701
|
Lankelma JM, van Vught LA, Belzer C, Schultz MJ, van der Poll T, de Vos WM, Wiersinga WJ. Critically ill patients demonstrate large interpersonal variation in intestinal microbiota dysregulation: a pilot study. Intensive Care Med 2016; 43:59-68. [PMID: 27837233 PMCID: PMC5203863 DOI: 10.1007/s00134-016-4613-z] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/26/2016] [Indexed: 12/27/2022]
Abstract
Purpose
The intestinal microbiota has emerged as a virtual organ with essential functions in human physiology. Antibiotic-induced disruption of the microbiota in critically ill patients may have a negative influence on key energy resources and immunity. We set out to characterize the fecal microbiota composition in critically ill patients both with and without sepsis and to explore the use of microbiota-derived markers for clinical outcome measurements in this setting. Methods In this prospective observational cohort study we analyzed the fecal microbiota of 34 patients admitted to the intensive care unit. Fifteen healthy subjects served as controls. The fecal microbiota was phylogenetically characterized by 16S rRNA gene sequencing, and associations with clinical outcome parameters were evaluated. Results A marked shift in fecal bacterial composition was seen in all septic and non-septic critically ill patients compared with controls, with extreme interindividual differences. In 13 of the 34 patients, a single bacterial genus made up >50% of the gut microbiota; in 4 patients this was even >75%. A significant decrease in bacterial diversity was observed in half of the patients. No associations were found between microbiota diversity, Firmicutes/Bacteroidetes ratio, or Gram-positive/Gram-negative ratio and outcome measurements such as complications and survival. Conclusions We observed highly heterogeneous patterns of intestinal microbiota in both septic and non-septic critically ill patients. Nevertheless, some general patterns were observed, including disappearance of bacterial genera with important functions in host metabolism. More detailed knowledge of the short- and long-term health consequences of these major shifts in intestinal bacterial communities is needed. Electronic supplementary material The online version of this article (doi:10.1007/s00134-016-4613-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jacqueline M Lankelma
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Room G2-130, 1105 AZ, Amsterdam, The Netherlands.
| | - Lonneke A van Vught
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Room G2-130, 1105 AZ, Amsterdam, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Marcus J Schultz
- Department of Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Room G2-130, 1105 AZ, Amsterdam, The Netherlands.,Division of Infectious Diseases, Department of Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands.,Research Programs Unit Immunobiology, Department of Bacteriology and Immunology, Helsinki University, Helsinski, Finland
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Room G2-130, 1105 AZ, Amsterdam, The Netherlands.,Division of Infectious Diseases, Department of Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
702
|
Lagier JC, Khelaifia S, Alou MT, Ndongo S, Dione N, Hugon P, Caputo A, Cadoret F, Traore SI, Seck EH, Dubourg G, Durand G, Mourembou G, Guilhot E, Togo A, Bellali S, Bachar D, Cassir N, Bittar F, Delerce J, Mailhe M, Ricaboni D, Bilen M, Dangui Nieko NPM, Dia Badiane NM, Valles C, Mouelhi D, Diop K, Million M, Musso D, Abrahão J, Azhar EI, Bibi F, Yasir M, Diallo A, Sokhna C, Djossou F, Vitton V, Robert C, Rolain JM, La Scola B, Fournier PE, Levasseur A, Raoult D. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol 2016; 1:16203. [PMID: 27819657 DOI: 10.1038/nmicrobiol.2016.203] [Citation(s) in RCA: 660] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023]
Abstract
Metagenomics revolutionized the understanding of the relations among the human microbiome, health and diseases, but generated a countless number of sequences that have not been assigned to a known microorganism1. The pure culture of prokaryotes, neglected in recent decades, remains essential to elucidating the role of these organisms2. We recently introduced microbial culturomics, a culturing approach that uses multiple culture conditions and matrix-assisted laser desorption/ionization-time of flight and 16S rRNA for identification2. Here, we have selected the best culture conditions to increase the number of studied samples and have applied new protocols (fresh-sample inoculation; detection of microcolonies and specific cultures of Proteobacteria and microaerophilic and halophilic prokaryotes) to address the weaknesses of the previous studies3-5. We identified 1,057 prokaryotic species, thereby adding 531 species to the human gut repertoire: 146 bacteria known in humans but not in the gut, 187 bacteria and 1 archaea not previously isolated in humans, and 197 potentially new species. Genome sequencing was performed on the new species. By comparing the results of the metagenomic and culturomic analyses, we show that the use of culturomics allows the culture of organisms corresponding to sequences previously not assigned. Altogether, culturomics doubles the number of species isolated at least once from the human gut.
Collapse
MESH Headings
- Archaea/classification
- Archaea/genetics
- Archaea/growth & development
- Archaea/isolation & purification
- Bacteria/classification
- Bacteria/genetics
- Bacteria/growth & development
- Bacteria/isolation & purification
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Gastrointestinal Microbiome
- Gastrointestinal Tract/microbiology
- Humans
- Microbiological Techniques/methods
- Microbiota
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
Collapse
Affiliation(s)
- Jean-Christophe Lagier
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Saber Khelaifia
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Maryam Tidjani Alou
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Sokhna Ndongo
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Niokhor Dione
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Perrine Hugon
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Aurelia Caputo
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Frédéric Cadoret
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Sory Ibrahima Traore
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - El Hadji Seck
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Gregory Dubourg
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Guillaume Durand
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Gaël Mourembou
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Elodie Guilhot
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Amadou Togo
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Sara Bellali
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Dipankar Bachar
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Nadim Cassir
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Fadi Bittar
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Jérémy Delerce
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Morgane Mailhe
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Davide Ricaboni
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Melhem Bilen
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | | | - Ndeye Mery Dia Badiane
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Camille Valles
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Donia Mouelhi
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Khoudia Diop
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Matthieu Million
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Didier Musso
- Institut Louis Malardé, Papeete, Tahiti, Polynésie Française
| | - Jônatas Abrahão
- Departamento de Microbiologia Laboratorio de Virus, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Esam Ibraheem Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fehmida Bibi
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aldiouma Diallo
- Institut de Recherche pour le Développement, UMR 198 (URMITE), Campus International de Hann, IRD, BP 1386, CP, 18524 Dakar, Sénégal
| | - Cheikh Sokhna
- Institut de Recherche pour le Développement, UMR 198 (URMITE), Campus International de Hann, IRD, BP 1386, CP, 18524 Dakar, Sénégal
| | - Felix Djossou
- Department of Infectious and Tropical Diseases, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | - Véronique Vitton
- Service de Gastroentérologie, Hôpital Nord, Assistance Publique-Hôpitaux de Marseille, 13915 Marseille, France
| | - Catherine Robert
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Jean Marc Rolain
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Bernard La Scola
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Pierre-Edouard Fournier
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Anthony Levasseur
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Didier Raoult
- Aix Marseille Université URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| |
Collapse
|
703
|
Changes in Composition and Function of Human Intestinal Microbiota Exposed to Chlorpyrifos in Oil as Assessed by the SHIME ® Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13111088. [PMID: 27827942 PMCID: PMC5129298 DOI: 10.3390/ijerph13111088] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/03/2016] [Accepted: 10/27/2016] [Indexed: 12/29/2022]
Abstract
The presence of pesticide residues in food is a public health problem. Exposure to these substances in daily life could have serious effects on the intestine—the first organ to come into contact with food contaminants. The present study investigated the impact of a low dose (1 mg/day in oil) of the pesticide chlorpyrifos (CPF) on the community structure, diversity and metabolic response of the human gut microbiota using the SHIME® model (six reactors, representing the different parts of the gastrointestinal tract). The last three reactors (representing the colon) were inoculated with a mixture of feces from human adults. Three time points were studied: immediately before the first dose of CPF, and then after 15 and 30 days of CPF-oil administration. By using conventional bacterial culture and molecular biology methods, we showed that CPF in oil can affect the gut microbiota. It had the greatest effects on counts of culturable bacteria (with an increase in Enterobacteria, Bacteroides spp. and clostridia counts, and a decrease in bifidobacterial counts) and fermentative activity, which were colon-segment-dependent. Our results suggest that: (i) CPF in oil treatment affects the gut microbiota (although there was some discordance between the culture-dependent and culture-independent analyses); (ii) the changes are “SHIME®-compartment” specific; and (iii) the changes are associated with minor alterations in the production of short-chain fatty acids and lactate.
Collapse
|
704
|
Miragoli F, Federici S, Ferrari S, Minuti A, Rebecchi A, Bruzzese E, Buccigrossi V, Guarino A, Callegari ML. Impact of cystic fibrosis disease on archaea and bacteria composition of gut microbiota. FEMS Microbiol Ecol 2016; 93:fiw230. [PMID: 27810876 PMCID: PMC5155554 DOI: 10.1093/femsec/fiw230] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/08/2016] [Accepted: 11/02/2016] [Indexed: 12/21/2022] Open
Abstract
Cystic fibrosis is often associated with intestinal inflammation due to several factors, including altered gut microbiota composition. In this study, we analyzed the fecal microbiota among patients with cystic fibrosis of 10–22 years of age, and compared the findings with age-matched healthy subjects. The participating patients included 14 homozygotes and 14 heterozygotes with the delF508 mutation, and 2 heterozygotes presenting non-delF508 mutations. We used PCR-DGGE and qPCR to analyze the presence of bacteria, archaea and sulfate-reducing bacteria. Overall, our findings confirmed disruption of the cystic fibrosis gut microbiota. Principal component analysis of the qPCR data revealed no differences between homozygotes and heterozygotes, while both groups were distinct from healthy subjects who showed higher biodiversity. Archaea were under the detection limit in all homozygotes subjects, whereas methanogens were detected in 62% of both cystic fibrosis heterozygotes and healthy subjects. Our qPCR results revealed a low frequency of sulfate-reducing bacteria in the homozygote (13%) and heterozygote (13%) patients with cystic fibrosis compared with healthy subjects (87.5%). This is a pioneer study showing that patients with cystic fibrosis exhibit significant reduction of H2-consuming microorganisms, which could increase hydrogen accumulation in the colon and the expulsion of this gas through non-microbial routes.
