701
|
Obayashi M, Stevanin G, Synofzik M, Monin ML, Duyckaerts C, Sato N, Streichenberger N, Vighetto A, Desestret V, Tesson C, Wichmann HE, Illig T, Huttenlocher J, Kita Y, Izumi Y, Mizusawa H, Schöls L, Klopstock T, Brice A, Ishikawa K, Dürr A. Spinocerebellar ataxia type 36 exists in diverse populations and can be caused by a short hexanucleotide GGCCTG repeat expansion. J Neurol Neurosurg Psychiatry 2015; 86:986-95. [PMID: 25476002 DOI: 10.1136/jnnp-2014-309153] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/03/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Spinocerebellar ataxia 36 (SCA36) is an autosomal-dominant neurodegenerative disorder caused by a large (>650) hexanucleotide GGCCTG repeat expansion in the first intron of the NOP56 gene. The aim of this study is to clarify the prevalence, clinical and genetic features of SCA36. METHODS The expansion was tested in 676 unrelated SCA index cases and 727 controls from France, Germany and Japan. Clinical and neuropathological features were investigated in available family members. RESULTS Normal alleles ranged between 5 and 14 hexanucleotide repeats. Expansions were detected in 12 families in France (prevalence: 1.9% of all French SCAs) including one family each with Spanish, Portuguese or Chinese ancestry, in five families in Japan (1.5% of all Japanese SCAs), but were absent in German patients. All the 17 SCA36 families shared one common haplotype for a 7.5 kb pairs region flanking the expansion. While 27 individuals had typically long expansions, three affected individuals harboured small hexanucleotide expansions of 25, 30 and 31 hexanucleotide repeat-units, demonstrating that such a small expansion could cause the disease. All patients showed slowly progressive cerebellar ataxia frequently accompanied by hearing and cognitive impairments, tremor, ptosis and reduced vibration sense, with the age at onset ranging between 39 and 65 years, and clinical features were indistinguishable between individuals with short and typically long expansions. Neuropathology in a presymptomatic case disclosed that Purkinje cells and hypoglossal neurons are affected. CONCLUSIONS SCA36 is rare with a worldwide distribution. It can be caused by a short GGCCTG expansion and associates various extracerebellar symptoms.
Collapse
Affiliation(s)
- Masato Obayashi
- Department of Neurology and Neurological Sciences, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Giovanni Stevanin
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06, UMR_S1127, Paris, France Inserm, U1127, Paris, France Cnrs, UMR 7225, Paris, France AP-HP, Groupe Hospitalier Pitié-Salpêtriére, Departement of Genetics and Cytogenetics, Paris, France Ecole Pratique des Hautes Etudes, Groupe de Neurogénétique, Paris, France
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, Tübingen, Germany German Centre of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Marie-Lorraine Monin
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06, UMR_S1127, Paris, France Inserm, U1127, Paris, France Cnrs, UMR 7225, Paris, France
| | - Charles Duyckaerts
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06, UMR_S1127, Paris, France Inserm, U1127, Paris, France Cnrs, UMR 7225, Paris, France Laboratoire de Neuropathologie R. Escourolle, Groupe Hospitalier Pitié-Salpêtrière, 47 Blvd de l'Hôpital, Paris, France
| | - Nozomu Sato
- Department of Neurology and Neurological Sciences, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nathalie Streichenberger
- Pathology and Biochemistry, Groupement Hospitalier Est, Hospices Civils de Lyon/Claude Bernard University, Lyon, France
| | - Alain Vighetto
- Neurology Department, Hôpital Pierre Wertheimer, Lyon, France
| | - Virginie Desestret
- Neurology D, Hospices Civils de Lyon, Hôpital Neurologique, Bron, France Lyon Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon, France Université de Lyon-Université Claude Bernard Lyon 1, Lyon, France
| | - Christelle Tesson
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06, UMR_S1127, Paris, France Inserm, U1127, Paris, France Cnrs, UMR 7225, Paris, France Ecole Pratique des Hautes Etudes, Groupe de Neurogénétique, Paris, France
| | - H-Erich Wichmann
- Institute of Epidemiology I, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Illig
- Unit for Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Johanna Huttenlocher
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Yasushi Kita
- Neurology Service, Hyogo Brain and Heart Center at Himeji, Himeji, Hyogo, Japan
| | - Yuishin Izumi
- Department of Clinical Neuroscience, The University of Tokushima Graduate School, Tokushima, Japan
| | - Hidehiro Mizusawa
- Department of Neurology and Neurological Sciences, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, Tübingen, Germany German Centre of Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-Universität München, Munich, Germany German Network for Mitochondrial Disorders (mitoNET) DZNE-German Center for Neurodegenerative Diseases, Munich, Germany German Center for Vertigo and Balance Disorders, Munich, Germany
| | - Alexis Brice
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06, UMR_S1127, Paris, France Inserm, U1127, Paris, France Cnrs, UMR 7225, Paris, France AP-HP, Groupe Hospitalier Pitié-Salpêtriére, Departement of Genetics and Cytogenetics, Paris, France
| | - Kinya Ishikawa
- Department of Neurology and Neurological Sciences, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Alexandra Dürr
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 06, UMR_S1127, Paris, France Inserm, U1127, Paris, France Cnrs, UMR 7225, Paris, France AP-HP, Groupe Hospitalier Pitié-Salpêtriére, Departement of Genetics and Cytogenetics, Paris, France
| |
Collapse
|
702
|
Abstract
Around 10-15% of patients diagnosed with frontotemporal dementia (FTD) have a
positive family history for FTD with an autosomal dominant pattern of
inheritance. Since the identification of mutations in MAPT
(microtubule-associated protein tau gene) in 1998, over 10 other genes have been
associated with FTD spectrum disorders, discussed in this review. Along with
MAPT, mutations in GRN (progranulin) and
C9orf72 (chromosome 9 open reading frame 72) are the most
commonly identified in FTD cohorts. The association of FTD and motor neuron
disease (MND) can be caused by mutations in C9orf72 and other
genes, such as TARDBP (TAR DNA-binding protein),
FUS (fused in sarcoma), UBQLN2 (ubiquilin
2). Multisystem proteinopathy is a complex phenotype that includes FTD, Paget
disease of the bone, inclusion body myopathy and MND, and can be due to
mutations in VCP (valosing containing protein) and other
recently identified genes.
Collapse
Affiliation(s)
- Leonel T Takada
- MD, PhD, Cognitive and Behavioral Neurology Unit, Department of Neurology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil
| |
Collapse
|
703
|
Jovičić A, Mertens J, Boeynaems S, Bogaert E, Chai N, Yamada SB, Paul JW, Sun S, Herdy JR, Bieri G, Kramer NJ, Gage FH, Den Bosch LV, Robberecht W, Gitler AD. Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat Neurosci 2015; 18:1226-9. [PMID: 26308983 PMCID: PMC4552077 DOI: 10.1038/nn.4085] [Citation(s) in RCA: 487] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/10/2015] [Indexed: 12/14/2022]
Abstract
C9orf72 mutations are the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Dipeptide repeat proteins (DPRs) produced by unconventional translation of the C9orf72 repeat expansions cause neurodegeneration in cell culture and in animal models. We performed two unbiased screens in Saccharomyces cerevisiae and identified potent modifiers of DPR toxicity, including karyopherins and effectors of Ran-mediated nucleocytoplasmic transport, providing insight into potential disease mechanisms and therapeutic targets.
Collapse
Affiliation(s)
- Ana Jovičić
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Jerome Mertens
- Salk Institute for Biological Studies, Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| | - Steven Boeynaems
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), B-3000 Leuven, Belgium
- VIB, Vesalius Research Center, Laboratory of Neurobiology, B-3000 Leuven, Belgium
| | - Elke Bogaert
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), B-3000 Leuven, Belgium
- VIB, Vesalius Research Center, Laboratory of Neurobiology, B-3000 Leuven, Belgium
| | - Noori Chai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
- Neuroscience Graduate Program, Stanford University School of Medicine, Stanford, CA 94305
| | - Shizuka B. Yamada
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Joseph W. Paul
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Shuying Sun
- Ludwig Institute for Cancer Research, Departments of Cellular and Molecular Medicine and of Neurosciences, University of California at San Diego, La Jolla, CA 92093
| | - Joseph R. Herdy
- VIB, Vesalius Research Center, Laboratory of Neurobiology, B-3000 Leuven, Belgium
| | - Gregor Bieri
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
- Neuroscience Graduate Program, Stanford University School of Medicine, Stanford, CA 94305
| | - Nicholas J. Kramer
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
- Neuroscience Graduate Program, Stanford University School of Medicine, Stanford, CA 94305
| | - Fred H. Gage
- Salk Institute for Biological Studies, Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| | - Ludo Van Den Bosch
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), B-3000 Leuven, Belgium
- VIB, Vesalius Research Center, Laboratory of Neurobiology, B-3000 Leuven, Belgium
| | - Wim Robberecht
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), B-3000 Leuven, Belgium
- VIB, Vesalius Research Center, Laboratory of Neurobiology, B-3000 Leuven, Belgium
- University Hospitals Leuven, Department of Neurology, B-3000 Leuven, Belgium
| | - Aaron D. Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
704
|
Xiao S, MacNair L, McGoldrick P, McKeever PM, McLean JR, Zhang M, Keith J, Zinman L, Rogaeva E, Robertson J. Isoform-specific antibodies reveal distinct subcellular localizations of C9orf72 in amyotrophic lateral sclerosis. Ann Neurol 2015; 78:568-83. [PMID: 26174152 DOI: 10.1002/ana.24469] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/30/2015] [Accepted: 06/30/2015] [Indexed: 12/26/2022]
Abstract
OBJECTIVE A noncoding hexanucleotide repeat expansion in C9orf72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). It has been reported that the repeat expansion causes a downregulation of C9orf72 transcripts, suggesting that haploinsufficiency may contribute to disease pathogenesis. Two protein isoforms are generated from three alternatively spliced transcripts of C9orf72; a long form (C9-L) and a short form (C9-S), and their function(s) are largely unknown owing to lack of specific antibodies. METHODS To investigate C9orf72 protein properties, we developed novel antibodies that recognize either C9-L or C9-S. Multiple techniques, including Western blot, immunohistochemistry, and coimmunoprecipitation, were used to determine the expression levels and subcellular localizations of C9-L and C9-S. RESULTS Investigation of expression of C9-L and C9-S demonstrated distinct biochemical profiles, region-specific changes, and distinct subcellular localizations in ALS tissues. In particular, C9-L antibody exhibited a diffuse cytoplasmic staining in neurons and labeled large speckles in cerebellar Purkinje cells. In contrast, C9-S antibody gave very specific labeling of the nuclear membrane in healthy neurons, with apparent relocalization to the plasma membrane of diseased motor neurons in ALS. Coimmunoprecipitation experiments revealed an interaction of the C9-isoforms with both Importin β1 and Ran-GTPase, components of the nuclear pore complex. INTERPRETATION Using these antibodies, we have shown that C9orf72 may be involved in nucleocytoplasmic shuttling and this may have relevance to pathophysiology of ALS/FTLD. Our antibodies have provided improved detection of C9orf72 protein isoforms, which will help elucidate its physiological function and role in ALS/FTLD.
