701
|
Ye X, Wang R, Bhattacharya R, Boulbes DR, Fan F, Xia L, Adoni H, Ajami NJ, Wong MC, Smith DP, Petrosino JF, Venable S, Qiao W, Baladandayuthapani V, Maru D, Ellis LM. Fusobacterium Nucleatum Subspecies Animalis Influences Proinflammatory Cytokine Expression and Monocyte Activation in Human Colorectal Tumors. Cancer Prev Res (Phila) 2017; 10:398-409. [PMID: 28483840 DOI: 10.1158/1940-6207.capr-16-0178] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/02/2016] [Accepted: 05/03/2017] [Indexed: 12/16/2022]
Abstract
Chronic infection and associated inflammation have long been suspected to promote human carcinogenesis. Recently, certain gut bacteria, including some in the Fusobacterium genus, have been implicated in playing a role in human colorectal cancer development. However, the Fusobacterium species and subspecies involved and their oncogenic mechanisms remain to be determined. We sought to identify the specific Fusobacterium spp. and ssp. in clinical colorectal cancer specimens by targeted sequencing of Fusobacterium 16S ribosomal RNA gene. Five Fusobacterium spp. were identified in clinical colorectal cancer specimens. Additional analyses confirmed that Fusobacterium nucleatum ssp. animalis was the most prevalent F. nucleatum subspecies in human colorectal cancers. We also assessed inflammatory cytokines in colorectal cancer specimens using immunoassays and found that expression of the cytokines IL17A and TNFα was markedly increased but IL21 decreased in the colorectal tumors. Furthermore, the chemokine (C-C motif) ligand 20 was differentially expressed in colorectal tumors at all stages. In in vitro co-culture assays, F. nucleatum ssp. animalis induced CCL20 protein expression in colorectal cancer cells and monocytes. It also stimulated the monocyte/macrophage activation and migration. Our observations suggested that infection with F. nucleatum ssp. animalis in colorectal tissue could induce inflammatory response and promote colorectal cancer development. Further studies are warranted to determine if F. nucleatum ssp. animalis could be a novel target for colorectal cancer prevention and treatment. Cancer Prev Res; 10(7); 398-409. ©2017 AACR.
Collapse
Affiliation(s)
- Xiangcang Ye
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Rui Wang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rajat Bhattacharya
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Delphine R Boulbes
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fan Fan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ling Xia
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Harish Adoni
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nadim J Ajami
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Matthew C Wong
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Daniel P Smith
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Susan Venable
- Texas Children's Microbiome Center, Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Wei Qiao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Dipen Maru
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lee M Ellis
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
702
|
Leppänen J, Helminen O, Huhta H, Kauppila JH, Isohookana J, Haapasaari KM, Lehenkari P, Saarnio J, Karttunen TJ. High toll-like receptor (TLR) 9 expression is associated with better prognosis in surgically treated pancreatic cancer patients. Virchows Arch 2017; 470:401-410. [PMID: 28191612 DOI: 10.1007/s00428-017-2087-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/10/2017] [Accepted: 02/02/2017] [Indexed: 12/14/2022]
Abstract
Pancreatic cancer remains one of the deadliest malignancies in the world. Inflammatory response and tumor environment are thought to play a major role in its pathogenesis. Knowledge on TLR expression and impact on patient survival in pancreatic cancer is limited. The study's aim was to clarify the role of different TLRs in pancreatic cancer. TLR2, TLR4, and TLR9 expression was investigated in 65 surgically resected pancreatic ductal adenocarcinoma specimens by immunohistochemistry. The association between TLR expression, clinical parameters, and local inflammatory response to the tumor was assessed using chi-square test. Relation between patient survival and TLR expression was calculated with multivariable Cox regression, adjusted for age, sex, and tumor stage. We found TLR2, TLR4, and TLR9 to be expressed in pancreatic cancer. There was no association between TLR expression and tumor stage, tumor size, lymph node metastasis, or tumor necrosis. Contrary to our initial hypothesis, high cytoplasmic TLR9 expression was associated with longer patient survival, and multivariate analysis identified low TLR9 expression as an independent risk factor for cancer-specific death (HR 3.090, 95% CI 1.673-5.706). The results suggest that high TLR9 expression in pancreatic ductal adenocarcinoma indicates improved prognosis. The prognostic effect of TLR9 might be associated with bacterial exposure, but this needs further evidence.
Collapse
Affiliation(s)
- Joni Leppänen
- Department of Pathology, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland.
- Department of Surgery, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland.
- Medical Research Center Oulu, P.O. Box 5000, 90014, Oulu, Finland.
- Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland.
| | - Olli Helminen
- Department of Pathology, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Department of Surgery, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Medical Research Center Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland
| | - Heikki Huhta
- Department of Pathology, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Department of Surgery, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Medical Research Center Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland
| | - Joonas H Kauppila
- Department of Pathology, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Department of Surgery, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Medical Research Center Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland
- Upper Gastrointestinal Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Joel Isohookana
- Department of Pathology, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Medical Research Center Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland
| | - Kirsi-Maria Haapasaari
- Department of Pathology, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Medical Research Center Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland
| | - Petri Lehenkari
- Department of Surgery, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Medical Research Center Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland
- Department of Anatomy and Cell Biology, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
| | - Juha Saarnio
- Department of Surgery, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Medical Research Center Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland
| | - Tuomo J Karttunen
- Department of Pathology, University of Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Medical Research Center Oulu, P.O. Box 5000, 90014, Oulu, Finland
- Oulu University Hospital, P.O. Box 21, 90029, Oulu, Finland
| |
Collapse
|
703
|
Hamada T, Keum N, Nishihara R, Ogino S. Molecular pathological epidemiology: new developing frontiers of big data science to study etiologies and pathogenesis. J Gastroenterol 2017; 52:265-275. [PMID: 27738762 PMCID: PMC5325774 DOI: 10.1007/s00535-016-1272-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 09/22/2016] [Indexed: 02/07/2023]
Abstract
Molecular pathological epidemiology (MPE) is an integrative field that utilizes molecular pathology to incorporate interpersonal heterogeneity of a disease process into epidemiology. In each individual, the development and progression of a disease are determined by a unique combination of exogenous and endogenous factors, resulting in different molecular and pathological subtypes of the disease. Based on "the unique disease principle," the primary aim of MPE is to uncover an interactive relationship between a specific environmental exposure and disease subtypes in determining disease incidence and mortality. This MPE approach can provide etiologic and pathogenic insights, potentially contributing to precision medicine for personalized prevention and treatment. Although breast, prostate, lung, and colorectal cancers have been among the most commonly studied diseases, the MPE approach can be used to study any disease. In addition to molecular features, host immune status and microbiome profile likely affect a disease process, and thus serve as informative biomarkers. As such, further integration of several disciplines into MPE has been achieved (e.g., pharmaco-MPE, immuno-MPE, and microbial MPE), to provide novel insights into underlying etiologic mechanisms. With the advent of high-throughput sequencing technologies, available genomic and epigenomic data have expanded dramatically. The MPE approach can also provide a specific risk estimate for each disease subgroup, thereby enhancing the impact of genome-wide association studies on public health. In this article, we present recent progress of MPE, and discuss the importance of accounting for the disease heterogeneity in the era of big-data health science and precision medicine.
Collapse
Affiliation(s)
- Tsuyoshi Hamada
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave., Room SM1036, Boston, MA, 02215, USA
| | - NaNa Keum
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Reiko Nishihara
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave., Room SM1036, Boston, MA, 02215, USA.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Shuji Ogino
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave., Room SM1036, Boston, MA, 02215, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Division of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 450 Brookline Ave., Room SM1036, Boston, MA, 02215, USA.
