751
|
Bruno A, Pagani A, Magnani E, Rossi T, Noonan DM, Cantelmo AR, Albini A. Inflammatory angiogenesis and the tumor microenvironment as targets for cancer therapy and prevention. Cancer Treat Res 2014; 159:401-426. [PMID: 24114493 DOI: 10.1007/978-3-642-38007-5_23] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In addition to aberrant transformed cells, tumors are tissues that contain host components, including stromal cells, vascular cells (ECs) and their precursors, and immune cells. All these constituents interact with each other at the cellular and molecular levels, resulting in the production of an intricate and heterogeneous complex of cells and matrix defined as the tumor microenvironment. Several pathways involved in these interactions have been investigated both in pathological and physiological scenarios, and diverse molecules are currently targets of chemotherapeutic and preventive drugs. Many phytochemicals and their derivatives show the ability to inhibit tumor progression, angiogenesis, and metastasis, exerting effects on the tumor microenvironment. In this review, we will outline the principal players and mechanisms involved in the tumor microenvironment network and we will discuss some interesting compounds aimed at interrupting these interactions and blocking tumor insurgence and progression. The considerations provided will be crucial for the design of new preventive approaches to the reduction in cancer risk that need to be applied to large populations composed of apparently healthy individuals.
Collapse
Affiliation(s)
- Antonino Bruno
- Polo Scientifico e Tecnologico, MultiMedica Onlus, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
752
|
Antonyak MA, Cerione RA. Microvesicles as mediators of intercellular communication in cancer. Methods Mol Biol 2014; 1165:147-73. [PMID: 24839024 DOI: 10.1007/978-1-4939-0856-1_11] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The discovery that cancer cells generate large membrane-enclosed packets of epigenetic information, known as microvesicles (MVs), that can be transferred to other cells and influence their behavior (Antonyak et al., Small GTPases 3:219-224, 2012; Cocucci et al., Trends Cell Biol 19:43-51, 2009; Rak, Semin Thromb Hemost 36:888-906, 2010; Skog et al., Nat Cell Biol 10:1470-1476, 2008) has added a unique perspective to the classical paracrine signaling paradigm. This is largely because, in addition to growth factors and cytokines, MVs contain a variety of components that are not usually thought to be released into the extracellular environment by viable cells including plasma membrane-associated proteins, cytosolic- and nuclear-localized proteins, as well as nucleic acids, particularly RNA transcripts and micro-RNAs (Skog et al., Nat Cell Biol 10:1470-1476, 2008; Al-Nedawi et al., Nat Cell Biol 10:619-624, 2008; Antonyak et al., Proc Natl Acad Sci U S A 108:4852-4857, 2011; Balaj et al., Nat Commun 2:180, 2011; Choi et al., J Proteome Res 6:4646-4655, 2007; Del Conde et al., Blood 106:1604-1611, 2005; Gallo et al., PLoS One 7:e30679, 2012; Graner et al., FASEB J 23:1541-1557, 2009; Grange et al., Cancer Res 71:5346-5356, 2011; Hosseini-Beheshti et al., Mol Cell Proteomics 11:863-885, 2012; Martins et al., Curr Opin Oncol 25:66-75, 2013; Noerholm et al., BMC Cancer 12:22, 2012; Zhuang et al., EMBO J 31:3513-3523, 2012). When transferred between cancer cells, MVs have been shown to stimulate signaling events that promote cell growth and survival (Al-Nedawi et al., Nat Cell Biol 10:619-624, 2008). Cancer cell-derived MVs can also be taken up by normal cell types that surround the tumor, an outcome that helps shape the tumor microenvironment, trigger tumor vascularization, and even confer upon normal recipient cells the transformed characteristics of a cancer cell (Antonyak et al., Proc