Collapse
Affiliation(s)
- Shangxi Xiao
- Tanz Center for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Laura MacNair
- Tanz Center for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Philip McGoldrick
- Tanz Center for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Paul M McKeever
- Tanz Center for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jesse R McLean
- Tanz Center for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Ming Zhang
- Tanz Center for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Julia Keith
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Sunnybrook Health Sciences Center, Toronto, Ontario, Canada
| | - Lorne Zinman
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Sunnybrook Health Sciences Center, Toronto, Ontario, Canada
| | - Ekaterina Rogaeva
- Tanz Center for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Janice Robertson
- Tanz Center for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
705
|
The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 2015; 525:56-61. [PMID: 26308891 DOI: 10.1038/nature14973] [Citation(s) in RCA: 776] [Impact Index Per Article: 77.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 07/24/2015] [Indexed: 12/14/2022]
Abstract
The hexanucleotide repeat expansion (HRE) GGGGCC (G4C2) in C9orf72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent studies support an HRE RNA gain-of-function mechanism of neurotoxicity, and we previously identified protein interactors for the G4C2 RNA including RanGAP1. A candidate-based genetic screen in Drosophila expressing 30 G4C2 repeats identified RanGAP (Drosophila orthologue of human RanGAP1), a key regulator of nucleocytoplasmic transport, as a potent suppressor of neurodegeneration. Enhancing nuclear import or suppressing nuclear export of proteins also suppresses neurodegeneration. RanGAP physically interacts with HRE RNA and is mislocalized in HRE-expressing flies, neurons from C9orf72 ALS patient-derived induced pluripotent stem cells (iPSC-derived neurons), and in C9orf72 ALS patient brain tissue. Nuclear import is impaired as a result of HRE expression in the fly model and in C9orf72 iPSC-derived neurons, and these deficits are rescued by small molecules and antisense oligonucleotides targeting the HRE G-quadruplexes. Nucleocytoplasmic transport defects may be a fundamental pathway for ALS and FTD that is amenable to pharmacotherapeutic intervention.
Collapse
|
706
|
Affiliation(s)
- Bennett W Fox
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Randal S Tibbetts
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
707
|
GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport. Nature 2015; 525:129-33. [PMID: 26308899 DOI: 10.1038/nature14974] [Citation(s) in RCA: 655] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 07/24/2015] [Indexed: 12/30/2022]
Abstract
The GGGGCC (G4C2) repeat expansion in a noncoding region of C9orf72 is the most common cause of sporadic and familial forms of amyotrophic lateral sclerosis and frontotemporal dementia. The basis for pathogenesis is unknown. To elucidate the consequences of G4C2 repeat expansion in a tractable genetic system, we generated transgenic fly lines expressing 8, 28 or 58 G4C2-repeat-containing transcripts that do not have a translation start site (AUG) but contain an open-reading frame for green fluorescent protein to detect repeat-associated non-AUG (RAN) translation. We show that these transgenic animals display dosage-dependent, repeat-length-dependent degeneration in neuronal tissues and RAN translation of dipeptide repeat (DPR) proteins, as observed in patients with C9orf72-related disease. This model was used in a large-scale, unbiased genetic screen, ultimately leading to the identification of 18 genetic modifiers that encode components of the nuclear pore complex (NPC), as well as the machinery that coordinates the export of nuclear RNA and the import of nuclear proteins. Consistent with these results, we found morphological abnormalities in the architecture of the nuclear envelope in cells expressing expanded G4C2 repeats in vitro and in vivo. Moreover, we identified a substantial defect in RNA export resulting in retention of RNA in the nuclei of Drosophila cells expressing expanded G4C2 repeats and also in mammalian cells, including aged induced pluripotent stem-cell-derived neurons from patients with C9orf72-related disease. These studies show that a primary consequence of G4C2 repeat expansion is the compromise of nucleocytoplasmic transport through the nuclear pore, revealing a novel mechanism of neurodegeneration.
Collapse
|
708
|
DeLoach A, Cozart M, Kiaei A, Kiaei M. A retrospective review of the progress in amyotrophic lateral sclerosis drug discovery over the last decade and a look at the latest strategies. Expert Opin Drug Discov 2015; 10:1099-118. [PMID: 26307158 DOI: 10.1517/17460441.2015.1067197] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Drug discovery for amyotrophic lateral sclerosis (ALS) has experienced a surge in clinical studies and remarkable preclinical milestones utilizing a variety of mutant superoxide dismutase 1 model systems. Of the drugs that were tested and showed positive preclinical effects, none demonstrated therapeutic benefits to ALS patients in clinical settings. AREAS COVERED This review discusses the advances made in drug discovery for ALS and highlights why drug development is proving to be so difficult. It also discusses how a closer look at both preclinical and clinical studies could uncover the reasons why these preclinical successes have yet to result in the availability of an effective drug for clinical use. EXPERT OPINION Valuable lessons from the numerous preclinical and clinical studies supply the biggest advantage in the monumental task of finding a cure for ALS. Obviously, a single design type for ALS clinical trials has not yielded success. The authors suggest a two-pronged approach that may prove essential to achieve clinical efficacy in the identification of novel targets and preclinical testing in multiple models to identify biomarkers that can function in diagnostic, predictive and prognostic roles, and changes to clinical trial design and patient recruitment criteria. The advancement of technology and invention of more powerful tools will further enhance the above. This will give rise to more sophisticated clinical trials with consideration of a range of criteria from: optimum dose, route of delivery, specific biomarkers, pharmacokinetics, pharmacodynamics and toxicology to biomarkers, timing for trial and patients' clinical status.
Collapse
Affiliation(s)
- Abigail DeLoach
- a 1 University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences , Little Rock, AR 72205, USA
| | - Michael Cozart
- b 2 University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology , Little Rock, AR 72205, USA
| | - Arianna Kiaei
- a 1 University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences , Little Rock, AR 72205, USA
| | - Mahmoud Kiaei
- a 1 University of Arkansas for Medical Sciences, Department of Neurobiology and Developmental Sciences , Little Rock, AR 72205, USA.,b 2 University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology , Little Rock, AR 72205, USA.,c 3 University of Arkansas for Medical Sciences, Department of Neurology , 4301 W. Markham St, 846, Little Rock, AR 72205 7199, USA
| |
Collapse
|
709
|
Bury JJ, Highley JR, Cooper-Knock J, Goodall EF, Higginbottom A, McDermott CJ, Ince PG, Shaw PJ, Kirby J. Oligogenic inheritance of optineurin (OPTN) and C9ORF72 mutations in ALS highlights localisation of OPTN in the TDP-43-negative inclusions of C9ORF72-ALS. Neuropathology 2015; 36:125-34. [PMID: 26303227 DOI: 10.1111/neup.12240] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/24/2015] [Accepted: 07/25/2015] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by motor neurone loss resulting in muscle weakness, spasticity and ultimately death. 5-10% are caused by inherited mutations, most commonly C9ORF72, SOD1, TARDBP and FUS. Rarer genetic causes of ALS include mutation of optineurin (mt OPTN). Furthermore, optineurin protein has been localized to the ubiquitylated aggregates in several neurodegenerative diseases, including ALS. This study: (i) investigated the frequency of mt OPTN in ALS patients in England; (ii) characterized the clinical and neuropathological features of ALS associated with a mt OPTN; and (iii) investigated optineurin neuropathology in C9ORF72-related ALS (C9ORF72-ALS). We identified a heterozygous p.E322K missense mutation in exon 10 of OPTN in one familial ALS patient who additionally had a C9ORF72 mutation. This patient had bulbar, limb and respiratory disease without cognitive problems. Neuropathology revealed motor neurone loss, trans-activation response DNA protein 43 (TDP-43)-positive neuronal and glial cytoplasmic inclusions together with TDP-43-negative neuronal cytoplasmic inclusions in extra motor regions that are characteristic of C9ORF72-ALS. We have demonstrated that both TDP-43-positive and negative inclusion types had positive staining for optineurin by immunohistochemistry. We went on to show that optineurin was present in TDP-43-negative cytoplasmic extra motor inclusions in C9ORF72-ALS cases that do not carry mt OPTN. We conclude that: (i) OPTN mutations are associated with ALS; (ii) optineurin protein is present in a subset of the extramotor inclusions of C9ORF72-ALS; (iii) It is not uncommon for multiple ALS-causing mutations to occur in the same patient; and (iv) studies of optineurin are likely to provide useful dataregarding the pathophysiology of ALS and neurodegeneration.
Collapse
Affiliation(s)
- Joanna J Bury
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - J Robin Highley
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Emily F Goodall
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Christopher J McDermott
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Paul G Ince
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
710
|
Donnelly CJ, Grima JC, Sattler R. Aberrant RNA homeostasis in amyotrophic lateral sclerosis: potential for new therapeutic targets? Neurodegener Dis Manag 2015; 4:417-37. [PMID: 25531686 DOI: 10.2217/nmt.14.36] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive motor neuron degeneration. The disease pathogenesis is multifaceted in that multiple cellular and molecular pathways have been identified as contributors to the disease progression. Consequently, numerous therapeutic targets have been pursued for clinical development, unfortunately with little success. The recent discovery of mutations in RNA modulating genes such as TARDBP/TDP-43, FUS/TLS or C9ORF72 changed our understanding of neurodegenerative mechanisms in ALS and introduced the role of dysfunctional RNA processing as a significant contributor to disease pathogenesis. This article discusses the latest findings on such RNA toxicity pathways in ALS and potential novel therapeutic approaches.
Collapse
Affiliation(s)
- Christopher J Donnelly
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
711
|
Brčić J, Plavec J. Solution structure of a DNA quadruplex containing ALS and FTD related GGGGCC repeat stabilized by 8-bromodeoxyguanosine substitution. Nucleic Acids Res 2015; 43:8590-600. [PMID: 26253741 PMCID: PMC4787828 DOI: 10.1093/nar/gkv815] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/30/2015] [Indexed: 12/13/2022] Open
Abstract
A prolonged expansion of GGGGCC repeat within non-coding region of C9orf72 gene has been identified as the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), which are devastating neurodegenerative disorders. Formation of unusual secondary structures within expanded GGGGCC repeat, including DNA and RNA G-quadruplexes and R-loops was proposed to drive ALS and FTD pathogenesis. Initial NMR investigation on DNA oligonucleotides with four repeat units as the shortest model with the ability to form an unimolecular G-quadruplex indicated their folding into multiple G-quadruplex structures in the presence of K+ ions. Single dG to 8Br-dG substitution at position 21 in oligonucleotide d[(G4C2)3G4] and careful optimization of folding conditions enabled formation of mostly a single G-quadruplex species, which enabled determination of a high-resolution structure with NMR. G-quadruplex structure adopted by d[(G4C2)3GGBrGG] is composed of four G-quartets, which are connected by three edgewise C-C loops. All four strands adopt antiparallel orientation to one another and have alternating syn-anti progression of glycosidic conformation of guanine residues. One of the cytosines in every loop is stacked upon the G-quartet contributing to a very compact and stable structure.
