701
|
Tumor Cells and Cancer-Associated Fibroblasts: An Updated Metabolic Perspective. Cancers (Basel) 2021; 13:cancers13030399. [PMID: 33499022 PMCID: PMC7865797 DOI: 10.3390/cancers13030399] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Tumors are a complex ecosystem including not only cancer cells, but also many distinct cell types of the tumor micro-environment. While the Warburg effect assessing high glucose uptake in tumors was recognized a long time ago, metabolic heterogeneity within tumors has only recently been demonstrated. Indeed, several recent studies have highlighted other sources of carbon than glucose, including amino acids, fatty acids and lactate. These newly identified metabolic trajectories modulate key cancer cell features, such as invasion capacities. In addition, cancer metabolic heterogeneity is not restricted to cancer cells. Here, we also describe heterogeneity of Cancer-Associated Fibroblast (CAF) subpopulations and their complex metabolic crosstalk with cancer cells. Abstract During the past decades, metabolism and redox imbalance have gained considerable attention in the cancer field. In addition to the well-known Warburg effect occurring in tumor cells, numerous other metabolic deregulations have now been reported. Indeed, metabolic reprograming in cancer is much more heterogeneous than initially thought. In particular, a high diversity of carbon sources used by tumor cells has now been shown to contribute to this metabolic heterogeneity in cancer. Moreover, the molecular mechanisms newly highlighted are multiple and shed light on novel actors. Furthermore, the impact of this metabolic heterogeneity on tumor microenvironment has also been an intense subject of research recently. Here, we will describe the new metabolic pathways newly uncovered in tumor cells. We will also have a particular focus on Cancer-Associated Fibroblasts (CAF), whose identity, function and metabolism have been recently under profound investigation. In that sense, we will discuss about the metabolic crosstalk between tumor cells and CAF.
Collapse
|
702
|
Ritchie S, Reed DA, Pereira BA, Timpson P. The cancer cell secretome drives cooperative manipulation of the tumour microenvironment to accelerate tumourigenesis. Fac Rev 2021; 10:4. [PMID: 33659922 PMCID: PMC7894270 DOI: 10.12703/r/10-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cellular secretions are a fundamental aspect of cell-cell and cell-matrix interactions in vivo. In malignancy, cancer cells have an aberrant secretome compared to their non-malignant counterparts, termed the "cancer cell secretome". The cancer cell secretome can influence every stage of the tumourigenic cascade. At the primary site, cancer cells can secrete a multitude of factors that facilitate invasion into surrounding tissue, allowing interaction with the local tumour microenvironment (TME), driving tumour development and progression. In more advanced disease, the cancer cell secretome can be involved in extravasation and metastasis, including metastatic organotropism, pre-metastatic niche (PMN) preparation, and metastatic outgrowth. In this review, we will explore the latest advances in the field of cancer cell secretions, including its dynamic and complex role in activating the TME and potentiating invasion and metastasis, with comments on how these secretions may also promote therapy resistance.
Collapse
Affiliation(s)
- Shona Ritchie
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Daniel A Reed
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Brooke A Pereira
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Paul Timpson
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2010, Australia
| |
Collapse
|
703
|
Yang C, Yuan H, Gu J, Xu D, Wang M, Qiao J, Yang X, Zhang J, Yao M, Gu J, Tu H, Gan Y. ABCA8-mediated efflux of taurocholic acid contributes to gemcitabine insensitivity in human pancreatic cancer via the S1PR2-ERK pathway. Cell Death Discov 2021; 7:6. [PMID: 33431858 PMCID: PMC7801517 DOI: 10.1038/s41420-020-00390-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/09/2020] [Accepted: 12/09/2020] [Indexed: 12/25/2022] Open
Abstract
The development of resistance to anticancer drugs is believed to cause chemotherapy failure in pancreatic cancer (PC). The efflux of anticancer drugs mediated by ATP-binding cassette (ABC) transporters is a widely accepted mechanism for chemoresistance, but for ABCA subfamily members, which are characterized by their ability to transport lipids and cholesterol, its role in chemoresistance remains unknown. Here we found that the expression of ABCA8, a member of ABCA subfamily transporters, was significantly increased in human PC cells after gemcitabine (GEM) treatment, as well as in established GEM-resistant (Gem-R) PC cells. Importantly, ABCA8 knockdown reversed the chemoresistance phenotype of Gem-R cells, whereas ABCA8 overexpression significantly decreased the sensitivity of human PC cells to GEM, both in vitro and in vivo, demonstrating an important role of ABCA8 in regulating chemosensitivity. Moreover, our results showed that treatment with taurocholic acid (TCA), an endogenous substrate of ABCA8, also induced GEM insensitivity in PC cells. We further demonstrated that ABCA8 mediates the efflux of TCA out of PC cells, and that extracellular TCA activates extracellular signal-regulated kinase (ERK) signaling via the sphingosine 1-phosphate receptor 2 (S1PR2), which is responsible for ABCA8-induced GEM ineffectiveness. Together, these findings reveal a novel TCA-related mechanism of ABCA subfamily transporter-mediated chemoresistance that goes beyond the role of a drug pump and suggest ABCA8 or the TCA-S1RP2-ERK pathway as potential targets for improving the effectiveness of and overcoming the resistance to chemotherapy in PC.
Collapse
Affiliation(s)
- Chunmei Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Yuan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Thoracic Surgery, Cancer Research Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinyang Gu
- Department of Transplantation, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dengfei Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Oncology, Henan Province People's Hospital, Zhengzhou, Henan Province, China
| | - Mingwei Wang
- Department of Radiation Oncology, The Third Hospital Affiliated to Nantong University, Nantong, Jiangsu Province, China
| | - Jie Qiao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Yang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jian Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianren Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Tu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yu Gan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
704
|
Biffi G, Tuveson DA. Diversity and Biology of Cancer-Associated Fibroblasts. Physiol Rev 2021; 101:147-176. [PMID: 32466724 PMCID: PMC7864232 DOI: 10.1152/physrev.00048.2019] [Citation(s) in RCA: 698] [Impact Index Per Article: 174.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023] Open
Abstract
Efforts to develop anti-cancer therapies have largely focused on targeting the epithelial compartment, despite the presence of non-neoplastic stromal components that substantially contribute to the progression of the tumor. Indeed, cancer cell survival, growth, migration, and even dormancy are influenced by the surrounding tumor microenvironment (TME). Within the TME, cancer-associated fibroblasts (CAFs) have been shown to play several roles in the development of a tumor. They secrete growth factors, inflammatory ligands, and extracellular matrix proteins that promote cancer cell proliferation, therapy resistance, and immune exclusion. However, recent work indicates that CAFs may also restrain tumor progression in some circumstances. In this review, we summarize the body of work on CAFs, with a particular focus on the most recent discoveries about fibroblast heterogeneity, plasticity, and functions. We also highlight the commonalities of fibroblasts present across different cancer types, and in normal and inflammatory states. Finally, we present the latest advances regarding therapeutic strategies targeting CAFs that are undergoing preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Giulia Biffi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York; and Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York; and Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
705
|
Feldmann K, Maurer C, Peschke K, Teller S, Schuck K, Steiger K, Engleitner T, Öllinger R, Nomura A, Wirges N, Papargyriou A, Jahan Sarker RS, Ranjan RA, Dantes Z, Weichert W, Rustgi AK, Schmid RM, Rad R, Schneider G, Saur D, Reichert M. Mesenchymal Plasticity Regulated by Prrx1 Drives Aggressive Pancreatic Cancer Biology. Gastroenterology 2021; 160:346-361.e24. [PMID: 33007300 DOI: 10.1053/j.gastro.2020.09.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 08/11/2020] [Accepted: 09/06/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) is characterized by a fibroblast-rich desmoplastic stroma. Cancer-associated fibroblasts (CAFs) have been shown to display a high degree of interconvertible states including quiescent, inflammatory, and myofibroblastic phenotypes; however, the mechanisms by which this plasticity is achieved are poorly understood. Here, we aim to elucidate the role of CAF plasticity and its impact on PDAC biology. METHODS To investigate the role of mesenchymal plasticity in PDAC progression, we generated a PDAC mouse model in which CAF plasticity is modulated by genetic depletion of the transcription factor Prrx1. Primary pancreatic fibroblasts from this mouse model were further characterized by functional in vitro assays. To characterize the impact of CAFs on tumor differentiation and response to chemotherapy, various coculture experiments were performed. In vivo, tumors were characterized by morphology, extracellular matrix composition, and tumor dissemination and metastasis. RESULTS Our in vivo findings showed that Prrx1-deficient CAFs remain constitutively activated. Importantly, this CAF phenotype determines tumor differentiation and disrupts systemic tumor dissemination. Mechanistically, coculture experiments of tumor organoids and CAFs showed that CAFs shape the epithelial-to-mesenchymal phenotype and confer gemcitabine resistance of PDAC cells induced by CAF-derived hepatocyte growth factor. Furthermore, gene expression analysis showed that patients with pancreatic cancer with high stromal expression of Prrx1 display the squamous, most aggressive, subtype of PDAC. CONCLUSIONS Here, we define that the Prrx1 transcription factor is critical for tuning CAF activation, allowing a dynamic switch between a dormant and an activated state. This work shows that Prrx1-mediated CAF plasticity has significant impact on PDAC biology and therapeutic resistance.
Collapse
Affiliation(s)
- Karin Feldmann
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Carlo Maurer
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Katja Peschke
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Steffen Teller
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Kathleen Schuck
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, Technical University of Munich, Munich, Germany; Comparative Experimental Pathology, Technical University of Munich, Munich, Germany; German Cancer Consortium, Partner Site Munich, Germany
| | - Thomas Engleitner
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; German Cancer Consortium, Partner Site Munich, Germany
| | - Rupert Öllinger
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; German Cancer Consortium, Partner Site Munich, Germany
| | - Alice Nomura
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Nils Wirges
- Institute of Pathology, Technical University of Munich, Munich, Germany; Comparative Experimental Pathology, Technical University of Munich, Munich, Germany
| | - Aristeidis Papargyriou
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Institute of Stem Cell Research, Helmholtz Center for Health and Environmental Research Munich, Neuherberg, Germany
| | - Rim Sabrina Jahan Sarker
- Institute of Pathology, Technical University of Munich, Munich, Germany; Comparative Experimental Pathology, Technical University of Munich, Munich, Germany
| | - Raphela Aranie Ranjan
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Zahra Dantes
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University of Munich, Munich, Germany; Comparative Experimental Pathology, Technical University of Munich, Munich, Germany; German Cancer Consortium, Partner Site Munich, Germany
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, Columbia University, New York, New York
| | - Roland M Schmid
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; German Cancer Consortium, Partner Site Munich, Germany
| | - Roland Rad
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; German Cancer Consortium, Partner Site Munich, Germany
| | - Günter Schneider
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; German Cancer Consortium, Partner Site Munich, Germany
| | - Dieter Saur
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; German Cancer Consortium, Partner Site Munich, Germany
| | - Maximilian Reichert
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; German Cancer Consortium, Partner Site Munich, Germany.
| |
Collapse
|
706
|
Caston RA, Shah F, Starcher CL, Wireman R, Babb O, Grimard M, McGeown J, Armstrong L, Tong Y, Pili R, Rupert J, Zimmers TA, Elmi AN, Pollok KE, Motea EA, Kelley MR, Fishel ML. Combined inhibition of Ref-1 and STAT3 leads to synergistic tumour inhibition in multiple cancers using 3D and in vivo tumour co-culture models. J Cell Mol Med 2021; 25:784-800. [PMID: 33274592 PMCID: PMC7812272 DOI: 10.1111/jcmm.16132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022] Open
Abstract
With a plethora of molecularly targeted agents under investigation in cancer, a clear need exists to understand which pathways can be targeted simultaneously with multiple agents to elicit a maximal killing effect on the tumour. Combination therapy provides the most promise in difficult to treat cancers such as pancreatic. Ref-1 is a multifunctional protein with a role in redox signalling that activates transcription factors such as NF-κB, AP-1, HIF-1α and STAT3. Formerly, we have demonstrated that dual targeting of Ref-1 (redox factor-1) and STAT3 is synergistic and decreases cell viability in pancreatic cancer cells. Data presented here extensively expands upon this work and provides further insights into the relationship of STAT3 and Ref-1 in multiple cancer types. Using targeted small molecule inhibitors, Ref-1 redox signalling was blocked along with STAT3 activation, and tumour growth evaluated in the presence and absence of the relevant tumour microenvironment. Our study utilized qPCR, cytotoxicity and in vivo analysis of tumour and cancer-associated fibroblasts (CAF) response to determine the synergy of Ref-1 and STAT3 inhibitors. Overall, pancreatic tumours grown in the presence of CAFs were sensitized to the combination of STAT3 and Ref-1 inhibition in vivo. In vitro bladder and pancreatic cancer demonstrated the most synergistic responses. By disabling both of these important pathways, this combination therapy has the capacity to hinder crosstalk between the tumour and its microenvironment, leading to improved tumour response.