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
704
|
Yang Y, Weng W, Peng J, Hong L, Yang L, Toiyama Y, Gao R, Liu M, Yin M, Pan C, Li H, Guo B, Zhu Q, Wei Q, Moyer MP, Wang P, Cai S, Goel A, Qin H, Ma Y. Fusobacterium nucleatum Increases Proliferation of Colorectal Cancer Cells and Tumor Development in Mice by Activating Toll-Like Receptor 4 Signaling to Nuclear Factor-κB, and Up-regulating Expression of MicroRNA-21. Gastroenterology 2017; 152:851-866.e24. [PMID: 27876571 PMCID: PMC5555435 DOI: 10.1053/j.gastro.2016.11.018] [Citation(s) in RCA: 693] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/31/2016] [Accepted: 11/15/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Nearly 20% of the global cancer burden can be linked to infectious agents. Fusobacterium nucleatum promotes tumor formation by epithelial cells via unclear mechanisms. We aimed to identify microRNAs (miRNAs) induced by F nucleatum and evaluate their ability to promote colorectal carcinogenesis in mice. METHODS Colorectal cancer (CRC) cell lines were incubated with F nucleatum or control reagents and analyzed in proliferation and would healing assays. HCT116, HT29, LoVo, and SW480 CRC cell lines were incubated with F nucleatum or phosphate-buffered saline (PBS [control]) and analyzed for miRNA expression patterns and in chromatin immunoprecipitation assays. Cells were incubated with miRNAs mimics, control sequences, or small interfering RNAs; expression of reporter constructs was measured in luciferase assays. CRC cells were incubated with F nucleatum or PBS and injected into BALB/C nude mice; growth of xenograft tumors was measured. C57BL adenomatous polyposis colimin/+, C57BL miR21a-/-, and C57BL mice with full-length miR21a (controls) were given F nucleatum by gavage; some mice were given azoxymethane and dextran sodium sulfate to induce colitis and colon tumors. Intestinal tissues were collected and tumors were counted. Serum samples from mice were analyzed for cytokine levels by enzyme-linked immunosorbent assay. We performed in situ hybridization analyses to detect enrichment of F nucleatum in CRC cells. Fusobacterium nucleatum DNA in 90 tumor and matched nontumor tissues from patients in China were explored for the expression correlation analysis; levels in 125 tumor tissues from patients in Japan were compared with their survival times. RESULTS Fusobacterium nucleatum increased proliferation and invasive activities of CRC cell lines compared with control cells. CRC cell lines infected with F nucleatum formed larger tumors, more rapidly, in nude mice than uninfected cells. Adenomatous polyposis colimin/+ mice gavaged with F nucleatum developed significantly more colorectal tumors than mice given PBS and had shorter survival times. We found several inflammatory factors to be significantly increased in serum from mice given F nucleatum (interleukin 17F, interleukin 21, and interleukin 22, and MIP3A). We found 50 miRNAs to be significantly up-regulated and 52 miRNAs to be significantly down-regulated in CRCs incubated with F nucleatum vs PBS; levels of miR21 increased by the greatest amount (>4-fold). Inhibitors of miR21 prevented F nucleatum from inducing cell proliferation and invasion in culture. miR21a-/- mice had a later appearance of fecal blood and diarrhea after administration of azoxymethane and dextran sodium sulfate, and had longer survival times compared with control mice. The colorectum of miR21a-/- mice had fewer tumors, of smaller size, and the miR21a-/- mice survived longer than control mice. We found RASA1, which encodes an RAS GTPase, to be one of the target genes consistently down-regulated in cells that overexpressed miR21 and up-regulated in cells exposed to miR21 inhibitors. Infection of cells with F nucleatum increased expression of miR21 by activating Toll-like receptor 4 signaling to MYD88, leading to activation of the nuclear factor-κB. Levels of F nucleatum DNA and miR21 were increased in tumor tissues (and even more so in advanced tumor tissues) compared with non-tumor colon tissues from patients. Patients whose tumors had high amounts of F nucleatum DNA and miR21 had shorter survival times than patients whose tumors had lower amounts. CONCLUSIONS We found infection of CRC cells with F nucleatum to increase their proliferation, invasive activity, and ability to form xenograft tumors in mice. Fusobacterium nucleatum activates Toll-like receptor 4 signaling to MYD88, leading to activation of the nuclear factor-κB and increased expression of miR21; this miRNA reduces levels of the RAS GTPase RASA1. Patients with both high amount of tissue F nucleatum DNA and miR21 demonstrated a higher risk for poor outcomes.
Collapse
Affiliation(s)
- Yongzhi Yang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China,Department of GI Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Wenhao Weng
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott &White Research Institute and Charles A. Sammons Cancer Center, Texas, USA,Department of Clinical Laboratory, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Junjie Peng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Leiming Hong
- Department of GI Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Lei Yang
- Department of GI Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Mie, Japan
| | - Renyuan Gao
- Department of GI Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Minfeng Liu
- Department of GI Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Mingming Yin
- Department of GI Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Cheng Pan
- Department of GI Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Hao Li
- Department of GI Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Bomin Guo
- Department of Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Qingchao Zhu
- Department of Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People’s Hospital Affiliated to Tongji University
| | | | - Ping Wang
- Department of Central Laboratory, Shanghai Tenth People’s Hospital of Tongji University, School of Life Science and Technology, Tongji University, Shanghai 200072, China
| | - Sanjun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Dallas, Texas.
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China.
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
705
|
Ai L, Tian H, Chen Z, Chen H, Xu J, Fang JY. Systematic evaluation of supervised classifiers for fecal microbiota-based prediction of colorectal cancer. Oncotarget 2017; 8:9546-9556. [PMID: 28061434 PMCID: PMC5354752 DOI: 10.18632/oncotarget.14488] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/15/2016] [Indexed: 12/13/2022] Open
Abstract
Predicting colorectal cancer (CRC) based on fecal microbiota presents a promising method for non-invasive screening of CRC, but the optimization of classification models remains an unaddressed question. The purpose of this study was to systematically evaluate the effectiveness of different supervised machine-learning models in predicting CRC in two independent eastern and western populations. The structures of intestinal microflora in feces in Chinese population (N = 141) were determined by 454 FLX pyrosequencing, and different supervised classifiers were employed to predict CRC based on fecal microbiota operational taxonomic unit (OTUs). As a result, Bayes Net and Random Forest displayed higher accuracies than other algorithms in both populations, although Bayes Net was found with a lower false negative rate than that of Random Forest. Gut microbiota-based prediction was more accurate than the standard fecal occult blood test (FOBT), and the combination of both approaches further improved the prediction accuracy. Moreover, when unclassified OTUs were used as input, the BayesDMNB text algorithm achieved higher accuracy in the Chinese population (AUC=0.994). Taken together, our results suggest that Bayes Net classification model combined with unclassified OTUs may present an accurate method for predicting CRC based on the compositions of gut microbiota.
Collapse
Affiliation(s)
- Luoyan Ai
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai 200001, China
| | - Haiying Tian
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai 200001, China
| | - Zhaofei Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai 200001, China
| | - Huimin Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai 200001, China
| | - Jie Xu
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai 200001, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai 200001, China
| |
Collapse
|
706
|
Kosumi K, Masugi Y, Yang J, Qian ZR, Kim SA, Li W, Shi Y, da Silva A, Hamada T, Liu L, Gu M, Twombly TS, Cao Y, Barbie DA, Nosho K, Baba H, Garrett WS, Meyerhardt JA, Giovannucci EL, Chan AT, Fuchs CS, Ogino S, Nishihara R. Tumor SQSTM1 (p62) expression and T cells in colorectal cancer. Oncoimmunology 2017; 6:e1284720. [PMID: 28405513 DOI: 10.1080/2162402x.2017.1284720] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/15/2022] Open
Abstract
Evidence suggests that activation of autophagy in neoplastic cells potentiates antitumor immunity through cross-presentation of tumor-associated antigens to T cells and release of immune mediators. The SQSTM1 (sequestosome 1, p62) protein is degraded by activated autophagy, and might enhance immune response to tumor cells. We hypothesized that tumor SQSTM1 expression level might be inversely associated with T-cell densities in colorectal carcinoma tissue. We evaluated tumor SQSTM1 expression by immunohistochemistry in 601 rectal and colon cancer cases within the Nurses' Health Study and Health Professionals Follow-up Study. Ordinal logistic regression analyses were conducted to assess the association of tumor SQSTM1 expression with CD3+, CD8+, CD45RO (PTPRC)+, or FOXP3+ cell density in tumor tissue, controlling for potential confounders, including tumor status of microsatellite instability, CpG island methylator phenotype, long interspersed nucleotide element-1 methylation level, and KRAS, BRAF, and PIK3CA mutations. Tumor SQSTM1 expression level was inversely associated with FOXP3+ cell density (ptrend = 0.006), but not with CD3+, CD8+, or CD45RO+ cell density (with the adjusted α level of 0.01 for multiple hypothesis testing). For a unit increase in quartile categories of FOXP3+ cell density, multivariable odds ratios were 0.66 [95% confidence interval (CI), 0.45-0.98] for intermediate-level SQSTM1 expression, and 0.55 (95% CI, 0.36-0.83) for high-level SQSTM1 expression, compared with low-level SQSTM1 expression. Tumor SQSTM1 expression is inversely associated with FOXP3+ cell density in colorectal cancer tissue, suggesting a possible role of SQSTM1-expressing carcinoma cells on regulatory T cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Keisuke Kosumi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School , Boston, MA, USA
| | - Yohei Masugi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School , Boston, MA, USA
| | - Juhong Yang
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormone and Development (Ministry of Health), Metabolic Disease Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University , Tianjin, China
| | - Zhi Rong Qian
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School , Boston, MA, USA
| | - Sun A Kim
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Wanwan Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School , Boston, MA, USA
| | - Yan Shi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School , Boston, MA, USA
| | - Annacarolina da Silva
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School , Boston, MA, USA
| | - Tsuyoshi Hamada
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School , Boston, MA, USA
| | - Li Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mancang Gu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School , Boston, MA, USA
| | - Tyler S Twombly
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School , Boston, MA, USA
| | - Yin Cao
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School , Boston, MA, USA
| | - Katsuhiko Nosho
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine , Sapporo, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University , Kumamoto, Japan
| | - Wendy S Garrett
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jeffery A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School , Boston, MA, USA
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charles S Fuchs
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Shuji Ogino
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Division of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Reiko Nishihara
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Division of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
707
|
Bioactive Nutrients and Nutrigenomics in Age-Related Diseases. Molecules 2017; 22:molecules22010105. [PMID: 28075340 PMCID: PMC6155887 DOI: 10.3390/molecules22010105] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/20/2016] [Accepted: 01/03/2017] [Indexed: 01/10/2023] Open
Abstract
The increased life expectancy and the expansion of the elderly population are stimulating research into aging. Aging may be viewed as a multifactorial process that results from the interaction of genetic and environmental factors, which include lifestyle. Human molecular processes are influenced by physiological pathways as well as exogenous factors, which include the diet. Dietary components have substantive effects on metabolic health; for instance, bioactive molecules capable of selectively modulating specific metabolic pathways affect the development/progression of cardiovascular and neoplastic disease. As bioactive nutrients are increasingly identified, their clinical and molecular chemopreventive effects are being characterized and systematic analyses encompassing the "omics" technologies (transcriptomics, proteomics and metabolomics) are being conducted to explore their action. The evolving field of molecular pathological epidemiology has unique strength to investigate the effects of dietary and lifestyle exposure on clinical outcomes. The mounting body of knowledge regarding diet-related health status and disease risk is expected to lead in the near future to the development of improved diagnostic procedures and therapeutic strategies targeting processes relevant to nutrition. The state of the art of aging and nutrigenomics research and the molecular mechanisms underlying the beneficial effects of bioactive nutrients on the main aging-related disorders are reviewed herein.