Collapse
Affiliation(s)
- Jasna Brčić
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia EN-FIST Center of Excellence, Ljubljana, Slovenia
| |
Collapse
|
712
|
Mancuso R, Navarro X. Amyotrophic lateral sclerosis: Current perspectives from basic research to the clinic. Prog Neurobiol 2015; 133:1-26. [PMID: 26253783 DOI: 10.1016/j.pneurobio.2015.07.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of upper and lower motoneurons, leading to muscle weakness and paralysis, and finally death. Considerable recent advances have been made in basic research and preclinical therapeutic attempts using experimental models, leading to increasing clinical and translational research in the context of this disease. In this review we aim to summarize the most relevant findings from a variety of aspects about ALS, including evaluation methods, animal models, pathophysiology, and clinical findings, with particular emphasis in understanding the role of every contributing mechanism to the disease for elucidating the causes underlying degeneration of motoneurons and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Renzo Mancuso
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| |
Collapse
|
713
|
Oh SY, He F, Krans A, Frazer M, Taylor JP, Paulson HL, Todd PK. RAN translation at CGG repeats induces ubiquitin proteasome system impairment in models of fragile X-associated tremor ataxia syndrome. Hum Mol Genet 2015; 24:4317-26. [PMID: 25954027 PMCID: PMC4492395 DOI: 10.1093/hmg/ddv165] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 03/30/2015] [Accepted: 05/04/2015] [Indexed: 12/11/2022] Open
Abstract
Fragile X-associated tremor ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by a CGG trinucleotide repeat expansion in the 5' UTR of the Fragile X gene, FMR1. FXTAS is thought to arise primarily from an RNA gain-of-function toxicity mechanism. However, recent studies demonstrate that the repeat also elicits production of a toxic polyglycine protein, FMRpolyG, via repeat-associated non-AUG (RAN)-initiated translation. Pathologically, FXTAS is characterized by ubiquitin-positive intranuclear neuronal inclusions, raising the possibility that failure of protein quality control pathways could contribute to disease pathogenesis. To test this hypothesis, we used Drosophila- and cell-based models of CGG-repeat-associated toxicity. In Drosophila, ubiquitin proteasome system (UPS) impairment led to enhancement of CGG-repeat-induced degeneration, whereas overexpression of the chaperone protein HSP70 suppressed this toxicity. In transfected mammalian cells, CGG repeat expression triggered accumulation of a UPS reporter in a length-dependent fashion. To delineate the contributions from CGG repeats as RNA from RAN translation-associated toxicity, we enhanced or impaired the production of FMRpolyG in these models. Driving expression of FMRpolyG enhanced induction of UPS impairment in cell models, while prevention of RAN translation attenuated UPS impairment in cells and suppressed the genetic interaction with UPS manipulation in Drosophila. Taken together, these findings suggest that CGG repeats induce UPS impairment at least in part through activation of RAN translation.
Collapse
Affiliation(s)
- Seok Yoon Oh
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Fang He
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Michelle Frazer
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA and
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA, Neurology, U.S. Department of Veterans Affairs Medical Center, Ann Arbor, MI, USA
| |
Collapse
|
714
|
The Folding process of Human Profilin-1, a novel protein associated with familial amyotrophic lateral sclerosis. Sci Rep 2015; 5:12332. [PMID: 26227615 PMCID: PMC4521207 DOI: 10.1038/srep12332] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/17/2015] [Indexed: 12/11/2022] Open
Abstract
Human profilin-1 is a novel protein associated with a recently discovered form of familial amyotrophic lateral sclerosis. This urges the characterization of possible conformational states, different from the fully folded state, potentially able to initiate self-assembly. Under native conditions, profilin-1 is monomeric and possesses a well-defined secondary and tertiary structure. When incubated at low pH or with high urea concentrations, profilin-1 remains monomeric but populates unfolded states exhibiting larger hydrodynamic radius and disordered structure, as assessed by dynamic light scattering, far-UV circular dichroism and intrinsic fluorescence. Refolding from the urea-unfolded state was studied at equilibrium and in real-time using a stopped-flow apparatus. The results obtained with intrinsic fluorescence and circular dichroism indicate a single phase without significant changes of the corresponding signals before the major refolding transition. However, such a transition is preceded by a burst phase with an observed increase of ANS fluorescence, which indicates the conversion into a transiently populated collapsed state possessing solvent-exposed hydrophobic clusters. Kinetic analysis reveals that such state has a conformational stability comparable to that of the fully unfolded state. To our knowledge, profilin-1 is the first example of an amyloid-related protein where folding occurs in the absence of thermodynamically stable partially folded states.
Collapse
|
715
|
Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS. Nat Neurosci 2015; 18:1175-82. [PMID: 26192745 PMCID: PMC4830686 DOI: 10.1038/nn.4065] [Citation(s) in RCA: 294] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/19/2015] [Indexed: 01/14/2023]
Abstract
Increasing evidence suggests that defective RNA processing contributes to the development of amyotrophic lateral sclerosis (ALS). This may be especially true for ALS caused by a repeat expansion in C9orf72 (c9ALS), in which the accumulation of RNA foci and dipeptide-repeat proteins are expected to modify RNA metabolism. We report extensive alternative splicing (AS) and alternative polyadenylation (APA) defects in the cerebellum of c9ALS cases (8,224 AS, 1,437 APA), including changes in ALS-associated genes (e.g. ATXN2 and FUS), and cases of sporadic ALS (sALS; 2,229 AS, 716 APA). Furthermore, hnRNPH and other RNA-binding proteins are predicted as potential regulators of cassette exon AS events for both c9ALS and sALS. Co-expression and gene-association network analyses of gene expression and AS data revealed divergent pathways associated with c9ALS and sALS.
Collapse
|
716
|
Lashley T, Rohrer JD, Mead S, Revesz T. Review: An update on clinical, genetic and pathological aspects of frontotemporal lobar degenerations. Neuropathol Appl Neurobiol 2015; 41:858-81. [DOI: 10.1111/nan.12250] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/27/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders; Department of Molecular Neuroscience; UCL Institute of Neurology; London UK
| | | | - Simon Mead
- Department of Neurodegenerative Disease; UCL Institute of Neurology; London UK
| | - Tamas Revesz
- Queen Square Brain Bank for Neurological Disorders; Department of Molecular Neuroscience; UCL Institute of Neurology; London UK
| |
Collapse
|
717
|
Koppers M, Blokhuis AM, Westeneng HJ, Terpstra ML, Zundel CAC, Vieira de Sá R, Schellevis RD, Waite AJ, Blake DJ, Veldink JH, van den Berg LH, Pasterkamp RJ. C9orf72 ablation in mice does not cause motor neuron degeneration or motor deficits. Ann Neurol 2015; 78:426-38. [PMID: 26044557 PMCID: PMC4744979 DOI: 10.1002/ana.24453] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/18/2015] [Accepted: 05/31/2015] [Indexed: 12/14/2022]
Abstract
Objective How hexanucleotide (GGGGCC) repeat expansions in C9ORF72 cause amyotrophic lateral sclerosis (ALS) remains poorly understood. Both gain‐ and loss‐of‐function mechanisms have been proposed. Evidence supporting these mechanisms in vivo is, however, incomplete. Here we determined the effect of C9orf72 loss‐of‐function in mice. Methods We generated and analyzed a conditional C9orf72 knockout mouse model. C9orf72fl/fl mice were crossed with Nestin‐Cre mice to selectively remove C9orf72 from neurons and glial cells. Immunohistochemistry was performed to study motor neurons and neuromuscular integrity, as well as several pathological hallmarks of ALS, such as gliosis and TDP‐43 mislocalization. In addition, motor function and survival were assessed. Results Neural‐specific ablation of C9orf72 in conditional C9orf72 knockout mice resulted in significantly reduced body weight but did not induce motor neuron degeneration, defects in motor function, or altered survival. Interpretation Our data suggest that C9orf72 loss‐of‐function, by itself, is insufficient to cause motor neuron disease. These results may have important implications for the development of therapeutic strategies for C9orf72‐associated ALS. Ann Neurol 2015;78:426–438
Collapse
Affiliation(s)
- Max Koppers
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Anna M Blokhuis
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Henk-Jan Westeneng
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Margo L Terpstra
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Caroline A C Zundel
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Renata Vieira de Sá
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Raymond D Schellevis
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Adrian J Waite
- Institute of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Derek J Blake
- Institute of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jan H Veldink
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
718
|
Abstract
RNAs adopt diverse folded structures that are essential for function and thus play critical roles in cellular biology. A striking example of this is the ribosome, a complex, three-dimensionally folded macromolecular machine that orchestrates protein synthesis. Advances in RNA biochemistry, structural and molecular biology, and bioinformatics have revealed other non-coding RNAs whose functions are dictated by their structure. It is not surprising that aberrantly folded RNA structures contribute to disease. In this Review, we provide a brief introduction into RNA structural biology and then describe how RNA structures function in cells and cause or contribute to neurological disease. Finally, we highlight successful applications of rational design principles to provide chemical probes and lead compounds targeting structured RNAs. Based on several examples of well-characterized RNA-driven neurological disorders, we demonstrate how designed small molecules can facilitate the study of RNA dysfunction, elucidating previously unknown roles for RNA in disease, and provide lead therapeutics.
Collapse
Affiliation(s)
- Viachaslau Bernat
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
719
|
Yanovsky-Dagan S, Mor-Shaked H, Eiges R. Modeling diseases of noncoding unstable repeat expansions using mutant pluripotent stem cells. World J Stem Cells 2015; 7:823-838. [PMID: 26131313 PMCID: PMC4478629 DOI: 10.4252/wjsc.v7.i5.823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/22/2015] [Accepted: 04/07/2015] [Indexed: 02/06/2023] Open
Abstract
Pathogenic mutations involving DNA repeat expansions are responsible for over 20 different neuronal and neuromuscular diseases. All result from expanded tracts of repetitive DNA sequences (mostly microsatellites) that become unstable beyond a critical length when transmitted across generations. Nearly all are inherited as autosomal dominant conditions and are typically associated with anticipation. Pathologic unstable repeat expansions can be classified according to their length, repeat sequence, gene location and underlying pathologic mechanisms. This review summarizes the current contribution of mutant pluripotent stem cells (diseased human embryonic stem cells and patient-derived induced pluripotent stem cells) to the research of unstable repeat pathologies by focusing on particularly large unstable noncoding expansions. Among this class of disorders are Fragile X syndrome and Fragile X-associated tremor/ataxia syndrome, myotonic dystrophy type 1 and myotonic dystrophy type 2, Friedreich ataxia and C9 related amyotrophic lateral sclerosis and/or frontotemporal dementia, Facioscapulohumeral Muscular Dystrophy and potentially more. Common features that are typical to this subclass of conditions are RNA toxic gain-of-function, epigenetic loss-of-function, toxic repeat-associated non-ATG translation and somatic instability. For each mechanism we summarize the currently available stem cell based models, highlight how they contributed to better understanding of the related mechanism, and discuss how they may be utilized in future investigations.