Natl Acad Sci U S A 108:4852-4857, 2011; Martins et al., Curr Opin Oncol 25:66-75, 2013; Al-Nedawi et al., Proc Natl Acad Sci U S A 106:3794-3799, 2009; Ge et al., Cancer Microenviron 5:323-332, 2012). Thus, the production of MVs by cancer cells plays crucial roles in driving the expansion of the primary tumor. However, it is now becoming increasingly clear that MVs are also stable in the circulation of cancer patients, where they can mediate long-range effects and contribute to the formation of the pre-metastatic niche, an essential step in metastasis (Skog et al., Nat Cell Biol 10:1470-1476, 2008; Noerholm et al., BMC Cancer 12:22, 2012; Peinado et al., Nat Med 18:883-891, 2012; Piccin et al., Blood Rev 21:157-171, 2007; van der Vos et al., Cell Mol Neurobiol 31:949-959, 2011). These findings, when taken together with the fact that MVs are being aggressively pursued as diagnostic markers, as well as being considered as potential targets for intervention against cancer (Antonyak et al., Small GTPases 3:219-224, 2012; Hosseini-Beheshti et al., Mol Cell Proteomics 11:863-885, 2012; Martins et al., Curr Opin Oncol 25:66-75, 2013; Ge et al., Cancer Microenviron 5:323-332, 2012; Peinado et al., Nat Med 18:883-891, 2012; Piccin et al., Blood Rev 21:157-171, 2007; Al-Nedawi et al., Cell Cycle 8:2014-2018, 2009; Cocucci and Meldolesi, Curr Biol 21:R940-R941, 2011; D'Souza-Schorey and Clancy, Genes Dev 26:1287-1299, 2012; Shao et al., Nat Med 18:1835-1840, 2012), point to critically important roles for MVs in human cancer progression that can potentially be exploited to develop new targeted approaches for treating this disease.
Collapse
Affiliation(s)
- Marc A Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
753
|
Howard BA, Lu P. Stromal regulation of embryonic and postnatal mammary epithelial development and differentiation. Semin Cell Dev Biol 2014; 25-26:43-51. [DOI: 10.1016/j.semcdb.2014.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/19/2013] [Accepted: 01/09/2014] [Indexed: 01/06/2023]
|
754
|
Beaumont KA, Mohana-Kumaran N, Haass NK. Modeling Melanoma In Vitro and In Vivo. Healthcare (Basel) 2013; 2:27-46. [PMID: 27429258 PMCID: PMC4934492 DOI: 10.3390/healthcare2010027] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/07/2013] [Accepted: 12/10/2013] [Indexed: 01/02/2023] Open
Abstract
The behavior of melanoma cells has traditionally been studied in vitro in two-dimensional cell culture with cells adhering to plastic dishes. However, in order to mimic the three-dimensional architecture of a melanoma, as well as its interactions with the tumor microenvironment, there has been the need for more physiologically relevant models. This has been achieved by designing 3D in vitro models of melanoma, such as melanoma spheroids embedded in extracellular matrix or organotypic skin reconstructs. In vivo melanoma models have typically relied on the growth of tumor xenografts in immunocompromised mice. Several genetically engineered mouse models have now been developed which allow the generation of spontaneous melanoma. Melanoma models have also been established in other species such as zebrafish, which are more conducive to imaging and high throughput studies. We will discuss these models as well as novel techniques that are relevant to the study of the molecular mechanisms underlying melanoma progression.
Collapse
Affiliation(s)
- Kimberley A. Beaumont
- The Centenary Institute, Newtown, New South Wales 2042, Australia; E-Mails: (K.A.B.); (N.M.-K.)
| | - Nethia Mohana-Kumaran
- The Centenary Institute, Newtown, New South Wales 2042, Australia; E-Mails: (K.A.B.); (N.M.-K.)
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Georgetown, Penang, Malaysia
| | - Nikolas K. Haass
- The Centenary Institute, Newtown, New South Wales 2042, Australia; E-Mails: (K.A.B.); (N.M.-K.)