Collapse
|
708
|
Gao R, Gao Z, Huang L, Qin H. Gut microbiota and colorectal cancer. Eur J Clin Microbiol Infect Dis 2017; 36:757-769. [PMID: 28063002 PMCID: PMC5395603 DOI: 10.1007/s10096-016-2881-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023]
Abstract
The gut microbiota is considered as a forgotten organ in human health and disease. It maintains gut homeostasis by various complex mechanisms. However, disruption of the gut microbiota has been confirmed to be related to gastrointestinal diseases such as colorectal cancer, as well as remote organs in many studies. Colorectal cancer is a multi-factorial and multi-stage involved disorder. The role for microorganisms that initiate and facilitate the process of colorectal cancer has become clear. The candidate pathogens have been identified by culture and next sequencing technology. Persuasive models have also been proposed to illustrate the complicated and dynamic time and spatial change in the carcinogenesis. Related key molecules have also been investigated to demonstrate the pathways crucial for the development of colorectal cancer. In addition, risk factors that contribute to the tumorigenesis can also be modulated to decrease the susceptibility for certain population. In addition, the results of basic studies have also translated to clinical application, which displayed a critical value for the diagnosis and therapy of colorectal cancer. In this review, we not only emphasize the exploration of the mechanisms, but also potential clinical practice implication in this microbiota era.
Collapse
Affiliation(s)
- R Gao
- Tongji University School of Medicine affiliated Tenth People's Hospital, No.301 Middle Yanchang Road, Shanghai, 200072, China
| | - Z Gao
- Tongji University School of Medicine affiliated Tenth People's Hospital, No.301 Middle Yanchang Road, Shanghai, 200072, China
| | - L Huang
- Tongji University School of Medicine affiliated Tenth People's Hospital, No.301 Middle Yanchang Road, Shanghai, 200072, China
| | - H Qin
- Tongji University School of Medicine affiliated Tenth People's Hospital, No.301 Middle Yanchang Road, Shanghai, 200072, China.
| |
Collapse
|
709
|
Does the vaginal microbiota play a role in the development of cervical cancer? Transl Res 2017; 179:168-182. [PMID: 27477083 PMCID: PMC5164950 DOI: 10.1016/j.trsl.2016.07.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/19/2016] [Accepted: 07/06/2016] [Indexed: 02/07/2023]
Abstract
Persistent infection with oncogenic human papillomavirus (HPV) is necessary but not sufficient for the development of cervical cancer. The factors promoting persistence as well those triggering carcinogenetic pathways are incompletely understood. Rapidly evolving evidence indicates that the vaginal microbiome (VM) may play a functional role (both protective and harmful) in the acquisition and persistence of HPV, and subsequent development of cervical cancer. The first studies examining the VM and the presence of an HPV infection using next-generation sequencing techniques identified higher microbial diversity in HPV-positive as opposed to HPV-negative women. Furthermore, there appears to be a temporal relationship between the VM and HPV infection in that specific community state types may be correlated with a higher chance of progression or regression of the infection. Studies describing the VM in women with preinvasive disease (squamous intraepithelial neoplasia [SIL]) consistently demonstrate a dysbiosis in women with the more severe disease. Although it is plausible that the composition of the VM may influence the host's innate immune response, susceptibility to infection, and the development of cervical disease, the studies to date do not prove causality. Future studies should explore the causal link between the VM and the clinical outcome in longitudinal samples from existing biobanks.
Collapse
|
710
|
Hirota K, Yumoto H, Sapaar B, Matsuo T, Ichikawa T, Miyake Y. Pathogenic factors in Candida biofilm-related infectious diseases. J Appl Microbiol 2016; 122:321-330. [PMID: 27770500 DOI: 10.1111/jam.13330] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/11/2016] [Accepted: 10/15/2016] [Indexed: 01/07/2023]
Abstract
Candida albicans is a commonly found member of the human microflora and is a major human opportunistic fungal pathogen. A perturbation of the microbiome can lead to infectious diseases caused by various micro-organisms, including C. albicans. Moreover, the interactions between C. albicans and bacteria are considered to play critical roles in human health. The major biological feature of C. albicans, which impacts human health, resides in its ability to form biofilms. In particular, the extracellular matrix (ECM) of Candida biofilm plays a multifaceted role and therefore may be considered as a highly attractive target to combat biofilm-related infectious diseases. In addition, extracellular DNA (eDNA) also plays a crucial role in Candida biofilm formation and its structural integrity and induces the morphological transition from yeast to the hyphal growth form during C. albicans biofilm development. This review focuses on pathogenic factors such as eDNA in Candida biofilm formation and its ECM production and provides meaningful information for future studies to develop a novel strategy to battle infectious diseases elicited by Candida-formed biofilm.
Collapse
Affiliation(s)
- K Hirota
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - H Yumoto
- Department of Conservative Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - B Sapaar
- Department of Oral and Maxillofacial Prosthodontics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - T Matsuo
- Department of Conservative Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - T Ichikawa
- Department of Oral and Maxillofacial Prosthodontics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Y Miyake
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
711
|
Li H, Zhang P. Role of intestinal microecology in precision treatment of colorectal cancer. Shijie Huaren Xiaohua Zazhi 2016; 24:4354-4361. [DOI: 10.11569/wcjd.v24.i32.4354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recently, the role of intestinal microecology in diseases has attracted increasing attention. Some progress has been achieved in the study of the colorectum, which is the carrier of intestinal microecology, and the role of intestinal microecology in colorectal cancer (CRC) formation and progression has been clarified gradually. More and more studies show that intestinal microecology plays a key role in CRC related precision treatments, such as tumor immunotherapy, chemotherapy and probiotic intervention, which have achieved certain curative effects in clinical treatment, although the mechanism still needs further study. This review briefly discusses the intestinal microecology related precision treatments for CRC and their potential mechanisms.
Collapse
|
712
|
Furquim CP, Soares GMS, Ribeiro LL, Azcarate-Peril MA, Butz N, Roach J, Moss K, Bonfim C, Torres-Pereira CC, Teles FRF. The Salivary Microbiome and Oral Cancer Risk: a Pilot Study in Fanconi Anemia. J Dent Res 2016; 96:292-299. [PMID: 27827319 DOI: 10.1177/0022034516678169] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fanconi anemia (FA) is a rare genetic disease characterized by chromosomal instability and impaired DNA damage repair. FA patients develop oral squamous cell carcinoma (OSCC) earlier and more frequently than the general population, especially after hematopoietic stem cell transplantation (HSCT). Although evidence of an etiological role of the local microbiome and carcinogenesis has been mounting, no information exists regarding the oral microbiome of FA patients. The aim of this study was to explore the salivary microbiome of 61 FA patients regarding their oral health status and OSCC risk factors. After answering a questionnaire and receiving clinical examination, saliva samples were collected and analyzed using 16S rRNA sequencing of the V3-V4 hypervariable region. The microbial profiles associated with medical and clinical parameters were analyzed using general linear models. Patients were young (mean age, 22 y) and most had received HSCT ( n = 53). The most abundant phyla were Firmicutes [mean relative abundance (SD), 42.1% (10.1%)] and Bacteroidetes [(25.4% (11.4%)]. A history of graft-versus-host disease (GVHD) ( n = 27) was associated with higher proportions of Firmicutes (43.8% × 38.5%, P = 0.05). High levels of gingival bleeding were associated with the genera Prevotella (22.25% × 20%), Streptococcus (19.83% × 17.61%), Porphyromonas (3.63% × 1.42%, P = 0.03), Treponema (1.02% × 0.28%, P = 0.009), Parvimonas (0.28% × 0.07%, P = 0.02) and Dialister (0.27% × 0.10%, P = 0.04). Finally, participants transplanted over 11 y ago showed the highest levels of Streptococcus (18.4%), Haemophilus (12.7%) and Neisseria (6.8%). In conclusion, FA patients that showed poor oral hygiene harbored higher proportions of the genera of bacteria compatible with gingival disease. Specific microbial differences were associated with a history of oral GVHD and a history of oral mucositis.