Collapse
|
720
|
Gomez-Deza J, Lee YB, Troakes C, Nolan M, Al-Sarraj S, Gallo JM, Shaw CE. Dipeptide repeat protein inclusions are rare in the spinal cord and almost absent from motor neurons in C9ORF72 mutant amyotrophic lateral sclerosis and are unlikely to cause their degeneration. Acta Neuropathol Commun 2015; 3:38. [PMID: 26108573 PMCID: PMC4479315 DOI: 10.1186/s40478-015-0218-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/12/2015] [Indexed: 12/14/2022] Open
Abstract
Introduction Cytoplasmic TDP-43 inclusions are the pathological hallmark of amyotrophic lateral sclerosis (ALS) and tau-negative frontotemporal lobar dementia (FTLD). The G4C2 repeat mutation in C9ORF72 is the most common cause of ALS and FTLD in which, in addition to TDP-43 inclusions, five different di-peptide repeat (DPR) proteins have been identified. Di-peptide repeat proteins are translated in a non-canonical fashion from sense and antisense transcripts of the G4C2 repeat (GP, GA, GR, PA, PR). DPR inclusions are abundant in the cerebellum, as well as in the frontal and temporal lobes of ALS and FTLD patients and some are neurotoxic in a range of cellular and animal models, implying that DPR aggregation directly contributes to disease pathogenesis. Here we sought to quantify inclusions for each DPR and TDP-43 in ALS cases with and without the C9ORF72 mutation. We characterised the abundance of DPRs and their cellular location and compared this to cytoplasmic TDP-43 inclusions in order to explore the role of each inclusion in lower motor neuron degeneration. Results Spinal cord sections from ten cases positive for the C9ORF72 repeat expansion (ALS-C9+ve) and five cases that were not were probed by double immunofluorescence staining for individual DPRs and TDP-43. Inclusions immunoreactive for each of the DPRs were present in the spinal cord but they were rare or very rare in abundance (in descending order of frequency: GA, GP, GR, PA and PR). TDP-43 cytoplasmic inclusions were 45- to 750-fold more frequent than any DPR, and fewer than 4 % of DPR inclusions colocalized with TDP-43 inclusions. In motor neurons, a single cytoplasmic DPR inclusion was detected (0.1 %) in contrast to the 34 % of motor neurons that contained cytoplasmic TDP-43 inclusions. Furthermore, the number of TDP-43 inclusions in ALS cases with and without the C9ORF72 mutation was nearly identical. Conclusions For all other neurodegenerative diseases, the neurotoxic protein aggregates are detected in the affected population of neurons. TDP-43 cytoplasmic aggregation is the dominant feature of ALS spinal cord pathology irrespective of C9ORF72 mutation status. The near absence of DPR inclusions in spinal cord motor neurons challenges their contribution to lower motor neuron degeneration in ALS-C9+ve cases. Electronic supplementary material The online version of this article (doi:10.1186/s40478-015-0218-y) contains supplementary material, which is available to authorized users.
Collapse
|
721
|
Zeier Z, Esanov R, Belle KC, Volmar CH, Johnstone AL, Halley P, DeRosa BA, Khoury N, van Blitterswijk M, Rademakers R, Albert J, Brothers SP, Wuu J, Dykxhoorn DM, Benatar M, Wahlestedt C. Bromodomain inhibitors regulate the C9ORF72 locus in ALS. Exp Neurol 2015; 271:241-50. [PMID: 26099177 DOI: 10.1016/j.expneurol.2015.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/05/2015] [Accepted: 06/16/2015] [Indexed: 12/13/2022]
Abstract
A hexanucleotide repeat expansion residing within the C9ORF72 gene represents the most common known cause of amyotrophic lateral sclerosis (ALS) and places the disease among a growing family of repeat expansion disorders. The presence of RNA foci, repeat-associated translation products, and sequestration of RNA binding proteins suggests that toxic RNA gain-of-function contributes to pathology while C9ORF72 haploinsufficiency may be an additional pathological factor. One viable therapeutic strategy for treating expansion diseases is the use of small molecule inhibitors of epigenetic modifier proteins to reactivate expanded genetic loci. Indeed, previous studies have established proof of this principle by increasing the drug-induced expression of expanded (and abnormally heterochromatinized) FMR1, FXN and C9ORF72 genes in respective patient cells. While epigenetic modifier proteins are increasingly recognized as druggable targets, there have been few screening strategies to address this avenue of drug discovery in the context of expansion diseases. Here we utilize a semi-high-throughput gene expression based screen to identify siRNAs and small molecule inhibitors of epigenetic modifier proteins that regulate C9ORF72 RNA in patient fibroblasts, lymphocytes and reprogrammed motor neurons. We found that several bromodomain small molecule inhibitors increase the expression of C9ORF72 mRNA and pre-mRNA without affecting repressive epigenetic signatures of expanded C9ORF72 alleles. These data suggest that bromodomain inhibition increases the expression of unexpanded C9ORF72 alleles and may therefore compensate for haploinsufficiency without increasing the production of toxic RNA and protein products, thereby conferring therapeutic value.
Collapse
Affiliation(s)
- Zane Zeier
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rustam Esanov
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kinsley C Belle
- John P. Hussman Institute for Human Genomics and The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, USA
| | - Claude-Henry Volmar
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrea L Johnstone
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Paul Halley
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Brooke A DeRosa
- John P. Hussman Institute for Human Genomics and The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, USA
| | - Nathalie Khoury
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | - Shaun P Brothers
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joanne Wuu
- Department of Neurology, University of Miami Miller School of Medicine, USA
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics and The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, USA
| | - Michael Benatar
- Department of Neurology, University of Miami Miller School of Medicine, USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
722
|
Scoles DR, Ho MHT, Dansithong W, Pflieger LT, Petersen LW, Thai KK, Pulst SM. Repeat Associated Non-AUG Translation (RAN Translation) Dependent on Sequence Downstream of the ATXN2 CAG Repeat. PLoS One 2015; 10:e0128769. [PMID: 26086378 PMCID: PMC4472729 DOI: 10.1371/journal.pone.0128769] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 05/01/2015] [Indexed: 11/18/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is a progressive autosomal dominant disorder caused by the expansion of a CAG tract in the ATXN2 gene. The SCA2 disease phenotype is characterized by cerebellar atrophy, gait ataxia, and slow saccades. ATXN2 mutation causes gains of toxic and normal functions of the ATXN2 gene product, ataxin-2, and abnormally slow Purkinje cell firing frequency. Previously we investigated features of ATXN2 controlling expression and noted expression differences for ATXN2 constructs with varying CAG lengths, suggestive of repeat associated non-AUG translation (RAN translation). To determine whether RAN translation occurs for ATXN2 we assembled various ATXN2 constructs with ATXN2 tagged by luciferase, HA or FLAG tags, driven by the CMV promoter or the ATXN2 promoter. Luciferase expression from ATXN2-luciferase constructs lacking the ATXN2 start codon was weak vs AUG translation, regardless of promoter type, and did not increase with longer CAG repeat lengths. RAN translation was detected on western blots by the anti-polyglutamine antibody 1C2 for constructs driven by the CMV promoter but not the ATXN2 promoter, and was weaker than AUG translation. Strong RAN translation was also observed when driving the ATXN2 sequence with the CMV promoter with ATXN2 sequence downstream of the CAG repeat truncated to 18 bp in the polyglutamine frame but not in the polyserine or polyalanine frames. Our data demonstrate that ATXN2 RAN translation is weak compared to AUG translation and is dependent on ATXN2 sequences flanking the CAG repeat.
Collapse
Affiliation(s)
- Daniel R. Scoles
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, Utah, 84132, United States of America
- * E-mail:
| | - Mi H. T. Ho
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, Utah, 84132, United States of America
| | - Warunee Dansithong
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, Utah, 84132, United States of America
| | - Lance T. Pflieger
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, Utah, 84132, United States of America
| | - Lance W. Petersen
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, Utah, 84132, United States of America
| | - Khanh K. Thai
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, Utah, 84132, United States of America
| | - Stefan M. Pulst
- Department of Neurology, University of Utah, 175 North Medical Drive East, 5th Floor, Salt Lake City, Utah, 84132, United States of America
| |
Collapse
|
723
|
Drosha inclusions are new components of dipeptide-repeat protein aggregates in FTLD-TDP and ALS C9orf72 expansion cases. J Neuropathol Exp Neurol 2015; 74:380-7. [PMID: 25756586 PMCID: PMC4362478 DOI: 10.1097/nen.0000000000000182] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Supplemental digital content is available in the text. Frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are 2 neurodegenerative disorders that share clinical, genetic, and neuropathologic features. The presence of abnormal expansions of GGGGCC repeats (G4C2 repeats) in a noncoding region of the Chromosome 9 open reading frame 72 (C9orf72) gene is the major genetic cause of both FTLD and ALS. Transcribed G4C2 repeats can form nuclear RNA foci and recruit RNA-binding proteins, thereby inhibiting their normal function. Moreover, through a repeat-associated non-ATG translation mechanism, G4C2 repeats translation leads to dipeptide-repeat protein aggregation in the cytoplasm of neurons. Here, we identify Drosha protein as a new component of these dipeptide-repeat aggregates. In C9orf72 mutation cases of FTLD-TDP (c9FTLD-TDP) and ALS (c9ALS), but not in FTLD or ALS cases without C9orf72 mutation, Drosha is mislocalized to form neuronal cytoplasmic inclusions in the hippocampus, frontal cortex, and cerebellum. Further characterization of Drosha-positive neuronal cytoplasmic inclusions in the hippocampus, frontal cortex, and cerebellum revealed colocalization with p62 and ubiquilin-2, 2 pathognomonic signatures of c9FTLD-TDP and c9ALS cases; however, Drosha inclusions rarely colocalized with TDP-43 pathology. We conclude that Drosha may play a unique pathogenic role in the onset or progression of FTLD-TDP/ALS in patients with the C9orf72 mutation.