- Discipline of Dermatology, University of Sydney, New South Wales 2006, Australia
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-7-3443-7087; Fax: +61-7-3443-6966
| |
Collapse
|
755
|
Abstract
Carcinomas typically invade as a cohesive multicellular unit, a process termed collective invasion. It remains unclear how different subpopulations of cancer cells contribute to this process. We developed three-dimensional (3D) organoid assays to identify the most invasive cancer cells in primary breast tumors. Collective invasion was led by specialized cancer cells that were defined by their expression of basal epithelial genes, such as cytokeratin-14 (K14) and p63. Furthermore, K14+ cells led collective invasion in the major human breast cancer subtypes. Importantly, luminal cancer cells were observed to convert phenotypically to invasive leaders following induction of basal epithelial genes. Although only a minority of cells within luminal tumors expressed basal epithelial genes, knockdown of either K14 or p63 was sufficient to block collective invasion. Our data reveal that heterotypic interactions between epithelial subpopulations are critical to collective invasion. We suggest that targeting the basal invasive program could limit metastatic progression.
Collapse
Affiliation(s)
- Kevin J Cheung
- Departments of Cell Biology and Oncology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Edward Gabrielson
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andrew J Ewald
- Departments of Cell Biology and Oncology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
756
|
Collagen as a double-edged sword in tumor progression. Tumour Biol 2013; 35:2871-82. [PMID: 24338768 PMCID: PMC3980040 DOI: 10.1007/s13277-013-1511-7] [Citation(s) in RCA: 397] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/03/2013] [Indexed: 12/11/2022] Open
Abstract
It has been recognized that cancer is not merely a disease of tumor cells, but a disease of imbalance, in which stromal cells and tumor microenvironment play crucial roles. Extracellular matrix (ECM) as the most abundant component in tumor microenvironment can regulate tumor cell behaviors and tissue tension homeostasis. Collagen constitutes the scaffold of tumor microenvironment and affects tumor microenvironment such that it regulates ECM remodeling by collagen degradation and re-deposition, and promotes tumor infiltration, angiogenesis, invasion and migration. While collagen was traditionally regarded as a passive barrier to resist tumor cells, it is now evident that collagen is also actively involved in promoting tumor progression. Collagen changes in tumor microenvironment release biomechanical signals, which are sensed by both tumor cells and stromal cells, trigger a cascade of biological events. In this work, we discuss how collagen can be a double-edged sword in tumor progression, both inhibiting and promoting tumor progression at different stages of cancer development.
Collapse
|
757
|
Cheung KJ, Gabrielson E, Werb Z, Ewald AJ. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 2013; 155:1639-51. [PMID: 24332913 DOI: 10.1016/j.cell.2013.11.029] [Citation(s) in RCA: 624] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 05/02/2013] [Accepted: 11/11/2013] [Indexed: 12/14/2022]
Abstract
Carcinomas typically invade as a cohesive multicellular unit, a process termed collective invasion. It remains unclear how different subpopulations of cancer cells contribute to this process. We developed three-dimensional (3D) organoid assays to identify the most invasive cancer cells in primary breast tumors. Collective invasion was led by specialized cancer cells that were defined by their expression of basal epithelial genes, such as cytokeratin-14 (K14) and p63. Furthermore, K14+ cells led collective invasion in the major human breast cancer subtypes. Importantly, luminal cancer cells were observed to convert phenotypically to invasive leaders following induction of basal epithelial genes. Although only a minority of cells within luminal tumors expressed basal epithelial genes, knockdown of either K14 or p63 was sufficient to block collective invasion. Our data reveal that heterotypic interactions between epithelial subpopulations are critical to collective invasion. We suggest that targeting the basal invasive program could limit metastatic progression.