Collapse
Affiliation(s)
- Rachel A. Caston
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Fenil Shah
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Colton L. Starcher
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisINUSA
| | - Randall Wireman
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Olivia Babb
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Michelle Grimard
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Jack McGeown
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Lee Armstrong
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Yan Tong
- Department of BiostatisticsIndiana University School of MedicineIndianapolisINUSA
| | - Roberto Pili
- Department of Pharmacology and ToxicologyIndiana University School of MedicineIndianapolisINUSA
- Department of UrologyIndiana University School of MedicineIndianapolisINUSA
- Department of Hematology and OncologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
| | - Joseph Rupert
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - Teresa A. Zimmers
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- Richard L. Roudebush Veterans Administration Medical CenterIndianapolisINUSA
| | - Adily N. Elmi
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
| | - Karen E. Pollok
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
- Department of Pharmacology and ToxicologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
| | - Edward A. Motea
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
| | - Mark R. Kelley
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisINUSA
- Department of Pharmacology and ToxicologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
| | - Melissa L. Fishel
- Department of Pediatrics and Herman B Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisINUSA
- Department of Pharmacology and ToxicologyIndiana University School of MedicineIndianapolisINUSA
- Indiana University Simon Comprehensive Cancer CenterIndiana University School of MedicineIndianapolisINUSA
| |
Collapse
|
707
|
Zhu N, Huang B, Zhu L, Wang Y. Potential Mechanisms of Triptolide against Diabetic Cardiomyopathy Based on Network Pharmacology Analysis and Molecular Docking. J Diabetes Res 2021; 2021:9944589. [PMID: 34926700 PMCID: PMC8672107 DOI: 10.1155/2021/9944589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/03/2021] [Accepted: 11/16/2021] [Indexed: 01/14/2023] Open
Abstract
The incidence of heart failure was significantly increased in patients with diabetic cardiomyopathy (DCM). The therapeutic effect of triptolide on DCM has been reported, but the underlying mechanisms remain to be elucidated. This study is aimed at investigating the potential targets of triptolide as a therapeutic strategy for DCM using a network pharmacology approach. Triptolide and its targets were identified by the Traditional Chinese Medicine Systems Pharmacology database. DCM-associated protein targets were identified using the comparative toxicogenomics database and the GeneCards database. The networks of triptolide-target genes and DCM-associated target genes were created by Cytoscape. The common targets and enriched pathways were identified by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The gene-gene interaction network was analyzed by the GeneMANIA database. The drug-target-pathway network was constructed by Cytoscape. Six candidate protein targets were identified in both triptolide target network and DCM-associated network: STAT3, VEGFA, FOS, TNF, TP53, and TGFB1. The gene-gene interaction based on the targets of triptolide in DCM revealed the interaction of these targets. Additionally, five key targets that were linked to more than three genes were determined as crucial genes. The GO analysis identified 10 biological processes, 2 cellular components, and 10 molecular functions. The KEGG analysis identified 10 signaling pathways. The docking analysis showed that triptolide fits in the binding pockets of all six candidate targets. In conclusion, the present study explored the potential targets and signaling pathways of triptolide as a treatment for DCM. These results illustrate the mechanism of action of triptolide as an anti-DCM agent and contribute to a better understanding of triptolide as a transcriptional regulator of cytokine mRNA expression.
Collapse
Affiliation(s)
- Ning Zhu
- Department of Cardiology, The Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), No. 299 Guan Road, Wenzhou, 325000 Zhejiang Province, China
| | - Bingwu Huang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325000 Zhejiang Province, China
| | - Liuyan Zhu
- Department of General Practice, The Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), No. 299 Guan Road, Wenzhou, 325000 Zhejiang Province, China
| | - Yi Wang
- Department of Cardiology, The Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), No. 299 Guan Road, Wenzhou, 325000 Zhejiang Province, China
| |
Collapse
|
708
|
Zhang Y, Ware MB, Zaidi MY, Ruggieri AN, Olson BM, Komar H, Farren MR, Nagaraju GP, Zhang C, Chen Z, Sarmiento JM, Ahmed R, Maithel SK, El-Rayes BF, Lesinski GB. Heat Shock Protein-90 Inhibition Alters Activation of Pancreatic Stellate Cells and Enhances the Efficacy of PD-1 Blockade in Pancreatic Cancer. Mol Cancer Ther 2021; 20:150-160. [PMID: 33037138 PMCID: PMC7790996 DOI: 10.1158/1535-7163.mct-19-0911] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/09/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a prominent fibrotic stroma, which is a result of interactions between tumor, immune and pancreatic stellate cells (PSC), or cancer-associated fibroblasts (CAF). Targeting inflammatory pathways present within the stroma may improve access of effector immune cells to PDAC and response to immunotherapy. Heat shock protein-90 (Hsp90) is a chaperone protein and a versatile target in pancreatic cancer. Hsp90 regulates a diverse array of cellular processes of relevance to both the tumor and the immune system. However, to date the role of Hsp90 in PSC/CAF has not been explored in detail. We hypothesized that Hsp90 inhibition would limit inflammatory signals, thereby reprogramming the PDAC tumor microenvironment to enhance sensitivity to PD-1 blockade. Treatment of immortalized and primary patient PSC/CAF with the Hsp90 inhibitor XL888 decreased IL6, a key cytokine that orchestrates immune changes in PDAC at the transcript and protein level in vitro XL888 directly limited PSC/CAF growth and reduced Jak/STAT and MAPK signaling intermediates and alpha-SMA expression as determined via immunoblot. Combined therapy with XL888 and anti-PD-1 was efficacious in C57BL/6 mice bearing syngeneic subcutaneous (Panc02) or orthotopic (KPC-Luc) tumors. Tumors from mice treated with both XL888 and anti-PD-1 had a significantly increased CD8+ and CD4+ T-cell infiltrate and a unique transcriptional profile characterized by upregulation of genes associated with immune response and chemotaxis. These data demonstrate that Hsp90 inhibition directly affects PSC/CAF in vitro and enhances the efficacy of anti-PD-1 blockade in vivo.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
- Department of Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Michael B Ware
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Mohammad Y Zaidi
- Department of Surgery, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Amanda N Ruggieri
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Brian M Olson
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Hannah Komar
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Matthew R Farren
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Chao Zhang
- Department of Biostatistics, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Zhengjia Chen
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, Illinois
| | - Juan M Sarmiento
- Department of Surgery, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | | | - Shishir K Maithel
- Department of Surgery, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Bassel F El-Rayes
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia.
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia.
| |
Collapse
|
709
|
Zhang Z, Zhang H, Liu T, Chen T, Wang D, Tang D. Heterogeneous Pancreatic Stellate Cells Are Powerful Contributors to the Malignant Progression of Pancreatic Cancer. Front Cell Dev Biol 2021; 9:783617. [PMID: 34988078 PMCID: PMC8722736 DOI: 10.3389/fcell.2021.783617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/24/2021] [Indexed: 02/05/2023] Open
Abstract
Pancreatic cancer is associated with highly malignant tumors and poor prognosis due to strong therapeutic resistance. Accumulating evidence shows that activated pancreatic stellate cells (PSC) play an important role in the malignant progression of pancreatic cancer. In recent years, the rapid development of single-cell sequencing technology has facilitated the analysis of PSC population heterogeneity, allowing for the elucidation of the relationship between different subsets of cells with tumor development and therapeutic resistance. Researchers have identified two spatially separated, functionally complementary, and reversible subtypes, namely myofibroblastic and inflammatory PSC. Myofibroblastic PSC produce large amounts of pro-fibroproliferative collagen fibers, whereas inflammatory PSC express large amounts of inflammatory cytokines. These distinct cell subtypes cooperate to create a microenvironment suitable for cancer cell survival. Therefore, further understanding of the differentiation of PSC and their distinct functions will provide insight into more effective treatment options for pancreatic cancer patients.
Collapse
Affiliation(s)
- Zhilin Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Huan Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Tian Liu
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Tian Chen
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Daorong Wang
- Department of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Institute of General Surgery, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Northern Jiangsu People’s Hospital, Clinical Medical College, Institute of General Surgery, Yangzhou University, Yangzhou, China
- *Correspondence: Dong Tang,
| |
Collapse
|
710
|
Emerging roles for the IL-6 family of cytokines in pancreatic cancer. Clin Sci (Lond) 2020; 134:2091-2115. [PMID: 32808663 PMCID: PMC7434989 DOI: 10.1042/cs20191211] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer has one of the poorest prognoses of all malignancies, with little improvement in clinical outcome over the past 40 years. Pancreatic ductal adenocarcinoma is responsible for the vast majority of pancreatic cancer cases, and is characterised by the presence of a dense stroma that impacts therapeutic efficacy and drives pro-tumorigenic programs. More specifically, the inflammatory nature of the tumour microenvironment is thought to underlie the loss of anti-tumour immunity and development of resistance to current treatments. Inflammatory pathways are largely mediated by the expression of, and signalling through, cytokines, chemokines, and other cellular messengers. In recent years, there has been much attention focused on dual targeting of cancer cells and the tumour microenvironment. Here we review our current understanding of the role of IL-6, and the broader IL-6 cytokine family, in pancreatic cancer, including their contribution to pancreatic inflammation and various roles in pancreatic cancer pathogenesis. We also summarise potential opportunities for therapeutic targeting of these pathways as an avenue towards combating poor patient outcomes.
Collapse
|
711
|
Barrett RL, Puré E. Cancer-associated fibroblasts and their influence on tumor immunity and immunotherapy. eLife 2020; 9:57243. [PMID: 33370234 PMCID: PMC7769568 DOI: 10.7554/elife.57243] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 12/12/2020] [Indexed: 12/15/2022] Open
Abstract
Fibroblasts play an essential role in organogenesis and the integrity of tissue architecture and function. Growth in most solid tumors is dependent upon remodeling 'stroma', composed of cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM), which plays a critical role in tumor initiation, progression, metastasis, and therapeutic resistance. Recent studies have clearly established that the potent immunosuppressive activity of stroma is a major mechanism by which stroma can promote tumor progression and confer resistance to immune-based therapies. Herein, we review recent advances in identifying the stroma-dependent mechanisms that regulate cancer-associated inflammation and antitumor immunity, in particular, the interactions between fibroblasts and immune cells. We also review the potential mechanisms by which stroma can confer resistance to immune-based therapies for solid tumors and current advancements in stroma-targeted therapies.
Collapse
Affiliation(s)
| | - Ellen Puré
- University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
712
|
Tran F, Klein C, Arlt A, Imm S, Knappe E, Simmons A, Rosenstiel P, Seibler P. Stem Cells and Organoid Technology in Precision Medicine in Inflammation: Are We There Yet? Front Immunol 2020; 11:573562. [PMID: 33408713 PMCID: PMC7779798 DOI: 10.3389/fimmu.2020.573562] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Individualised cellular models of disease are a key tool for precision medicine to recapitulate chronic inflammatory processes. Organoid models can be derived from induced pluripotent stem cells (iPSCs) or from primary stem cells ex vivo. These models have been emerging over the past decade and have been used to reconstruct the respective organ-specific physiology and pathology, at an unsurpassed depth. In cancer research, patient-derived cancer organoids opened new perspectives in predicting therapy response and provided novel insights into tumour biology. In precision medicine of chronic inflammatory disorders, stem-cell based organoid models are currently being evaluated in pre-clinical pharmacodynamic studies (clinical studies in a dish) and are employed in clinical studies, e.g., by re-transplanting autologous epithelial organoids to re-establish intestinal barrier integrity. A particularly exciting feature of iPSC systems is their ability to provide insights into organ systems and inflammatory disease processes, which cannot be monitored with clinical biopsies, such as immune reactions in neurodegenerative disorders. Refinement of differentiation protocols, and next-generation co-culturing methods, aimed at generating self-organised, complex tissues in vitro, will be the next logical steps. In this mini-review, we critically discuss the current state-of-the-art stem cell and organoid technologies, as well as their future impact, potential and promises in combating immune-mediated chronic diseases.