Collapse
|
724
|
Park H, González ÀL, Yildirim I, Tran T, Lohman JR, Fang P, Guo M, Disney MD. Crystallographic and Computational Analyses of AUUCU Repeating RNA That Causes Spinocerebellar Ataxia Type 10 (SCA10). Biochemistry 2015; 54:3851-9. [PMID: 26039897 DOI: 10.1021/acs.biochem.5b00551] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spinocerebellar ataxia type 10 (SCA10) is caused by a pentanucleotide repeat expansion of r(AUUCU) within intron 9 of the ATXN10 pre-mRNA. The RNA causes disease by a gain-of-function mechanism in which it inactivates proteins involved in RNA biogenesis. Spectroscopic studies showed that r(AUUCU) repeats form a hairpin structure; however, there were no high-resolution structural models prior to this work. Herein, we report the first crystal structure of model r(AUUCU) repeats refined to 2.8 Å and analysis of the structure via molecular dynamics simulations. The r(AUUCU) tracts adopt an overall A-form geometry in which 3 × 3 nucleotide (5')UCU(3')/(3')UCU(5') internal loops are closed by AU pairs. Helical parameters of the refined structure as well as the corresponding electron density map on the crystallographic model reflect dynamic features of the internal loop. The computational analyses captured dynamic motion of the loop closing pairs, which can form single-stranded conformations with relatively low energies. Overall, the results presented here suggest the possibility for r(AUUCU) repeats to form metastable A-from structures, which can rearrange into single-stranded conformations and attract proteins such as heterogeneous nuclear ribonucleoprotein K (hnRNP K). The information presented here may aid in the rational design of therapeutics targeting this RNA.
Collapse
Affiliation(s)
| | - Àlex L González
- ∥Grup d'Enginyeria Molecular (GEM), Institut Químic de Sarrià (IQS)-Universitat Ramon Llull (URL), Barcelona 08017, Spain
| | - Ilyas Yildirim
- ⊥Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | | | | | | | | |
Collapse
|
725
|
Kitano S, Kino Y, Yamamoto Y, Takitani M, Miyoshi J, Ishida T, Saito Y, Arima K, Satoh JI. Bioinformatics Data Mining Approach Suggests Coexpression of AGTPBP1 with an ALS-linked Gene C9orf72. J Cent Nerv Syst Dis 2015; 7:15-26. [PMID: 26106267 PMCID: PMC4467204 DOI: 10.4137/jcnsd.s24317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/10/2015] [Accepted: 05/12/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Expanded GGGGCC hexanucleotide repeats located in the noncoding region of the chromosome 9 open reading frame 72 (C9orf72) gene represent the most common genetic abnormality for familial and sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Formation of nuclear RNA foci, accumulation of repeat-associated non-ATG-translated dipeptide-repeat proteins, and haploinsufficiency of C9orf72 are proposed for pathological mechanisms of C9ALS/FTD. However, at present, the physiological function of C9orf72 remains largely unknown. METHODS By searching on a bioinformatics database named COXPRESdb composed of the comprehensive gene coexpression data, we studied potential C9orf72 interactors. RESULTS We identified the ATP/GTP binding protein 1 (AGTPBP1) gene alternatively named NNA1 encoding a cytosolic carboxypeptidase whose mutation is causative of the degeneration of Purkinje cells and motor neurons as the most significant gene coexpressed with C9orf72. We verified coexpression and interaction of AGTPBP1 and C9orf72 in transfected cells by immunoprecipitation and in neurons of the human brain by double-labeling immunohistochemistry. Furthermore, we found a positive correlation between AGTPBP1 and C9orf72 mRNA expression levels in the set of 21 human brains examined. CONCLUSIONS These results suggest that AGTPBP1 serves as a C9orf72 interacting partner that plays a role in the regulation of neuronal function in a coordinated manner within the central nervous system.
Collapse
Affiliation(s)
- Shouta Kitano
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Yoshihiro Kino
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Yoji Yamamoto
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Mika Takitani
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Junko Miyoshi
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Tsuyoshi Ishida
- Department of Pathology and Laboratory Medicine, Kohnodai Hospital, NCGM, Ichikawa, Chiba, Japan
| | - Yuko Saito
- Department of Laboratory Medicine, National Center Hospital, NCNP, Kodaira, Tokyo, Japan
| | - Kunimasa Arima
- Department of Psychiatry, Komoro Kogen Hospital, Komoro, Nagano, Japan
| | - Jun-Ichi Satoh
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| |
Collapse
|
726
|
Le Ber I. Frontotemporal lobar dementia and amyotrophic lateral sclerosis associated with c9orf72 expansion. Rev Neurol (Paris) 2015; 171:475-81. [PMID: 26032484 DOI: 10.1016/j.neurol.2015.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/24/2015] [Accepted: 04/24/2015] [Indexed: 12/12/2022]
Abstract
An intronic GGGGCC repeat expansion in c9orf72 gene has been identified as the most common genetic cause of frontotemporal lobar dementia (FTLD), amyotrophic lateral sclerosis (ALS) and FTLD-ALS. The discovery of c9orf72 gene has led to important scientific progresses and has considerably changed our clinical practice over the last few years. This paper summarizes the common and less typical phenotypes associated with c9orf72 expansion, the complex pathological pattern characterized by p62/dipeptide repeat aggregates, as well as the pathological mechanisms by which the expansion might produce neurodegeneration implicating loss-of-function, RNA toxicity, RNA-binding protein sequestration and accumulation of dipeptide repeats. We also discuss the recommendations and limits for genetic testing and counseling in clinical practice.
Collapse
Affiliation(s)
- I Le Ber
- Institut du cerveau et de la moelle épinière (ICM), Inserm U1127, CNRS UMR 7225, Sorbonne Universités, Université Pierre-et-Marie-Curie, université Paris 06, UPMC-P6 UMR S 1127, hôpital Pitié-Salpêtrière, 75013 Paris, France; Centre de référence des rémences rares, hôpital de la Pitié-Salpêtrière, AP-HP, 75013 Paris, France; Département des maladies du système nerveux, hôpital de la Pitié-Salpêtrière, AP-HP, 75013 Paris, France.
| |
Collapse
|
727
|
Cooper-Knock J, Bury JJ, Heath PR, Wyles M, Higginbottom A, Gelsthorpe C, Highley JR, Hautbergue G, Rattray M, Kirby J, Shaw PJ. C9ORF72 GGGGCC Expanded Repeats Produce Splicing Dysregulation which Correlates with Disease Severity in Amyotrophic Lateral Sclerosis. PLoS One 2015; 10:e0127376. [PMID: 26016851 PMCID: PMC4446097 DOI: 10.1371/journal.pone.0127376] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 04/15/2015] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE An intronic GGGGCC-repeat expansion of C9ORF72 is the most common genetic variant of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. The mechanism of neurodegeneration is unknown, but a direct effect on RNA processing mediated by RNA foci transcribed from the repeat sequence has been proposed. METHODS Gene expression profiling utilised total RNA extracted from motor neurons and lymphoblastoid cell lines derived from human ALS patients, including those with an expansion of C9ORF72, and controls. In lymphoblastoid cell lines, expansion length and the frequency of sense and antisense RNA foci was also examined. RESULTS Gene level analysis revealed a number of differentially expressed networks and both cell types exhibited dysregulation of a network functionally enriched for genes encoding 'RNA splicing' proteins. There was a significant overlap of these genes with an independently generated list of GGGGCC-repeat protein binding partners. At the exon level, in lymphoblastoid cells derived from C9ORF72-ALS patients splicing consistency was lower than in lines derived from non-C9ORF72 ALS patients or controls; furthermore splicing consistency was lower in samples derived from patients with faster disease progression. Frequency of sense RNA foci showed a trend towards being higher in lymphoblastoid cells derived from patients with shorter survival, but there was no detectable correlation between disease severity and DNA expansion length. SIGNIFICANCE Up-regulation of genes encoding predicted binding partners of the C9ORF72 expansion is consistent with an attempted compensation for sequestration of these proteins. A number of studies have analysed changes in the transcriptome caused by C9ORF72 expansion, but to date findings have been inconsistent. As a potential explanation we suggest that dynamic sequestration of RNA processing proteins by RNA foci might lead to a loss of splicing consistency; indeed in our samples measurement of splicing consistency correlates with disease severity.
Collapse
Affiliation(s)
- Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, United Kingdom
| | - Joanna J Bury
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, United Kingdom
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, United Kingdom
| | - Matthew Wyles
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, United Kingdom
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, United Kingdom
| | - Catherine Gelsthorpe
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, United Kingdom
| | - J Robin Highley
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, United Kingdom
| | - Guillaume Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, United Kingdom
| | - Magnus Rattray
- Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, United Kingdom
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, United Kingdom
| |
Collapse
|
728
|
Chew J, Gendron TF, Prudencio M, Sasaguri H, Zhang YJ, Castanedes-Casey M, Lee CW, Jansen-West K, Kurti A, Murray ME, Bieniek KF, Bauer PO, Whitelaw EC, Rousseau L, Stankowski JN, Stetler C, Daughrity LM, Perkerson EA, Desaro P, Johnston A, Overstreet K, Edbauer D, Rademakers R, Boylan KB, Dickson DW, Fryer JD, Petrucelli L. Neurodegeneration. C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Science 2015; 348:1151-4. [PMID: 25977373 DOI: 10.1126/science.aaa9344] [Citation(s) in RCA: 317] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/06/2015] [Indexed: 12/14/2022]
Abstract
The major genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis is a G4C2 repeat expansion in C9ORF72. Efforts to combat neurodegeneration associated with "c9FTD/ALS" are hindered by a lack of animal models recapitulating disease features. We developed a mouse model to mimic both neuropathological and clinical c9FTD/ALS phenotypes. We expressed (G4C2)66 throughout the murine central nervous system by means of somatic brain transgenesis mediated by adeno-associated virus. Brains of 6-month-old mice contained nuclear RNA foci, inclusions of poly(Gly-Pro), poly(Gly-Ala), and poly(Gly-Arg) dipeptide repeat proteins, as well as TDP-43 pathology. These mouse brains also exhibited cortical neuron and cerebellar Purkinje cell loss, astrogliosis, and decreased weight. (G4C2)66 mice also developed behavioral abnormalities similar to clinical symptoms of c9FTD/ALS patients, including hyperactivity, anxiety, antisocial behavior, and motor deficits.
Collapse
Affiliation(s)
- Jeannie Chew
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA. Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Hiroki Sasaguri
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | | | - Chris W Lee
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Kevin F Bieniek
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA. Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Peter O Bauer
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Ena C Whitelaw
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Linda Rousseau
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Jeannette N Stankowski
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Caroline Stetler
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Lillian M Daughrity
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Emilie A Perkerson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Pamela Desaro
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Amelia Johnston
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Karen Overstreet
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Strasse 17, 81337 Munich, Germany. Institute for Metabolic Biochemistry, Ludwig-Maximilians University Munich, Feodor-Lynen-Strasse 17, 81337 Munich, Germany. Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA. Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Kevin B Boylan
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA. Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA. Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA. Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
729
|
Bakkar N, Boehringer A, Bowser R. Use of biomarkers in ALS drug development and clinical trials. Brain Res 2015; 1607:94-107. [PMID: 25452025 PMCID: PMC4809521 DOI: 10.1016/j.brainres.2014.10.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/08/2014] [Accepted: 10/16/2014] [Indexed: 12/12/2022]
Abstract
The past decade has seen a dramatic increase in the discovery of candidate biomarkers for ALS. These biomarkers typically can either differentiate ALS from control subjects or predict disease course (slow versus fast progression). At the same time, late-stage clinical trials for ALS have failed to generate improved drug treatments for ALS patients. Incorporation of biomarkers into the ALS drug development pipeline and the use of biologic and/or imaging biomarkers in early- and late-stage ALS clinical trials have been absent and only recently pursued in early-phase clinical trials. Further clinical research studies are needed to validate biomarkers for disease progression and develop biomarkers that can help determine that a drug has reached its target within the central nervous system. In this review we summarize recent progress in biomarkers across ALS model systems and patient population, and highlight continued research directions for biomarkers that stratify the patient population to enrich for patients that may best respond to a drug candidate, monitor disease progression and track drug responses in clinical trials. It is crucial that we further develop and validate ALS biomarkers and incorporate these biomarkers into the ALS drug development process. This article is part of a Special Issue entitled ALS complex pathogenesis.