Collapse
Affiliation(s)
- Kevin J Cheung
- Departments of Cell Biology and Oncology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Edward Gabrielson
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andrew J Ewald
- Departments of Cell Biology and Oncology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
758
|
Beck JN, Singh A, Rothenberg AR, Elisseeff JH, Ewald AJ. The independent roles of mechanical, structural and adhesion characteristics of 3D hydrogels on the regulation of cancer invasion and dissemination. Biomaterials 2013; 34:9486-95. [PMID: 24044993 PMCID: PMC3832184 DOI: 10.1016/j.biomaterials.2013.08.077] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 08/27/2013] [Indexed: 12/25/2022]
Abstract
Metastasis begins with the escape, or dissemination, of cancer cells from the primary tumor. We recently demonstrated that tumors preferentially disseminate into collagen I and not into basement membrane protein gels (Matrigel). In this study, we used synthetic polymer systems to define material properties that could induce dissemination into Matrigel. We first specifically varied rigidity by varying the crosslinking density of poly(ethylene glycol) (PEG) networks within Matrigel scaffolds. Increased microenvironmental rigidity limited epithelial growth but did not promote dissemination. We next incorporated adhesive signals into the PEG network using peptide-conjugated cyclodextrin (α-CDYRGDS) rings. The α-CDYRGDS rings threaded along the PEG polymers, enabling independent control of matrix mechanics, adhesive peptide composition, and adhesive density. Adhesive PEG networks induced dissemination of normal and malignant mammary epithelial cells at intermediate values of adhesion and rigidity. Our data reveal that microenvironmental signals can induce dissemination of normal and malignant epithelial cells without requiring the fibrillar structure of collagen I or containing collagen I-specific adhesion sequences. Finally, the nanobiomaterials and assays developed in this study are generally useful both in 3D culture of primary mammalian tissues and in the systematic evaluation of the specific role of mechanical and adhesive inputs on 3D tumor growth, invasion, and dissemination.
Collapse
Affiliation(s)
- Jennifer N. Beck
- Departments of Cell Biology and Oncology, Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Anirudha Singh
- Translational Tissue Engineering Center, Wilmer Eye Institute, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Ashley R. Rothenberg
- Translational Tissue Engineering Center, Wilmer Eye Institute, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Andrew J. Ewald
- Departments of Cell Biology and Oncology, Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
759
|
Rosenfeld S. Are the somatic mutation and tissue organization field theories of carcinogenesis incompatible? Cancer Inform 2013; 12:221-9. [PMID: 24324325 PMCID: PMC3855256 DOI: 10.4137/cin.s13013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 02/06/2023] Open
Abstract
Two drastically different approaches to understanding the forces driving carcinogenesis have crystallized through years of research. These are the somatic mutation theory (SMT) and the tissue organization field theory (TOFT). The essence of SMT is that cancer is derived from a single somatic cell that has successively accumulated multiple DNA mutations, and that those mutations occur on genes which control cell proliferation and cell cycle. Thus, according to SMT, neoplastic lesions are the results of DNA-level events. Conversely, according to TOFT, carcinogenesis is primarily a problem of tissue organization: carcinogenic agents destroy the normal tissue architecture thus disrupting cell-to-cell signaling and compromising genomic integrity. Hence, in TOFT the DNA mutations are the effect, and not the cause, of the tissue-level events. Cardinal importance of successful resolution of the TOFT versus SMT controversy dwells in the fact that, according to SMT, cancer is a unidirectional and mostly irreversible disease; whereas, according to TOFT, it is curable and reversible. In this paper, our goal is to outline a plausible scenario in which TOFT and SMT can be reconciled using the framework and concepts of the self-organized criticality (SOC), the principle proven to be extremely fruitful in a wide range of disciplines pertaining to natural phenomena, to biological communities, to large-scale social developments, to technological networks, and to many other subjects of research.