Collapse
Affiliation(s)
- Francesco Miragoli
- Centro Ricerche Biotecnologiche, Università Cattolica del Sacro Cuore, Cremona 26100, Italy
| | - Sara Federici
- Centro Ricerche Biotecnologiche, Università Cattolica del Sacro Cuore, Cremona 26100, Italy
| | - Susanna Ferrari
- Centro Ricerche Biotecnologiche, Università Cattolica del Sacro Cuore, Cremona 26100, Italy
| | - Andrea Minuti
- Istituto di Zootecnica, Università Cattolica del Sacro Cuore, Piacenza 29122, Italy
| | - Annalisa Rebecchi
- Centro Ricerche Biotecnologiche, Università Cattolica del Sacro Cuore, Cremona 26100, Italy
| | - Eugenia Bruzzese
- Department of Translational Medical Sciences, Section of Pediatrics, University Federico II, Naples 80131, Italy
| | - Vittoria Buccigrossi
- Department of Translational Medical Sciences, Section of Pediatrics, University Federico II, Naples 80131, Italy
| | - Alfredo Guarino
- Department of Translational Medical Sciences, Section of Pediatrics, University Federico II, Naples 80131, Italy
| | - Maria Luisa Callegari
- Centro Ricerche Biotecnologiche, Università Cattolica del Sacro Cuore, Cremona 26100, Italy
| |
Collapse
|
705
|
Cheng DM, Roopchand DE, Poulev A, Kuhn P, Armas I, Johnson WD, Oren A, Ribnicky D, Zelzion E, Bhattacharya D, Raskin I. High phenolics Rutgers Scarlet Lettuce improves glucose metabolism in high fat diet-induced obese mice. Mol Nutr Food Res 2016; 60:2367-2378. [PMID: 27529448 PMCID: PMC5240636 DOI: 10.1002/mnfr.201600290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/05/2016] [Accepted: 06/09/2016] [Indexed: 01/05/2023]
Abstract
SCOPE The ability of high phenolic Rutgers Scarlet Lettuce (RSL) to attenuate metabolic syndrome and gut dysbiosis was studied in very high fat diet (VHFD)-fed mice. Phenolic absorption was assessed in vivo and in a gastrointestinal tract model. METHODS AND RESULTS Mice were fed VHFD, VHFD supplemented with RSL (RSL-VHFD) or store-purchased green lettuce (GL-VHFD), or low-fat diet (LFD) for 13 weeks. Compared to VHFD or GL-VHFD-fed groups, RSL-VHFD group showed significantly improved oral glucose tolerance (p<0.05). Comparison of VHFD, RSL-VHFD, and GL-VHFD groups revealed no significant differences with respect to insulin tolerance, hepatic lipids, body weight gain, fat mass, plasma glucose, triglycerides, free fatty acid, and lipopolysaccharide levels, as well as relative abundances of major bacterial phyla from 16S rDNA amplicon data sequences (from fecal and cecal samples). However, RSL and GL-supplementation increased abundance of several taxa involved in plant polysaccharide degradation/fermentation. RSL phenolics chlorogenic acid, quercetin-3-glucoside, and quercetin-malonyl-glucoside were bioaccessible in the TIM-1 digestion model, but had relatively low recovery. CONCLUSIONS RSL phenolics contributed to attenuation of post-prandial hyperglycemia. Changes in gut microbiota were likely due to microbiota accessible carbohydrates in RSL and GL rather than RSL phenolics, which may be metabolized, absorbed, or degraded before reaching the colon.
Collapse
Affiliation(s)
- Diana M. Cheng
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Diana E. Roopchand
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Alexander Poulev
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Peter Kuhn
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Isabel Armas
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - William D. Johnson
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America
| | - Andrew Oren
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - David Ribnicky
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Ehud Zelzion
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Ilya Raskin
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| |
Collapse
|
706
|
Ianiro G, Tilg H, Gasbarrini A. Antibiotics as deep modulators of gut microbiota: between good and evil. Gut 2016; 65:1906-1915. [PMID: 27531828 DOI: 10.1136/gutjnl-2016-312297] [Citation(s) in RCA: 430] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022]
Abstract
The recent increase in our knowledge of human gut microbiota has changed our view on antibiotics. Antibiotics are, indeed, no longer considered only beneficial, but also potentially harmful drugs, as their abuse appears to play a role in the pathogenesis of several disorders associated with microbiota impairment (eg, Clostridium difficile infection or metabolic disorders). Both drug-related factors (such as antibiotic class, timing of exposure or route of administration) and host-related factors appear to influence the alterations of human gut microbiota produced by antibiotics. Nevertheless, antibiotics are nowadays considered a reliable therapy for some non-communicable disorders, including IBS or hepatic encephalopathy. Moreover, some antibiotics can also act positively on gut microbiota, providing a so-called 'eubiotic' effect, by increasing abundance of beneficial bacteria. Therefore, antibiotics appear to change, for better or worse, the nature of several disorders, including IBS, IBD, metabolic disorders or liver disease. This reviews aims to address the potential of antibiotics in the development of major non-communicable disorders associated with the alteration of gut microbiota and on newly discovered therapeutic avenues of antibiotics beyond the cure of infectious diseases.
Collapse
Affiliation(s)
- Gianluca Ianiro
- Internal Medicine, Gastroenterology and Liver Unit, "Agostino Gemelli" University Hospital, Catholic University of Rome, Italy
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Antonio Gasbarrini
- Internal Medicine, Gastroenterology and Liver Unit, "Agostino Gemelli" University Hospital, Catholic University of Rome, Italy
| |
Collapse
|
707
|
Manook A, Hiergeist A, Rupprecht R, Baghai TC. Dickdarmmikrobiom und Depression. DER NERVENARZT 2016; 87:1227-1240. [DOI: 10.1007/s00115-016-0230-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
708
|
Khanna S, Pardi DS. Clinical implications of antibiotic impact on gastrointestinal microbiota and Clostridium difficile infection. Expert Rev Gastroenterol Hepatol 2016; 10:1145-1152. [PMID: 26907220 DOI: 10.1586/17474124.2016.1158097] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The human gastrointestinal (GI) microbiota plays an important role in human health. Anaerobic bacteria prevalent in the normal colon suppress the growth of non-commensal microorganisms, thus maintaining colonic homeostasis. The GI microbiota is influenced by both patient-specific and environmental factors, particularly antibiotics. Antibiotics can alter the native GI microbiota composition, leading to decreased colonization resistance and opportunistic proliferation of non-native organisms. A common and potentially serious antibiotic-induced sequela associated with GI microbiota imbalance is Clostridium difficile infection (CDI), which may become recurrent if dysbiosis persists. This review focuses on the association between antibiotics and CDI, and the antibiotic-induced disruption leading to recurrent CDI. Promoting antibiotic stewardship is pivotal in protecting native microbiota and reducing the incidence of CDI and other GI infections.
Collapse
Affiliation(s)
- Sahil Khanna
- a Division of Gastroenterology and Hepatology , Mayo Clinic , Rochester , MN , USA
| | - Darrell S Pardi
- a Division of Gastroenterology and Hepatology , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
709
|
Lagkouvardos I, Joseph D, Kapfhammer M, Giritli S, Horn M, Haller D, Clavel T. IMNGS: A comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies. Sci Rep 2016; 6:33721. [PMID: 27659943 PMCID: PMC5034312 DOI: 10.1038/srep33721] [Citation(s) in RCA: 304] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/22/2016] [Indexed: 02/07/2023] Open
Abstract
The SRA (Sequence Read Archive) serves as primary depository for massive amounts of Next Generation Sequencing data, and currently host over 100,000 16S rRNA gene amplicon-based microbial profiles from various host habitats and environments. This number is increasing rapidly and there is a dire need for approaches to utilize this pool of knowledge. Here we created IMNGS (Integrated Microbial Next Generation Sequencing), an innovative platform that uniformly and systematically screens for and processes all prokaryotic 16S rRNA gene amplicon datasets available in SRA and uses them to build sample-specific sequence databases and OTU-based profiles. Via a web interface, this integrative sequence resource can easily be queried by users. We show examples of how the approach allows testing the ecological importance of specific microorganisms in different hosts or ecosystems, and performing targeted diversity studies for selected taxonomic groups. The platform also offers a complete workflow for de novo analysis of users’ own raw 16S rRNA gene amplicon datasets for the sake of comparison with existing data. IMNGS can be accessed at www.imngs.org.
Collapse
Affiliation(s)
- Ilias Lagkouvardos
- ZIEL Institute for Food and Health, Core Facility NGS/Microbiome, Technische Universität München, Freising, Germany
| | - Divya Joseph
- ZIEL Institute for Food and Health, Core Facility NGS/Microbiome, Technische Universität München, Freising, Germany
| | - Martin Kapfhammer
- ZIEL Institute for Food and Health, Core Facility NGS/Microbiome, Technische Universität München, Freising, Germany
| | - Sabahattin Giritli
- ZIEL Institute for Food and Health, Core Facility NGS/Microbiome, Technische Universität München, Freising, Germany
| | - Matthias Horn
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Dirk Haller
- ZIEL Institute for Food and Health, Core Facility NGS/Microbiome, Technische Universität München, Freising, Germany.,Chair of Nutrition and Immunology, Technische Universität München, Freising, Germany
| | - Thomas Clavel
- ZIEL Institute for Food and Health, Core Facility NGS/Microbiome, Technische Universität München, Freising, Germany
| |
Collapse
|
710
|
Nishiyama K, Sugiyama M, Mukai T. Adhesion Properties of Lactic Acid Bacteria on Intestinal Mucin. Microorganisms 2016; 4:microorganisms4030034. [PMID: 27681930 PMCID: PMC5039594 DOI: 10.3390/microorganisms4030034] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 12/13/2022] Open
Abstract
Lactic acid bacteria (LAB) are Gram-positive bacteria that are natural inhabitants of the gastrointestinal (GI) tracts of mammals, including humans. Since Mechnikov first proposed that yogurt could prevent intestinal putrefaction and aging, the beneficial effects of LAB have been widely demonstrated. The region between the duodenum and the terminal of the ileum is the primary region colonized by LAB, particularly the Lactobacillus species, and this region is covered by a mucus layer composed mainly of mucin-type glycoproteins. The mucus layer plays a role in protecting the intestinal epithelial cells against damage, but is also considered to be critical for the adhesion of Lactobacillus in the GI tract. Consequently, the adhesion exhibited by lactobacilli on mucin has attracted attention as one of the critical factors contributing to the persistent beneficial effects of Lactobacillus in a constantly changing intestinal environment. Thus, understanding the interactions between Lactobacillus and mucin is crucial for elucidating the survival strategies of LAB in the GI tract. This review highlights the properties of the interactions between Lactobacillus and mucin, while concomitantly considering the structure of the GI tract from a histochemical perspective.
Collapse
Affiliation(s)
- Keita Nishiyama
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo 108-8641, Japan.
| | - Makoto Sugiyama
- Faculty of Veterinary Medicine, School of Veterinary Medicine, Kitasato University, Aomori 034-8628, Japan.
| | - Takao Mukai
- Department of Animal Science, School of Veterinary Medicine, Kitasato University, Aomori 034-8628, Japan.
| |
Collapse
|
711
|
Gómez-Gallego C, Pohl S, Salminen S, De Vos W, Kneifel W. Akkermansia muciniphila: a novel functional microbe with probiotic properties. Benef Microbes 2016; 7:571-84. [DOI: 10.3920/bm2016.0009] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Akkermansia muciniphila is an intestinal anaerobe which has been proposed as a new functional microbe with probiotic properties. However, the species is not included in the European Union qualified presumption of safety (QPS) list and has not yet been assessed. Moreover, products containing A. muciniphila are not on the market and are thus controlled by the Novel Foods Regulation, which requires extensive safety assessment. This review addresses the safety aspects of the use of A. muciniphila based on published information on its functions in humans and predictions based on its activity in model animals. Further, comprehensive studies related to A. muciniphila and its safety properties have gradually appeared and are summarised here. Many of the criteria required for novel food safety assessment in Europe can thus be fulfilled. However, studies focusing on the toxicological properties of A. muciniphila, including long-term and reproduction studies, have not so far been reported and are discussed in the light of the observation that most, if not all, healthy subjects are known to carry this intestinal anaerobe. As this also applies to other beneficial bacteria found in the human intestinal tract, the A. muciniphila case can be seen as a model for the comprehensive safety evaluations required by the European authorities.