Collapse
Affiliation(s)
- C P Furquim
- 1 Graduate Program in Dentistry, Federal University of Paraná, Curitiba, PR, Brazil
| | - G M S Soares
- 2 Department of Stomatology, Federal University of Paraná, Curitiba, PR, Brazil
| | - L L Ribeiro
- 3 Bone Marrow Transplantation Unit, Hospital de Clínicas, Federal University of Paraná, Curitiba, PR, Brazil
| | - M A Azcarate-Peril
- 4 Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - N Butz
- 4 Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Roach
- 5 Department of Research Computing, University of North Carolina, Chapel Hill, NC, USA
| | - K Moss
- 6 Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - C Bonfim
- 3 Bone Marrow Transplantation Unit, Hospital de Clínicas, Federal University of Paraná, Curitiba, PR, Brazil
| | - C C Torres-Pereira
- 2 Department of Stomatology, Federal University of Paraná, Curitiba, PR, Brazil
| | - F R F Teles
- 7 Department of Periodontology, University of North Carolina at Chapel Hill, School of Dentistry, Chapel Hill, NC, USA
| |
Collapse
|
713
|
Mima K, Cao Y, Chan AT, Qian ZR, Nowak JA, Masugi Y, Shi Y, Song M, da Silva A, Gu M, Li W, Hamada T, Kosumi K, Hanyuda A, Liu L, Kostic AD, Giannakis M, Bullman S, Brennan CA, Milner DA, Baba H, Garraway LA, Meyerhardt JA, Garrett WS, Huttenhower C, Meyerson M, Giovannucci EL, Fuchs CS, Nishihara R, Ogino S. Fusobacterium nucleatum in Colorectal Carcinoma Tissue According to Tumor Location. Clin Transl Gastroenterol 2016; 7:e200. [PMID: 27811909 PMCID: PMC5543402 DOI: 10.1038/ctg.2016.53] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 09/13/2016] [Indexed: 02/06/2023] Open
Abstract
Objectives: Evidence suggests a possible role of Fusobacterium nucleatum in colorectal carcinogenesis, especially in right-sided proximal colorectum. Considering a change in bowel contents and microbiome from proximal to distal colorectal segments, we hypothesized that the proportion of colorectal carcinoma enriched with F. nucleatum might gradually increase along the bowel subsites from rectum to cecum. Methods: A retrospective, cross-sectional analysis was conducted on 1,102 colon and rectal carcinomas in molecular pathological epidemiology databases of the Nurses’ Health Study and the Health Professionals Follow-up Study. We measured the amount of F. nucleatum DNA in colorectal tumor tissue using a quantitative PCR assay and equally dichotomized F. nucleatum-positive cases (high vs. low). We used multivariable logistic regression analysis to examine the relationship of a bowel subsite variable (rectum, rectosigmoid junction, sigmoid colon, descending colon, splenic flexure, transverse colon, hepatic flexure, ascending colon, and cecum) with the amount of F. nucleatum. Results: The proportion of F. nucleatum-high colorectal cancers gradually increased from rectal cancers (2.5% 4/157) to cecal cancers (11% 19/178), with a statistically significant linear trend along all subsites (P<0.0001) and little evidence of non-linearity. The proportion of F. nucleatum-low cancers was higher in rectal, ascending colon, and cecal cancers than in cancers of middle segments. Conclusions: The proportion of F. nucleatum-high colorectal cancers gradually increases from rectum to cecum. Our data support the colorectal continuum model that reflects pathogenic influences of the gut microbiota on neoplastic and immune cells and challenges the prevailing two-colon (proximal vs. distal) dichotomy paradigm.
Collapse
Affiliation(s)
- Kosuke Mima
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Yin Cao
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Zhi Rong Qian
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan A Nowak
- Division of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yohei Masugi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Yan Shi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Annacarolina da Silva
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Mancang Gu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Wanwan Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Tsuyoshi Hamada
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Keisuke Kosumi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Akiko Hanyuda
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Li Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Aleksandar D Kostic
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Bullman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Caitlin A Brennan
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Danny A Milner
- Division of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Levi A Garraway
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Wendy S Garrett
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA.,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Charles S Fuchs
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Reiko Nishihara
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Shuji Ogino
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.,Division of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
714
|
Johnson CH, Spilker ME, Goetz L, Peterson SN, Siuzdak G. Metabolite and Microbiome Interplay in Cancer Immunotherapy. Cancer Res 2016; 76:6146-6152. [PMID: 27729325 DOI: 10.1158/0008-5472.can-16-0309] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/12/2016] [Indexed: 02/06/2023]
Abstract
The role of the host microbiome has come to the forefront as a potential modulator of cancer metabolism and could be a future target for precision medicine. A recent study revealed that in colon cancer, bacteria form polysaccharide matrices called biofilms at a high frequency in the proximal colon. Comprehensive untargeted and stable isotope-assisted metabolomic analysis revealed that the bacteria utilize polyamine metabolites produced from colon adenomas/carcinomas to build these protective biofilms and may contribute to inflammation and proliferation observed in colon cancer. This study highlighted the importance of finding the biological origin of a metabolite and assessing its metabolism and mechanism of action. This led to a better understanding of host and microbial interactions, thereby aiding therapeutic design for cancer. In this review, we will discuss methodologies for identifying the biological origin and roles of metabolites in cancer progression and discuss the interactions of the microbiome and metabolites in immunity and cancer treatment, focusing on the flourishing field of cancer immunotherapy. Cancer Res; 76(21); 6146-52. ©2016 AACR.
Collapse
Affiliation(s)
- Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut.
| | - Mary E Spilker
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, San Diego, California
| | - Laura Goetz
- Department of Surgery, Scripps Clinic Medical Group, La Jolla, California
| | - Scott N Peterson
- Sanford Burnham Medical Research Institute, La Jolla, California
| | - Gary Siuzdak
- Scripps Center for Metabolomics, The Scripps Research Institute, La Jolla, California.
| |
Collapse
|
715
|
Wang HF, Li LF, Guo SH, Zeng QY, Ning F, Liu WL, Zhang G. Evaluation of antibody level against Fusobacterium nucleatum in the serological diagnosis of colorectal cancer. Sci Rep 2016; 6:33440. [PMID: 27678333 PMCID: PMC5039407 DOI: 10.1038/srep33440] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/24/2016] [Indexed: 12/14/2022] Open
Abstract
Fusobacterium nucleatum (F. nucleatum, Fn) is associated with the colorectal cancer (CRC). Fn-infection could induce significant levels of serum Fn-specific antibodies in human and mice. The objective of this study was to identify Fn-infection that elicit a humoral response in patients with CRC and evaluate the diagnostic performance of serum anti-Fn antibodies. In this work, we showed the mean absorbance value of anti-Fn-IgA and -IgG in the CRC group were significantly higher than those in the benign colon disease group and healthy control group (P < 0.001). The sensitivity and specificity of ELISA for the detection of anti-Fn-IgA were 36.43% and 92.71% based on the optimal cut-off. The combination of anti-Fn-IgA and carcino-embryonic antigen (CEA) was better for diagnosing CRC (Sen: 53.10%, Spe: 96.41%; AUC = 0.848). Furthermore, combining anti-Fn-IgA with CEA and carbohydrate antigen 19-9 (CA19-9) (Sen: 40.00%, Spe: 94.22%; AUC = 0.743) had the better ability to classify CRC patients with stages I-II. These results suggested that Fn-infection elicited high level of serum anti-Fn antibodies in CRC patients, and serum anti-Fn-IgA level may be a potential diagnosing biomarker for CRC. Serum anti-Fn-IgA in combination with CEA and CA19-9 increases the sensitivity of detecting early CRC.
Collapse
Affiliation(s)
- Hai-Fang Wang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lin-Fang Li
- Department of Clinical Laboratory Medicine, Sun Yat-sen University cancer center, Guangzhou, China
| | - Song-He Guo
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiu-Yao Zeng
- Department of Clinical Laboratory Medicine, Sun Yat-sen University cancer center, Guangzhou, China
| | - Fen Ning
- Guangzhou Institute of Pediatrics, Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wan-Li Liu
- Department of Clinical Laboratory Medicine, Sun Yat-sen University cancer center, Guangzhou, China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
716
|
Wei Z, Cao S, Liu S, Yao Z, Sun T, Li Y, Li J, Zhang D, Zhou Y. Could gut microbiota serve as prognostic biomarker associated with colorectal cancer patients' survival? A pilot study on relevant mechanism. Oncotarget 2016; 7:46158-46172. [PMID: 27323816 PMCID: PMC5216788 DOI: 10.18632/oncotarget.10064] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/02/2016] [Indexed: 02/07/2023] Open
Abstract
Evidences have shown that dysbiosis could promote the progression of colorectal cancer (CRC). However, the association of dysbiosis and prognosis of CRC is barely investigated. Therefore, we used 16S rRNA gene sequencing approach to determine differences in microbiota among tumor tissues of different prognosis and found that Fusobacterium nucleatum and Bacteroides fragilis were more abundant in worse prognosis groups, while Faecalibacterium prausnitzii displayed higher abundance in survival group. To further explore the prognostic value of the found bacteria, Kaplan-Meier and Cox proportional regression analyses were used and the results exhibited that high abundance of F. nucleatum and B. fragilis were independent indicators of poor patient's survival. Besides, the expression of major inflammatory mediator were analyzed using PCR and western blot methods, and it turned out that high abundance of F. nucleatum was associated with increased expression of TNF-α, β-catenin and NF-κB, while COX-2, MMP-9 and NF-κB were positively related with high B. fragilis level, and high level of F. prausnitzii showed lower expression of β-catenin, MMP-9 and NF-κB. Moreover, immunohistochemical analysis indicated that KRAS and BRAF expression were prominent in F. nucleatum and B. fragilis high abundance group, while MLH1 showed lower expression. In conclusion, F. nucleatum, B. fragilis and F. prausnitzii can be identified as useful prognostic biomarkers for CRC, and dysbiosis might worsen the patients' prognosis by up-regulating gut inflammation level.