Collapse
Affiliation(s)
- Simon Rosenfeld
- National Cancer Institute, Division of Cancer Prevention, Rockville, Maryland, USA
| |
Collapse
|
760
|
Droujinine IA, Perrimon N. Defining the interorgan communication network: systemic coordination of organismal cellular processes under homeostasis and localized stress. Front Cell Infect Microbiol 2013; 3:82. [PMID: 24312902 PMCID: PMC3832798 DOI: 10.3389/fcimb.2013.00082] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/30/2013] [Indexed: 12/31/2022] Open
|
761
|
Cheon DJ, Tong Y, Sim MS, Dering J, Berel D, Cui X, Lester J, Beach JA, Tighiouart M, Walts AE, Karlan BY, Orsulic S. A collagen-remodeling gene signature regulated by TGF-β signaling is associated with metastasis and poor survival in serous ovarian cancer. Clin Cancer Res 2013; 20:711-23. [PMID: 24218511 DOI: 10.1158/1078-0432.ccr-13-1256] [Citation(s) in RCA: 276] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To elucidate molecular pathways contributing to metastatic cancer progression and poor clinical outcome in serous ovarian cancer. EXPERIMENTAL DESIGN Poor survival signatures from three different serous ovarian cancer datasets were compared and a common set of genes was identified. The predictive value of this gene signature was validated in independent datasets. The expression of the signature genes was evaluated in primary, metastatic, and/or recurrent cancers using quantitative PCR and in situ hybridization. Alterations in gene expression by TGF-β1 and functional consequences of loss of COL11A1 were evaluated using pharmacologic and knockdown approaches, respectively. RESULTS We identified and validated a 10-gene signature (AEBP1, COL11A1, COL5A1, COL6A2, LOX, POSTN, SNAI2, THBS2, TIMP3, and VCAN) that is associated with poor overall survival (OS) in patients with high-grade serous ovarian cancer. The signature genes encode extracellular matrix proteins involved in collagen remodeling. Expression of the signature genes is regulated by TGF-β1 signaling and is enriched in metastases in comparison with primary ovarian tumors. We demonstrate that levels of COL11A1, one of the signature genes, continuously increase during ovarian cancer disease progression, with the highest expression in recurrent metastases. Knockdown of COL11A1 decreases in vitro cell migration, invasion, and tumor progression in mice. CONCLUSION Our findings suggest that collagen-remodeling genes regulated by TGF-β1 signaling promote metastasis and contribute to poor OS in patients with serous ovarian cancer. Our 10-gene signature has both predictive value and biologic relevance and thus may be useful as a therapeutic target.
Collapse
Affiliation(s)
- Dong-Joo Cheon
- Authors' Affiliations: Women's Cancer Program, Department of Medicine, Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Institute; Department of Pathology and Laboratory Medicine; Graduate Program in Biomedical Sciences and Translational Medicine, Cedars-Sinai Medical Center; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles; and John Wayne Cancer Institute, Saint John's Hospital, Santa Monica, California
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
762
|
Kucerova L, Skolekova S, Matuskova M, Bohac M, Kozovska Z. Altered features and increased chemosensitivity of human breast cancer cells mediated by adipose tissue-derived mesenchymal stromal cells. BMC Cancer 2013; 13:535. [PMID: 24209831 PMCID: PMC3829110 DOI: 10.1186/1471-2407-13-535] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 11/03/2013] [Indexed: 01/25/2023] Open
Abstract
Background Mesenchymal stromal cells (MSCs) represent heterogeneous cell population suitable for cell therapies in regenerative medicine. MSCs can also substantially affect tumor biology due to their ability to be recruited to the tumor stroma and interact with malignant cells via direct contacts and paracrine signaling. The aim of our study was to characterize molecular changes dictated by adipose tissue-derived mesenchymal stromal cells (AT-MSCs) and the effects on drug responses in human breast cancer cells SKBR3. Methods The tumor cells were either directly cocultured with AT-MSCs or exposed to MSCs-conditioned medium (MSC-CM). Changes in cell biology were evaluated by kinetic live cell imaging, fluorescent microscopy, scratch wound assay, expression analysis, cytokine secretion profiling, ATP-based viability and apoptosis assays. The efficiency of cytotoxic treatment in the presence of AT-MSCs or MSCs-CM was analyzed. Results The AT-MSCs altered tumor cell morphology, induced epithelial-to-mesenchymal transition, increased mammosphere formation, cell confluence and migration of SKBR3. These features were attributed to molecular changes induced by MSCs-secreted cytokines and chemokines in breast cancer cells. AT-MSCs significantly inhibited the proliferation of SKBR3 cells in direct cocultures which was shown to be dependent on the SDF-1α/CXCR4 signaling axis. MSC-CM-exposed SKBR3 or SKBR3 in direct coculture with AT-MSCs exhibited increased chemosensitivity and induction of apoptosis in response to doxorubicin and 5-fluorouracil. Conclusions Our work further highlights the multi-level nature of tumor-stromal cell interplay and demonstrates the capability of AT-MSCs and MSC-secreted factors to alter the anti-tumor drug responses.
