the undifferentiated state and promoting the onset of gastrulation. These regulatory interactions suggest that Oct3/4 initiates its own negative autoregulation through Cdx1 up-regulation to begin the repression of pluripotency in preparation for the onset of gastrulation and germ layer differentiation.
Collapse
Affiliation(s)
- Sharon Zins Rousso
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
747
|
Bao Y, Hata Y, Ikeda M, Withanage K. Mammalian Hippo pathway: from development to cancer and beyond. J Biochem 2011; 149:361-79. [PMID: 21324984 DOI: 10.1093/jb/mvr021] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Hippo pathway was discovered as a signal transduction pathway that regulates organ size in Drosophila melanogaster. It is composed of three components: cell surface upstream regulators including cell adhesion molecules and cell polarity complexes; a kinase cascade comprising two serine-threonine kinases with regulators and adaptors; and a downstream target, a transcription coactivator. The coactivator mediates the transcription of cell proliferation-promoting and anti-apoptotic genes. The pathway negatively regulates the coactivator to restrict cell proliferation and to promote cell death. Thus, the pathway prevents tissue overgrowth and tumourigenesis. The framework of the pathway is conserved in mammals. A dysfunction of the pathway is frequently detected in human cancers and correlates with a poor prognosis. Recent works indicated that the Hippo pathway plays an important role in tissue homoeostasis through the regulation of stem cells, cell differentiation and tissue regeneration.
Collapse
Affiliation(s)
- Yijun Bao
- Department of Medical Biochemistry, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | | | | | | |
Collapse
|
748
|
Fujii T, Moriyasu S, Hirayama H, Hashizume T, Sawai K. Aberrant expression patterns of genes involved in segregation of inner cell mass and trophectoderm lineages in bovine embryos derived from somatic cell nuclear transfer. Cell Reprogram 2011; 12:617-25. [PMID: 20726774 DOI: 10.1089/cell.2010.0017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
High rates of embryonic, fetal, or placental abnormalities have consistently been observed in bovine cloning. Segregation of inner cell mass (ICM) and trophectoderm (TE) lineages in early embryos is an important process for fetal and placental formation. In mouse embryos, differentiation of ICM and TE is regulated by various transcription factors, such as OCT-4, CDX2, and TEAD4, but molecular mechanisms that regulate differentiation in bovine embryos remain unknown. To clarify gene transcripts involved in segregation of ICM and TE lineages in bovine embryos, we examined the relative abundances of OCT-4, CDX2, TEAD4, GATA3, NANOG, and FGF4 transcripts in blastocyst embryos derived from in vitro fertilization (IVF). Furthermore, transcript levels of such genes in bovine embryos derived from somatic cell nuclear transfer (NT-SC) and in vivo (Vivo) were also compared. OCT-4, NANOG, and FGF4 transcript levels in IVF embryos were significantly higher in ICM than in TE. In contrast, the CDX2 transcript level was lower in ICM than in TE. In NT-SC embryos at the blastocyst stage, transcript levels of all genes except CDX2 were lower than that in Vivo embryos. In the elongated stage, expression levels of the six genes did not differ between NT-SC and Vivo embryos. We observed aberrant expression patterns of various genes involved in segregation of ICM and TE lineages in bovine NT-SC embryos. These results raise the possibility that abnormalities in the cloned fetus and placenta are related to the aberrant expression of genes involved in segregation and differentiation process in the early developmental stage.
Collapse
|
749
|
Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG, Rossant J, Wrana JL. The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-β-SMAD pathway. Dev Cell 2011; 19:831-44. [PMID: 21145499 DOI: 10.1016/j.devcel.2010.11.012] [Citation(s) in RCA: 565] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 11/09/2010] [Accepted: 11/19/2010] [Indexed: 01/29/2023]
Abstract
The Hippo pathway senses cell density information to control tissue growth by regulating the localization of the transcriptional regulators TAZ and YAP (TAZ/YAP). TAZ/YAP also regulate TGF-β-SMAD signaling, but whether this role is linked to cell density sensing is unknown. Here we demonstrate that TAZ/YAP dictate the localization of active SMAD complexes in response to cell density-mediated formation of polarity complexes. In high-density cell cultures, the Hippo pathway drives cytoplasmic localization of TAZ/YAP, which sequesters SMAD complexes, thereby suppressing TGF-β signaling. We show that during mouse embryogenesis, this is reflected by differences in TAZ/YAP localization, which define regions of active SMAD2/3 complexes. Interfering with TAZ/YAP phosphorylation drives nuclear accumulation of TAZ/YAP and SMAD2/3. Furthermore, we demonstrate that the Crumbs polarity complex interacts with TAZ/YAP, which relays cell density information by promoting TAZ/YAP phosphorylation, cytoplasmic retention, and suppressed TGF-β signaling. Accordingly, disruption of the Crumbs complex enhances TGF-β signaling and predisposes cells to TGF-β-mediated epithelial-to-mesenchymal transitions.
Collapse
Affiliation(s)
- Xaralabos Varelas
- Center for Systems Biology, Mount Sinai Hospital, Toronto, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
750
|
Chen L, Loh PG, Song H. Structural and functional insights into the TEAD-YAP complex in the Hippo signaling pathway. Protein Cell 2011; 1:1073-83. [PMID: 21213102 DOI: 10.1007/s13238-010-0138-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 11/14/2010] [Indexed: 01/15/2023] Open
Abstract
The control of organ size growth is one of the most fundamental aspects of life. In the past two decades, a highly conserved Hippo signaling pathway has been identified as a key molecular mechanism for governing organ size regulation. In the middle of this pathway is a kinase cascade that negatively regulates the downstream component Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ)/Yorkie through phosphorylation. Phosphorylation of YAP/TAZ/Yorkie promotes its cytoplasmic localization, leads to cell apoptosis and restricts organ size overgrowth. When the Hippo pathway is inactivated, YAP/TAZ/Yorkie translocates into the nucleus to bind to the transcription enhancer factor (TEAD/TEF) family of transcriptional factors to promote cell growth and proliferation. In this review, we will focus on the structural and functional studies on the downstream transcription factor TEAD and its coactivator YAP.
Collapse
Affiliation(s)
- Liming Chen
- Cancer and Developmental Cell Biology Division, Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Singapore 138673, Republic of Singapore
| | | | | |
Collapse
|