Collapse
Affiliation(s)
- Zhiliang Wei
- Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shougen Cao
- Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shanglong Liu
- Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zengwu Yao
- Department of General Surgery, Yantai Yuhuangding Hospital, Yantai, China
| | - Teng Sun
- Department of General Surgery, Qingdao Municipal Hospital Group, Qingdao, China
| | - Yi Li
- Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jiante Li
- Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Qingdao University Medical College, Qingdao, China
| | - Yanbing Zhou
- Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
717
|
Forbes JD, Van Domselaar G, Bernstein CN. The Gut Microbiota in Immune-Mediated Inflammatory Diseases. Front Microbiol 2016; 7:1081. [PMID: 27462309 PMCID: PMC4939298 DOI: 10.3389/fmicb.2016.01081] [Citation(s) in RCA: 276] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/28/2016] [Indexed: 12/17/2022] Open
Abstract
The collection of microbes and their genes that exist within and on the human body, collectively known as the microbiome has emerged as a principal factor in human health and disease. Humans and microbes have established a symbiotic association over time, and perturbations in this association have been linked to several immune-mediated inflammatory diseases (IMID) including inflammatory bowel disease, rheumatoid arthritis, and multiple sclerosis. IMID is a term used to describe a group of chronic, highly disabling diseases that affect different organ systems. Though a cornerstone commonality between IMID is the idiopathic nature of disease, a considerable portion of their pathobiology overlaps including epidemiological co-occurrence, genetic susceptibility loci and environmental risk factors. At present, it is clear that persons with an IMID are at an increased risk for developing comorbidities, including additional IMID. Advancements in sequencing technologies and a parallel explosion of 16S rDNA and metagenomics community profiling studies have allowed for the characterization of microbiomes throughout the human body including the gut, in a myriad of human diseases and in health. The main challenge now is to determine if alterations of gut flora are common between IMID or, if particular changes in the gut community are in fact specific to a single disease. Herein, we review and discuss the relationships between the gut microbiota and IMID.
Collapse
Affiliation(s)
- Jessica D. Forbes
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, WinnipegMB, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, WinnipegMB, Canada
| | - Gary Van Domselaar
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, WinnipegMB, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, WinnipegMB, Canada
| | - Charles N. Bernstein
- Department of Internal Medicine and the IBD Clinical and Research Centre, University of Manitoba, WinnipegMB, Canada
| |
Collapse
|
718
|
Drewes JL, Housseau F, Sears CL. Sporadic colorectal cancer: microbial contributors to disease prevention, development and therapy. Br J Cancer 2016; 115:273-80. [PMID: 27380134 PMCID: PMC4973155 DOI: 10.1038/bjc.2016.189] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 12/14/2022] Open
Abstract
The gut microbiota has been hailed as an accessory organ, with functions critical to the host including dietary metabolic activities and assistance in the development of a proper functioning immune system. However, an aberrant microbiota (dysbiosis) may influence disease processes such as colorectal cancer. In this review, we discuss recent advances in our understanding of the contributions of the microbiota to prevention, initiation/progression, and treatment of colorectal cancer, with a major focus on biofilms and the antimicrobial and antitumoural immune response.
Collapse
Affiliation(s)
- Julia L Drewes
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Franck Housseau
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cynthia L Sears
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287, USA
| |
Collapse
|
719
|
Sivaprakasam S, Gurav A, Paschall AV, Coe GL, Chaudhary K, Cai Y, Kolhe R, Martin P, Browning D, Huang L, Shi H, Sifuentes H, Vijay-Kumar M, Thompson SA, Munn DH, Mellor A, McGaha TL, Shiao P, Cutler CW, Liu K, Ganapathy V, Li H, Singh N. An essential role of Ffar2 (Gpr43) in dietary fibre-mediated promotion of healthy composition of gut microbiota and suppression of intestinal carcinogenesis. Oncogenesis 2016; 5:e238. [PMID: 27348268 PMCID: PMC4945739 DOI: 10.1038/oncsis.2016.38] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 12/19/2022] Open
Abstract
Composition of the gut microbiota has profound effects on intestinal carcinogenesis. Diet and host genetics play critical roles in shaping the composition of gut microbiota. Whether diet and host genes interact with each other to bring specific changes in gut microbiota that affect intestinal carcinogenesis is unknown. Ability of dietary fibre to specifically increase beneficial gut microbiota at the expense of pathogenic bacteria in vivo via unknown mechanism is an important process that suppresses intestinal inflammation and carcinogenesis. Free fatty acid receptor 2 (FFAR2 or GPR43) is a receptor for short-chain fatty acids (acetate, propionate and butyrate), metabolites of dietary fibre fermentation by gut microbiota. Here, we show FFAR2 is down modulated in human colon cancers than matched adjacent healthy tissue. Consistent with this, Ffar2(-/-) mice are hypersusceptible to development of intestinal carcinogenesis. Dietary fibre suppressed colon carcinogenesis in an Ffar2-dependent manner. Ffar2 played an essential role in dietary fibre-mediated promotion of beneficial gut microbiota, Bifidobacterium species (spp) and suppression of Helicobacter hepaticus and Prevotellaceae. Moreover, numbers of Bifidobacterium is reduced, whereas those of Prevotellaceae are increased in human colon cancers than matched adjacent normal tissue. Administration of Bifidobacterium mitigated intestinal inflammation and carcinogenesis in Ffar2(-/-) mice. Taken together, these findings suggest that interplay between dietary fibre and Ffar2 play a key role in promoting healthy composition of gut microbiota that stimulates intestinal health.
Collapse
Affiliation(s)
- S Sivaprakasam
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA, USA
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences, Lubbock, TX, USA
| | - A Gurav
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA, USA
| | - A V Paschall
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA, USA
| | - G L Coe
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA, USA
| | - K Chaudhary
- Cancer Research Center, Georgia Regents University, Augusta, GA, USA
| | - Y Cai
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA, USA
| | - R Kolhe
- Department of Pathology, Georgia Regents University, Augusta, GA, USA
| | - P Martin
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA, USA
| | - D Browning
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA, USA
| | - L Huang
- Cancer Research Center, Georgia Regents University, Augusta, GA, USA
| | - H Shi
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA, USA
- Cancer Research Center, Georgia Regents University, Augusta, GA, USA
| | - H Sifuentes
- Department of Medicine, Georgia Regents University, Augusta, GA, USA
| | - M Vijay-Kumar
- Departments of Nutritional Sciences & Medicine, Pennsylvania State University, Medical Center, Hershey, PA, USA
| | - S A Thompson
- Department of Medicine, Georgia Regents University, Augusta, GA, USA
| | - D H Munn
- Cancer Research Center, Georgia Regents University, Augusta, GA, USA
- Department of Pediatrics, Georgia Regents University, Augusta, GA, USA
| | - A Mellor
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - T L McGaha
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - P Shiao
- College of Nursing, Georgia Regents University, Augusta, GA, USA
| | - C W Cutler
- Department of Periodontics, Georgia Regents University, Augusta, GA, USA
| | - K Liu
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA, USA
| | - V Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences, Lubbock, TX, USA
| | - H Li
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA, USA
| | - N Singh
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA, USA
- Cancer Research Center, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
720
|
Lv Y, Nie SL, Zhou JM, Liu F, Hu YB, Jiang JR, Li N, Liu JS. Overexpression of NDUFA4L2 is associated with poor prognosis in patients with colorectal cancer. ANZ J Surg 2016; 87:E251-E255. [PMID: 27226356 DOI: 10.1111/ans.13617] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/25/2016] [Accepted: 03/02/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND NDUFA4L2 (NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-like 2, also called NADH-ubiquinone oxidoreductase MLRQ subunit homologue) was clearly enriched in the mitochondrial fraction under hypoxic conditions, and immunofluorescence showed a clear colocalization of NDUFA4L2 and cytochrome c in some tumour cells. However, little study has investigated its prognostic value in colorectal cancer (CRC). METHODS In our study, mRNA-NDUFA4L2 and protein expression were analysed in 150 cases of CRC and adjacent normal tissues using immunohistochemistry, semi-quantitative reverse transcriptase-polymerase chain reaction. The correlation between NDUFA4L2 expression and clinicopathological factors was evaluated by the Chi-square test. Overall survival of patients was analysed by the Kaplan-Meier method. RESULTS NDUFA4L2 overexpression was observed in 84% (126/150) of CRC tissues, but only in 24.7% (37/150) of adjacent normal tissues (P < 0.05). Semi-quantitative reverse transcriptase-polymerase chain reaction showed average mRNA expression levels to be 23.34 ± 1.356 and 4.34 ± 1.132 for CRC tissue and adjacent normal tissue (P < 0.05). Statistical analysis showed a significant correlation of NDUFA4L2 expression with histological grade, Dukes' stages, lymph node metastasis and liver metastasis. More importantly, multivariate analysis indicated that overexpression of NDUFA4L2 was an independent prognostic factor for CRC patients (P = 0.002). NDUFA4L2-negative patients had a higher tumour-free/overall survival rate than patients with high NDUFA4L2 expression (P = 0.001 and 0.002, respectively). CONCLUSIONS Our data suggest that NDUFA4L2 overexpression is associated with tumour progression and a poor prognosis in CRC patients.