Collapse
Affiliation(s)
- C. Gómez-Gallego
- Functional Foods Forum, Faculty of Medicine, University of Turku, 20014 Turku, Finland
| | - S. Pohl
- Department of Food Sciences and Technology, University of Natural Resources and Life Science Vienna, 1190 Vienna, Austria
| | - S. Salminen
- Functional Foods Forum, Faculty of Medicine, University of Turku, 20014 Turku, Finland
| | - W.M. De Vos
- Laboratory of Microbiology, Wageningen University, 6703 CT, Wageningen, the Netherlands
- RPU Immunobiology, University of Helsinki, 00140 Helsinki, Finland
| | - W. Kneifel
- Department of Food Sciences and Technology, University of Natural Resources and Life Science Vienna, 1190 Vienna, Austria
| |
Collapse
|
712
|
Scheithauer TP, Dallinga-Thie GM, de Vos WM, Nieuwdorp M, van Raalte DH. Causality of small and large intestinal microbiota in weight regulation and insulin resistance. Mol Metab 2016; 5:759-70. [PMID: 27617199 PMCID: PMC5004227 DOI: 10.1016/j.molmet.2016.06.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE The twin pandemics of obesity and Type 2 diabetes (T2D) are a global challenge for health care systems. Changes in the environment, behavior, diet, and lifestyle during the last decades are considered the major causes. A Western diet, which is rich in saturated fat and simple sugars, may lead to changes in gut microbial composition and physiology, which have recently been linked to the development of metabolic diseases. METHODS We will discuss evidence that demonstrates the influence of the small and large intestinal microbiota on weight regulation and the development of insulin resistance, based on literature search. RESULTS Altered large intestinal microbial composition may promote obesity by increasing energy harvest through specialized gut microbes. In both large and small intestine, microbial alterations may increase gut permeability that facilitates the translocation of whole bacteria or endotoxic bacterial components into metabolic active tissues. Moreover, changed microbial communities may affect the production of satiety-inducing signals. Finally, bacterial metabolic products, such as short chain fatty acids (SCFAs) and their relative ratios, may be causal in disturbed immune and metabolic signaling, notably in the small intestine where the surface is large. The function of these organs (adipose tissue, brain, liver, muscle, pancreas) may be disturbed by the induction of low-grade inflammation, contributing to insulin resistance. CONCLUSIONS Interventions aimed to restoring gut microbial homeostasis, such as ingestion of specific fibers or therapeutic microbes, are promising strategies to reduce insulin resistance and the related metabolic abnormalities in obesity, metabolic syndrome, and type 2 diabetes. This article is part of a special issue on microbiota.
Collapse
Key Words
- 16s rRNA, 16S ribosomal RNA (30S small subunit of prokaryotic ribosomes)
- AMP, adenosine monophosphate
- AMPK, AMP-activated protein kinase
- AS160, Akt substrate of 160 kDa
- Angptl4, Angiopoietin-like 4
- CB1R, cannabinoid receptor type 1
- CCL2, Chemokine (C–C motif) ligand 2
- DIO, diet-induced obesity
- Diabetes
- GF, germ-free
- GLP, glucagon-like peptide
- Gpr, G-protein coupled receptor
- Gut microbiota
- HFD, high fat diet
- IL, interleukin
- IRS-1, insulin receptor substrate 1
- Insulin resistance
- JNK, C-Jun N-terminal kinase
- LBP, LPS-binding protein
- LPL, lipoprotein lipase
- LPS, lipopolysaccharide
- MCP-1, monocyte chemotactic protein 1
- NOD1, nucleotide-binding oligomerization domain-containing protein 1
- Obesity
- PKB, protein kinase B (also known as Akt)
- PYY, peptide YY (for tyrosine–tyrosine)
- RYGB, Roux-en-Y gastric bypass
- SCFA, short-chain fatty acid
- T2D, Type 2 diabetes mellitus
- TLR, toll-like receptor
- TNF-α, tumor necrosis factor alpha
- VLDL, very low density lipoprotein
- WHO, World Health Organization
- Weight regulation
- ZO, zonula occludens
Collapse
Affiliation(s)
- Torsten P.M. Scheithauer
- Department of Vascular Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
- Institute for Cardiovascular Research (ICaR), VU University Medical Center, Amsterdam, The Netherlands
| | - Geesje M. Dallinga-Thie
- Department of Vascular Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Willem M. de Vos
- WU Agrotechnology and Food Sciences, Wagening University, Wageningen, The Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
- Institute for Cardiovascular Research (ICaR), VU University Medical Center, Amsterdam, The Netherlands
| | - Daniël H. van Raalte
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
- Institute for Cardiovascular Research (ICaR), VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
713
|
Rabot S, Membrez M, Blancher F, Berger B, Moine D, Krause L, Bibiloni R, Bruneau A, Gérard P, Siddharth J, Lauber CL, Chou CJ. High fat diet drives obesity regardless the composition of gut microbiota in mice. Sci Rep 2016; 6:32484. [PMID: 27577172 PMCID: PMC5006052 DOI: 10.1038/srep32484] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/08/2016] [Indexed: 02/08/2023] Open
Abstract
The gut microbiota is involved in many aspects of host physiology but its role in body weight and glucose metabolism remains unclear. Here we studied the compositional changes of gut microbiota in diet-induced obesity mice that were conventionally raised or received microbiota transplantation. In conventional mice, the diversity of the faecal microbiota was weakly associated with 1st week weight gain but transferring the microbiota of mice with contrasting weight gain to germfree mice did not change obesity development or feed efficiency of recipients regardless whether the microbiota was taken before or after 10 weeks high fat (HF) feeding. Interestingly, HF-induced glucose intolerance was influenced by microbiota inoculation and improved glucose tolerance was associated with a low Firmicutes to Bacteroidetes ratio. Transplantation of Bacteroidetes rich microbiota compared to a control microbiota ameliorated glucose intolerance caused by HF feeding. Altogether, our results demonstrate that gut microbiota is involved in the regulation of glucose metabolism and the abundance of Bacteroidetes significantly modulates HF-induced glucose intolerance but has limited impact on obesity in mice. Our results suggest that gut microbiota is a part of complex aetiology of insulin resistance syndrome, individual microbiota composition may cause phenotypic variation associated with HF feeding in mice.
Collapse
Affiliation(s)
- Sylvie Rabot
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | | | - Déborah Moine
- Nestlé Research Centre, Lausanne, Switzerland.,Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Lutz Krause
- Nestlé Research Centre, Lausanne, Switzerland
| | | | - Aurélia Bruneau
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Gérard
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jay Siddharth
- Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | | | - Chieh Jason Chou
- Nestlé Research Centre, Lausanne, Switzerland.,Nestlé Institute of Health Sciences, Lausanne, Switzerland
| |
Collapse
|
714
|
Hamad I, Raoult D, Bittar F. Repertory of eukaryotes (eukaryome) in the human gastrointestinal tract: taxonomy and detection methods. Parasite Immunol 2016; 38:12-36. [PMID: 26434599 DOI: 10.1111/pim.12284] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/23/2015] [Indexed: 12/22/2022]
Abstract
Eukaryotes are an important component of the human gut, and their relationship with the human host varies from parasitic to commensal. Understanding the diversity of human intestinal eukaryotes has important significance for human health. In the past few decades, most of the multitudes of techniques that are involved in the diagnosis of the eukaryotic population in the human intestinal tract were confined to pathological and parasitological aspects that mainly rely on traditionally based methods. However, development of culture-independent molecular techniques comprised of direct DNA extraction from faeces followed by sequencing, offer new opportunities to estimate the occurrence of eukaryotes in the human gut by providing data on the entire eukaryotic community, particularly not-yet-cultured or fastidious organisms. Further broad surveys of the eukaryotic communities in the gut based on high throughput tools such as next generation sequencing might lead to uncovering the real diversity of these ubiquitous organisms in the human intestinal tract and discovering the unrecognized roles of these eukaryotes in modulating the host immune system and inducing changes in host gut physiology and ecosystem.
Collapse
Affiliation(s)
- I Hamad
- URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Aix Marseille Université, Marseille, France
| | - D Raoult
- URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Aix Marseille Université, Marseille, France
| | - F Bittar
- URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Aix Marseille Université, Marseille, France
| |
Collapse
|
715
|
Harmsen HJM, de Goffau MC. The Human Gut Microbiota. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 902:95-108. [PMID: 27161353 DOI: 10.1007/978-3-319-31248-4_7] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The microbiota in our gut performs many different essential functions that help us to stay healthy. These functions include vitamin production, regulation of lipid metabolism and short chain fatty acid production as fuel for epithelial cells and regulation of gene expression. There is a very numerous and diverse microbial community present in the gut, especially in the colon, with reported numbers of species that vary between 400 and 1500, for some those we even do not yet have culture representatives.A healthy gut microbiota is important for maintaining a healthy host. An aberrant microbiota can cause diseases of different nature and at different ages ranging from allergies at early age to IBD in young adults. This shows that our gut microbiota needs to be treated well to stay healthy. In this chapter we describe what we consider a healthy microbiota and discuss what the role of the microbiota is in various diseases. Research into these described dysbiosis conditions could lead to new strategies for treatment and/or management of our microbiota to improve health.
Collapse
Affiliation(s)
- Hermie J M Harmsen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, 30001, 9700, Groningen, The Netherlands.
| | | |
Collapse
|
716
|
Le Roy CI, Štšepetova J, Sepp E, Songisepp E, Claus SP, Mikelsaar M. New insights into the impact of Lactobacillus population on host-bacteria metabolic interplay. Oncotarget 2016; 6:30545-56. [PMID: 26437083 PMCID: PMC4741550 DOI: 10.18632/oncotarget.5906] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 08/28/2015] [Indexed: 02/07/2023] Open
Abstract
We aimed at evaluating the association between intestinal Lactobacillus sp. composition and their metabolic activity with the host metabolism in adult and elderly individuals. Faecal and plasma metabolites were measured and correlated to the Lactobacillus species distribution in healthy Estonian cohorts of adult (n = 16; < 48 y) and elderly (n = 33; > 65 y). Total cholesterol, LDL, C-reactive protein and glycated hemoglobin were statistically higher in elderly, while platelets, white blood cells and urinary creatinine were higher in adults. Aging was associated with the presence of L. paracasei and L. plantarum and the absence of L. salivarius and L. helveticus. High levels of intestinal Lactobacillus sp. were positively associated with increased concentrations of faecal short chain fatty acids, lactate and essential amino acids. In adults, high red blood cell distribution width was positively associated with presence of L. helveticus and absence of L. ruminis. L. helveticus was correlated to lactate and butyrate in faecal waters. This indicates a strong relationship between the composition of the gut Lactobacillus sp. and host metabolism. Our results confirm that aging is associated with modulations of blood biomarkers and intestinal Lactobacillus species composition. We identified specific Lactobacillus contributions to gut metabolic environment and related those to blood biomarkers. Such associations may prove useful to decipher the biological mechanisms underlying host-gut microbial metabolic interactions in an ageing population.