Collapse
Affiliation(s)
- Florian Tran
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany.,Klinik für Innere Medizin I, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Alexander Arlt
- Klinik für Innere Medizin I, Universitätsklinikum Schleswig-Holstein, Kiel, Germany.,University Department for Gastroenterology, Klinikum Oldenburg AöR, European Medical School (EMS), Oldenburg, Germany
| | - Simon Imm
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Evelyn Knappe
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Alison Simmons
- MRC Human Immunology Unit (MRC), University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, University of Oxford, Oxford, United Kingdom
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
713
|
Loe AKH, Rao-Bhatia A, Kim JE, Kim TH. Mesenchymal Niches for Digestive Organ Development, Homeostasis, and Disease. Trends Cell Biol 2020; 31:152-165. [PMID: 33349527 DOI: 10.1016/j.tcb.2020.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023]
Abstract
Mesenchymal-epithelial crosstalk plays a crucial role in organ development and stem cell function. However, the identity of the mesenchymal cells involved in this exchange was unclear. Recent significant advances in single-cell transcriptomics have defined the heterogeneity of these mesenchymal niches. By combining multiomic profiling, animal models, and organoid culture, new studies have not only demonstrated the roles of diverse mesenchymal cell populations but also defined the mechanisms underlying their regulation of niche signals. Focusing on several digestive organs, we describe how similar and diverse mesenchymal cell populations promote organ development and maintain proper stem cell activity, and how the heterogeneity of mesenchymal niches is altered in digestive diseases such as inflammation and cancer.
Collapse
Affiliation(s)
- Adrian Kwan Ho Loe
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Abilasha Rao-Bhatia
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ji-Eun Kim
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tae-Hee Kim
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
714
|
Dominijanni A, Devarasetty M, Soker S. Manipulating the Tumor Microenvironment in Tumor Organoids Induces Phenotypic Changes and Chemoresistance. iScience 2020; 23:101851. [PMID: 33319176 PMCID: PMC7724203 DOI: 10.1016/j.isci.2020.101851] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/05/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Tumors comprised a tightly surrounded tumor microenvironment, made up of non-cellular extracellular matrix (ECM) and stromal cells. Although treatment response is often attributed to tumor heterogeneity, progression and malignancy are profoundly influenced by tumor cell interactions with the surrounding ECM. Here, we used a tumor organoid model, consisting of hepatic stellate cells (HSCs) embedded in collagen type 1 (Col1) and colorectal cancer cell (HCT-116) spheroids, to determine the relationship between the ECM architecture, cancer cell malignancy, and chemoresistance. Exogenous transforming growth factor beta (TGF-β) used to activate the HSCs increased the remodeling and bundling of Col1 in the ECM around the cancer spheroid. A dense ECM architecture inhibited tumor cell growth, reversed their mesenchymal phenotype, preserved stem cell population, and reduced chemotherapy response. Overall, our results demonstrate that controlled biofabrication and manipulation of the ECM in tumor organoids results enables studying tumor cell-ECM interactions and better understand tumor cell response to chemotherapies.
Collapse
Affiliation(s)
- Anthony Dominijanni
- Wake Forest University School of Medicine, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| | - Mahesh Devarasetty
- Wake Forest University School of Medicine, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| | - Shay Soker
- Wake Forest University School of Medicine, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
715
|
Sunami Y, Häußler J, Kleeff J. Cellular Heterogeneity of Pancreatic Stellate Cells, Mesenchymal Stem Cells, and Cancer-Associated Fibroblasts in Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12123770. [PMID: 33333727 PMCID: PMC7765115 DOI: 10.3390/cancers12123770] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer is projected to become the second deadliest cancer by 2030 in the United States, and the overall five-year survival rate stands still at around 9%. The stroma compartment can make up more than 90% of the pancreatic tumor mass, contributing to the hypoxic tumor microenvironment. The dense stroma with extracellular matrix proteins can be a physical and metabolic barrier reducing therapeutic efficacy. Cancer-associated fibroblasts are a source of extracellular matrix proteins. Therefore, targeting these cells, or extracellular matrix proteins, have been considered as therapeutic strategies. However, several studies show that deletion of cancer-associated fibroblasts may have tumor-promoting effects. Cancer-associated fibroblasts are derived from a variety of different cell types, such as pancreatic stellate cells and mesenchymal stem cells, and constitute a diverse cell population consisting of several functionally heterogeneous subtypes. Several subtypes of cancer-associated fibroblasts exhibit a tumor-restraining function. This review article summarizes recent findings regarding origin and functional heterogeneity of tumor-promoting as well as tumor-restraining cancer-associated fibroblasts. A better understanding of cancer-associated fibroblast heterogeneity could provide more specific and personalized therapies for pancreatic cancer patients in the future.
Collapse
|
716
|
Yu Y, Schuck K, Friess H, Kong B. Targeting Aggressive Fibroblasts to Enhance the Treatment of Pancreatic Cancer. Expert Opin Ther Targets 2020; 25:5-13. [PMID: 33246383 DOI: 10.1080/14728222.2021.1857727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant cancer entities, which is characterized by abundant desmoplastic stroma. The stroma consists of extracellular matrix, infiltrating immune cells, cancer-associated fibroblasts (CAFs) and others. Depending on environmental cues, CAFs can be highly heterogeneous and play context-dependent roles in PDAC progression. AREAS COVERED In this article, we discuss the biological significance of CAFs heterogeneity (oncogenic vs. tumor-suppressive) in pancreatic carcinogenesis. In particular, the complex interaction between CAFs and infiltrating immune cells has a determinant role in defining the stromal composition. A subset of PDAC patients may benefit from anti-CAFs therapy. EXPERT OPINION Co-defined by CAFs and infiltrating immune cells, the prognostic stroma signature is clinically relevant in a subset of human PDAC. This is the patient population which may benefit from future anti-stroma or anti-CAFs therapies. To consider CAF heterogeneity is crucial for designing anti-stroma studies. Here, reliable and traceable subtype-specific markers for CAFs are urgently needed to dissect the biological impact of CAF heterogeneity on PDAC development spatiotemporally. Given the significant contribution of CAFs to immunosuppressive microenvironment of PDAC, it is conceivable to combine anti-CAFs therapy with immunotherapy. To implement a CAF-subtype specific therapy is crucially important to improve the effectiveness of current treatments including chemotherapies and immunotherapy.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Department of Surgery, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich (TUM) , Munich, Germany
| | - Kathleen Schuck
- Department of Surgery, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich (TUM) , Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich (TUM) , Munich, Germany
| | - Bo Kong
- Department of Surgery, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich (TUM) , Munich, Germany
| |
Collapse
|
717
|
Grauel AL, Nguyen B, Ruddy D, Laszewski T, Schwartz S, Chang J, Chen J, Piquet M, Pelletier M, Yan Z, Kirkpatrick ND, Wu J, deWeck A, Riester M, Hims M, Geyer FC, Wagner J, MacIsaac K, Deeds J, Diwanji R, Jayaraman P, Yu Y, Simmons Q, Weng S, Raza A, Minie B, Dostalek M, Chikkegowda P, Ruda V, Iartchouk O, Chen N, Thierry R, Zhou J, Pruteanu-Malinici I, Fabre C, Engelman JA, Dranoff G, Cremasco V. TGFβ-blockade uncovers stromal plasticity in tumors by revealing the existence of a subset of interferon-licensed fibroblasts. Nat Commun 2020; 11:6315. [PMID: 33298926 PMCID: PMC7725805 DOI: 10.1038/s41467-020-19920-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 11/05/2020] [Indexed: 02/08/2023] Open
Abstract
Despite the increasing interest in targeting stromal elements of the tumor microenvironment, we still face tremendous challenges in developing adequate therapeutics to modify the tumor stromal landscape. A major obstacle to this is our poor understanding of the phenotypic and functional heterogeneity of stromal cells in tumors. Herein, we perform an unbiased interrogation of tumor mesenchymal cells, delineating the co-existence of distinct subsets of cancer-associated fibroblasts (CAFs) in the microenvironment of murine carcinomas, each endowed with unique phenotypic features and functions. Furthermore, our study shows that neutralization of TGFβ in vivo leads to remodeling of CAF dynamics, greatly reducing the frequency and activity of the myofibroblast subset, while promoting the formation of a fibroblast population characterized by strong response to interferon and heightened immunomodulatory properties. These changes correlate with the development of productive anti-tumor immunity and greater efficacy of PD1 immunotherapy. Along with providing the scientific rationale for the evaluation of TGFβ and PD1 co-blockade in the clinical setting, this study also supports the concept of plasticity of the stromal cell landscape in tumors, laying the foundation for future investigations aimed at defining pathways and molecules to program CAF composition for cancer therapy.
Collapse
Affiliation(s)
- Angelo L Grauel
- Immuno-Oncology, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Beverly Nguyen
- Immuno-Oncology, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - David Ruddy
- Oncology, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Tyler Laszewski
- Immuno-Oncology, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Stephanie Schwartz
- Immuno-Oncology, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Jonathan Chang
- Immuno-Oncology, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Julie Chen
- Oncology, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Michelle Piquet
- Oncology, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Marc Pelletier
- Oncology Translational Research, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Zheng Yan
- Oncology Translational Research, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Nathaniel D Kirkpatrick
- Biotherapeutic and Analytical Technologies, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Jincheng Wu
- Oncology Data Science, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Antoine deWeck
- Oncology Data Science, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Markus Riester
- Oncology Data Science, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Matt Hims
- Oncology Translational Research, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Felipe Correa Geyer
- Oncology Translational Research, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Joel Wagner
- Oncology Data Science, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Kenzie MacIsaac
- Oncology Data Science, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - James Deeds
- Oncology Translational Research, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Rohan Diwanji
- Immuno-Oncology, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Pushpa Jayaraman
- Immuno-Oncology, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Yenyen Yu
- Oncology Translational Research, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Quincey Simmons
- Oncology Data Science, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Shaobu Weng
- Oncology Translational Research, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Alina Raza
- Oncology Translational Research, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Brian Minie
- Oncology Data Science, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Mirek Dostalek
- PKS Oncology, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Pavitra Chikkegowda
- Immuno-Oncology, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Vera Ruda
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Oleg Iartchouk
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Naiyan Chen
- Oncology Data Science, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Raphael Thierry
- Biotherapeutic and Analytical Technologies, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Joseph Zhou
- Immuno-Oncology, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Iulian Pruteanu-Malinici
- Immuno-Oncology, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Claire Fabre
- Translational Clinical Oncology, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Jeffrey A Engelman
- Oncology, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Glenn Dranoff
- Immuno-Oncology, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Viviana Cremasco
- Immuno-Oncology, Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA.
| |
Collapse
|
718
|
Seldin L, Macara IG. DNA Damage Promotes Epithelial Hyperplasia and Fate Mis-specification via Fibroblast Inflammasome Activation. Dev Cell 2020; 55:558-573.e6. [PMID: 33058780 PMCID: PMC7725994 DOI: 10.1016/j.devcel.2020.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/04/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022]
Abstract
DNA crosslinking agents are commonly used in cancer chemotherapy; however, responses of normal tissues to these agents have not been widely investigated. We reveal in mouse interfollicular epidermal, mammary and hair follicle epithelia that genotoxicity does not promote apoptosis but paradoxically induces hyperplasia and fate specification defects in quiescent stem cells. DNA damage to skin causes epithelial and dermal hyperplasia, tissue expansion, and proliferation-independent formation of abnormal K14/K10 dual-positive suprabasal cells. Unexpectedly, this behavior is epithelial cell non-autonomous and independent of an intact immune system. Instead, dermal fibroblasts are both necessary and sufficient to induce the epithelial response, which is mediated by activation of a fibroblast-specific NLRP3 inflammasome and subsequent IL-1β production. Thus, genotoxic agents that are used chemotherapeutically to promote cancer cell death can have the opposite effect on wild-type epithelia by inducing, via a non-autonomous IL-1β-driven mechanism, both hyperplasia and stem cell lineage defects.