Collapse
Affiliation(s)
- Yun Lv
- University of South China, Hengyang, Hunan, China
| | - Shao-Lin Nie
- Department of Colorectal Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ju-Mei Zhou
- Department of Colorectal Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Feng Liu
- University of South China, Hengyang, Hunan, China
| | - Ying-Bin Hu
- Department of Colorectal Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jia-Rui Jiang
- Department of Colorectal Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ni Li
- Department of Colorectal Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jing-Shi Liu
- Department of Colorectal Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
721
|
Abstract
The oral periodontopathic bacterium Fusobacterium nucleatum has been repeatedly associated with colorectal tumors. Molecular analysis has identified specific virulence factors that promote tumorigenesis in the colon. However, other oral community members, such as members of the Porphyromonas spp., are also found with F. nucleatum on colonic tumors, and thus, narrow studies of individual pathogens do not take community-wide virulence properties into account. A broader view of oral bacterial physiology and pathogenesis identifies two factors that could promote colonization and persistence of oral bacterial communities in the colon. The polymicrobial nature of oral biofilms and the asaccharolytic metabolism of many of these species make them well suited to life in the microenvironment of colonic lesions. Consideration of these two factors offers a novel perspective on the role of oral microbiota in the initiation, development, and treatment of colorectal cancer.
Collapse
|
722
|
Fu BC, Randolph TW, Lim U, Monroe KR, Cheng I, Wilkens LR, Le Marchand L, Hullar MAJ, Lampe JW. Characterization of the gut microbiome in epidemiologic studies: the multiethnic cohort experience. Ann Epidemiol 2016; 26:373-9. [PMID: 27039047 PMCID: PMC4892953 DOI: 10.1016/j.annepidem.2016.02.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/03/2016] [Accepted: 02/26/2016] [Indexed: 12/30/2022]
Abstract
PURPOSE The development of next-generation sequencing and accompanying bioinformatics tools has revolutionized characterization of microbial communities. As interest grows in the role of the human microbiome in health and disease, so does the need for well-powered, robustly designed epidemiologic studies. Here, we discuss sources of bias that can arise in gut microbiome research. METHODS Research comparing methods of specimen collection, preservation, processing, and analysis of gut microbiome samples is reviewed. Although selected studies are primarily based on the gut, many of the same principles are applicable to samples derived from other anatomical sites. Methods for participant recruitment and sampling of the gut microbiome implemented in an ongoing population-based study, the Multiethnic Cohort (MEC), are also described. RESULTS Variation in methodologies can influence the results of human microbiome studies. To help minimize bias, techniques such as sample homogenization, addition of internal standards, and quality filtering should be adopted in protocols. Within the MEC, participant response rates to stool sample collection were comparable to other studies, and in-home stool sample collection yields sufficient high-quality DNA for gut microbiome analysis. CONCLUSIONS Application of standardized and quality controlled methods in human microbiome studies is necessary to ensure data quality and comparability among studies.
Collapse
Affiliation(s)
- Benjamin C Fu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA; Department of Epidemiology, University of Washington, Seattle
| | - Timothy W Randolph
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Unhee Lim
- Epidemiology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu
| | - Kristine R Monroe
- Department of Preventive Medicine, University of Southern California, Los Angeles
| | - Iona Cheng
- Cancer Prevention Institute of California, Fremont; Stanford Cancer Institute, Stanford, CA
| | - Lynne R Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu
| | - Meredith A J Hullar
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Johanna W Lampe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA; Department of Epidemiology, University of Washington, Seattle.
| |
Collapse
|
723
|
Park CH, Han DS, Oh YH, Lee AR, Lee YR, Eun CS. Role of Fusobacteria in the serrated pathway of colorectal carcinogenesis. Sci Rep 2016; 6:25271. [PMID: 27125587 PMCID: PMC4850483 DOI: 10.1038/srep25271] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/30/2016] [Indexed: 02/07/2023] Open
Abstract
Fusobacteria are associated with colorectal cancer (CRC) and are amplified during colorectal carcinogenesis. Compared to the adenoma-carcinoma sequence of carcinogenesis, serrated neoplasm has distinct clinical features and a different molecular background. We aimed to compare the gut microbiome between tubular adenoma (TA) and sessile serrated adenoma/polyp (SSA/P). Patients with TA, SSA/P, or CRC were recruited. Three pieces of colorectal mucosal tissue were obtained from each patient by endoscopic biopsy. 16S rRNA gene pyrosequencing and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) were performed. Among 26 enrolled patients, 8, 10, and 8 had TA, SSA/P, and CRC, respectively. The relative abundance of Fusobacteria did not differ significantly between the TA and SSA/P groups (4.3% and 1.9%, P = 0.739) but was higher in the CRC group (33.8%) than in the TA or SSA/P group, respectively (TA vs. CRC, P = 0.002, false discovery rate [FDR] = 0.023; SSA/P vs. CRC, P < 0.001, FDR = 0.001). PICRUSt revealed that most functions in the TA metagenome were similar to those in the SSA/P metagenome. The gut microbiome, including relative abundance of Fusobacteria, did not differ between TA and SSA/P, suggesting that Fusobacteria may contribute to both the serrated pathway and the adenoma-carcinoma sequence.
Collapse
Affiliation(s)
- Chan Hyuk Park
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri 11923, Korea
| | - Dong Soo Han
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri 11923, Korea
| | - Young-Ha Oh
- Department of Pathology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri 11923, Korea
| | - A-Reum Lee
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri 11923, Korea
| | - Yu-Ra Lee
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri 11923, Korea
| | - Chang Soo Eun
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri 11923, Korea
| |
Collapse
|
724
|
Saito T, Nishikawa H, Wada H, Nagano Y, Sugiyama D, Atarashi K, Maeda Y, Hamaguchi M, Ohkura N, Sato E, Nagase H, Nishimura J, Yamamoto H, Takiguchi S, Tanoue T, Suda W, Morita H, Hattori M, Honda K, Mori M, Doki Y, Sakaguchi S. Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat Med 2016; 22:679-84. [PMID: 27111280 DOI: 10.1038/nm.4086] [Citation(s) in RCA: 637] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 03/17/2016] [Indexed: 12/11/2022]
Abstract
CD4(+) T cells that express the forkhead box P3 (FOXP3) transcription factor function as regulatory T (Treg) cells and hinder effective immune responses against cancer cells. Abundant Treg cell infiltration into tumors is associated with poor clinical outcomes in various types of cancers. However, the role of Treg cells is controversial in colorectal cancers (CRCs), in which FOXP3(+) T cell infiltration indicated better prognosis in some studies. Here we show that CRCs, which are commonly infiltrated by suppression-competent FOXP3(hi) Treg cells, can be classified into two types by the degree of additional infiltration of FOXP3(lo) nonsuppressive T cells. The latter, which are distinguished from FOXP3(+) Treg cells by non-expression of the naive T cell marker CD45RA and instability of FOXP3, secreted inflammatory cytokines. Indeed, CRCs with abundant infiltration of FOXP3(lo) T cells showed significantly better prognosis than those with predominantly FOXP3(hi) Treg cell infiltration. Development of such inflammatory FOXP3(lo) non-Treg cells may depend on secretion of interleukin (IL)-12 and transforming growth factor (TGF)-β by tissues and their presence was correlated with tumor invasion by intestinal bacteria, especially Fusobacterium nucleatum. Thus, functionally distinct subpopulations of tumor-infiltrating FOXP3(+) T cells contribute in opposing ways to determining CRC prognosis. Depletion of FOXP3(hi) Treg cells from tumor tissues, which would augment antitumor immunity, could thus be used as an effective treatment strategy for CRCs and other cancers, whereas strategies that locally increase the population of FOXP3(lo) non-Treg cells could be used to suppress or prevent tumor formation.