Collapse
Affiliation(s)
- Nadine Bakkar
- Divisions of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Ashley Boehringer
- Divisions of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Robert Bowser
- Divisions of Neurology and Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA.
| |
Collapse
|
730
|
Simone R, Fratta P, Neidle S, Parkinson GN, Isaacs AM. G-quadruplexes: Emerging roles in neurodegenerative diseases and the non-coding transcriptome. FEBS Lett 2015; 589:1653-68. [PMID: 25979174 DOI: 10.1016/j.febslet.2015.05.003] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 04/29/2015] [Accepted: 05/02/2015] [Indexed: 12/14/2022]
Abstract
G-rich sequences in DNA and RNA have a propensity to fold into stable secondary structures termed G-quadruplexes. G-quadruplex forming sequences are widespread throughout the human genome, within both, protein coding and non-coding genes, and regulatory regions. G-quadruplexes have been implicated in multiple cellular functions including chromatin epigenetic regulation, DNA recombination, transcriptional regulation of gene promoters and enhancers, and translation. Here we will review the evidence for the occurrence of G-quadruplexes both in vitro and in vivo; their role in neurological diseases including G-quadruplex-forming repeat expansions in the C9orf72 gene in frontotemporal dementia and amyotrophic lateral sclerosis and loss of the G-quadruplex binding protein FMRP in the intellectual disability fragile X syndrome. We also review mounting evidence that supports a role for G-quadruplexes in regulating the processing or function of a range of non-coding RNAs. Finally we will highlight current perspectives for therapeutic interventions that target G-quadruplexes.
Collapse
Affiliation(s)
- Roberto Simone
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| | - Pietro Fratta
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Sobell Department of Motor Neuroscience and Movement, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Stephen Neidle
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Gary N Parkinson
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
731
|
C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia: gain or loss of function? Curr Opin Neurol 2015; 27:515-23. [PMID: 25188012 PMCID: PMC4165481 DOI: 10.1097/wco.0000000000000130] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose of review The molecular mechanisms that underlie chromosome 9 open reading frame 72 (C9orf72)-associated amyotrophic lateral sclerosis and frontotemporal dementia are rapidly emerging. Two potential disease mechanisms have been postulated – gain or loss of function. We provide an overview of recent advances that support or oppose gain-of-function and loss-of-function mechanisms. Recent findings Since the discovery that a noncoding repeat expansion in C9orf72 was responsible for chromosome 9-linked amyotrophic lateral sclerosis and frontotemporal dementia in 2011, a plethora of studies have investigated clinical, pathological and mechanistic aspects of the disease. Loss of function is supported by reduced levels of C9orf72 in patient brain and functional work, revealing a role of the C9orf72 protein in endocytic and autophagic pathways and motor function. Gain of function is supported by the presence in patient brain of both repeat RNA and protein aggregates. Repeat RNA aggregates termed RNA foci, a hallmark of noncoding repeat expansion diseases, have been shown to sequester proteins involved in RNA splicing, editing, nuclear export and nucleolar function. Repeat-associated non-ATG dependent translation gives rise to toxic dipeptide repeat proteins that form inclusions in patient tissue. Antisense oligonucleotides targeting C9orf72 have shown promise for combating gain-of-function toxicity. Summary Rapid progress is being made towards understanding this common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Overall, the weight of data currently sits in favour of gain of function as the most important disease mechanism, which has important implications for the development of effective and targeted therapies.
Collapse
|
732
|
Scarrott JM, Herranz-Martín S, Alrafiah AR, Shaw PJ, Azzouz M. Current developments in gene therapy for amyotrophic lateral sclerosis. Expert Opin Biol Ther 2015; 15:935-47. [DOI: 10.1517/14712598.2015.1044894] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
733
|
|
734
|
The C9orf72 repeat expansion itself is methylated in ALS and FTLD patients. Acta Neuropathol 2015; 129:715-27. [PMID: 25716178 DOI: 10.1007/s00401-015-1401-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 10/23/2022]
Abstract
The most common cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) is a G4C2-repeat expansion in C9orf72. However, the lower limit for pathological repeats has not been established and expansions with different sizes could have different pathological consequences. One of the implicated disease mechanisms is haploinsufficiency. Previously, we identified expansion-specific hypermethylation at the 5' CpG-island near the G4C2-repeat, but only in a fraction of carriers (up to 36 %). Here, we tested the hypothesis that the G4C2-repeat itself could be the main site of methylation. To evaluate (G4C2)n -methylation, we developed a novel assay, which was validated by an independent methylation-sensitive restriction enzyme assay. Notably, both assays are qualitative but not quantitative. Blood DNA was available for 270 unrelated individuals, including 71 expansion carriers. In addition, we investigated blood DNA from family members of 16 probands, and 38 DNA samples from multiple tissues of 10 expansion carriers. Finally, we tested DNA from different tissues of an ALS patient carrying a somatically unstable 90-repeat. We demonstrated that the G4C2-expansion is generally methylated in unrelated carriers of alleles >50 repeats (97 %), while small (<22 repeats) or intermediate (22-90 repeats) alleles were completely unmethylated. The presence of (G4C2)n -methylation does not separate the C9orf72-phenotypes (ALS vs. ALS/FTLD vs. FTLD), but has the potential to predict large vs. intermediate repeat length. Our results suggest that (G4C2)n -methylation might sometimes spread to the 5'-upstream region, but not vice versa. It is stable over time, since (G4C2)n -methylation was detected in carriers with a wide range of ages (24-74 years). It was identified in both blood and brain tissues for the same individual, implying its potential use as a biomarker. Furthermore, our findings may open up new perspectives for studying disease mechanisms, such as determining whether methylated and unmethylated repeats have the same ability to form a G-quadruplex configuration.
Collapse
|
735
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating degenerative disease characterized by progressive loss of motor neurons in the motor cortex, brainstem, and spinal cord. Although defined as a motor disorder, ALS can arise concurrently with frontotemporal lobal dementia (FTLD). ALS begins focally but disseminates to cause paralysis and death. About 10% of ALS cases are caused by gene mutations, and more than 40 ALS-associated genes have been identified. While important questions about the biology of this disease remain unanswered, investigations of ALS genes have delineated pathogenic roles for (a) perturbations in protein stability and degradation, (b) altered homeostasis of critical RNA- and DNA-binding proteins, (c) impaired cytoskeleton function, and (d) non-neuronal cells as modifiers of the ALS phenotype. The rapidity of progress in ALS genetics and the subsequent acquisition of insights into the molecular biology of these genes provide grounds for optimism that meaningful therapies for ALS are attainable.
Collapse
|
736
|
Baborie A, Griffiths TD, Jaros E, Perry R, McKeith IG, Burn DJ, Masuda-Suzukake M, Hasegawa M, Rollinson S, Pickering-Brown S, Robinson AC, Davidson YS, Mann DMA. Accumulation of dipeptide repeat proteins predates that of TDP-43 in frontotemporal lobar degeneration associated with hexanucleotide repeat expansions in C9ORF72 gene. Neuropathol Appl Neurobiol 2015; 41:601-12. [PMID: 25185840 PMCID: PMC4934135 DOI: 10.1111/nan.12178] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/14/2014] [Indexed: 12/13/2022]
Abstract
AIMS Frontotemporal lobar degeneration (FTLD) and motor neurone disease are linked by the possession of a hexanucleotide repeat expansion in C9ORF72, and both show neuronal cytoplasmic inclusions within cerebellar and hippocampal neurones which are TDP-43 negative but immunoreactive for p62 and dipeptide repeat proteins (DPR), these being generated by a non-ATG RAN translation of the expanded region of the gene. METHODS Twenty-two cases of FTLD from Newcastle were analysed for an expansion in C9ORF72 by repeat primed PCR and Southern blot. Detailed case note analysis was performed, and blinded retrospective clinical impressions were achieved by review of clinical histories. Sections from all major brain regions were immunostained for TDP-43, p62 and DPR. The extent of TDP-43 and DPR pathology in expansion bearers was compared with that in 13 other previously identified cases from the Manchester Brain Bank with established disease. RESULTS Three Newcastle patients bearing an expansion in C9ORF72 were identified. These three patients died prematurely, two from bronchopneumonia within 10 months and 3 years of onset, and one from myocardial infarction 3 years after onset. In all three, DPR were plentiful throughout all cerebral cortical regions, hippocampus and cerebellum, but TDP-43 pathological changes were sparse. The severity of DPR pathological changes in these three patients was similar to that in the Manchester series, although the extent of TDP-43 pathology was significantly less. CONCLUSION Widespread accumulation of DPR within nerve cells may occur much earlier than that of TDP-43 in patients with FTLD bearing expansion in C9ORF72.
Collapse
Affiliation(s)
- Atik Baborie
- Department of Neuropathology, Walton Centre for Neurology and Neurosurgery, Liverpool, UK
| | - Timothy D Griffiths
- Institute of Neuroscience, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Evelyn Jaros
- Neuropathology/Cellular Pathology, Royal Victoria Infirmary, Newcastle upon Tyne, UK.,Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Robert Perry
- Neuropathology/Cellular Pathology, Royal Victoria Infirmary, Newcastle upon Tyne, UK.,Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Ian G McKeith
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - David J Burn
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UK
| | - Masami Masuda-Suzukake
- Department of Neuropathology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masato Hasegawa
- Department of Neuropathology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Sara Rollinson
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK
| | - Stuart Pickering-Brown
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK
| | - Andrew C Robinson
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Salford Royal Hospital, Salford, UK
| | - Yvonne S Davidson
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Salford Royal Hospital, Salford, UK
| | - David M A Mann
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Salford Royal Hospital, Salford, UK
| |
Collapse
|
737
|
Yang WY, Wilson HD, Velagapudi SP, Disney MD. Inhibition of Non-ATG Translational Events in Cells via Covalent Small Molecules Targeting RNA. J Am Chem Soc 2015; 137:5336-45. [PMID: 25825793 PMCID: PMC4856029 DOI: 10.1021/ja507448y] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One major class of disease-causing RNAs is expanded repeating transcripts. These RNAs cause diseases via multiple mechanisms, including: (i) gain-of-function, in which repeating RNAs bind and sequester proteins involved in RNA biogenesis and (ii) repeat associated non-ATG (RAN) translation, in which repeating transcripts are translated into toxic proteins without use of a canonical, AUG, start codon. Herein, we develop and study chemical probes that bind and react with an expanded r(CGG) repeat (r(CGG)(exp)) present in a 5' untranslated region that causes fragile X-associated tremor/ataxia syndrome (FXTAS). Reactive compounds bind to r(CGG)(exp) in cellulo as shown with Chem-CLIP-Map, an approach to map small molecule binding sites within RNAs in cells. Compounds also potently improve FXTAS-associated pre-mRNA splicing and RAN translational defects, while not affecting translation of the downstream open reading frame. In contrast, oligonucleotides affect both RAN and canonical translation when they bind to r(CGG)(exp), which is mechanistically traced to a decrease in polysome loading. Thus, designer small molecules that react with RNA targets can be used to profile the RNAs to which they bind in cells, including identification of binding sites, and can modulate several aspects of RNA-mediated disease pathology in a manner that may be more beneficial than oligonucleotides.