Collapse
Affiliation(s)
- Lindsey Seldin
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Ian G Macara
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA.
| |
Collapse
|
719
|
Meng Q, Luo X, Chen J, Wang D, Chen E, Zhang W, Zhang G, Zhou W, Xu J, Song Z. Unmasking carcinoma-associated fibroblasts: Key transformation player within the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2020; 1874:188443. [DOI: 10.1016/j.bbcan.2020.188443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022]
|
720
|
Suri R, Zimmerman JW, Burkhart RA. Modeling human pancreatic ductal adenocarcinoma for translational research: current options, challenges, and prospective directions. ANNALS OF PANCREATIC CANCER 2020; 3:17. [PMID: 33889840 PMCID: PMC8059695 DOI: 10.21037/apc-20-29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating malignancy with one of the lowest survival rates. Early detection, an improved understanding of tumor biology, and novel therapeutic discoveries are needed in order to improve overall patient survival. Scientific progress towards meeting these goals relies upon accurate modeling of the human disease. From two-dimensional (2D) cell lines to the advanced modeling available today, we aim to characterize the critical tools in efforts to further understand PDAC biology. The National Center for Biotechnology Information's PubMed and the Elsevier's SCOPUS were used to perform a comprehensive literature review evaluating preclinical human-derived PDAC models. Keywords included pancreatic cancer, PDAC, preclinical models, KRAS mutations, xenograft, co-culturing fibroblasts, co-culturing lymphocytes and PDAC immunotherapy Initial search was limited to articles about PDAC and was then expanded to include other gastrointestinal malignancies where information may complement our effort. A supervised review of the key literature's references was utilized to augment the capture of relevant data. The discovery and refinement of techniques enabling immortalized 2D cell culture provided the cornerstone for modern cancer biology research. Cell lines have been widely used to represent PDAC in vitro but are limited in capacity to model three-dimensional (3D) tumor attributes and interactions within the tumor microenvironment. Xenografts are an alternative method to model PDAC with improved capacity to understand certain aspects of 3D tumor biology in vivo while limited by the use of immunodeficient mice. Advances of in vitro modeling techniques have led to 3D organoid models for PDAC biology. Co-culturing models in the 3D environment have been proposed as an efficient modeling system for improving upon the limitations encountered in the standard 2D and xenograft tumor models. The integrated network of cells and stroma that comprise PDAC in vivo need to be accurately depicted ex vivo to continue to make progress in this disease. Recapitulating the complex tumor microenvironment in a preclinical model of human disease is an outstanding and urgent need in PDAC. Definitive characterization of available human models for PDAC serves to further the core mission of pancreatic cancer translational research.
Collapse
Affiliation(s)
- Reecha Suri
- Division of Hepatobiliary and Pancreatic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacquelyn W. Zimmerman
- Department of Medical Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| | - Richard A. Burkhart
- Division of Hepatobiliary and Pancreatic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
721
|
Fang Z, Xu J, Zhang B, Wang W, Liu J, Liang C, Hua J, Meng Q, Yu X, Shi S. The promising role of noncoding RNAs in cancer-associated fibroblasts: an overview of current status and future perspectives. J Hematol Oncol 2020; 13:154. [PMID: 33213510 PMCID: PMC7678062 DOI: 10.1186/s13045-020-00988-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
As the most important component of the stromal cell population in the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) are crucial players in tumor initiation and progression. The interaction between CAFs and tumor cells, as well as the resulting effect, is much greater than initially expected. Numerous studies have shown that noncoding RNAs (ncRNAs) play an irreplaceable role in this interplay, and related evidence continues to emerge and advance. Under the action of ncRNAs, normal fibroblasts are directly or indirectly activated into CAFs, and their metabolic characteristics are changed; thus, CAFs can more effectively promote tumor progression. Moreover, via ncRNAs, activated CAFs can affect the gene expression and secretory characteristics of cells, alter the TME and enhance malignant biological processes in tumor cells to contribute to tumor promotion. Previously, ncRNA dysregulation was considered the main mechanism by which ncRNAs participate in the crosstalk between CAFs and tumor cells. Recently, however, exosomes containing ncRNAs have been identified as another vital mode of interaction between these two types of cells, with a more direct and clear function. Gaining an in-depth understanding of ncRNAs in CAFs and the complex regulatory network connecting CAFs with tumor cells might help us to establish more effective and safer approaches for cancer therapies targeting ncRNAs and CAFs and offer new hope for cancer patients.
Collapse
Affiliation(s)
- Zengli Fang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China. .,Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
722
|
Dysregulation of Transcription Factor Activity During Formation of Cancer-Associated Fibroblasts. Int J Mol Sci 2020; 21:ijms21228749. [PMID: 33228208 PMCID: PMC7699520 DOI: 10.3390/ijms21228749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/08/2020] [Accepted: 11/17/2020] [Indexed: 01/22/2023] Open
Abstract
The reciprocal interactions between cancer cells and the quiescent fibroblasts leading to the activation of cancer-associated fibroblasts (CAFs) serve an important role in cancer progression. Here, we investigated the activation of transcription factors (TFs) in prostate fibroblasts (WPMY cell line) co-cultured with normal prostate or tumorous cells (RWPE1 and RWPE2 cell lines, respectively). After indirect co-cultures, we performed mRNA-seq and predicted TF activity using mRNA expression profiles with the Systems EPigenomics Inference of Regulatory Activity (SEPIRA) package and the GTEx and mRNA-seq data of 483 cultured fibroblasts. The initial differential expression analysis between time points and experimental conditions showed that co-culture with normal epithelial cells mainly promotes an inflammatory response in fibroblasts, whereas with the cancerous epithelial, it stimulates transformation by changing the expression of the genes associated with microfilaments. TF activity analysis revealed only one positively regulated TF in the RWPE1 co-culture alone, while we observed dysregulation of 45 TFs (7 decreased activity and 38 increased activity) uniquely in co-culture with RWPE2. Pathway analysis showed that these 45 dysregulated TFs in fibroblasts co-cultured with RWPE2 cells may be associated with the RUNX1 and PTEN pathways. Moreover, we showed that observed dysregulation could be associated with FER1L4 expression. We conclude that phenotypic changes in fibroblast responses to co-culturing with cancer epithelium result from orchestrated dysregulation of signaling pathways that favor their transformation and motility rather than proinflammatory status. This dysregulation can be observed both at the TF and transcriptome levels.
Collapse
|
723
|
Garcia PE, Scales MK, Allen BL, Pasca di Magliano M. Pancreatic Fibroblast Heterogeneity: From Development to Cancer. Cells 2020; 9:E2464. [PMID: 33198201 PMCID: PMC7698149 DOI: 10.3390/cells9112464] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is characterized by an extensive fibroinflammatory microenvironment that accumulates from the onset of disease progression. Cancer-associated fibroblasts (CAFs) are a prominent cellular component of the stroma, but their role during carcinogenesis remains controversial, with both tumor-supporting and tumor-restraining functions reported in different studies. One explanation for these contradictory findings is the heterogeneous nature of the fibroblast populations, and the different roles each subset might play in carcinogenesis. Here, we review the current literature on the origin and function of pancreatic fibroblasts, from the developing organ to the healthy adult pancreas, and throughout the initiation and progression of PDA. We also discuss clinical approaches to targeting fibroblasts in PDA.
Collapse
Affiliation(s)
- Paloma E. Garcia
- Program in Molecular and Cellular Pathology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Michael K. Scales
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
| | - Benjamin L. Allen
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marina Pasca di Magliano
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
724
|
Abstract
Cancer-associated fibroblasts (CAFs) are the key component of tumor stromal. High heterogeneity of CAFs reflects in their origin, phenotype and function. Biological function which can be suggested by biomarkers of distinct CAF subgroups may be different, even opposite, just like water and fire. Identifying CAF subpopulations expressing different biomarkers and reconciling the relationship of the "water and fire" among distinct CAF subsets may be a breakthrough in tumor therapy. Herein, we briefly summarize the biomarkers commonly used or newly identified for distinct CAFs in terms of their features and potential clinical benefits.
Collapse
|
725
|
Single-Cell RNA Sequencing Unravels Heterogeneity of the Stromal Niche in Cutaneous Melanoma Heterogeneous Spheroids. Cancers (Basel) 2020; 12:cancers12113324. [PMID: 33182777 PMCID: PMC7697260 DOI: 10.3390/cancers12113324] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 12/21/2022] Open
Abstract
Heterogeneous spheroids have recently acquired a prominent position in melanoma research because they incorporate microenvironmental cues relevant for melanoma. In this study, we focused on the analysis of microenvironmental factors introduced in melanoma heterogeneous spheroids by different dermal fibroblasts. We aimed to map the fibroblast diversity resulting from previously acquired damage caused by exposure to extrinsic and intrinsic stimuli. To construct heterogeneous melanoma spheroids, we used normal dermal fibroblasts from the sun-protected skin of a juvenile donor. We compared them to the fibroblasts from the sun-exposed photodamaged skin of an adult donor. Further, we analysed the spheroids by single-cell RNA sequencing. To validate transcriptional data, we also compared the immunohistochemical analysis of heterogeneous spheroids to melanoma biopsies. We have distinguished three functional clusters in primary human fibroblasts from melanoma spheroids. These clusters differed in the expression of (a) extracellular matrix-related genes, (b) pro-inflammatory factors, and (c) TGFβ signalling superfamily. We observed a broader deregulation of gene transcription in previously photodamaged cells. We have confirmed that pro-inflammatory cytokine IL-6 significantly enhances melanoma invasion to the extracellular matrix in our model. This supports the opinion that the aspects of ageing are essential for reliable melanoma 3D modelling in vitro.
Collapse
|
726
|
Everts A, Bergeman M, McFadden G, Kemp V. Simultaneous Tumor and Stroma Targeting by Oncolytic Viruses. Biomedicines 2020; 8:E474. [PMID: 33167307 PMCID: PMC7694393 DOI: 10.3390/biomedicines8110474] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Current cancer therapeutics often insufficiently eradicate malignant cells due to the surrounding dense tumor stroma. This multi-componential tissue consists of mainly cancer-associated fibroblasts, the (compact) extracellular matrix, tumor vasculature, and tumor-associated macrophages, which all exert crucial roles in maintaining a pro-tumoral niche. Their continuous complex interactions with tumor cells promote tumor progression and metastasis, emphasizing the challenges in tumor therapy development. Over the last decade, advances in oncolytic virotherapy have shown that oncolytic viruses (OVs) are a promising multi-faceted therapeutic platform for simultaneous tumor and stroma targeting. In addition to promoting tumor cell oncolysis and systemic anti-tumor immunity, accumulating data suggest that OVs can also directly target stromal components, facilitating OV replication and spread, as well as promoting anti-tumor activity. This review provides a comprehensive overview of the interactions between native and genetically modified OVs and the different targetable tumor stromal components, and outlines strategies to improve stroma targeting by OVs.
Collapse
Affiliation(s)
- Anne Everts
- Research Program Infection and Immunity, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Melissa Bergeman
- Center for Immunotherapy, Vaccines and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (M.B.); (G.M.)
| | - Grant McFadden
- Center for Immunotherapy, Vaccines and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (M.B.); (G.M.)
| | - Vera Kemp
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands;
| |
Collapse
|
727
|
Evans RM, Lippman SM. Shining Light on the COVID-19 Pandemic: A Vitamin D Receptor Checkpoint in Defense of Unregulated Wound Healing. Cell Metab 2020; 32:704-709. [PMID: 32941797 PMCID: PMC7486067 DOI: 10.1016/j.cmet.2020.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 pneumonitis can quickly strike to incapacitate the lung, leading to severe disease and sometimes death. In this perspective, we suggest that vitamin D deficiency and the failure to activate the vitamin D receptor (VDR) can aggravate this respiratory syndrome by igniting a wounding response in stellate cells of the lung. The FDA-approved injectable vitamin D analog, paricalcitol, suppresses stellate cell-derived murine hepatic and pancreatic pro-inflammatory and pro-fibrotic changes. Therefore, we suggest a possible parallel program in the pulmonary stellate cells of COVID-19 patients and propose repurposing paricalcitol infusion therapy to restrain the COVID-19 cytokine storm. This proposed therapy could prove important to people of color who have higher COVID-19 mortality rates and lower vitamin D levels.