Collapse
Affiliation(s)
- Caroline I Le Roy
- Department of Food and Nutritional Sciences, The University of Reading, Whiteknights, Reading, United Kingdom
| | | | - Epp Sepp
- Department of Microbiology, University of Tartu, Tartu, Estonia
| | - Epp Songisepp
- Bio-competence Center of Healthy Dairy Production LLC, Tartu, Estonia
| | - Sandrine P Claus
- Department of Food and Nutritional Sciences, The University of Reading, Whiteknights, Reading, United Kingdom
| | | |
Collapse
|
717
|
Janssen AWF, Kersten S. Potential mediators linking gut bacteria to metabolic health: a critical view. J Physiol 2016; 595:477-487. [PMID: 27418465 PMCID: PMC5233664 DOI: 10.1113/jp272476] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/01/2016] [Indexed: 12/20/2022] Open
Abstract
Growing evidence suggests that the bacteria present in our gut may play a role in mediating the effect of genetics and lifestyle on obesity and metabolic diseases. Most of the current literature on gut bacteria consists of cross‐sectional and correlative studies, rendering it difficult to make any causal inferences as to the influence of gut bacteria on obesity and related metabolic disorders. Interventions with germ‐free animals, treatment with antibiotic agents, and microbial transfer experiments have provided some evidence that disturbances in gut bacteria may causally contribute to obesity‐related insulin resistance and adipose tissue inflammation. Several potential mediators have been hypothesized to link the activity and composition of gut bacteria to insulin resistance and adipose tissue function, including lipopolysaccharide, angiopoietin‐like protein 4, bile acids and short‐chain fatty acids. In this review we critically evaluate the current evidence related to the direct role of gut bacteria in obesity‐related metabolic perturbations, with a focus on insulin resistance and adipose tissue inflammation. It is concluded that the knowledge base in support of a role for the gut microbiota in metabolic regulation and in particular insulin resistance and adipose tissue inflammation needs to be strengthened.
![]()
Collapse
Affiliation(s)
- Aafke W F Janssen
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
718
|
Tytgat HLP, de Vos WM. Sugar Coating the Envelope: Glycoconjugates for Microbe-Host Crosstalk. Trends Microbiol 2016; 24:853-861. [PMID: 27374775 DOI: 10.1016/j.tim.2016.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/31/2016] [Accepted: 06/09/2016] [Indexed: 12/14/2022]
Abstract
Tremendous progress has been made on mapping the mainly bacterial members of the human intestinal microbiota. Knowledge on what is out there, or rather what is inside, needs to be complemented with insight on how these bacteria interact with their biotic environment. Bacterial glycoconjugates, that is, the collection of all glycan-modified molecules, are ideal modulators of such interactions. Their enormous versatility and diversity results in a species-specific glycan barcode, providing a range of ligands for host interaction. Recent reports on the functional importance of glycosylation of important bacterial ligands in beneficial and pathogenic species underpin this. Glycoconjugates, and glycoproteins in particular, are an underappreciated, potentially crucial, factor in understanding bacteria-host interactions of old friends and foes.
Collapse
Affiliation(s)
- Hanne L P Tytgat
- Laboratory of Microbiology, Wageningen University, 6708 WE Wageningen, The Netherlands; Institute of Microbiology, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, 6708 WE Wageningen, The Netherlands; Faculty of Medicine, Immunobiology Research Program, Department of Bacteriology and Immunology, University of Helsinki, 00290 Helsinki, Finland.
| |
Collapse
|
719
|
Hiergeist A, Gläsner J, Reischl U, Gessner A. Analyses of Intestinal Microbiota: Culture versus Sequencing. ILAR J 2016; 56:228-40. [PMID: 26323632 DOI: 10.1093/ilar/ilv017] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Analyzing human as well as animal microbiota composition has gained growing interest because structural components and metabolites of microorganisms fundamentally influence all aspects of host physiology. Originally dominated by culture-dependent methods for exploring these ecosystems, the development of molecular techniques such as high throughput sequencing has dramatically increased our knowledge. Because many studies of the microbiota are based on the bacterial 16S ribosomal RNA (rRNA) gene targets, they can, at least in principle, be compared to determine the role of the microbiome composition for developmental processes, host metabolism, and physiology as well as different diseases. In our review, we will summarize differences and pitfalls in current experimental protocols, including all steps from nucleic acid extraction to bioinformatical analysis which may produce variation that outweighs subtle biological differences. Future developments, such as integration of metabolomic, transcriptomic, and metagenomic data sets and standardization of the procedures, will be discussed.
Collapse
Affiliation(s)
- Andreas Hiergeist
- Andreas Hiergeist, PhD, and Joachim Gläsner, PhD, are senior scientists at the Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Germany. Udo Reischl, PhD, is Head of Molecular Diagnostics and an associate professor for Medical Microbiology; and André Gessner, MD, PhD, is Director of the Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Germany
| | - Joachim Gläsner
- Andreas Hiergeist, PhD, and Joachim Gläsner, PhD, are senior scientists at the Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Germany. Udo Reischl, PhD, is Head of Molecular Diagnostics and an associate professor for Medical Microbiology; and André Gessner, MD, PhD, is Director of the Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Germany
| | - Udo Reischl
- Andreas Hiergeist, PhD, and Joachim Gläsner, PhD, are senior scientists at the Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Germany. Udo Reischl, PhD, is Head of Molecular Diagnostics and an associate professor for Medical Microbiology; and André Gessner, MD, PhD, is Director of the Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Germany
| | - André Gessner
- Andreas Hiergeist, PhD, and Joachim Gläsner, PhD, are senior scientists at the Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Germany. Udo Reischl, PhD, is Head of Molecular Diagnostics and an associate professor for Medical Microbiology; and André Gessner, MD, PhD, is Director of the Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Germany
| |
Collapse
|
720
|
Manzhalii E, Hornuss D, Stremmel W. Intestinal-borne dermatoses significantly improved by oral application of Escherichia coli Nissle 1917. World J Gastroenterol 2016; 22:5415-5421. [PMID: 27340358 PMCID: PMC4910662 DOI: 10.3748/wjg.v22.i23.5415] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/04/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effect of oral Escherichia coli (E. coli) Nissle application on the outcome of intestinal-borne dermatoses.
METHODS: In a randomized, controlled, non-blinded prospective clinical trial 82 patients with intestinal-borne facial dermatoses characterized by an erythematous papular-pustular rash were screened. At the initiation visit 37 patients entered the experimental arm and 20 patients constituted the control arm. All 57 patients were treated with a vegetarian diet and conventional topical therapy of the dermatoses with ointments containing tetracycline, steroids and retinoids. In the experimental arm patients received a one month therapy with oral E. coli Nissle at a maintenance dose of 2 capsules daily. The experimental group was compared to a non-treatment group only receiving the diet and topical therapy. The primary outcome parameter was improvement of the dermatoses, secondary parameters included life quality and adverse events. In addition the immunological reaction profile (IgA, interleucin-8 and interferon-α) was determined. Furthermore the changes of stool consistency and the microbiota composition over the time of intervention were recorded.
RESULTS: Eighty-nine percent of the patients with acne, papular-pustular rosacea and seborrhoic dermatitis responded to E. coli Nissle therapy with significant amelioration or complete recovery in contrast to 56% in the control arm (P < 0.01). Accordingly, in the E. coli Nissle treated patients life quality improved significantly (P < 0.01), and adverse events were not recorded. The clinical improvement was associated with a significant increase of IgA levels to normal values in serum as well as suppression of the proinflammatory cytokine IL-8 (P < 0.01 for both parameters). In the E. coli Nissle treated group a shift towards a protective microbiota with predominance of bifidobacteria and lactobacteria (> 107 CFU/g stool) was observed in 79% and 63% of the patients, respectively (P < 0.01), compared to no change in the control group without E. coli Nissle. Moreover, the detection rate of a pathogenic flora dropped from 73% to 14 % of the patients in the experimental arm (P < 0.01) with no significant change in the control arm (accounting 80% before and 70% after the observation period, P > 0.05). Accordingly, stool consistency, color and smell normalized in the E. coli Nissle treated patients.
CONCLUSION: E. coli Nissle protects the mucus barrier by overgrowth of a favorable gut microbiota with less immunoreactive potential which finally leads to clinical improvement of intestinal borne dermatoses.
Collapse
|
721
|
Laczny CC, Muller EEL, Heintz-Buschart A, Herold M, Lebrun LA, Hogan A, May P, de Beaufort C, Wilmes P. Identification, Recovery, and Refinement of Hitherto Undescribed Population-Level Genomes from the Human Gastrointestinal Tract. Front Microbiol 2016; 7:884. [PMID: 27445992 PMCID: PMC4914512 DOI: 10.3389/fmicb.2016.00884] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/25/2016] [Indexed: 12/05/2022] Open
Abstract
Linking taxonomic identity and functional potential at the population-level is important for the study of mixed microbial communities and is greatly facilitated by the availability of microbial reference genomes. While the culture-independent recovery of population-level genomes from environmental samples using the binning of metagenomic data has expanded available reference genome catalogs, several microbial lineages remain underrepresented. Here, we present two reference-independent approaches for the identification, recovery, and refinement of hitherto undescribed population-level genomes. The first approach is aimed at genome recovery of varied taxa and involves multi-sample automated binning using CANOPY CLUSTERING complemented by visualization and human-augmented binning using VIZBIN post hoc. The second approach is particularly well-suited for the study of specific taxa and employs VIZBIN de novo. Using these approaches, we reconstructed a total of six population-level genomes of distinct and divergent representatives of the Alphaproteobacteria class, the Mollicutes class, the Clostridiales order, and the Melainabacteria class from human gastrointestinal tract-derived metagenomic data. Our results demonstrate that, while automated binning approaches provide great potential for large-scale studies of mixed microbial communities, these approaches should be complemented with informative visualizations because expert-driven inspection and refinements are critical for the recovery of high-quality population-level genomes.
Collapse
Affiliation(s)
- Cedric C. Laczny
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgBelvaux, Luxembourg
| | - Emilie E. L. Muller
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgBelvaux, Luxembourg
| | - Anna Heintz-Buschart
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgBelvaux, Luxembourg
| | - Malte Herold
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgBelvaux, Luxembourg
| | - Laura A. Lebrun
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgBelvaux, Luxembourg
| | - Angela Hogan
- Integrated Biobank of LuxembourgLuxembourg, Luxembourg
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgBelvaux, Luxembourg
| | - Carine de Beaufort
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgBelvaux, Luxembourg
- Centre Hospitalier de LuxembourgLuxembourg, Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgBelvaux, Luxembourg
| |
Collapse
|
722
|
Shkoporov AN, Chaplin AV, Khokhlova EV, Shcherbakova VA, Motuzova OV, Bozhenko VK, Kafarskaia LI, Efimov BA. Alistipes inops sp. nov. and Coprobacter secundus sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2016; 65:4580-4588. [PMID: 26377180 DOI: 10.1099/ijsem.0.000617] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Culture-based study of the faecal microbiome in two adult female subjects revealed the presence of two obligately anaerobic, non-spore-forming, rod-shaped, non-motile, Gram-negative bacterial strains that represent novel species. The first strain, designated 627T, was a fastidious, slow-growing, indole-positive bacterium with a non-fermentative type of metabolism.The strain was characterized by the production of acetic and succinic acids as metabolic end products, the prevalence of iso-C15 : 0 fatty acid and the presence of menaquinones MK-10 and MK-11. The DNA G+C content was found to be 56.6 mol%. The second strain, designated 177T, was capable of fermenting a rich collection of carbohydrate substrates, producing acetic acid as a terminal product. The strain was indole-negative and resistant to bile. The major cellular fatty acids were iso-C15 : 0 and anteiso-C15 : 0 (in a 1 : 1 ratio) and the predominant menaquinone was MK-11.The DNA G+C content was 37.8 mol%. A phylogenomic analysis of the draft genomes of strains 627T and 177T placed these bacteria in the genera Alistipes(family Rikenellaceae) and Coprobacter (family Porphyromonadaceae), respectively.On the basis of the phenotypic and genotypic properties of strains 627T and 177T, we conclude that these strains from human faeces represent two novel bacterial species, for which the names Alistipes inops sp. nov. (type strain 627T5DSM 28863T5VKM B-2859T) and Coprobacter secundus sp. nov. (type strain 177T=DSM 28864T=VKM B-2857T) are proposed.