Collapse
Affiliation(s)
- Wang-Yong Yang
- Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Henry D. Wilson
- Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Sai Pradeep Velagapudi
- Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D. Disney
- Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
738
|
Paez-Colasante X, Figueroa-Romero C, Sakowski SA, Goutman SA, Feldman EL. Amyotrophic lateral sclerosis: mechanisms and therapeutics in the epigenomic era. Nat Rev Neurol 2015; 11:266-79. [PMID: 25896087 DOI: 10.1038/nrneurol.2015.57] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of the motor neurons, which results in weakness and atrophy of voluntary skeletal muscles. Treatments do not modify the disease trajectory effectively, and only modestly improve survival. A complex interaction between genes, environmental exposure and impaired molecular pathways contributes to pathology in patients with ALS. Epigenetic mechanisms control the hereditary and reversible regulation of gene expression without altering the basic genetic code. Aberrant epigenetic patterns-including abnormal microRNA (miRNA) biogenesis and function, DNA modifications, histone remodeling, and RNA editing-are acquired throughout life and are influenced by environmental factors. Thus, understanding the molecular processes that lead to epigenetic dysregulation in patients with ALS might facilitate the discovery of novel therapeutic targets and biomarkers that could reduce diagnostic delay. These achievements could prove crucial for successful disease modification in patients with ALS. We review the latest findings regarding the role of miRNA modifications and other epigenetic mechanisms in ALS, and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Ximena Paez-Colasante
- Department of Neurology, University of Michigan, 1500 East Medical Centre Drive, 1914 Taubman Centre SPC 5316, Ann Arbor, MI 48109, USA
| | - Claudia Figueroa-Romero
- Department of Neurology, University of Michigan, 1500 East Medical Centre Drive, 1914 Taubman Centre SPC 5316, Ann Arbor, MI 48109, USA
| | - Stacey A Sakowski
- The A. Alfred Taubman Medical Research Institute, University of Michigan, 109 Zina Pitcher Place, 5017 A. Alfred Taubman Biomedical Science Research Building, Ann Arbor, MI 48109, USA
| | - Stephen A Goutman
- Department of Neurology, University of Michigan, 1500 East Medical Centre Drive, 1914 Taubman Centre SPC 5316, Ann Arbor, MI 48109, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, 1500 East Medical Centre Drive, 1914 Taubman Centre SPC 5316, Ann Arbor, MI 48109, USA
| |
Collapse
|
739
|
Wen X, Tan W, Westergard T, Krishnamurthy K, Markandaiah SS, Shi Y, Lin S, Shneider NA, Monaghan J, Pandey UB, Pasinelli P, Ichida JK, Trotti D. Antisense proline-arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death. Neuron 2015; 84:1213-25. [PMID: 25521377 DOI: 10.1016/j.neuron.2014.12.010] [Citation(s) in RCA: 424] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2014] [Indexed: 12/13/2022]
Abstract
Expanded GGGGCC (G4C2) nucleotide repeats within the C9ORF72 gene are the most common genetic mutation associated with both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Sense and antisense transcripts of these expansions are translated to form five dipeptide repeat proteins (DRPs). We employed primary cortical and motor neuron cultures, live-cell imaging, and transgenic fly models and found that the arginine-rich dipeptides, in particular Proline-Arginine (PR), are potently neurotoxic. Factors that anticipated their neurotoxicity included aggregation in nucleoli, decreased number of processing bodies, and stress granule formation, implying global translational dysregulation as path accountable for toxicity. Nuclear PR aggregates were also found in human induced motor neurons and postmortem spinal cord tissues from C9ORF72 ALS and ALS/FTD patients. Intronic G4C2 transcripts, but not loss of C9ORF72 protein, are also toxic to motor and cortical neurons. Interestingly, G4C2 transcript-mediated neurotoxicity synergizes with that of PR aggregates, suggesting convergence of mechanisms.
Collapse
Affiliation(s)
- Xinmei Wen
- Frances and Joseph Weinberg Unit for ALS Research, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - Wenzhi Tan
- Frances and Joseph Weinberg Unit for ALS Research, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - Thomas Westergard
- Frances and Joseph Weinberg Unit for ALS Research, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - Karthik Krishnamurthy
- Frances and Joseph Weinberg Unit for ALS Research, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - Shashirekha S Markandaiah
- Frances and Joseph Weinberg Unit for ALS Research, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - Yingxiao Shi
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90089, USA
| | - Shaoyu Lin
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90089, USA
| | - Neil A Shneider
- Department of Neurology, The Center for Motor Neuron Biology and Disease, Columbia University Medical Center, New York, NY 10032, USA
| | - John Monaghan
- Department of Pediatrics, Child Neurology and Neurobiology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Udai B Pandey
- Department of Pediatrics, Child Neurology and Neurobiology, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Piera Pasinelli
- Frances and Joseph Weinberg Unit for ALS Research, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90089, USA
| | - Davide Trotti
- Frances and Joseph Weinberg Unit for ALS Research, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
740
|
Irwin DJ, Cairns NJ, Grossman M, McMillan CT, Lee EB, Van Deerlin VM, Lee VMY, Trojanowski JQ. Frontotemporal lobar degeneration: defining phenotypic diversity through personalized medicine. Acta Neuropathol 2015; 129:469-91. [PMID: 25549971 PMCID: PMC4369168 DOI: 10.1007/s00401-014-1380-1] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 12/18/2014] [Accepted: 12/20/2014] [Indexed: 12/11/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) comprises two main classes of neurodegenerative diseases characterized by neuronal/glial proteinaceous inclusions (i.e., proteinopathies) including tauopathies (i.e., FTLD-Tau) and TDP-43 proteinopathies (i.e., FTLD-TDP) while other very rare forms of FTLD are known such as FTLD with FUS pathology (FTLD-FUS). This review focuses mainly on FTLD-Tau and FLTD-TDP, which may present as several clinical syndromes: a behavioral/dysexecutive syndrome (behavioral variant frontotemporal dementia); language disorders (primary progressive aphasia variants); and motor disorders (amyotrophic lateral sclerosis, corticobasal syndrome, progressive supranuclear palsy syndrome). There is considerable heterogeneity in clinical presentations of underlying neuropathology and current clinical criteria do not reliably predict underlying proteinopathies ante-mortem. In contrast, molecular etiologies of hereditary FTLD are consistently associated with specific proteinopathies. These include MAPT mutations with FTLD-Tau and GRN, C9orf72, VCP and TARDBP with FTLD-TDP. The last decade has seen a rapid expansion in our knowledge of the molecular pathologies associated with this clinically and neuropathologically heterogeneous group of FTLD diseases. Moreover, in view of current limitations to reliably diagnose specific FTLD neuropathologies prior to autopsy, we summarize the current state of the science in FTLD biomarker research including neuroimaging, biofluid and genetic analyses. We propose that combining several of these biomarker modalities will improve diagnostic specificity in FTLD through a personalized medicine approach. The goals of these efforts are to enhance power for clinical trials focused on slowing or preventing progression of spread of tau, TDP-43 and other FTLD-associated pathologies and work toward the goal of defining clinical endophenotypes of FTD.
Collapse
Affiliation(s)
- David J Irwin
- Center for Neurodegenerative Disease Research Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nigel J. Cairns
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Corey T. McMillan
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward B. Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vivianna M. Van Deerlin
- Center for Neurodegenerative Disease Research Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Virginia M.-Y. Lee
- Center for Neurodegenerative Disease Research Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Q. Trojanowski
- Center for Neurodegenerative Disease Research Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
741
|
Nicholson KA, Cudkowicz ME, Berry JD. Clinical Trial Designs in Amyotrophic Lateral Sclerosis: Does One Design Fit All? Neurotherapeutics 2015; 12:376-83. [PMID: 25700798 PMCID: PMC4404442 DOI: 10.1007/s13311-015-0341-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The last 2 decades have seen a surge in the number of amyotrophic lateral sclerosis (ALS) clinical trials with the hope of finding successful treatments. Clinical trialists aim to repurpose existing drugs and test novel compounds to target potential ALS disease pathophysiology. Recent technological advancements have led to the discovery of new causative genetic agents and modes of delivering potential therapy, calling for increasingly sophisticated trial design. The standard ALS clinical trial design may be modified depending on study needs: type of therapy; route of therapy delivery; phase of therapy development; applicable subpopulation; market availability of therapy; and utility of telemedicine. Novel biomarkers of diagnostic, predictive, prognostic, and pharmacodynamic value are undergoing development and validation for use in clinical trials. Design modifications build on the traditional clinical trial design and may be employed in either the learning or confirming trial phase. Novel designs aim to minimize patient risk, study duration, and sample size, while improving efficiency and promoting statistical power to herald an exciting era for clinical research in ALS.
Collapse
Affiliation(s)
- Katharine A Nicholson
- Massachusetts General Hospital, Department of Neurology, Neurological Clinical Research Institute, 165 Cambridge Street, Suite 600, Boston, MA, 02114, USA,
| | | | | |
Collapse
|
742
|
Scotter EL, Chen HJ, Shaw CE. TDP-43 Proteinopathy and ALS: Insights into Disease Mechanisms and Therapeutic Targets. Neurotherapeutics 2015; 12:352-63. [PMID: 25652699 PMCID: PMC4404432 DOI: 10.1007/s13311-015-0338-x] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Therapeutic options for patients with amyotrophic lateral sclerosis (ALS) are currently limited. However, recent studies show that almost all cases of ALS, as well as tau-negative frontotemporal dementia (FTD), share a common neuropathology characterized by the deposition of TAR-DNA binding protein (TDP)-43-positive protein inclusions, offering an attractive target for the design and testing of novel therapeutics. Here we demonstrate how diverse environmental stressors linked to stress granule formation, as well as mutations in genes encoding RNA processing proteins and protein degradation adaptors, initiate ALS pathogenesis via TDP-43. We review the progressive development of TDP-43 proteinopathy from cytoplasmic mislocalization and misfolding through to macroaggregation and the addition of phosphate and ubiquitin moieties. Drawing from cellular and animal studies, we explore the feasibility of therapeutics that act at each point in pathogenesis, from mitigating genetic risk using antisense oligonucleotides to modulating TDP-43 proteinopathy itself using small molecule activators of autophagy, the ubiquitin-proteasome system, or the chaperone network. We present the case that preventing the misfolding of TDP-43 and/or enhancing its clearance represents the most important target for effectively treating ALS and frontotemporal dementia.