Collapse
Affiliation(s)
- Ronald M Evans
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Scott M Lippman
- Moores Cancer Center, UC San Diego School of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
728
|
Abstract
Tumors represent a hostile environment for the effector cells of cancer immunosurveillance. Immunosuppressive receptors and soluble or membrane-bound ligands are abundantly exposed and released by malignant entities and their stromal accomplices. As a consequence, executioners of antitumor immunity inefficiently navigate across cancer tissues and fail to eliminate malignant targets. By inducing immunogenic cancer cell death, oncolytic viruses profoundly reshape the tumor microenvironment. They trigger the local spread of danger signals and tumor-associated (as well as viral) antigens, thus attracting antigen-presenting cells, promoting the activation and expansion of lymphocytic populations, facilitating their infiltration in the tumor bed, and reinvigorating cytotoxic immune activity. The present review recapitulates key chemokines, growth factors and other cytokines that orchestrate this ballet of antitumoral leukocytes upon oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan G Pol
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, Paris, France; Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, Villejuif, France.
| | - Samuel T Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Shashi Gujar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, Paris, France; Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
729
|
Koliaraki V, Henriques A, Prados A, Kollias G. Unfolding innate mechanisms in the cancer microenvironment: The emerging role of the mesenchyme. J Exp Med 2020; 217:133714. [PMID: 32044979 PMCID: PMC7144533 DOI: 10.1084/jem.20190457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/09/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Innate mechanisms in the tumor stroma play a crucial role both in the initial rejection of tumors and in cancer promotion. Here, we provide a concise overview of the innate system in cancer and recent advances in the field, including the activation and functions of innate immune cells and the emerging innate properties and modulatory roles of the fibroblastic mesenchyme. Novel insights into the diverse identities and functions of the innate immune and mesenchymal cells in the microenvironment of tumors should lead to improved anticancer therapies.
Collapse
Affiliation(s)
- Vasiliki Koliaraki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Ana Henriques
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.,Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Alejandro Prados
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - George Kollias
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.,Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.,Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
730
|
Bulle A, Lim KH. Beyond just a tight fortress: contribution of stroma to epithelial-mesenchymal transition in pancreatic cancer. Signal Transduct Target Ther 2020; 5:249. [PMID: 33122631 PMCID: PMC7596088 DOI: 10.1038/s41392-020-00341-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/31/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Novel effective treatment is direly needed for patients with pancreatic ductal adenocarcinoma (PDAC). Therapeutics that target the driver mutations, especially the KRAS oncoprotein and its effector cascades, have been ineffective. It is increasing clear that the extensive fibro-inflammatory stroma (or desmoplasia) of PDAC plays an active role in the progression and therapeutic resistance of PDAC. The desmoplastic stroma is composed of dense extracellular matrix (ECM) deposited mainly by the cancer-associated-fibroblasts (CAFs) and infiltrated with various types of immune cells. The dense ECM functions as a physical barrier that limits tumor vasculatures and distribution of therapeutics to PDAC cells. In addition, mounting evidence have demonstrated that both CAFs and ECM promote PDAC cells aggressiveness through multiple mechanisms, particularly engagement of the epithelial-mesenchymal transition (EMT) program. Acquisition of a mesenchymal-like phenotype renders PDAC cells more invasive and resistant to therapy-induced apoptosis. Here, we critically review seminal and recent articles on the signaling mechanisms by which each stromal element promotes EMT in PDAC. We discussed the experimental models that are currently employed and best suited to study EMT in PDAC, which are instrumental in increasing the chance of successful clinical translation.
Collapse
Affiliation(s)
- Ashenafi Bulle
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
731
|
Chen H, Cheng Y, Wang X, Wang J, Shi X, Li X, Tan W, Tan Z. 3D printed in vitro tumor tissue model of colorectal cancer. Theranostics 2020; 10:12127-12143. [PMID: 33204333 PMCID: PMC7667682 DOI: 10.7150/thno.52450] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Rationale: The tumor microenvironment (TME) determines tumor progression and affects clinical therapy. Its basic components include cancer-associated fibroblasts (CAFs) and tumor-associated endothelial cells (TECs), both of which constitute the tumor matrix and microvascular network. The ability to simulate interactions between cells and extracellular matrix in a TME in vitro can assist the elucidation of cancer growth and evaluate the efficiency of therapies. Methods: In the present study, an in vitro 3D model of tumor tissue that mimicked in vivo cell physiological function was developed using tumor-associated stromal cells. Colorectal cancer cells, CAFs, and TECs were co-cultured on 3D-printed scaffolds so as to constitute an extracellular matrix (ECM) that allowed cell processes such as adhesion, stemness, proliferation, and vascularization to take place. Normal stromal cells were activated and reprogrammed into tumor-related stromal cells to construct a TME of tumor tissues. Results: The activated stromal cells overexpressed a variety of tumor-related markers and remodeled the ECM. Furthermore, the metabolic signals and malignant transformation of the in vitro 3D tumor tissue was substantially similar to that observed in tumors in vivo. Conclusions: The 3D tumor tissue exhibited physiological activity with high drug resistance. The model is suitable for research studies of tumor biology and the development of personalized treatments for cancer.
Collapse
Affiliation(s)
- Haoxiang Chen
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, Guangdong, 518000, China
| | - Yanxiang Cheng
- Department of Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaocheng Wang
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Jian Wang
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, Guangdong, 518000, China
| | - Xuelei Shi
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, Guangdong, 518000, China
| | - Xinghuan Li
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Weihong Tan
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Zhikai Tan
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
- Shenzhen Institute, Hunan University, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
732
|
Li Y, Chen Y, Miao L, Wang Y, Yu M, Yan X, Zhao Q, Cai H, Xiao Y, Huang G. Stress-induced upregulation of TNFSF4 in cancer-associated fibroblast facilitates chemoresistance of lung adenocarcinoma through inhibiting apoptosis of tumor cells. Cancer Lett 2020; 497:212-220. [PMID: 33132120 DOI: 10.1016/j.canlet.2020.10.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
Stress conditions induced by routine treatments might affect cancer-associated fibroblasts in lung adenocarcinoma. The present study tried to explore transcriptome changes in lung fibroblasts under chemotherapeutics, irradiation, and hypoxia, which were induced by chemotherapy, radiotherapy, and anti-angiogenesis therapy, respectively. We established three in vitro models to mimic the stress conditions for lung fibroblasts. Interestingly, one of the secretory molecules, tumor necrosis factor superfamily member 4 (TNFSF4, also known as OX40L), was significantly up-regulated in lung fibroblasts under stress environments. Lung adenocarcinoma patients received chemotherapy and radiotherapy had a higher expression level of TNFSF4 in serum and tumor tissues. There was a negative correlation between the increase of serum TNFSF4 levels and the shrink of the tumor after chemotherapy. TNFSF4 could promote cisplatin resistance and inhibit the apoptosis of lung adenocarcinoma cells. Furthermore, TNFSF4 could significantly increase the activity of NF-κB/BCL-XL pathway in lung adenocarcinoma cells, which could be counteracted by knocking down the expression of TNFRSF4 (receptor of TNFSF4). In conclusion, TNFSF4, secreted by cancer-associated fibroblasts under stress conditions, could facilitate chemoresistance of lung adenocarcinoma through inhibiting apoptosis of tumor cells.
Collapse
Affiliation(s)
- Yan Li
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Ying Chen
- Medical School of Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Liyun Miao
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Yongsheng Wang
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Min Yu
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Xin Yan
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Qi Zhao
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Hourong Cai
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Yonglong Xiao
- Department of Respiratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Guichun Huang
- Medical School of Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
733
|
Liu D, Steins A, Klaassen R, van der Zalm AP, Bennink RJ, van Tienhoven G, Besselink MG, Bijlsma MF, van Laarhoven HWM. Soluble Compounds Released by Hypoxic Stroma Confer Invasive Properties to Pancreatic Ductal Adenocarcinoma. Biomedicines 2020; 8:biomedicines8110444. [PMID: 33105540 PMCID: PMC7690284 DOI: 10.3390/biomedicines8110444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by abundant stroma and a hypoxic microenvironment. Pancreatic stellate cells (PSC) are activated by hypoxia and promote excessive desmoplasia, further contributing to the development of hypoxia. We aimed to explore how hypoxia and stroma interact to contribute to invasive growth in PDAC. [18F]HX4 PET/CT was found to be a feasible non-invasive method to assess tumor hypoxia in 42 patients and correlated with HIF1α immunohistochemistry in matched surgical specimens. [18F]HX4 uptake and HIF1α were strong prognostic markers for overall survival. Co-culture and medium transfer experiments demonstrated that hypoxic PSCs and their supernatant induce upregulation of mesenchymal markers in tumor cells, and that hypoxia-induced stromal factors drive invasive growth in hypoxic PDACs. Through stepwise selection, stromal MMP10 was identified as the most likely candidate responsible for this. In conclusion, hypoxia-activated PSCs promote the invasiveness of PDAC through paracrine signaling. The identification of PSC-derived MMP10 may provide a lead to develop novel stroma-targeting therapies.
Collapse
Affiliation(s)
- Dajia Liu
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, UMC, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.L.); (A.S.); (R.K.); (A.P.v.d.Z.)
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Anne Steins
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, UMC, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.L.); (A.S.); (R.K.); (A.P.v.d.Z.)
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Remy Klaassen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, UMC, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.L.); (A.S.); (R.K.); (A.P.v.d.Z.)
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Amber P. van der Zalm
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, UMC, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.L.); (A.S.); (R.K.); (A.P.v.d.Z.)
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
| | - Roel J. Bennink
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Geertjan van Tienhoven
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Marc G. Besselink
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Maarten F. Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, UMC, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.L.); (A.S.); (R.K.); (A.P.v.d.Z.)
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-(0)20-5664824
| | - Hanneke W. M. van Laarhoven
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
734
|
Van de Velde M, Ebroin M, Durré T, Joiret M, Gillot L, Blacher S, Geris L, Kridelka F, Noel A. Tumor exposed-lymphatic endothelial cells promote primary tumor growth via IL6. Cancer Lett 2020; 497:154-164. [PMID: 33080310 PMCID: PMC7723984 DOI: 10.1016/j.canlet.2020.10.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
Solid tumors are composed of tumor cells and stromal cells including lymphatic endothelial cells (LEC), which are mainly viewed as cells forming lymphatic vessels involved in the transport of metastatic and immune cells. We here reveal a new mechanism by which tumor exposed-LEC (teLEC) exert mitogenic effects on tumor cells. Our conclusions are supported by morphological and molecular changes induced in teLEC that in turn enhance cancer cell invasion in 3D cultures and tumor cell proliferation in vivo. The characterization of teLEC secretome by RNA-Sequencing and cytokine array revealed that interleukine-6 (IL6) is one of the most modulated molecules in teLEC, whose production was negligible in unexposed LEC. Notably, neutralizing anti-human IL6 antibody abrogated teLEC-mediated mitogenic effects in vivo, when LEC were mixed with tumor cells in the ear sponge assay. We here assign a novel function to teLEC that is beyond their role of lymphatic vessel formation. This work highlights a new paradigm, in which teLEC exert “fibroblast-like properties”, contribute in a paracrine manner to the control of tumor cell properties and are worth considering as key stromal determinant in future studies. teLEC, but not normal LEC, produce huge amount of IL6. IL6-derived teLEC exert mitogenic effect on tumor cells, in the primary tumor. teLEC act as fibroblast-like cells in the tumor microenvironment. It warrants to revisit the “vascular-centric view” of LECs.