Collapse
Affiliation(s)
- Andrei N Shkoporov
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Moscow 117997, Russia.,Department of Molecular Biology and Experimental Tumor Therapies, Russian Scientific Center of Roentgenoradiology, Moscow 117997, Russia
| | - Andrei V Chaplin
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Ekaterina V Khokhlova
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Victoria A Shcherbakova
- Laboratory of Anaerobic Microorganisms, Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Oksana V Motuzova
- V. I. Kulakov Research Center for Obstetrics, Gynecology, and Perinatology, Moscow 117997, Russia
| | - Vladimir K Bozhenko
- Department of Molecular Biology and Experimental Tumor Therapies, Russian Scientific Center of Roentgenoradiology, Moscow 117997, Russia
| | - Lyudmila I Kafarskaia
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Boris A Efimov
- Department of Microbiology and Virology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|
723
|
Abstract
In 1675, Antoni Van Leeuwenhoeck was the first to observe several forms using an optical microscope that he named "animalcules", realizing later that these were microorganisms. The first classification of living organisms proposed by Ehrenberg in 1833 was based on what we could visualize. The failure of this kind of classification arises from viral culture, which preceded direct observations that were finally achieved during the 20th century by electron microscopy. The number of prokaryotic species is estimated at approximately 10 million, although only 1800 were known in 1980, and 14,000 to date, thanks to the advent of 16S rRNA amplification and sequencing. This highlights our inability to access the entire diversity. Indeed, a large number of bacteria are only, known as Operational Taxonomic Units (OTUs) and detected as a result of metagenomics studies, revealing an unexplored world known as the "dark matter". Recently, the rebirth of bacterial culture through the example of culturomics has dramatically increased the human gut repertoire as well as the 18SrRNA sequencing allowed to largely extend the repertoire of Eukaryotes. Finally, filtration and co-culture on free-living protists associated with high-throughput culture elucidated a part of the megavirome. While the majority of studies currently performed on the human gut microbiota focus on bacterial diversity, it appears that several other prokaryotes (including archaea) and eukaryotic populations also inhabit this ecosystem; their detection depending exclusively on the tools used. Rational and comprehensive establishment of this ecosystem will allow the understanding of human health associated with gut microbiota and the potential to change this.
Collapse
|
724
|
Species-function relationships shape ecological properties of the human gut microbiome. Nat Microbiol 2016; 1:16088. [PMID: 27573110 DOI: 10.1038/nmicrobiol.2016.88] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 05/09/2016] [Indexed: 12/14/2022]
Abstract
Despite recent progress, the organization and ecological properties of the intestinal microbial ecosystem remain under-investigated. Here, using a manually curated metabolic module framework for (meta-)genomic data analysis, we studied species-function relationships in gut microbial genomes and microbiomes. Half of gut-associated species were found to be generalists regarding overall substrate preference, but we observed significant genus-level metabolic diversification linked to bacterial life strategies. Within each genus, metabolic consistency varied significantly, being low in Firmicutes genera and higher in Bacteroides. Differentiation of fermentable substrate degradation potential contributed to metagenomic functional repertoire variation between individuals, with different enterotypes showing distinct saccharolytic/proteolytic/lipolytic profiles. Finally, we found that module-derived functional redundancy was reduced in the low-richness Bacteroides enterotype, potentially indicating a decreased resilience to perturbation, in line with its frequent association to dysbiosis. These results provide insights into the complex structure of gut microbiome-encoded metabolic properties and emphasize the importance of functional and ecological assessment of gut microbiome variation in clinical studies.
Collapse
|
725
|
Rossi M, Martínez-Martínez D, Amaretti A, Ulrici A, Raimondi S, Moya A. Mining metagenomic whole genome sequences revealed subdominant but constant Lactobacillus population in the human gut microbiota. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:399-406. [PMID: 27043715 DOI: 10.1111/1758-2229.12405] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/08/2016] [Indexed: 02/05/2023]
Abstract
The genus Lactobacillus includes over 215 species that colonize plants, foods, sewage and the gastrointestinal tract (GIT) of humans and animals. In the GIT, Lactobacillus population can be made by true inhabitants or by bacteria occasionally ingested with fermented or spoiled foods, or with probiotics. This study longitudinally surveyed Lactobacillus species and strains in the feces of a healthy subject through whole genome sequencing (WGS) data-mining, in order to identify members of the permanent or transient populations. In three time-points (0, 670 and 700 d), 58 different species were identified, 16 of them being retrieved for the first time in human feces. L. rhamnosus, L. ruminis, L. delbrueckii, L. plantarum, L. casei and L. acidophilus were the most represented, with estimated amounts ranging between 6 and 8 Log (cells g(-1) ), while the other were detected at 4 or 5 Log (cells g(-1) ). 86 Lactobacillus strains belonging to 52 species were identified. 43 seemingly occupied the GIT as true residents, since were detected in a time span of almost 2 years in all the three samples or in 2 samples separated by 670 or 700 d. As a whole, a stable community of lactobacilli was disclosed, with wide and understudied biodiversity.
Collapse
Affiliation(s)
- Maddalena Rossi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniel Martínez-Martínez
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO), Valencia, Spain
- Network Research Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain
| | - Alberto Amaretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandro Ulrici
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrés Moya
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO), Valencia, Spain
- Network Research Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain
| |
Collapse
|
726
|
Abstract
Irritable bowel syndrome (IBS) is a common and well-accepted diagnosis but often imprecisely applied to patients in usual clinical practice. Diagnosis is entirely based on symptom criteria that tend to include broad strata of abdominal complainers. Established criteria for diagnosis are strictly followed in controlled clinical trials for new therapeutic agents, but physicians are more lax in the clinic. Predictably, in light of the above ambiguities, many pathogenetic mechanisms and pathophysiological disturbances appear to be involved in IBS, but so far no mechanism-based subgroupings to guide specific therapy have been soundly established. Thus, diverse therapeutic approaches coexist and are discretionally prescribed by attending clinicians on the basis of major manifestations (i.e., diarrhea-predominance or constipation-predominance), more or less apparent psychological disturbances, and patient preferences (pharmacological versus dietary or microbiological approaches). In this review, we have attempted to update scientific knowledge about the more relevant disease mechanisms involved and relate this more fundamental basis to the various treatment options available today.
Collapse
Affiliation(s)
- Juan R Malagelada
- Digestive System Research Unit, University Hospital Vall d'Hebron, Barcelona, Spain.
| | - Carolina Malagelada
- Digestive System Research Unit, University Hospital Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
727
|
O'Brien Andersen L, Karim AB, Roager HM, Vigsnæs LK, Krogfelt KA, Licht TR, Stensvold CR. Associations between common intestinal parasites and bacteria in humans as revealed by qPCR. Eur J Clin Microbiol Infect Dis 2016; 35:1427-31. [PMID: 27230509 DOI: 10.1007/s10096-016-2680-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/13/2016] [Indexed: 02/05/2023]
Abstract
Several studies have shown associations between groups of intestinal bacterial or specific ratios between bacterial groups and various disease traits. Meanwhile, little is known about interactions and associations between eukaryotic and prokaryotic microorganisms in the human gut. In this work, we set out to investigate potential associations between common single-celled parasites such as Blastocystis spp. and Dientamoeba fragilis and intestinal bacteria. Stool DNA from patients with intestinal symptoms were selected based on being Blastocystis spp.-positive (B+)/negative (B-) and D. fragilis-positive (D+)/negative (D-), and split into four groups of 21 samples (B+ D+, B+ D-, B- D+, and B- D-). Quantitative PCR targeting the six bacterial taxa Bacteroides, Prevotella, the butyrate-producing clostridial clusters IV and XIVa, the mucin-degrading Akkermansia muciniphila, and the indigenous group of Bifidobacterium was subsequently performed, and the relative abundance of these bacteria across the four groups was compared. The relative abundance of Bacteroides in B- D- samples was significantly higher compared with B+ D- and B+ D+ samples (P < 0.05 and P < 0.01, respectively), and this association was even more significant when comparing all parasite-positive samples with parasite-negative samples (P < 0.001). Additionally, our data revealed that a low abundance of Prevotella and a higher abundance of Clostridial cluster XIVa was associated with parasite-negative samples (P < 0.05 and P < 0.01, respectively). Our data support the theory that Blastocystis alone or combined with D. fragilis is associated with gut microbiota characterized by low relative abundances of Bacteroides and Clostridial cluster XIVa and high levels of Prevotella.
Collapse
Affiliation(s)
- L O'Brien Andersen
- Unit of Mycology and Parasitology, Department of Microbiology and Infection Control, Statens Serum Institut, Artillerivej 5, DK-2300, Copenhagen S, Denmark
| | - A B Karim
- Unit of Mycology and Parasitology, Department of Microbiology and Infection Control, Statens Serum Institut, Artillerivej 5, DK-2300, Copenhagen S, Denmark
| | - H M Roager
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - L K Vigsnæs
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - K A Krogfelt
- Unit of Mycology and Parasitology, Department of Microbiology and Infection Control, Statens Serum Institut, Artillerivej 5, DK-2300, Copenhagen S, Denmark
| | - T R Licht
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - C R Stensvold
- Unit of Mycology and Parasitology, Department of Microbiology and Infection Control, Statens Serum Institut, Artillerivej 5, DK-2300, Copenhagen S, Denmark.
| |
Collapse
|
728
|
Clavel T, Lagkouvardos I, Hiergeist A. Microbiome sequencing: challenges and opportunities for molecular medicine. Expert Rev Mol Diagn 2016; 16:795-805. [DOI: 10.1080/14737159.2016.1184574] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Thomas Clavel
- ZIEL Institute for Food and Health, Technical University of Munich, Munich, Germany
| | - Ilias Lagkouvardos
- ZIEL Institute for Food and Health, Technical University of Munich, Munich, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
729
|
Becattini S, Taur Y, Pamer EG. Antibiotic-Induced Changes in the Intestinal Microbiota and Disease. Trends Mol Med 2016; 22:458-478. [PMID: 27178527 DOI: 10.1016/j.molmed.2016.04.003] [Citation(s) in RCA: 554] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 12/12/2022]
Abstract
The gut microbiota is a key player in many physiological and pathological processes occurring in humans. Recent investigations suggest that the efficacy of some clinical approaches depends on the action of commensal bacteria. Antibiotics are invaluable weapons to fight infectious diseases. However, by altering the composition and functions of the microbiota, they can also produce long-lasting deleterious effects for the host. The emergence of multidrug-resistant pathogens raises concerns about the common, and at times inappropriate, use of antimicrobial agents. Here we review the most recently discovered connections between host pathophysiology, microbiota, and antibiotics highlighting technological platforms, mechanistic insights, and clinical strategies to enhance resistance to diseases by preserving the beneficial functions of the microbiota.