Collapse
Affiliation(s)
- Emma L. Scotter
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, de Crespigny Park, London, SE5 8AF UK
- Department of Pharmacology, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Han-Jou Chen
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, de Crespigny Park, London, SE5 8AF UK
| | - Christopher E. Shaw
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, de Crespigny Park, London, SE5 8AF UK
| |
Collapse
|
743
|
Abstract
The degeneration of motor neurons in amyotrophic lateral sclerosis (ALS) inevitably causes paralysis and death within a matter of years. Mounting genetic and functional evidence suggest that abnormalities in RNA processing and metabolism underlie motor neuron loss in sporadic and familial ALS. Abnormal localization and aggregation of essential RNA-binding proteins are fundamental pathological features of sporadic ALS, and mutations in genes encoding RNA processing enzymes cause familial disease. Also, expansion mutations occurring in the noncoding region of C9orf72-the most common cause of inherited ALS-result in nuclear RNA foci, underscoring the link between abnormal RNA metabolism and neurodegeneration in ALS. This review summarizes the current understanding of RNA dysfunction in ALS, and builds upon this knowledge base to identify converging mechanisms of neurodegeneration in ALS. Potential targets for therapy development are highlighted, with particular emphasis on early and conserved pathways that lead to motor neuron loss in ALS.
Collapse
Affiliation(s)
- Sami J Barmada
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, 5015 Biomedical Sciences Research Building, SSPC 2200, Ann Arbor, MI, 48109, USA,
| |
Collapse
|
744
|
Fontana F, Siva K, Denti MA. A network of RNA and protein interactions in Fronto Temporal Dementia. Front Mol Neurosci 2015; 8:9. [PMID: 25852467 PMCID: PMC4365750 DOI: 10.3389/fnmol.2015.00009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/25/2015] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia (FTD) is a neurodegenerative disorder characterized by degeneration of the fronto temporal lobes and abnormal protein inclusions. It exhibits a broad clinicopathological spectrum and has been linked to mutations in seven different genes. We will provide a picture, which connects the products of these genes, albeit diverse in nature and function, in a network. Despite the paucity of information available for some of these genes, we believe that RNA processing and post-transcriptional regulation of gene expression might constitute a common theme in the network. Recent studies have unraveled the role of mutations affecting the functions of RNA binding proteins and regulation of microRNAs. This review will combine all the recent findings on genes involved in the pathogenesis of FTD, highlighting the importance of a common network of interactions in order to study and decipher the heterogeneous clinical manifestations associated with FTD. This approach could be helpful for the research of potential therapeutic strategies.
Collapse
Affiliation(s)
- Francesca Fontana
- Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of TrentoTrento, Italy
| | - Kavitha Siva
- Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of TrentoTrento, Italy
| | - Michela A. Denti
- Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of TrentoTrento, Italy
- CNR, Institute of NeurosciencePadua, Italy
| |
Collapse
|
745
|
|
746
|
Nordin A, Akimoto C, Wuolikainen A, Alstermark H, Jonsson P, Birve A, Marklund SL, Graffmo KS, Forsberg K, Brännström T, Andersen PM. Extensive size variability of the GGGGCC expansion in C9orf72 in both neuronal and non-neuronal tissues in 18 patients with ALS or FTD. Hum Mol Genet 2015; 24:3133-42. [DOI: 10.1093/hmg/ddv064] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/13/2015] [Indexed: 12/12/2022] Open
|
747
|
Maniecka Z, Polymenidou M. From nucleation to widespread propagation: A prion-like concept for ALS. Virus Res 2015; 207:94-105. [PMID: 25656065 DOI: 10.1016/j.virusres.2014.12.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/12/2014] [Accepted: 12/29/2014] [Indexed: 12/12/2022]
Abstract
Propagation of pathological protein assemblies via a prion-like mechanism has been suggested to drive neurodegenerative diseases, such as Parkinson's and Alzheimer's. Recently, amyotrophic lateral sclerosis (ALS)-linked proteins, such as SOD1, TDP-43 and FUS were shown to follow self-perpetuating seeded aggregation, thereby adding ALS to the group of prion-like disorders. The cell-to-cell spread of these pathological protein assemblies and their pathogenic mechanism is poorly understood. However, as ALS is a non-cell autonomous disease and pathology in glial cells was shown to contribute to motor neuron damage, spreading mechanisms are likely to underlie disease progression via the interplay between affected neurons and their neighboring glial cells.
Collapse
Affiliation(s)
- Zuzanna Maniecka
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Magdalini Polymenidou
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
748
|
Walsh MJ, Cooper-Knock J, Dodd JE, Stopford MJ, Mihaylov SR, Kirby J, Shaw PJ, Hautbergue GM. Invited review: decoding the pathophysiological mechanisms that underlie RNA dysregulation in neurodegenerative disorders: a review of the current state of the art. Neuropathol Appl Neurobiol 2015; 41:109-34. [PMID: 25319671 PMCID: PMC4329338 DOI: 10.1111/nan.12187] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/07/2014] [Indexed: 12/12/2022]
Abstract
Altered RNA metabolism is a key pathophysiological component causing several neurodegenerative diseases. Genetic mutations causing neurodegeneration occur in coding and noncoding regions of seemingly unrelated genes whose products do not always contribute to the gene expression process. Several pathogenic mechanisms may coexist within a single neuronal cell, including RNA/protein toxic gain-of-function and/or protein loss-of-function. Genetic mutations that cause neurodegenerative disorders disrupt healthy gene expression at diverse levels, from chromatin remodelling, transcription, splicing, through to axonal transport and repeat-associated non-ATG (RAN) translation. We address neurodegeneration in repeat expansion disorders [Huntington's disease, spinocerebellar ataxias, C9ORF72-related amyotrophic lateral sclerosis (ALS)] and in diseases caused by deletions or point mutations (spinal muscular atrophy, most subtypes of familial ALS). Some neurodegenerative disorders exhibit broad dysregulation of gene expression with the synthesis of hundreds to thousands of abnormal messenger RNA (mRNA) molecules. However, the number and identity of aberrant mRNAs that are translated into proteins - and how these lead to neurodegeneration - remain unknown. The field of RNA biology research faces the challenge of identifying pathophysiological events of dysregulated gene expression. In conclusion, we discuss current research limitations and future directions to improve our characterization of pathological mechanisms that trigger disease onset and progression.
Collapse
Affiliation(s)
- M J Walsh
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - J Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - J E Dodd
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - M J Stopford
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - S R Mihaylov
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - J Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - P J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| | - G M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of SheffieldSheffield, UK
| |
Collapse
|
749
|
Cieply B, Carstens RP. Functional roles of alternative splicing factors in human disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:311-26. [PMID: 25630614 PMCID: PMC4671264 DOI: 10.1002/wrna.1276] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 12/13/2022]
Abstract
Alternative splicing (AS) is an important mechanism used to generate greater transcriptomic and proteomic diversity from a finite genome. Nearly all human gene transcripts are alternatively spliced and can produce protein isoforms with divergent and even antagonistic properties that impact cell functions. Many AS events are tightly regulated in a cell-type or tissue-specific manner, and at different developmental stages. AS is regulated by RNA-binding proteins, including cell- or tissue-specific splicing factors. In the past few years, technological advances have defined genome-wide programs of AS regulated by increasing numbers of splicing factors. These splicing regulatory networks (SRNs) consist of transcripts that encode proteins that function in coordinated and related processes that impact the development and phenotypes of different cell types. As such, it is increasingly recognized that disruption of normal programs of splicing regulated by different splicing factors can lead to human diseases. We will summarize examples of diseases in which altered expression or function of splicing regulatory proteins has been implicated in human disease pathophysiology. As the role of AS continues to be unveiled in human disease and disease risk, it is hoped that further investigations into the functions of numerous splicing factors and their regulated targets will enable the development of novel therapies that are directed at specific AS events as well as the biological pathways they impact. WIREs RNA 2015, 6:311–326. doi: 10.1002/wrna.1276 For further resources related to this article, please visit the http://wires.wiley.com/remdoi.cgi?doi=10.1002/wrna.1276WIREs website. Conflict of interest: The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Benjamin Cieply
- Departments of Medicine (Renal) and Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
750
|
Tao Z, Wang H, Xia Q, Li K, Li K, Jiang X, Xu G, Wang G, Ying Z. Nucleolar stress and impaired stress granule formation contribute to C9orf72 RAN translation-induced cytotoxicity. Hum Mol Genet 2015; 24:2426-41. [PMID: 25575510 DOI: 10.1093/hmg/ddv005] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/06/2015] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are the two common neurodegenerative diseases that have been associated with the GGGGCC·GGCCCC repeat RNA expansion in a noncoding region of C9orf72. It has been previously reported that unconventional repeat-associated non-ATG (RAN) translation of GGGGCC·GGCCCC repeats produces five types of dipeptide-repeat proteins (referred to as RAN proteins): poly-glycine-alanine (GA), poly-glycine-proline (GP), poly-glycine-arginine (GR), poly-proline-arginine (PR) and poly-proline-alanine (PA). Although protein aggregates of RAN proteins have been found in patients, it is unclear whether RAN protein aggregation induces neurotoxicity. In the present study, we aimed to understand the biological properties of all five types of RAN proteins. Surprisingly, our results showed that none of these RAN proteins was aggregate-prone in our cellular model and that the turnover of these RAN proteins was not affected by the ubiquitin-proteasome system or autophagy. Moreover, poly-GR and poly-PR, but not poly-GA, poly-GP or poly-PA, localized to the nucleolus and induced the translocation of the key nucleolar component nucleophosmin, leading to nucleolar stress and cell death. This poly-GR- and poly-PR-mediated defect in nucleolar function was associated with the suppression of ribosomal RNA synthesis and the impairment of stress granule formation. Taken together, the results of the present study suggest a simple model of the molecular mechanisms underlying RAN translation-mediated cytotoxicity in C9orf72-linked ALS/FTD in which nucleolar stress, but not protein aggregation, is the primary contributor to C9orf72-linked neurodegeneration.
Collapse
Affiliation(s)
- Zhouteng Tao
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences
| | - Hongfeng Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences
| | - Qin Xia
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences
| | - Ke Li
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences
| | - Kai Li
- Department of Pharmacology, College of Pharmaceutical Sciences
| | - Xiaogang Jiang
- Department of Pharmacology, College of Pharmaceutical Sciences
| | - Guoqiang Xu
- Laboratory of Chemical Biology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230027, China
| | - Zheng Ying
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China and
| |
Collapse
|