Collapse
Affiliation(s)
- Maureen Van de Velde
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium
| | - Marie Ebroin
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium
| | - Tania Durré
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium
| | - Marc Joiret
- Biomechanics Research Unit, GIGA-In Silico Medicine, Liege University, B34, Sart-Tilman, 4000, Liège, Belgium
| | - Lionel Gillot
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium
| | - Silvia Blacher
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA-In Silico Medicine, Liege University, B34, Sart-Tilman, 4000, Liège, Belgium
| | - Frédéric Kridelka
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium; Department of Obstetrics and Gynecology, CHU Liege, Sart-Tilman, 4000, Liege, Belgium
| | - Agnès Noel
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium.
| |
Collapse
|
735
|
Gorchs L, Ahmed S, Mayer C, Knauf A, Fernández Moro C, Svensson M, Heuchel R, Rangelova E, Bergman P, Kaipe H. The vitamin D analogue calcipotriol promotes an anti-tumorigenic phenotype of human pancreatic CAFs but reduces T cell mediated immunity. Sci Rep 2020; 10:17444. [PMID: 33060625 PMCID: PMC7562723 DOI: 10.1038/s41598-020-74368-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
The pancreatic tumour stroma is composed of phenotypically heterogenous cancer-associated fibroblasts (CAFs) with both pro- and anti-tumorigenic functions. Here, we studied the impact of calcipotriol, a vitamin D3 analogue, on the activation of human pancreatic CAFs and T cells using 2- and 3-dimensional (2D, 3D) cell culture models. We found that calcipotriol decreased CAF proliferation and migration and reduced the release of the pro-tumorigenic factors prostaglandin E2, IL-6, periostin, and leukemia inhibitory factor. However, calcipotriol promoted PD-L1 upregulation, which could influence T cell mediated tumour immune surveillance. Calcipotriol reduced T cell proliferation and production of IFN-γ, granzyme B and IL-17, but increased IL-10 secretion. These effects were even more profound in the presence of CAFs in 2D cultures and in the presence of CAFs and pancreatic tumour cell line (PANC-1) spheroids in 3D cultures. Functional assays on tumour infiltrating lymphocytes also showed a reduction in T cell activation by calcipotriol. This suggests that calcipotriol reduces the tumour supportive activity of CAFs but at the same time reduces T cell effector functions, which could compromise the patients’ tumour immune surveillance. Thus, vitamin D3 analogues appear to have dual functions in the context of pancreatic cancer, which could have important clinical implications.
Collapse
Affiliation(s)
- Laia Gorchs
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Sultan Ahmed
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Chanté Mayer
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Alisa Knauf
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Fernández Moro
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Pathology/Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Svensson
- Department of Medicine, Centre for Infectious Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Rainer Heuchel
- Department of CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Elena Rangelova
- Department of CLINTEC, Karolinska Institutet, Stockholm, Sweden.,Pancreatic Surgery Unit, Centre for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Bergman
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Infectious Disease Clinic, The Immunodeficiency Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Helen Kaipe
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden. .,Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
736
|
Schipper J, Westerhuis JJ, Beddows I, Madaj Z, Monsma D, Hostetter G, Kiupel M, Conejo-Garcia JR, Sempere LF. Loss of microRNA-21 leads to profound stromal remodeling and short survival in K-Ras-driven mouse models of pancreatic cancer. Int J Cancer 2020; 147:2265-2278. [PMID: 32388866 DOI: 10.1002/ijc.33041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/06/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
The microenvironment of pancreatic cancer adenocarcinoma (PDAC) is highly desmoplastic with distinct tumor-restraining and tumor-promoting fibroblast subpopulations. Re-education rather than indiscriminate elimination of these fibroblasts has emerged as a new strategy for combination therapy. Here, we studied the effects of global loss of profibrotic noncoding regulatory microRNA-21 (miR-21) in K-Ras-driven p53-deleted genetically engineered mouse models of PDAC. Strikingly, loss of miR-21 accelerated tumor initiation via mucinous cystic neoplastic lesions and progression to locally advanced invasive carcinoma from which animals precipitously succumbed at an early age. The absence of tumor-restraining myofibroblasts and a massive infiltrate of immune cells were salient phenotypic features of global miR-21 loss. Stromal miR-21 activity was required for induction of tumor-restraining myofibroblasts in in vivo isograft transplantation experiments. Low miR-21 expression negatively correlated with a fibroblast gene expression signature and positively with an immune cell gene expression signature in The Cancer Genome Atlas PDAC data set (n = 156) mirroring findings in the mouse models. Our results exposed an overall tumor-suppressive function of miR-21 in in vivo PDAC models. These results have important clinical implications for anti-miR-21-based inhibitory therapeutic approaches under consideration for PDAC and other cancer types. Mechanistic dissection of the cell-intrinsic role of miR-21 in cancer-associated fibroblasts and other cell types will be needed to inform best strategies for pharmacological modulation of miR-21 activity to remodel the tumor microenvironment and enhance treatment response in PDAC.
Collapse
Affiliation(s)
- Josh Schipper
- Van Andel Research Institute, Grand Rapids, Michigan, USA
| | | | - Ian Beddows
- Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Zach Madaj
- Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - David Monsma
- Van Andel Research Institute, Grand Rapids, Michigan, USA
| | | | - Matti Kiupel
- Veterinary Diagnostic Laboratory, Michigan State University, Lansing, Michigan, USA
| | - Jose R Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Lorenzo F Sempere
- Precision Health Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
737
|
Jiang B, Zhou L, Lu J, Wang Y, Liu C, You L, Guo J. Stroma-Targeting Therapy in Pancreatic Cancer: One Coin With Two Sides? Front Oncol 2020; 10:576399. [PMID: 33178608 PMCID: PMC7593693 DOI: 10.3389/fonc.2020.576399] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignancy with one of the worst prognoses worldwide and has an overall 5-year survival rate of only 9%. Although chemotherapy is the recommended treatment for patients with advanced PDAC, its efficacy is not satisfactory. The dense dysplastic stroma of PDAC is a major obstacle to the delivery of chemotherapy drugs and plays an important role in the progression of PDAC. Therefore, stroma-targeting therapy is considered a potential treatment strategy to improve the efficacy of chemotherapy and patient survival. While several preclinical studies have shown encouraging results, the anti-tumor potential of the PDAC stroma has also been revealed, and the extreme depletion might promote tumor progression and undermine patient survival. Therefore, achieving a balance between stromal abundance and depletion might be the further of stroma-targeting therapy. This review summarized the current progress of stroma-targeting therapy in PDAC and discussed the double-edged sword of its therapeutic effects.
Collapse
Affiliation(s)
- Bolun Jiang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Lu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yizhi Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengxi Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junchao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
738
|
Espinet E, Gu Z, Imbusch CD, Giese NA, Büscher M, Safavi M, Weisenburger S, Klein C, Vogel V, Falcone M, Insua-Rodríguez J, Reitberger M, Thiel V, Kossi SO, Muckenhuber A, Sarai K, Lee AYL, Backx E, Zarei S, Gaida MM, Rodríguez-Paredes M, Donato E, Yen HY, Eils R, Schlesner M, Pfarr N, Hackert T, Plass C, Brors B, Steiger K, Weichenhan D, Arda HE, Rooman I, Kopp JL, Strobel O, Weichert W, Sprick MR, Trumpp A. Aggressive PDACs Show Hypomethylation of Repetitive Elements and the Execution of an Intrinsic IFN Program Linked to a Ductal Cell of Origin. Cancer Discov 2020; 11:638-659. [PMID: 33060108 DOI: 10.1158/2159-8290.cd-20-1202] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive desmoplasia, which challenges the molecular analyses of bulk tumor samples. Here we FACS-purified epithelial cells from human PDAC and normal pancreas and derived their genome-wide transcriptome and DNA methylome landscapes. Clustering based on DNA methylation revealed two distinct PDAC groups displaying different methylation patterns at regions encoding repeat elements. Methylationlow tumors are characterized by higher expression of endogenous retroviral transcripts and double-stranded RNA sensors, which lead to a cell-intrinsic activation of an interferon signature (IFNsign). This results in a protumorigenic microenvironment and poor patient outcome. Methylationlow/IFNsignhigh and Methylationhigh/IFNsignlow PDAC cells preserve lineage traits, respective of normal ductal or acinar pancreatic cells. Moreover, ductal-derived Kras G12D/Trp53 -/- mouse PDACs show higher expression of IFNsign compared with acinar-derived counterparts. Collectively, our data point to two different origins and etiologies of human PDACs, with the aggressive Methylationlow/IFNsignhigh subtype potentially targetable by agents blocking intrinsic IFN signaling. SIGNIFICANCE: The mutational landscapes of PDAC alone cannot explain the observed interpatient heterogeneity. We identified two PDAC subtypes characterized by differential DNA methylation, preserving traits from normal ductal/acinar cells associated with IFN signaling. Our work suggests that epigenetic traits and the cell of origin contribute to PDAC heterogeneity.This article is highlighted in the In This Issue feature, p. 521.