Collapse
Affiliation(s)
- Takuro Saito
- Experimental Immunology, World Premier International Research Center (WPI), Immunology Frontier Research Center, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroyoshi Nishikawa
- Experimental Immunology, World Premier International Research Center (WPI), Immunology Frontier Research Center, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hisashi Wada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuji Nagano
- RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan
| | - Daisuke Sugiyama
- Experimental Immunology, World Premier International Research Center (WPI), Immunology Frontier Research Center, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Koji Atarashi
- RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan
| | - Yuka Maeda
- Experimental Immunology, World Premier International Research Center (WPI), Immunology Frontier Research Center, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masahide Hamaguchi
- Experimental Immunology, World Premier International Research Center (WPI), Immunology Frontier Research Center, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Naganari Ohkura
- Experimental Immunology, World Premier International Research Center (WPI), Immunology Frontier Research Center, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Eiichi Sato
- Department of Pathology, Institute of Medical Science (Medical Research Center), Tokyo Medical University, Tokyo, Japan
| | - Hirotsugu Nagase
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Junichi Nishimura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hirofumi Yamamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takeshi Tanoue
- RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan
| | - Wataru Suda
- Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | - Hidetoshi Morita
- School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Masahira Hattori
- Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | - Kenya Honda
- RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shimon Sakaguchi
- Experimental Immunology, World Premier International Research Center (WPI), Immunology Frontier Research Center, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
725
|
Xu H, Jiang W, Zhu F, Zhu C, Wei J, Wang J. Expression of Wntless in colorectal carcinomas is associated with invasion, metastasis, and poor survival. APMIS 2016; 124:522-8. [PMID: 27102079 DOI: 10.1111/apm.12534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/17/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Hanfeng Xu
- Department of Oncology; The Second Affiliated Hospital of Southeast University; Nanjing China
| | - Wen Jiang
- Department of Oncology; The Second Affiliated Hospital of Southeast University; Nanjing China
| | - Fang Zhu
- Department of Oncology; The Second Affiliated Hospital of Southeast University; Nanjing China
| | - Chuandong Zhu
- Department of Oncology; The Second Affiliated Hospital of Southeast University; Nanjing China
| | - Juan Wei
- Department of Oncology; The Second Affiliated Hospital of Southeast University; Nanjing China
| | - Jiandong Wang
- Department of Pathology; Jinling Hospital; Nanjing China
| |
Collapse
|
726
|
Abstract
Colorectal cancer (CRC) is one of the most frequent causes of cancer death worldwide and is associated with adoption of a diet high in animal protein and saturated fat. Saturated fat induces increased bile secretion into the intestine. Increased bile secretion selects for populations of gut microbes capable of altering the bile acid pool, generating tumor-promoting secondary bile acids such as deoxycholic acid and lithocholic acid. Epidemiological evidence suggests CRC is associated with increased levels of DCA in serum, bile, and stool. Mechanisms by which secondary bile acids promote CRC are explored. Furthermore, in humans bile acid conjugation can vary by diet. Vegetarian diets favor glycine conjugation while diets high in animal protein favor taurine conjugation. Metabolism of taurine conjugated bile acids by gut microbes generates hydrogen sulfide, a genotoxic compound. Thus, taurocholic acid has the potential to stimulate intestinal bacteria capable of converting taurine and cholic acid to hydrogen sulfide and deoxycholic acid, a genotoxin and tumor-promoter, respectively.
Collapse
Affiliation(s)
- Jason M. Ridlon
- Carl R. Woese Institute for Genome Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA,Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Patricia G. Wolf
- Carl R. Woese Institute for Genome Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA,Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA,Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - H. Rex Gaskins
- Carl R. Woese Institute for Genome Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA,Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA,Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA,University of Illinois Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
727
|
Li YY, Ge QX, Cao J, Zhou YJ, Du YL, Shen B, Wan YJY, Nie YQ. Association of Fusobacterium nucleatum infection with colorectal cancer in Chinese patients. World J Gastroenterol 2016; 22:3227-3233. [PMID: 27004000 PMCID: PMC4789998 DOI: 10.3748/wjg.v22.i11.3227] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/28/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate Fusobacterium nucleatum (F. nucleatum) abundance in colorectal cancer (CRC) tissues and its association with CRC invasiveness in Chinese patients. METHODS The resected cancer and adjacent normal tissues (10 cm beyond cancer margins) from 101 consecutive patients with CRC were collected. Fluorescent quantitative polymerase chain reaction (FQ-PCR) was applied to detect F. nucleatum in CRC and normal tissues. The difference of F. nucleatum abundance between cancer and normal tissues and the relationship of F. nucleatum abundance with clinical variables were evaluated. Fluorescence in situ hybridization (FISH) analysis was performed on 22 CRC tissues with the highest F. nucleatum abundance by FQ-PCR testing to confirm FQ-PCR results. RESULTS The median abundance of F. nucleatum in CRC tissues [0.242 (0.178-0.276)] was significantly higher than that in normal controls [0.050 (0.023-0.067)] (P < 0.001). F. nucleatum was over-represented in 88/101 (87.1%) CRC samples. The abundance of F. nucleatum determined by 2(-ΔCT) was significantly greater in tumor samples [0.242 (0.178, 0.276)] than in normal controls [0.050 (0.023, 0.067)] (P < 0.001). The frequency of patients with lymph node metastases was higher in the over-abundance group [52/88 (59.1%)] than in the under-abundance group [0/13 (0%)] (P < 0.005). No significant association of F. nucleatum with other clinico-pathological variables was observed (P > 0.05). FISH analysis also found more F. nucleatum in CRC than in normal tissues (median number 6, 25(th) 3, 75(th) 10 vs 2, 25(th) 1, 75(th) 5) (P < 0.01). CONCLUSION F. nucleatum was enriched in CRC tissues and associated with CRC development and metastasis.
Collapse
|
728
|
Tremlett H, Fadrosh DW, Faruqi AA, Hart J, Roalstad S, Graves J, Lynch S, Waubant E. Gut microbiota composition and relapse risk in pediatric MS: A pilot study. J Neurol Sci 2016; 363:153-7. [PMID: 27000242 DOI: 10.1016/j.jns.2016.02.042] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/11/2016] [Accepted: 02/16/2016] [Indexed: 12/13/2022]
Abstract
We explored the association between baseline gut microbiota (16S rRNA biomarker sequencing of stool samples) in 17 relapsing-remitting pediatric MS cases and risk of relapse over a mean 19.8 months follow-up. From the Kaplan-Meier curve, 25% relapsed within an estimated 166 days from baseline. A shorter time to relapse was associated with Fusobacteria depletion (p=0.001 log-rank test), expansion of the Firmicutes (p=0.003), and presence of the Archaea Euryarchaeota (p=0.037). After covariate adjustments for age and immunomodulatory drug exposure, only absence (vs. presence) of Fusobacteria was associated with relapse risk (hazard ratio=3.2 (95% CI: 1.2-9.0), p=0.024). Further investigation is warranted. Findings could offer new targets to alter the MS disease course.
Collapse
Affiliation(s)
| | - Douglas W Fadrosh
- University of California, San Francisco, San Francisco, CA, United States
| | - Ali A Faruqi
- University of California, San Francisco, San Francisco, CA, United States
| | - Janace Hart
- University of California, San Francisco, San Francisco, CA, United States
| | | | - Jennifer Graves
- University of California, San Francisco, San Francisco, CA, United States
| | - Susan Lynch
- University of California, San Francisco, San Francisco, CA, United States
| | - Emmanuelle Waubant
- University of California, San Francisco, San Francisco, CA, United States
| | | |
Collapse
|
729
|
The Outlook for Immune Checkpoint Targeting Strategies in Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2016. [DOI: 10.1007/s11888-016-0309-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
730
|
Martinez-Useros J, Garcia-Foncillas J. Obesity and colorectal cancer: molecular features of adipose tissue. J Transl Med 2016; 14:21. [PMID: 26801617 PMCID: PMC4722674 DOI: 10.1186/s12967-016-0772-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/05/2016] [Indexed: 02/06/2023] Open
Abstract
The huge part of population in developed countries is overweight or obese. Obesity is often determined by body mass index (BMI) but new accurate methods and ratios have recently appeared to measure body fat or fat located in the intestines. Early diagnosis of obesity is crucial since it is considered an increasing colorectal cancer risk factor. On the one hand, colorectal cancer has been strongly associated with lifestyle factors. A diet rich in red and processed meats may increase colorectal cancer risk; however, high-fiber diets (grains, cereals and fruits) have been associated with a decreased risk of colorectal cancer. Other life-style factors associated with obesity that also increase colorectal cancer risk are physical inactivity, smoking and high alcohol intake. Cutting-edge studies reported that high-risk transformation ability of adipose tissue is due to production of different pro-inflammatory cytokines like IL-8, IL-6 or IL-2 and other enzymes like lactate dehydrogenase (LDH) and tumour necrosis factor alpha (TNFα). Furthermore, oxidative stress produces fatty-acid peroxidation whose metabolites possess very high toxicities and mutagenic properties. 4-hydroxy-2-nonenal (4-HNE) is an active compounds that upregulates prostaglandin E2 which is directly associated with high proliferative colorectal cancer. Moreover, 4-HNE deregulates cell proliferation, cell survival, differentiation, autophagy, senescence, apoptosis and necrosis via mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PIK3CA)—AKT and protein kinase C pathways. Other product of lipid peroxidation is malondialdehyde (MDA) being able to regulate insulin through WNT-pathway as well as having demonstrated its mutagenic capability. Accumulation of point mutation enables genomic evolution of colorectal cancer described in the model of Fearon and Vogelstein. In this review, we will summarize different determination methods and techniques to assess a truthfully diagnosis and we will explain some of the capabilities that performs adipocytes as the largest endocrine organ.