Collapse
Affiliation(s)
- Simone Becattini
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ying Taur
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric G Pamer
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Lucille Castori Center for Microbes, Inflammation and Cancer, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
730
|
Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation. Nature 2016; 533:543-546. [PMID: 27144353 PMCID: PMC4890681 DOI: 10.1038/nature17645] [Citation(s) in RCA: 793] [Impact Index Per Article: 88.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/08/2016] [Indexed: 12/16/2022]
Abstract
Our intestinal microbiota harbours a diverse bacterial community required for our health, sustenance and wellbeing. Intestinal colonization begins at birth and climaxes with the acquisition of two dominant groups of strict anaerobic bacteria belonging to the Firmicutes and Bacteroidetes phyla. Culture-independent, genomic approaches have transformed our understanding of the role of the human microbiome in health and many diseases. However, owing to the prevailing perception that our indigenous bacteria are largely recalcitrant to culture, many of their functions and phenotypes remain unknown. Here we describe a novel workflow based on targeted phenotypic culturing linked to large-scale whole-genome sequencing, phylogenetic analysis and computational modelling that demonstrates that a substantial proportion of the intestinal bacteria are culturable. Applying this approach to healthy individuals, we isolated 137 bacterial species from characterized and candidate novel families, genera and species that were archived as pure cultures. Whole-genome and metagenomic sequencing, combined with computational and phenotypic analysis, suggests that at least 50-60% of the bacterial genera from the intestinal microbiota of a healthy individual produce resilient spores, specialized for host-to-host transmission. Our approach unlocks the human intestinal microbiota for phenotypic analysis and reveals how a marked proportion of oxygen-sensitive intestinal bacteria can be transmitted between individuals, affecting microbiota heritability.
Collapse
|
731
|
The Gut Microbiota and Immune System Relationship in Human Graft-versus-Host Disease. Mediterr J Hematol Infect Dis 2016; 8:e2016025. [PMID: 27158438 PMCID: PMC4848019 DOI: 10.4084/mjhid.2016.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/10/2016] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota has gained increasing interest in the pathogenesis of immune-related diseases. In this context, graft-versus-host disease is a condition characterized by an immune response which frequently complicates and limits the outcomes of hematopoietic stem cell transplantations. Past studies, carried mostly in animals, already supported a relationship between gut microbiota and graft-versus-host disease. However, the possible mechanisms underlying this connection remain elusory. Moreover, strategies to prevent graft-versus-host disease are of great interest as well as the potential role of gut microbiota modulation. We reviewed the role of gut microbiota in the development of immune system and its involvement in the graft-versus-host disease, focusing on data available on humans.
Collapse
|
732
|
Abstract
Humans are virtually identical in their genetic makeup, yet the small differences in our DNA give rise to tremendous phenotypic diversity across the human population. By contrast, the metagenome of the human microbiome—the total DNA content of microbes inhabiting our bodies—is quite a bit more variable, with only a third of its constituent genes found in a majority of healthy individuals. Understanding this variability in the “healthy microbiome” has thus been a major challenge in microbiome research, dating back at least to the 1960s, continuing through the Human Microbiome Project and beyond. Cataloguing the necessary and sufficient sets of microbiome features that support health, and the normal ranges of these features in healthy populations, is an essential first step to identifying and correcting microbial configurations that are implicated in disease. Toward this goal, several population-scale studies have documented the ranges and diversity of both taxonomic compositions and functional potentials normally observed in the microbiomes of healthy populations, along with possible driving factors such as geography, diet, and lifestyle. Here, we review several definitions of a ‘healthy microbiome’ that have emerged, the current understanding of the ranges of healthy microbial diversity, and gaps such as the characterization of molecular function and the development of ecological therapies to be addressed in the future.
Collapse
Affiliation(s)
- Jason Lloyd-Price
- Biostatistics Department, Harvard School of Public Health, Boston, MA, 02115, USA.,Microbial Systems and Communities, Genome Sequencing and Analysis Program, The Broad Institute, Cambridge, MA, 02142, USA
| | - Galeb Abu-Ali
- Biostatistics Department, Harvard School of Public Health, Boston, MA, 02115, USA
| | - Curtis Huttenhower
- Biostatistics Department, Harvard School of Public Health, Boston, MA, 02115, USA. .,Microbial Systems and Communities, Genome Sequencing and Analysis Program, The Broad Institute, Cambridge, MA, 02142, USA.
| |
Collapse
|
733
|
Boulangé CL, Neves AL, Chilloux J, Nicholson JK, Dumas ME. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med 2016; 8:42. [PMID: 27098727 PMCID: PMC4839080 DOI: 10.1186/s13073-016-0303-2] [Citation(s) in RCA: 944] [Impact Index Per Article: 104.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The human gut harbors more than 100 trillion microbial cells, which have an essential role in human metabolic regulation via their symbiotic interactions with the host. Altered gut microbial ecosystems have been associated with increased metabolic and immune disorders in animals and humans. Molecular interactions linking the gut microbiota with host energy metabolism, lipid accumulation, and immunity have also been identified. However, the exact mechanisms that link specific variations in the composition of the gut microbiota with the development of obesity and metabolic diseases in humans remain obscure owing to the complex etiology of these pathologies. In this review, we discuss current knowledge about the mechanistic interactions between the gut microbiota, host energy metabolism, and the host immune system in the context of obesity and metabolic disease, with a focus on the importance of the axis that links gut microbes and host metabolic inflammation. Finally, we discuss therapeutic approaches aimed at reshaping the gut microbial ecosystem to regulate obesity and related pathologies, as well as the challenges that remain in this area.
Collapse
Affiliation(s)
- Claire L Boulangé
- Metabometrix Ltd, Bio-incubator, Prince Consort Road, South Kensington, London, SW7 2BP, UK
| | - Ana Luisa Neves
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, SW7 2PH, UK
| | - Julien Chilloux
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, SW7 2PH, UK
| | - Jeremy K Nicholson
- Metabometrix Ltd, Bio-incubator, Prince Consort Road, South Kensington, London, SW7 2BP, UK. .,Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, SW7 2PH, UK.
| | - Marc-Emmanuel Dumas
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London, SW7 2PH, UK.
| |
Collapse
|
734
|
Anderson M, Sansonetti PJ, Marteyn BS. Shigella Diversity and Changing Landscape: Insights for the Twenty-First Century. Front Cell Infect Microbiol 2016; 6:45. [PMID: 27148494 PMCID: PMC4835486 DOI: 10.3389/fcimb.2016.00045] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/28/2016] [Indexed: 12/17/2022] Open
Abstract
Shigella is a pathovar of Escherichia coli comprising four groups, Shigella flexneri, Shigella sonnei, Shigella dysenteriae, and Shigella boydii, each of them, with the exception of S.sonnei, comprising several serotypes. Shigella accounts for the majority of dysentery causing infections occurring world-wide each year. Recent advancements in the Shigella field have led to a better understanding of the molecular mechanisms underlying host epithelial cell invasion and immune cell function manipulation, mainly using S. flexneri as a model. Host-cell invasion is the final step of the infection process, as Shigella's virulence strategy relies also on its ability to survive hostile conditions during its journey through the gastro-intestinal tract, to compete with the host microbiota and to cross the intestinal mucus layer. Hence, the diversity of the virulence strategies among the different Shigella species has not yet been deeply investigated, which might be an important step to understand the epidemiological spreading of Shigella species worldwide and a key aspect for the validation of novel vaccine candidates. The recent development of high-throughput screening and sequencing methods will facilitate these complex comparison studies. In this review we discuss several of the major avenues that the Shigella research field has taken over the past few years and hopefully gain some insights into the questions that remain surrounding this important human pathogen.
Collapse
Affiliation(s)
- Mark Anderson
- Institut Pasteur, Unité de Pathogénie Microbienne MoléculaireParis, France; Institut National de la Santé et de la Recherche Médicale, Unité 786Paris, France
| | - Philippe J Sansonetti
- Institut Pasteur, Unité de Pathogénie Microbienne MoléculaireParis, France; Institut National de la Santé et de la Recherche Médicale, Unité 786Paris, France; Collège de FranceParis, France
| | - Benoit S Marteyn
- Institut Pasteur, Unité de Pathogénie Microbienne MoléculaireParis, France; Institut National de la Santé et de la Recherche Médicale, Unité 786Paris, France
| |
Collapse
|
735
|
From Hype to Hope: The Gut Microbiota in Enteric Infectious Disease. Cell 2016; 163:1326-32. [PMID: 26638069 DOI: 10.1016/j.cell.2015.11.032] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Indexed: 12/12/2022]
Abstract
One of the clearest functions of the gut microbiota in humans is resistance to colonization by enteric bacterial pathogens. Reconstitution of the microbiota offers an exciting therapeutic approach, but great challenges must be overcome.
Collapse
|
736
|
Quartieri A, Simone M, Gozzoli C, Popovic M, D'Auria G, Amaretti A, Raimondi S, Rossi M. Comparison of culture-dependent and independent approaches to characterize fecal bifidobacteria and lactobacilli. Anaerobe 2016; 38:130-137. [DOI: 10.1016/j.anaerobe.2015.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 01/15/2023]
|
737
|
Torres J, Bao X, Goel A, Colombel JF, Pekow J, Jabri B, Williams K, Castillo A, Odin J, Meckel K, Fasihuddin F, Peter I, Itzkowitz S, Hu J. The features of mucosa-associated microbiota in primary sclerosing cholangitis. Aliment Pharmacol Ther 2016; 43:790-801. [PMID: 26857969 PMCID: PMC5177987 DOI: 10.1111/apt.13552] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/12/2015] [Accepted: 01/18/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Little is known about the role of the microbiome in primary sclerosing cholangitis. AIM To explore the mucosa-associated microbiota in primary sclerosing cholangitis (PSC) patients across different locations in the gut, and to compare it with inflammatory bowel disease (IBD)-only patients and healthy controls. METHODS Biopsies from the terminal ileum, right colon, and left colon were collected from patients and healthy controls undergoing colonoscopy. Microbiota profiling using bacterial 16S rRNA sequencing was performed on all biopsies. RESULTS Forty-four patients were recruited: 20 with PSC (19 with PSC-IBD and one with PSC-only), 15 with IBD-only and nine healthy controls. The overall microbiome profile was similar throughout different locations in the gut. No differences in the global microbiome profile were found. However, we observed significant PSC-associated enrichment in Barnesiellaceae at the family level, and in Blautia and an unidentified Barnesiellaceae at the genus level. At the operational taxa unit level, most shifts in PSC were observed in Clostridiales and Bacteroidales orders, with approximately 86% of shifts occurring within the former order. CONCLUSIONS The overall microbiota profile was similar across multiple locations in the gut from the same individual regardless of disease status. In this study, the mucosa associated-microbiota of patients with primary sclerosing cholangitis was characterised by enrichment of Blautia and Barnesiellaceae and by major shifts in operational taxa units within Clostridiales order.