Collapse
Affiliation(s)
- Elisa Espinet
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany. .,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Zuguang Gu
- Bioinformatics and Omics Data Analytics, DKFZ, Heidelberg, Germany.,Heidelberg Center for Personalized Oncology (DKFZ-HIPO), Heidelberg, Germany
| | - Charles D Imbusch
- Division of Applied Bioinformatics, DKFZ and NCT, Heidelberg, Germany
| | - Nathalia A Giese
- Department of General and Visceral Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Magdalena Büscher
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Mariam Safavi
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Silke Weisenburger
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Corinna Klein
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany
| | - Vanessa Vogel
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany
| | - Mattia Falcone
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Jacob Insua-Rodríguez
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Manuel Reitberger
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Vera Thiel
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Steffi O Kossi
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany
| | | | - Karnjit Sarai
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alex Y L Lee
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elyne Backx
- Laboratory of Molecular and Medical Oncology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Soheila Zarei
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthias M Gaida
- Institute of Pathology, University Hospital of Heidelberg, Heidelberg, Germany.,Institute of Pathology, University Medical Center JGU Mainz, Mainz, Germany
| | | | - Elisa Donato
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Hsi-Yu Yen
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Roland Eils
- Heidelberg Center for Personalized Oncology (DKFZ-HIPO), Heidelberg, Germany.,Digital Health Centre, Berlin Institute of Health and Charité Universitätsmedizin Berlin, Berlin, Germany.,Health Data Science Unit, University Hospital and University of Heidelberg, Heidelberg, Germany
| | | | - Nicole Pfarr
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Thilo Hackert
- Department of General and Visceral Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Benedikt Brors
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Applied Bioinformatics, DKFZ and NCT, Heidelberg, Germany
| | - Katja Steiger
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Dieter Weichenhan
- Heidelberg Center for Personalized Oncology (DKFZ-HIPO), Heidelberg, Germany
| | - H Efsun Arda
- Laboratory of Receptor Biology and Gene Expression, Center of Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ilse Rooman
- Laboratory of Molecular and Medical Oncology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Janel L Kopp
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Oliver Strobel
- Department of General and Visceral Surgery, University Hospital Heidelberg, Heidelberg, Germany.,National Center of Tumor Diseases, NCT, Heidelberg, Germany
| | - Wilko Weichert
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Martin R Sprick
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Andreas Trumpp
- HI-STEM-Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany. .,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
739
|
Hilmi M, Nicolle R, Bousquet C, Neuzillet C. Cancer-Associated Fibroblasts: Accomplices in the Tumor Immune Evasion. Cancers (Basel) 2020; 12:cancers12102969. [PMID: 33066357 PMCID: PMC7602282 DOI: 10.3390/cancers12102969] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/04/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary A growing number of studies suggest that cancer-associated fibroblasts (CAFs) modulate both myeloid and lymphoid cells through secretion of molecules (i.e., chemical function) and production of the extracellular matrix (ECM), i.e., physical function. Even though targeting functions CAFs is a relevant strategy, published clinical trials solely aimed at targeting the stroma showed disappointing results, despite being based on solid preclinical evidence. Our review dissects the interactions between CAFs and immune cells and explains how a deeper understanding of CAF subpopulations is the cornerstone to propose relevant therapies that will ultimately improve survival of patients with cancer. Abstract Cancer-associated fibroblasts (CAFs) are prominent cells within the tumor microenvironment, by communicating with other cells within the tumor and by secreting the extracellular matrix components. The discovery of the immunogenic role of CAFs has made their study particularly attractive due to the potential applications in the field of cancer immunotherapy. Indeed, CAFs are highly involved in tumor immune evasion by physically impeding the immune system and interacting with both myeloid and lymphoid cells. However, CAFs do not represent a single cell entity but are divided into several subtypes with different functions that may be antagonistic. Considering that CAFs are orchestrators of the tumor microenvironment and modulate immune cells, targeting their functions may be a promising strategy. In this review, we provide an overview of (i) the mechanisms involved in immune regulation by CAFs and (ii) the therapeutic applications of CAFs modulation to improve the antitumor immune response and the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Marc Hilmi
- Department of Medical Oncology, Curie Institute, University of Versailles Saint-Quentin, 92210 Saint-Cloud, France;
- GERCOR, 151 rue du Faubourg Saint-Antoine, 75011 Paris, France
- Correspondence: ; Tel.: +33-06-8547-3027
| | - Rémy Nicolle
- Programme Cartes d’Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, 75013 Paris, France;
| | - Corinne Bousquet
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, University Toulouse III Paul Sabatier, ERL5294 CNRS, 31000 Toulouse, France;
| | - Cindy Neuzillet
- Department of Medical Oncology, Curie Institute, University of Versailles Saint-Quentin, 92210 Saint-Cloud, France;
- GERCOR, 151 rue du Faubourg Saint-Antoine, 75011 Paris, France
- Institut Curie, Cell Migration and Invasion, UMR144, PSL Research University, 26, rue d’Ulm, F-75005 Paris, France
| |
Collapse
|
740
|
Mosa MH, Michels BE, Menche C, Nicolas AM, Darvishi T, Greten FR, Farin HF. A Wnt-Induced Phenotypic Switch in Cancer-Associated Fibroblasts Inhibits EMT in Colorectal Cancer. Cancer Res 2020; 80:5569-5582. [PMID: 33055221 DOI: 10.1158/0008-5472.can-20-0263] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 08/19/2020] [Accepted: 10/09/2020] [Indexed: 11/16/2022]
Abstract
Tumor progression is recognized as a result of an evolving cross-talk between tumor cells and their surrounding nontransformed stroma. Although Wnt signaling has been intensively studied in colorectal cancer, it remains unclear whether activity in the tumor-associated stroma contributes to malignancy. To specifically interfere with stromal signals, we generated Wnt-independent tumor organoids that secrete the Wnt antagonist Sfrp1. Subcutaneous transplantation into immunocompetent as well as immunodeficient mice resulted in a strong reduction of tumor growth. Histologic and transcriptomic analyses revealed that Sfrp1 induced an epithelial-mesenchymal transition (EMT) phenotype in tumor cells without affecting tumor-intrinsic Wnt signaling, suggesting involvement of nonimmune stromal cells. Blockage of canonical signaling using Sfrp1, Dkk1, or fibroblast-specific genetic ablation of β-catenin strongly decreased the number of cancer-associated myofibroblasts (myCAF). Wnt activity in CAFs was linked with distinct subtypes, where low and high levels induced an inflammatory-like CAF (iCAF) subtype or contractile myCAFs, respectively. Coculture of tumor organoids with iCAFs resulted in significant upregulation of EMT markers, while myCAFs reverted this phenotype. In summary, we show that tumor growth and malignancy are differentially regulated via distinct fibroblast subtypes under the influence of juxtacrine Wnt signals. SIGNIFICANCE: This study provides evidence for Wnt-induced functional diversity of colorectal cancer-associated fibroblasts, representing a non-cell autonomous mechanism for colon cancer progression. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/24/5569/F1.large.jpg.
Collapse
Affiliation(s)
- Mohammed H Mosa
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Birgitta E Michels
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Constantin Menche
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Adele M Nicolas
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Tahmineh Darvishi
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Florian R Greten
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Henner F Farin
- German Cancer Consortium (DKTK), Heidelberg, Germany. .,Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
741
|
Delma MI. Besieging the Tumoral Sites: Could It Be an Alternative Therapeutic Strategy in Ductal Pancreatic Adenocarcinoma? Cureus 2020; 12:e10909. [PMID: 33194476 PMCID: PMC7657315 DOI: 10.7759/cureus.10909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2020] [Indexed: 11/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is characterized by its high morbidity, and curative drugs are still lacking. In addition to immunotherapy, other molecular targeted therapeutics, such as stroma depleting agents, have been evaluated, given the abundant desmoplastic stroma that is considered a protective shield for tumor cells. However, the unexpected poor outcome has raised the debate on whether desmoplasia promotes or restrains tumor cell spread. After reviewing these key points in this paper, an approach taking advantage of desmoplasia and immune cells to besiege the tumoral sites will be proposed. Based on the available literature, the feasibility and potential limitations of this strategy will be discussed.
Collapse
|
742
|
An YZ, Cho E, Ling J, Zhang X. The Axin2-snail axis promotes bone invasion by activating cancer-associated fibroblasts in oral squamous cell carcinoma. BMC Cancer 2020; 20:987. [PMID: 33046030 PMCID: PMC7552517 DOI: 10.1186/s12885-020-07495-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
Background In bone-invasive oral squamous cell carcinoma (OSCC), cancer-associated fibroblasts (CAFs) infiltrate into bony tissue ahead of OSCC cells. In the present study, we aimed to investigate the role of the Axin2-Snail axis in the biological behaviour of CAFs and bone invasion in OSCC. Methods The clinicopathological significance of Axin2 and Snail expression was investigated by immunohistochemistry in an OSCC cohort containing 217 tissue samples from patients with long-term follow-up. The influence of the Axin2-Snail axis on the biological behaviour of OSCC cells and CAFs was further investigated both in vitro and in vivo. Results Axin2 expression was significantly associated with Snail expression, the desmoplasia status, and bone invasion in patients with OSCC. In multivariate analysis, lymph node metastasis, desmoplasia, Axin2 expression, and Snail expression were independent poor prognostic factors in our cohort. Consistent with these findings, OSCC cells demonstrated attenuated oncogenic activity as well as decreased expression of Snail and various cytokines after Axin2 knockdown in vitro. Among the related cytokines, C-C motif chemokine ligand 5 (CCL5) and interleukin 8 (IL8) demonstrated a strong influence on the biological behaviour of CAFs in vitro. Moreover, both the desmoplastic reaction and osteolytic lesions in the calvaria were predominantly decreased after Axin2 knockdown in OSCC cells in vivo using a BALB/c athymic nude mouse xenograft model. Conclusions Oncogenic activities of the Axin2-Snail axis are not limited to the cancer cells themselves but rather extend to CAFs via regulation of the cytokine-mediated cancer-stromal interaction, with further implications for bone invasion as well as a poor prognosis in OSCC.
Collapse
Affiliation(s)
- Yin-Zhe An
- Key laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Eunae Cho
- Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, Republic of Korea.,BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, South Korea.,Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Junqi Ling
- Key laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. .,Department of Endodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou, 510055, Guangdong, China.
| | - Xianglan Zhang
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Republic of Korea. .,Department of Pathology, Yanbian University Hospital, Yanji City, 133000, Jilin Province, China.
| |
Collapse
|
743
|
Ogawa Y, Masugi Y, Abe T, Yamazaki K, Ueno A, Fujii-Nishimura Y, Hori S, Yagi H, Abe Y, Kitago M, Sakamoto M. Three Distinct Stroma Types in Human Pancreatic Cancer Identified by Image Analysis of Fibroblast Subpopulations and Collagen. Clin Cancer Res 2020; 27:107-119. [PMID: 33046515 DOI: 10.1158/1078-0432.ccr-20-2298] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/03/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Cancer-associated fibroblasts have emerged to be highly heterogenous and can play multifaceted roles in dictating pancreatic ductal adenocarcinoma (PDAC) progression, immunosuppression, and therapeutic response, highlighting the need for a deeper understanding of stromal heterogeneity between patients and even within a single tumor. We hypothesized that image analysis of fibroblast subpopulations and collagen in PDAC tissues might guide stroma-based patient stratification to predict clinical outcomes and tumor characteristics. EXPERIMENTAL DESIGN A novel multiplex IHC-based image analysis system was established to digitally differentiate fibroblast subpopulations. Using whole-tissue slides from 215 treatment-naïve PDACs, we performed concurrent quantification of principal fibroblast subpopulations and collagen and defined three stroma types: collagen-rich stroma, fibroblast activation protein α (FAP)-dominant fibroblast-rich stroma, and α smooth muscle actin (ACTA2)-dominant fibroblast-rich stroma. These stroma types were assessed for the associations with cancer-specific survival by multivariable Cox regression analyses and with clinicopathologic factors, including CD8+ cell density. RESULTS FAP-dominant fibroblasts and ACTA2-dominant fibroblasts represented the principal distinct fibroblast subpopulations in tumor stroma. Stroma types were associated with patient survival, SMAD4 status, and transcriptome signatures. Compared with FAP-dominant fibroblast-rich stroma, collagen-rich stroma correlated with prolonged survival [HR, 0.57; 95% confidence interval (CI), 0.33-0.99], while ACTA2-dominant fibroblast-rich stroma exhibited poorer prognosis (HR, 1.65; 95% CI, 1.06-2.58). FAP-dominant fibroblast-rich stroma was additionally characterized by restricted CD8+ cell infiltrates and intense neutrophil infiltration. CONCLUSIONS This study identified three distinct stroma types differentially associated with survival, immunity, and molecular features, thereby underscoring the importance of stromal heterogeneity in subtyping pancreatic cancers and supporting the development of antistromal therapies.
Collapse
Affiliation(s)
- Yurina Ogawa
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yohei Masugi
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.,Division of Diagnostic Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tokiya Abe
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Ken Yamazaki
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Akihisa Ueno
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yoko Fujii-Nishimura
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.,Department of Pathology, International University of Health and Welfare School of Medicine, Narita, Chiba, Japan
| | - Shutaro Hori
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hiroshi Yagi
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yuta Abe
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
744
|
Gabitova-Cornell L, Surumbayeva A, Peri S, Franco-Barraza J, Restifo D, Weitz N, Ogier C, Goldman AR, Hartman TR, Francescone R, Tan Y, Nicolas E, Shah N, Handorf EA, Cai KQ, O'Reilly AM, Sloma I, Chiaverelli R, Moffitt RA, Khazak V, Fang CY, Golemis EA, Cukierman E, Astsaturov I. Cholesterol Pathway Inhibition Induces TGF-β Signaling to Promote Basal Differentiation in Pancreatic Cancer. Cancer Cell 2020; 38:567-583.e11. [PMID: 32976774 PMCID: PMC7572882 DOI: 10.1016/j.ccell.2020.08.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/11/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
Oncogenic transformation alters lipid metabolism to sustain tumor growth. We define a mechanism by which cholesterol metabolism controls the development and differentiation of pancreatic ductal adenocarcinoma (PDAC). Disruption of distal cholesterol biosynthesis by conditional inactivation of the rate-limiting enzyme Nsdhl or treatment with cholesterol-lowering statins switches glandular pancreatic carcinomas to a basal (mesenchymal) phenotype in mouse models driven by KrasG12D expression and homozygous Trp53 loss. Consistently, PDACs in patients receiving statins show enhanced mesenchymal features. Mechanistically, statins and NSDHL loss induce SREBP1 activation, which promotes the expression of Tgfb1, enabling epithelial-mesenchymal transition. Evidence from patient samples in this study suggests that activation of transforming growth factor β signaling and epithelial-mesenchymal transition by cholesterol-lowering statins may promote the basal type of PDAC, conferring poor outcomes in patients.