Collapse
Affiliation(s)
- Javier Martinez-Useros
- Translational Oncology Division, Oncohealth Institute, FIIS-Fundacion Jimenez Diaz, Av. Reyes Catolicos 2, 28040, Madrid, Spain.
| | - Jesus Garcia-Foncillas
- Translational Oncology Division, Oncohealth Institute, FIIS-Fundacion Jimenez Diaz, Av. Reyes Catolicos 2, 28040, Madrid, Spain.
| |
Collapse
|
731
|
Sahnane N, Magnoli F, Bernasconi B, Tibiletti MG, Romualdi C, Pedroni M, Ponz de Leon M, Magnani G, Reggiani-Bonetti L, Bertario L, Signoroni S, Capella C, Sessa F, Furlan D. Aberrant DNA methylation profiles of inherited and sporadic colorectal cancer. Clin Epigenetics 2015; 7:131. [PMID: 26697123 PMCID: PMC4687378 DOI: 10.1186/s13148-015-0165-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/16/2015] [Indexed: 12/11/2022] Open
Abstract
Background Aberrant DNA methylation has been widely investigated in sporadic colorectal carcinomas (CRCs), and extensive work has been performed to characterize different methylation profiles of CRC. Less information is available about the role of epigenetics in hereditary CRC and about the possible clinical use of epigenetic biomarkers in CRC, regardless of the etiopathogenesis. Long interspersed nucleotide element 1 (LINE-1) hypomethylation and gene-specific hypermethylation of 38 promoters were analyzed in multicenter series of 220 CRCs including 71 Lynch (Lynch colorectal cancer with microsatellite instability (LS-MSI)), 23 CRCs of patients under 40 years in which the main inherited CRC syndromes had been excluded (early-onset colorectal cancer with microsatellite stability (EO-MSS)), and 126 sporadic CRCs, comprising 28 cases with microsatellite instability (S-MSI) and 98 that were microsatellite stable (S-MSS). All tumor methylation patterns were integrated with clinico-pathological and genetic characteristics, namely chromosomal instability (CIN), TP53 loss, BRAF, and KRAS mutations. Results LS-MSI mainly showed absence of extensive DNA hypo- and hypermethylation. LINE-1 hypomethylation was observed in a subset of LS-MSI that were associated with the worse prognosis. Genetically, they commonly displayed G:A transition in the KRAS gene and absence of a CIN phenotype and of TP53 loss. S-MSI exhibited a specific epigenetic profile showing low rates of LINE-1 hypomethylation and extensive gene hypermethylation. S-MSI were mainly characterized by MLH1 methylation, BRAF mutation, and absence of a CIN phenotype and of TP53 loss. By contrast, S-MSS showed a high frequency of LINE-1 hypomethylation and of CIN, and they were associated with a worse prognosis. EO-MSS were a genetically and epigenetically heterogeneous group of CRCs. Like LS-MSI, some EO-MSS displayed low rates of DNA hypo- or hypermethylation and frequent G:A transitions in the KRAS gene, suggesting that a genetic syndrome might still be unrevealed in these patients. By contrast, some EO-MSS showed similar features to those observed in S-MSS, such as LINE-1 hypomethylation, CIN, and TP53 deletion. In all four classes, hypermethylation of ESR1, GATA5, and WT1 was very common. Conclusions Aberrant DNA methylation analysis allows the identification of different subsets of CRCs. This study confirms the potential utility of methylation tests for early detection of CRC and suggests that LINE-1 hypomethylation may be a useful prognostic marker in both sporadic and inherited CRCs. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0165-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nora Sahnane
- Department of Surgical and Morphological Sciences, Section of Anatomic Pathology, University of Insubria, Via O. Rossi, 9, 21100 Varese, Italy
| | - Francesca Magnoli
- Department of Surgical and Morphological Sciences, Section of Anatomic Pathology, University of Insubria, Via O. Rossi, 9, 21100 Varese, Italy
| | - Barbara Bernasconi
- Department of Surgical and Morphological Sciences, Section of Anatomic Pathology, University of Insubria, Via O. Rossi, 9, 21100 Varese, Italy
| | | | - Chiara Romualdi
- CRIBI Biotechnology Center, University of Padova, Padua, Italy
| | - Monica Pedroni
- Department of Diagnostic Medicine, Clinical and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Maurizio Ponz de Leon
- Department of Diagnostic Medicine, Clinical and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Magnani
- Department of Diagnostic Medicine, Clinical and Public Health, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Lucio Bertario
- Unit of Hereditary Digestive Tract Tumours, Fondazione IRCCS-Istituto Nazionale dei Tumori Milan, Modena, Italy
| | - Stefano Signoroni
- Unit of Hereditary Digestive Tract Tumours, Fondazione IRCCS-Istituto Nazionale dei Tumori Milan, Modena, Italy
| | - Carlo Capella
- Department of Surgical and Morphological Sciences, Section of Anatomic Pathology, University of Insubria, Via O. Rossi, 9, 21100 Varese, Italy
| | - Fausto Sessa
- Department of Surgical and Morphological Sciences, Section of Anatomic Pathology, University of Insubria, Via O. Rossi, 9, 21100 Varese, Italy
| | - Daniela Furlan
- Department of Surgical and Morphological Sciences, Section of Anatomic Pathology, University of Insubria, Via O. Rossi, 9, 21100 Varese, Italy
| | | |
Collapse
|
732
|
Nishi A, Milner DA, Giovannucci EL, Nishihara R, Tan AS, Kawachi I, Ogino S. Integration of molecular pathology, epidemiology and social science for global precision medicine. Expert Rev Mol Diagn 2015; 16:11-23. [PMID: 26636627 PMCID: PMC4713314 DOI: 10.1586/14737159.2016.1115346] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The precision medicine concept and the unique disease principle imply that each patient has unique pathogenic processes resulting from heterogeneous cellular genetic and epigenetic alterations and interactions between cells (including immune cells) and exposures, including dietary, environmental, microbial and lifestyle factors. As a core method field in population health science and medicine, epidemiology is a growing scientific discipline that can analyze disease risk factors and develop statistical methodologies to maximize utilization of big data on populations and disease pathology. The evolving transdisciplinary field of molecular pathological epidemiology (MPE) can advance biomedical and health research by linking exposures to molecular pathologic signatures, enhancing causal inference and identifying potential biomarkers for clinical impact. The MPE approach can be applied to any diseases, although it has been most commonly used in neoplastic diseases (including breast, lung and colorectal cancers) because of availability of various molecular diagnostic tests. However, use of state-of-the-art genomic, epigenomic and other omic technologies and expensive drugs in modern healthcare systems increases racial, ethnic and socioeconomic disparities. To address this, we propose to integrate molecular pathology, epidemiology and social science. Social epidemiology integrates the latter two fields. The integrative social MPE model can embrace sociology, economics and precision medicine, address global health disparities and inequalities, and elucidate biological effects of social environments, behaviors and networks. We foresee advancements of molecular medicine, including molecular diagnostics, biomedical imaging and targeted therapeutics, which should benefit individuals in a global population, by means of an interdisciplinary approach of integrative MPE and social health science.
Collapse
Affiliation(s)
- Akihiro Nishi
- Yale Institute for Network Science, New Haven, CT, USA (AN); Department of Sociology, Yale University, New Haven, CT, USA (AN); Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA (DAM, SO); Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA (DAM); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA (ELG, RN, SO); Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA (ELG, RN); Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA (ELG); Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA (RN); Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA (RN, AST, SO); Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA (AST, IK)
| | - Danny A Milner
- Yale Institute for Network Science, New Haven, CT, USA (AN); Department of Sociology, Yale University, New Haven, CT, USA (AN); Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA (DAM, SO); Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA (DAM); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA (ELG, RN, SO); Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA (ELG, RN); Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA (ELG); Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA (RN); Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA (RN, AST, SO); Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA (AST, IK)
| | - Edward L. Giovannucci
- Yale Institute for Network Science, New Haven, CT, USA (AN); Department of Sociology, Yale University, New Haven, CT, USA (AN); Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA (DAM, SO); Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA (DAM); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA (ELG, RN, SO); Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA (ELG, RN); Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA (ELG); Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA (RN); Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA (RN, AST, SO); Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA (AST, IK)
| | - Reiko Nishihara
- Yale Institute for Network Science, New Haven, CT, USA (AN); Department of Sociology, Yale University, New Haven, CT, USA (AN); Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA (DAM, SO); Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA (DAM); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA (ELG, RN, SO); Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA (ELG, RN); Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA (ELG); Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA (RN); Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA (RN, AST, SO); Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA (AST, IK)
| | - Andy S. Tan
- Yale Institute for Network Science, New Haven, CT, USA (AN); Department of Sociology, Yale University, New Haven, CT, USA (AN); Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA (DAM, SO); Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA (DAM); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA (ELG, RN, SO); Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA (ELG, RN); Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA (ELG); Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA (RN); Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA (RN, AST, SO); Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA (AST, IK)
| | - Ichiro Kawachi
- Yale Institute for Network Science, New Haven, CT, USA (AN); Department of Sociology, Yale University, New Haven, CT, USA (AN); Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA (DAM, SO); Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA (DAM); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA (ELG, RN, SO); Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA (ELG, RN); Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA (ELG); Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA (RN); Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA (RN, AST, SO); Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA (AST, IK)
| | - Shuji Ogino
- Yale Institute for Network Science, New Haven, CT, USA (AN); Department of Sociology, Yale University, New Haven, CT, USA (AN); Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA (DAM, SO); Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA (DAM); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA (ELG, RN, SO); Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA (ELG, RN); Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA (ELG); Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA (RN); Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA (RN, AST, SO); Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA (AST, IK)
| |
Collapse
|