Collapse
Affiliation(s)
- Joana Torres
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Xiuliang Bao
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Aparna Goel
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Joel Pekow
- Section of Gastroenterology, Hepatology, and Nutrition University of Chicago, Chicago, Illinois, USA
| | - Bana Jabri
- Section of Gastroenterology, Hepatology, and Nutrition University of Chicago, Chicago, Illinois, USA
| | - Kelli Williams
- Section of Gastroenterology, Hepatology, and Nutrition University of Chicago, Chicago, Illinois, USA
| | - Anabella Castillo
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Joseph Odin
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Katherine Meckel
- Section of Gastroenterology, Hepatology, and Nutrition University of Chicago, Chicago, Illinois, USA
| | - Farah Fasihuddin
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Steven Itzkowitz
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jianzhong Hu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
738
|
Enck P, Aziz Q, Barbara G, Farmer AD, Fukudo S, Mayer EA, Niesler B, Quigley EMM, Rajilić-Stojanović M, Schemann M, Schwille-Kiuntke J, Simren M, Zipfel S, Spiller RC. Irritable bowel syndrome. Nat Rev Dis Primers 2016; 2:16014. [PMID: 27159638 PMCID: PMC5001845 DOI: 10.1038/nrdp.2016.14] [Citation(s) in RCA: 633] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disease with a high population prevalence. The disorder can be debilitating in some patients, whereas others may have mild or moderate symptoms. The most important single risk factors are female sex, younger age and preceding gastrointestinal infections. Clinical symptoms of IBS include abdominal pain or discomfort, stool irregularities and bloating, as well as other somatic, visceral and psychiatric comorbidities. Currently, the diagnosis of IBS is based on symptoms and the exclusion of other organic diseases, and therapy includes drug treatment of the predominant symptoms, nutrition and psychotherapy. Although the underlying pathogenesis is far from understood, aetiological factors include increased epithelial hyperpermeability, dysbiosis, inflammation, visceral hypersensitivity, epigenetics and genetics, and altered brain-gut interactions. IBS considerably affects quality of life and imposes a profound burden on patients, physicians and the health-care system. The past decade has seen remarkable progress in our understanding of functional bowel disorders such as IBS that will be summarized in this Primer.
Collapse
Affiliation(s)
- Paul Enck
- Department of Internal Medicine VI (Psychosomatic Medicine and Psychotherapy), University Hospital Tübingen, Tübingen, Germany
| | - Qasim Aziz
- Wingate Institute of Neurogastroenterology, Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Giovanni Barbara
- Department of Medical and Surgical Sciences, St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Adam D Farmer
- Wingate Institute of Neurogastroenterology, Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Shin Fukudo
- Department of Behavioural Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Emeran A Mayer
- Oppenheimer Center for Neurobiology of Stress, Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Beate Niesler
- Department of Human Molecular Genetics, University of Heidelberg, Heidelberg, Germany
| | - Eamonn M M Quigley
- Lynda K and David M Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital, Weill Cornell Medical College, Houston, Texas, USA
| | - Mirjana Rajilić-Stojanović
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Michael Schemann
- Department of Human Biology, Technical University Munich, Freising-Weihenstephan, Germany
| | - Juliane Schwille-Kiuntke
- Department of Internal Medicine VI (Psychosomatic Medicine and Psychotherapy), University Hospital Tübingen, Tübingen, Germany
| | - Magnus Simren
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stephan Zipfel
- Department of Internal Medicine VI (Psychosomatic Medicine and Psychotherapy), University Hospital Tübingen, Tübingen, Germany
| | - Robin C Spiller
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK
| |
Collapse
|
739
|
Mu C, Yang Y, Zhu W. Gut Microbiota: The Brain Peacekeeper. Front Microbiol 2016; 7:345. [PMID: 27014255 PMCID: PMC4794499 DOI: 10.3389/fmicb.2016.00345] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/04/2016] [Indexed: 12/15/2022] Open
Abstract
Gut microbiota regulates intestinal and extraintestinal homeostasis. Accumulating evidence suggests that the gut microbiota may also regulate brain function and behavior. Results from animal models indicate that disturbances in the composition and functionality of some microbiota members are associated with neurophysiological disorders, strengthening the idea of a microbiota–gut–brain axis and the role of microbiota as a “peacekeeper” in the brain health. Here, we review recent discoveries on the role of the gut microbiota in central nervous system-related diseases. We also discuss the emerging concept of the bidirectional regulation by the circadian rhythm and gut microbiota, and the potential role of the epigenetic regulation in neuronal cell function. Microbiome studies are also highlighted as crucial in the development of targeted therapies for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Chunlong Mu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University Nanjing, China
| | - Yuxiang Yang
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University Nanjing, China
| | - Weiyun Zhu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University Nanjing, China
| |
Collapse
|
740
|
Chang CW, Huang BH, Lin SM, Huang CL, Liao PC. Changes of diet and dominant intestinal microbes in farmland frogs. BMC Microbiol 2016; 16:33. [PMID: 26966006 PMCID: PMC4785643 DOI: 10.1186/s12866-016-0660-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 03/02/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Agricultural activities inevitably result in anthropogenic interference with natural habitats. The diet and the gut microbiota of farmland wildlife can be altered due to the changes in food webs within agricultural ecosystems. In this work, we compared the diet and intestinal microbiota of the frog Fejervarya limnocharis in natural and farmland habitats in order to understand how custom farming affects the health of in vivo microbial ecosystems. RESULTS The occurrence, abundance, and the numbers of prey categories of stomach content were significantly different between the frogs inhabiting natural and farmland habitats. In addition, differences in the abundance, species richness, and alpha-diversity of intestinal microbial communities were also statistically significant. The microbial composition, and particularly the composition of dominant microbes living in intestines, indicated that the land use practices might be one of factors affecting the gut microbial community composition. Although the first three dominant microbial phyla Bacteroidetes, Firmicutes, and Proteobacteria found in the intestines of frogs were classified as generalists among habitats, the most dominant gut bacterial phylum Bacteroidetes in natural environments was replaced by the microbial phylum Firmicutes in farmland frogs. Increased intestinal microbial richness of the farmland frogs, which is mostly contributed by numerous microbial species of Proteobacteria, Actinobacteria, Acidobacteria, and Planctomycetes, not only reflects the possible shifts in microbial community composition through the alteration of external ecosystem, but also indicates the higher risk of invasion by disease-related microbes. CONCLUSIONS This study indicates that anthropogenic activities, such as the custom farming, have not only affected the food resources of frogs, but also influenced the health and in vivo microbial ecosystem of wildlife.
Collapse
Affiliation(s)
- Chun-Wen Chang
- />Department of Life Science, National Taiwan Normal University, Taipei, 11677 Taiwan
- />Taiwan Forestry Research Institute, Technical Service Division, Taipei, 10066 Taiwan
| | - Bing-Hong Huang
- />Department of Life Science, National Taiwan Normal University, Taipei, 11677 Taiwan
| | - Si-Min Lin
- />Department of Life Science, National Taiwan Normal University, Taipei, 11677 Taiwan
| | - Chia-Lung Huang
- />Department of Life Science, National Taiwan Normal University, Taipei, 11677 Taiwan
| | - Pei-Chun Liao
- />Department of Life Science, National Taiwan Normal University, Taipei, 11677 Taiwan
| |
Collapse
|
741
|
Hynönen U, Rasinkangas P, Satokari R, Paulin L, de Vos WM, Pietilä TE, Kant R, Palva A. Isolation and whole genome sequencing of a Ruminococcus-like bacterium, associated with irritable bowel syndrome. Anaerobe 2016; 39:60-7. [PMID: 26946362 DOI: 10.1016/j.anaerobe.2016.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/23/2016] [Accepted: 03/01/2016] [Indexed: 12/11/2022]
Abstract
In our previous studies on the intestinal microbiota in irritable bowel syndrome (IBS), we identified a bacterial phylotype with higher abundance in patients suffering from diarrhea than in healthy controls. In the present work, we have isolated in pure culture strain RT94, belonging to this phylotype, determined its whole genome sequence and performed an extensive genomic analysis and phenotypical testing. This revealed strain RT94 to be a strict anaerobe apparently belonging to a novel species with only 94% similarity in the 16S rRNA gene sequence to the closest relatives Ruminococcus torques and Ruminococcus lactaris. The G + C content of strain RT94 is 45.2 mol% and the major long-chain cellular fatty acids are C16:0, C18:0 and C14:0. The isolate is metabolically versatile but not a mucus or cellulose utilizer. It produces acetate, ethanol, succinate, lactate and formate, but very little butyrate, as end products of glucose metabolism. The mechanisms underlying the association of strain RT94 with diarrhea-type IBS are discussed.
Collapse
Affiliation(s)
- Ulla Hynönen
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland.
| | - Pia Rasinkangas
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland.
| | - Reetta Satokari
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland.
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland.
| | - Willem M de Vos
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland.
| | - Taija E Pietilä
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland.
| | - Ravi Kant
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland.
| | - Airi Palva
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland.
| |
Collapse
|
742
|
Mu C, Yang Y, Luo Z, Guan L, Zhu W. The Colonic Microbiome and Epithelial Transcriptome Are Altered in Rats Fed a High-Protein Diet Compared with a Normal-Protein Diet. J Nutr 2016; 146:474-83. [PMID: 26843585 DOI: 10.3945/jn.115.223990] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/21/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND A high-protein diet (HPD) can produce hazardous compounds and reduce butyrate-producing bacteria in feces, which may be detrimental to gut health. However, information on whether HPD affects intestinal function is limited. OBJECTIVE The aim of this study was to determine the impact of an HPD on the microbiota, microbial metabolites, and epithelial transcriptome in the colons of rats. METHODS Adult male Wistar rats were fed either a normal-protein diet (20% protein, 56% carbohydrate) or an HPD (45% protein, 30% carbohydrate) for 6 wk (n = 10 rats per group, individually fed). After 6 wk, the colonic microbiome, microbial metabolites, and epithelial transcriptome were determined. RESULTS Compared with the normal-protein diet, the HPD adversely altered the colonic microbiota by increasing (P < 0.05) Escherichia/Shigella, Enterococcus, Streptococcus, and sulfate-reducing bacteria by 54.9-fold, 31.3-fold, 5.36-fold, and 2.59-fold, respectively. However, the HPD reduced Ruminococcus (8.04-fold), Akkermansia (not detected in HPD group), and Faecalibacterium prausnitzii (3.5-fold) (P < 0.05), which are generally regarded as beneficial bacteria in the colon. Concomitant increases in cadaverine (4.88-fold), spermine (31.2-fold), and sulfide (4.8-fold) (P < 0.05) and a decrease in butyrate (2.16-fold) (P < 0.05) in the HPD rats indicated an evident shift toward the production of unhealthy microbial metabolites. In the colon epithelium of the HPD rats, transcriptome analysis identified an upregulation of genes (P < 0.05) involved in disease pathogenesis; these genes are involved in chemotaxis, the tumor necrosis factor signal process, and apoptosis. The HPD was also associated with a downregulation of many genes (P < 0.05) involved in immunoprotection, such as genes involved in innate immunity, O-linked glycosylation of mucin, and oxidative phosphorylation, suggesting there may be an increased disease risk in these rats. The abundance of Escherichia/Shigella, Enterococcus, and Streptococcus was positively correlated (Spearman's ρ > 0.7, P < 0.05) with genes and metabolites generally regarded as being involved in disease pathogenesis, suggesting these bacteria may mediate the detrimental effects of HPDs on colonic health. CONCLUSION Our findings suggest that the HPD altered the colonic microbial community, shifted the metabolic profile, and affected the host response in the colons of rats toward an increased risk of colonic disease.