Collapse
Affiliation(s)
- Linara Gabitova-Cornell
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA; The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Aizhan Surumbayeva
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA; The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Suraj Peri
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Janusz Franco-Barraza
- The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA; Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Diana Restifo
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA; The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Nicole Weitz
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA; The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Charline Ogier
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA; The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Aaron R Goldman
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA, USA
| | - Tiffiney R Hartman
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Ralph Francescone
- The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA; Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yinfei Tan
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Emmanuelle Nicolas
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Neelima Shah
- The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA; Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Elizabeth A Handorf
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Kathy Q Cai
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Alana M O'Reilly
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Ido Sloma
- Champions Oncology, Inc., Hackensack, NJ, USA
| | | | - Richard A Moffitt
- Department of Biomedical Informatics, Stony Brook Cancer Center, Stony Brook, NY, USA
| | | | - Carolyn Y Fang
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Edna Cukierman
- The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA; Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Igor Astsaturov
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA; The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA; Kazan Federal University, Kazan, Russian Federation.
| |
Collapse
|
745
|
Krisnawan VE, Stanley JA, Schwarz JK, DeNardo DG. Tumor Microenvironment as a Regulator of Radiation Therapy: New Insights into Stromal-Mediated Radioresistance. Cancers (Basel) 2020; 12:cancers12102916. [PMID: 33050580 PMCID: PMC7600316 DOI: 10.3390/cancers12102916] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Cancer is multifaceted and consists of more than just a collection of mutated cells. These cancerous cells reside along with other non-mutated cells in an extracellular matrix which together make up the tumor microenvironment or tumor stroma. The composition of the tumor microenvironment plays an integral role in cancer initiation, progression, and response to treatments. In this review, we discuss how the tumor microenvironment regulates the response and resistance to radiation therapy and what targeted agents have been used to combat stromal-mediated radiation resistance. Abstract A tumor is a complex “organ” composed of malignant cancer cells harboring genetic aberrations surrounded by a stroma comprised of non-malignant cells and an extracellular matrix. Considerable evidence has demonstrated that components of the genetically “normal” tumor stroma contribute to tumor progression and resistance to a wide array of treatment modalities, including radiotherapy. Cancer-associated fibroblasts can promote radioresistance through their secreted factors, contact-mediated signaling, downstream pro-survival signaling pathways, immunomodulatory effects, and cancer stem cell-generating role. The extracellular matrix can govern radiation responsiveness by influencing oxygen availability and controlling the stability and bioavailability of growth factors and cytokines. Immune status regarding the presence of pro- and anti-tumor immune cells can regulate how tumors respond to radiation therapy. Furthermore, stromal cells including endothelial cells and adipocytes can modulate radiosensitivity through their roles in angiogenesis and vasculogenesis, and their secreted adipokines, respectively. Thus, to successfully eradicate cancers, it is important to consider how tumor stroma components interact with and regulate the response to radiation. Detailed knowledge of these interactions will help build a preclinical rationale to support the use of stromal-targeting agents in combination with radiotherapy to increase radiosensitivity.
Collapse
Affiliation(s)
- Varintra E. Krisnawan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer A. Stanley
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA; (J.A.S.); (J.K.S.)
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Julie K. Schwarz
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA; (J.A.S.); (J.K.S.)
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David G. DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Correspondence:
| |
Collapse
|
746
|
Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun 2020; 11:5120. [PMID: 33037194 PMCID: PMC7547708 DOI: 10.1038/s41467-020-18794-x] [Citation(s) in RCA: 1205] [Impact Index Per Article: 241.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Tissues are dynamically shaped by bidirectional communication between resident cells and the extracellular matrix (ECM) through cell-matrix interactions and ECM remodelling. Tumours leverage ECM remodelling to create a microenvironment that promotes tumourigenesis and metastasis. In this review, we focus on how tumour and tumour-associated stromal cells deposit, biochemically and biophysically modify, and degrade tumour-associated ECM. These tumour-driven changes support tumour growth, increase migration of tumour cells, and remodel the ECM in distant organs to allow for metastatic progression. A better understanding of the underlying mechanisms of tumourigenic ECM remodelling is crucial for developing therapeutic treatments for patients. Tumors are more than cancer cells — the extracellular matrix is a protein structure that organizes all tissues and is altered in cancer. Here, the authors review recent progress in understanding how the cancer cells and tumor-associated stroma cells remodel the extracellular matrix to drive tumor growth and metastasis.
Collapse
Affiliation(s)
- Juliane Winkler
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA.
| | - Abisola Abisoye-Ogunniyan
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| | - Kevin J Metcalf
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| | - Zena Werb
- Department of Anatomy, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
747
|
Vickman RE, Faget DV, Beachy P, Beebe D, Bhowmick NA, Cukierman E, Deng WM, Granneman JG, Hildesheim J, Kalluri R, Lau KS, Lengyel E, Lundeberg J, Moscat J, Nelson PS, Pietras K, Politi K, Puré E, Scherz-Shouval R, Sherman MH, Tuveson D, Weeraratna AT, White RM, Wong MH, Woodhouse EC, Zheng Y, Hayward SW, Stewart SA. Deconstructing tumor heterogeneity: the stromal perspective. Oncotarget 2020; 11:3621-3632. [PMID: 33088423 PMCID: PMC7546755 DOI: 10.18632/oncotarget.27736] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Significant advances have been made towards understanding the role of immune cell-tumor interplay in either suppressing or promoting tumor growth, progression, and recurrence, however, the roles of additional stromal elements, cell types and/or cell states remain ill-defined. The overarching goal of this NCI-sponsored workshop was to highlight and integrate the critical functions of non-immune stromal components in regulating tumor heterogeneity and its impact on tumor initiation, progression, and resistance to therapy. The workshop explored the opposing roles of tumor supportive versus suppressive stroma and how cellular composition and function may be altered during disease progression. It also highlighted microenvironment-centered mechanisms dictating indolence or aggressiveness of early lesions and how spatial geography impacts stromal attributes and function. The prognostic and therapeutic implications as well as potential vulnerabilities within the heterogeneous tumor microenvironment were also discussed. These broad topics were included in this workshop as an effort to identify current challenges and knowledge gaps in the field.
Collapse
Affiliation(s)
- Renee E Vickman
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA.,These authors contributed equally to this work
| | - Douglas V Faget
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, USA.,These authors contributed equally to this work
| | - Philip Beachy
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - David Beebe
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Neil A Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Edna Cukierman
- Department of Cancer Biology, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, USA
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - James G Granneman
- Department of Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | | | - Raghu Kalluri
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Ken S Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | - Joakim Lundeberg
- SciLifeLab, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jorge Moscat
- Weill Cornell Medicine, Rockefeller University Campus, New York, NY, USA
| | - Peter S Nelson
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kristian Pietras
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Katerina Politi
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania, Philidelphia, PA, USA
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Mara H Sherman
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - David Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ashani T Weeraratna
- Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Richard M White
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Melissa H Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | | | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Simon W Hayward
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL, USA.,Workshop co-chairs
| | - Sheila A Stewart
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, USA.,Workshop co-chairs
| |
Collapse
|
748
|
Han X, Zhang WH, Wang WQ, Yu XJ, Liu L. Cancer-associated fibroblasts in therapeutic resistance of pancreatic cancer: Present situation, predicaments, and perspectives. Biochim Biophys Acta Rev Cancer 2020; 1874:188444. [PMID: 33031899 DOI: 10.1016/j.bbcan.2020.188444] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is highly lethal, and the most effective treatment is curative resection followed by chemotherapy. Unfortunately, chemoresistance is an extremely common occurrence, and novel treatment modalities, such as immunotherapy and molecular targeted therapy, have shown limited success in clinical practice. Pancreatic cancer is characterized by an abundant stromal compartment. Cancer-associated fibroblasts (CAFs) and the extracellular matrix they deposit account for a large portion of the pancreatic tumor stroma. CAFs interact directly and indirectly with pancreatic cancer cells and can compromise the effects of, and even promote tumorigenic responses to, various treatment approaches. To eliminate these adverse effects, CAFs depletion strategies were developed. Instead of the anticipated antitumor effects of CAFs depletion, more aggressive tumor phenotypes were occasionally observed. The failure of universal stromal depletion led to the investigation of CAFs heterogeneity that forms the foundation for stromal remodeling and normalization. This review analyzes the role of CAFs in therapeutic resistance of pancreatic cancer and discusses potential CAFs-targeting strategies basing on the diverse biological functions of CAFs, thus to improve the outcome of pancreatic cancer treatment.
Collapse
Affiliation(s)
- Xuan Han
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wu-Hu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
749
|
Jiang W, Bai W, Li J, Liu J, Zhao K, Ren L. Leukemia inhibitory factor is a novel biomarker to predict lymph node and distant metastasis in pancreatic cancer. Int J Cancer 2020; 148:1006-1013. [PMID: 32914874 DOI: 10.1002/ijc.33291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer has a low survival rate, and most patients have lymph node metastasis and distant metastasis at the time of diagnosis. Despite efforts to improve overall survival (OS) and recurrence free survival (RFS), the prognosis of pancreatic cancer remains poor, underscoring the importance of identifying new biomarkers to predict metastasis in patients with pancreatic cancer. Leukemia inhibitory factor (LIF) is overexpressed in many types of cancer and is involved in the development of various malignancies including pancreatic cancer. However, the role of LIF as a biomarker to predict metastasis in pancreatic cancer remains unclear. In this study, univariate and multivariate Cox regression analyses identified LIF expression in pancreatic tumor tissues as an independent risk factor related to worse OS and RFS. LIF overexpression was related to poor clinicopathological features such as lymph node metastasis and Pathological stage (pTNM) stage. Serum LIF levels were higher in pancreatic cancer patients than in healthy controls. The area under the receiver operating characteristic curve indicated that serum LIF is more effective than other biomarkers (CA199 and CEA) for predicting lymph node and distant metastasis.
Collapse
Affiliation(s)
- Wenna Jiang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Weiwei Bai
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jianhua Li
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jing Liu
- Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Kaili Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Li Ren
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
750
|
Huber M, Brehm CU, Gress TM, Buchholz M, Alashkar Alhamwe B, Pogge von Strandmann E, Slater EP, Bartsch JW, Bauer C, Lauth M. The Immune Microenvironment in Pancreatic Cancer. Int J Mol Sci 2020; 21:E7307. [PMID: 33022971 PMCID: PMC7583843 DOI: 10.3390/ijms21197307] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
The biology of solid tumors is strongly determined by the interactions of cancer cells with their surrounding microenvironment. In this regard, pancreatic cancer (pancreatic ductal adenocarcinoma, PDAC) represents a paradigmatic example for the multitude of possible tumor-stroma interactions. PDAC has proven particularly refractory to novel immunotherapies, which is a fact that is mediated by a unique assemblage of various immune cells creating a strongly immunosuppressive environment in which this cancer type thrives. In this review, we outline currently available knowledge on the cross-talk between tumor cells and the cellular immune microenvironment, highlighting the physiological and pathological cellular interactions, as well as the resulting therapeutic approaches derived thereof. Hopefully a better understanding of the complex tumor-stroma interactions will one day lead to a significant advancement in patient care.
Collapse
Affiliation(s)
- Magdalena Huber
- Institute for Medical Microbiology and Hospital Hygiene, Philipps University Marburg, 35043 Marburg, Germany;
| | - Corinna U. Brehm
- Institute of Pathology, University Hospital Giessen-Marburg, 35043 Marburg, Germany;
| | - Thomas M. Gress
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, Center for Tumor- and Immunology (ZTI), Philipps University Marburg, 35043 Marburg, Germany; (T.M.G.); (M.B.); (C.B.)
| | - Malte Buchholz
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, Center for Tumor- and Immunology (ZTI), Philipps University Marburg, 35043 Marburg, Germany; (T.M.G.); (M.B.); (C.B.)
| | - Bilal Alashkar Alhamwe
- Institute for Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University Marburg, 35043 Marburg, Germany; (E.P.v.S.); (B.A.A.)
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University Marburg, 35043 Marburg, Germany; (E.P.v.S.); (B.A.A.)
| | - Emily P. Slater
- Department of Visceral-, Thoracic- and Vascular Surgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany;
| | - Jörg W. Bartsch
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35043 Marburg, Germany;
| | - Christian Bauer
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, Center for Tumor- and Immunology (ZTI), Philipps University Marburg, 35043 Marburg, Germany; (T.M.G.); (M.B.); (C.B.)
| | - Matthias Lauth
- Department of Gastroenterology, Endocrinology, Metabolism and Infectiology, Center for Tumor- and Immunology (ZTI), Philipps University Marburg, 35043 Marburg, Germany; (T.M.G.); (M.B.); (C.B.)
| |
Collapse
|