Collapse
Affiliation(s)
- Chunlong Mu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; and
| | - Yuxiang Yang
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; and
| | - Zhen Luo
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; and
| | - Leluo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Weiyun Zhu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China; and
| |
Collapse
|
743
|
Abstract
PURPOSE OF REVIEW Studies have illustrated that the healthy human microbiome (i.e. the communities of microbes, their genomic content and interaction with the host) plays a role in the maintenance of immune homeostasis. Perturbation of these communities is an emerging characteristic of an increasing number of inflammatory diseases. The goal of this article is to review the current literature on both respiratory and gut microbiomes and their established relationship with allergy and asthma. RECENT FINDINGS Multiple studies have demonstrated airway microbiota dysbiosis, characterized by Proteobacteria expansion in the lower airways, to be a consistent trait of established adult asthma. Members of this phylum are associated with disease features such as bronchial hyperreactivity or corticosteroid resistance. Emerging evidence implicates the neonatal gut microbiome as playing a significant role in the development of childhood atopy, a common precursor to asthma. Murine studies have demonstrated that specific bacterial species (e.g. Lactobacillus johnsonii, Bacteroides fragilis) and microbial metabolites (e.g. the short-chain fatty acid propionate), when supplemented to animals, confer protection against allergen-induced airway disorders. SUMMARY The emerging view of atopy and asthma is one consistently related to inappropriate microbial community composition and function in both the airway and gastrointestinal tract. This opens up the possibility that strategies to rationally manipulate microbiota at these sites may represent a novel approach to disease prevention or management.
Collapse
|
744
|
Derrien M, Belzer C, de Vos WM. Akkermansia muciniphila and its role in regulating host functions. Microb Pathog 2016; 106:171-181. [PMID: 26875998 DOI: 10.1016/j.micpath.2016.02.005] [Citation(s) in RCA: 678] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/07/2016] [Accepted: 02/09/2016] [Indexed: 02/08/2023]
Abstract
Akkermansia muciniphila is an intestinal bacterium that was isolated a decade ago from a human fecal sample. Its specialization in mucin degradation makes it a key organism at the mucosal interface between the lumen and host cells. Although it was isolated quite recently, it has rapidly raised significant interest as A. muciniphila is the only cultivated intestinal representative of the Verrucomicrobia, one of the few phyla in the human gut that can be easily detected in phylogenetic and metagenome analyses. There has also been a growing interest in A. muciniphila, due to its association with health in animals and humans. Notably, reduced levels of A. muciniphila have been observed in patients with inflammatory bowel diseases (mainly ulcerative colitis) and metabolic disorders, which suggests it may have potential anti-inflammatory properties. The aims of this review are to summarize the existing data on the intestinal distribution of A. muciniphila in health and disease, to provide insight into its ecology and its role in founding microbial networks at the mucosal interface, as well as to discuss recent research on its role in regulating host functions that are disturbed in various diseases, with a specific focus on metabolic disorders in both animals and humans.
Collapse
Affiliation(s)
- Muriel Derrien
- Danone Nutricia Research, Avenue de la Vauve, 91767 Palaiseau, France.
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands; Immunobiology Research Program, Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
745
|
Marchesi JR, Adams DH, Fava F, Hermes GDA, Hirschfield GM, Hold G, Quraishi MN, Kinross J, Smidt H, Tuohy KM, Thomas LV, Zoetendal EG, Hart A. The gut microbiota and host health: a new clinical frontier. Gut 2016; 65:330-9. [PMID: 26338727 PMCID: PMC4752653 DOI: 10.1136/gutjnl-2015-309990] [Citation(s) in RCA: 1513] [Impact Index Per Article: 168.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/16/2015] [Indexed: 12/15/2022]
Abstract
Over the last 10-15 years, our understanding of the composition and functions of the human gut microbiota has increased exponentially. To a large extent, this has been due to new 'omic' technologies that have facilitated large-scale analysis of the genetic and metabolic profile of this microbial community, revealing it to be comparable in influence to a new organ in the body and offering the possibility of a new route for therapeutic intervention. Moreover, it might be more accurate to think of it like an immune system: a collection of cells that work in unison with the host and that can promote health but sometimes initiate disease. This review gives an update on the current knowledge in the area of gut disorders, in particular metabolic syndrome and obesity-related disease, liver disease, IBD and colorectal cancer. The potential of manipulating the gut microbiota in these disorders is assessed, with an examination of the latest and most relevant evidence relating to antibiotics, probiotics, prebiotics, polyphenols and faecal microbiota transplantation.
Collapse
Affiliation(s)
- Julian R Marchesi
- School of Biosciences, Museum Avenue, Cardiff University, Cardiff, UK,Centre for Digestive and Gut Health, Imperial College London, London, UK
| | - David H Adams
- NIHR Biomedical Research Unit, Centre for Liver Research, University of Birmingham, Birmingham, UK
| | - Francesca Fava
- Nutrition and Nutrigenomics Group, Department of Food Quality and Nutrition, Research and Innovation Centre, Trento, Italy
| | - Gerben D A Hermes
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands,Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
| | - Gideon M Hirschfield
- NIHR Biomedical Research Unit, Centre for Liver Research, University of Birmingham, Birmingham, UK
| | - Georgina Hold
- Division of Applied Medicine, School of Medicine and Dentistry, University of Aberdeen, Institute of Medical Sciences, Aberdeen, UK
| | - Mohammed Nabil Quraishi
- NIHR Biomedical Research Unit, Centre for Liver Research, University of Birmingham, Birmingham, UK
| | - James Kinross
- Section of Computational and Systems Medicine, Faculty of Medicine, Imperial College London, London, UK
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Kieran M Tuohy
- Nutrition and Nutrigenomics Group, Department of Food Quality and Nutrition, Research and Innovation Centre, Trento, Italy
| | | | - Erwin G Zoetendal
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands,Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
| | - Ailsa Hart
- IBD Unit, St Mark's Hospital and Imperial College London, London, UK
| |
Collapse
|
746
|
Angelakis E, Lagier JC. Samples and techniques highlighting the links between obesity and microbiota. Microb Pathog 2016; 106:119-126. [PMID: 26828871 DOI: 10.1016/j.micpath.2016.01.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/23/2016] [Accepted: 01/28/2016] [Indexed: 12/17/2022]
Abstract
The composition of gut microbiota and its relationship to human health, particularly its links with obesity remain an ongoing challenge for scientists. The current gold standard for exploring human gut microbiota consists of using stool samples and only applying next generations sequencing techniques, which sometimes generate contradictory results. Here, we comprehensively describe nutrient absorption, fat digestion, carbohydrate and protein absorption, demonstrating that absorption of these diverse nutrients occurs mainly in the stomach and small intestine. Indeed, bariatric surgery, including Roux-en-Y, removes part of the upper intestine, resulting in weight loss, while colonic surgery is associated with a stable weight. However, most studies only use stool samples rather than small intestine samples because of the easy with which this can be accessed. Metagenomics studies are associated with several biases such as extraction and primer biases and depth bias, including the more modern platforms. High-throughput culture-dependent techniques, such as culturomics, which uses rapid identification methods such as MALDI-TOF, remain time-consuming, but have demonstrated their complementarity with molecular techniques. In conclusion, we believe that a comprehensive analysis of the relationships between obesity and gut microbiota requires large-scale studies coupling metagenomics and culture-dependent research, in order to analyse both small intestine and stool samples.
Collapse
Affiliation(s)
- Emmanouil Angelakis
- Aix-Marseille Université URMITE, UM63, IHU Méditerranée Infection, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Jean-Christophe Lagier
- Aix-Marseille Université URMITE, UM63, IHU Méditerranée Infection, CNRS 7278, IRD 198, INSERM 1095, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France.
| |
Collapse
|
747
|
Abstract
In recent decades, the emergence and spread of antibiotic resistance among bacterial pathogens has become a major threat to public health. Bacteria can acquire antibiotic resistance genes by the mobilization and transfer of resistance genes from a donor strain. The human gut contains a densely populated microbial ecosystem, termed the gut microbiota, which offers ample opportunities for the horizontal transfer of genetic material, including antibiotic resistance genes. Recent technological advances allow microbiota-wide studies into the diversity and dynamics of the antibiotic resistance genes that are harboured by the gut microbiota (‘the gut resistome’). Genes conferring resistance to antibiotics are ubiquitously present among the gut microbiota of humans and most resistance genes are harboured by strictly anaerobic gut commensals. The horizontal transfer of genetic material, including antibiotic resistance genes, through conjugation and transduction is a frequent event in the gut microbiota, but mostly involves non-pathogenic gut commensals as these dominate the microbiota of healthy individuals. Resistance gene transfer from commensals to gut-dwelling opportunistic pathogens appears to be a relatively rare event but may contribute to the emergence of multi-drug resistant strains, as is illustrated by the vancomycin resistance determinants that are shared by anaerobic gut commensals and the nosocomial pathogen Enterococcus faecium.
Collapse
Affiliation(s)
- Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
748
|
Drennan DM, Almstrand R, Lee I, Landkamer L, Figueroa L, Sharp JO. Organoheterotrophic Bacterial Abundance Associates with Zinc Removal in Lignocellulose-Based Sulfate-Reducing Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:378-387. [PMID: 26605699 DOI: 10.1021/acs.est.5b04268] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Syntrophic relationships between fermentative and sulfate-reducing bacteria are essential to lignocellulose-based systems applied to the passive remediation of mining-influenced waters. In this study, seven pilot-scale sulfate-reducing bioreactor columns containing varying ratios of alfalfa hay, pine woodchips, and sawdust were analyzed over ∼500 days to investigate the influence of substrate composition on zinc removal and microbial community structure. Columns amended with >10% alfalfa removed significantly more sulfate and zinc than did wood-based columns. Enumeration of sulfate reducers by functional signatures (dsrA) and their putative identification from 16S rRNA genes did not reveal significant correlations with zinc removal, suggesting limitations in this directed approach. In contrast, a strong indicator of zinc removal was discerned in comparing the relative abundance of core microorganisms shared by all reactors (>80% of total community), many of which had little direct involvement in metal or sulfate respiration. The relative abundance of Desulfosporosinus, the dominant putative sulfate reducer within these reactors, correlated to representatives of this core microbiome. A subset of these clades, including Treponema, Weissella, and Anaerolinea, was associated with alfalfa and zinc removal, and the inverse was found for a second subset whose abundance was associated with wood-based columns, including Ruminococcus, Dysgonomonas, and Azospira. The construction of a putative metabolic flowchart delineated syntrophic interactions supporting sulfate reduction and suggests that the production of and competition for secondary fermentation byproducts, such as lactate scavenging, influence bacterial community composition and reactor efficacy.
Collapse
Affiliation(s)
- Dina M Drennan
- Department of Civil and Environmental Engineering, Colorado School of Mines , 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Robert Almstrand
- Department of Civil and Environmental Engineering, Colorado School of Mines , 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Ilsu Lee
- Freeport McMoRan Inc. 1600 Hanley Blvd., Oro Valley, Arizona 85737, United States
| | - Lee Landkamer
- Department of Civil and Environmental Engineering, Colorado School of Mines , 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Linda Figueroa
- Department of Civil and Environmental Engineering, Colorado School of Mines , 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Jonathan O Sharp
- Department of Civil and Environmental Engineering, Colorado School of Mines , 1500 Illinois Street, Golden, Colorado 80401, United States
| |
Collapse
|
749
|
Mikelsaar M, Sepp E, Štšepetova J, Songisepp E, Mändar R. Biodiversity of Intestinal Lactic Acid Bacteria in the Healthy Population. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 932:1-64. [DOI: 10.1007/5584_2016_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
750
|
Dione N, Khelaifia S, La Scola B, Lagier J, Raoult D. A quasi-universal medium to break the aerobic/anaerobic bacterial culture dichotomy in clinical microbiology. Clin Microbiol Infect 2016; 22:53-58. [DOI: 10.1016/j.cmi.2015.10.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/27/2015] [Accepted: 10/31/2015] [Indexed: 10/22/2022]
|