Collapse
Affiliation(s)
- Lucia Kucerova
- Laboratory of Molecular Oncology, Cancer Research Institute, Slovak Academy of Sciences, Vlarska 7, 833 91, Bratislava, Slovakia.
| | | | | | | | | |
Collapse
|
763
|
Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 2013; 501:346-54. [PMID: 24048067 DOI: 10.1038/nature12626] [Citation(s) in RCA: 1901] [Impact Index Per Article: 158.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/07/2013] [Indexed: 12/14/2022]
Abstract
Tumour formation involves the co-evolution of neoplastic cells together with extracellular matrix, tumour vasculature and immune cells. Successful outgrowth of tumours and eventual metastasis is not determined solely by genetic alterations in tumour cells, but also by the fitness advantage such mutations confer in a given environment. As fitness is context dependent, evaluating tumours as complete organs, and not simply as masses of transformed epithelial cells, becomes paramount. The dynamic tumour topography varies drastically even throughout the same lesion. Heterologous cell types within tumours can actively influence therapeutic response and shape resistance.
Collapse
Affiliation(s)
- Melissa R Junttila
- Department of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, California 94080, USA
| | | |
Collapse
|
764
|
Johansson A, Hamzah J, Ganss R. License for destruction: tumor-specific cytokine targeting. Trends Mol Med 2013; 20:16-24. [PMID: 24169116 DOI: 10.1016/j.molmed.2013.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/27/2013] [Accepted: 10/02/2013] [Indexed: 12/28/2022]
Abstract
Stroma is an integral part of solid tumors and plays a key role in growth promotion and immune suppression. Most current therapies focus on destroying tumors and/or abnormal vasculature. However, evidence is emerging that anticancer efficacy improves with vessel normalization rather than destruction. Specific targeting of cytokines into tumors provides proof-of-concept that tumor stroma is dynamic and can be remodeled to increase drug access and alleviate immune suppression. Changing the inflammatory milieu 'opens' tumors for therapy and thus provides a license for destruction. This involves reprogramming of paracrine signaling networks between multiple stromal components to break the vicious cycle of angiogenesis and immune suppression. With active immunotherapy rapidly moving into the clinic, local cytokine delivery emerges as an attractive adjuvant.
Collapse
Affiliation(s)
- Anna Johansson
- Western Australian Institute for Medical Research, University of Western Australia, Centre for Medical Research, Perth, 6000, Australia
| | - Juliana Hamzah
- Western Australian Institute for Medical Research, University of Western Australia, Centre for Medical Research, Perth, 6000, Australia
| | - Ruth Ganss
- Western Australian Institute for Medical Research, University of Western Australia, Centre for Medical Research, Perth, 6000, Australia.
| |
Collapse
|
765
|
Narunsky L, Oren R, Bochner F, Neeman M. Imaging aspects of the tumor stroma with therapeutic implications. Pharmacol Ther 2013; 141:192-208. [PMID: 24134903 DOI: 10.1016/j.pharmthera.2013.10.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 12/25/2022]
Abstract
Cancer cells rely on extensive support from the stroma in order to survive, proliferate and invade. The tumor stroma is thus an important potential target for anti-cancer therapy. Typical changes in the stroma include a shift from the quiescence promoting-antiangiogenic extracellular matrix to a provisional matrix that promotes invasion and angiogenesis. These changes in the extracellular matrix are induced by changes in the secretion of extracellular matrix proteins and glucose amino glycans, extravasation of plasma proteins from hyperpermeable vessels and release of matrix modifying enzymes resulting in cleavage and cross-linking of matrix macromolecules. These in turn alter the rigidity of the matrix and the exposure and release of cytokines. Changes in matrix rigidity and vessel permeability affect drug delivery and mediate resistance to cytotoxic therapy. These stroma changes are brought about not only by the cancer cells, but also through the action of many cell types that are recruited by tumors including immune cells, fibroblasts and endothelial cells. Within the tumor, these normal host cells are activated resulting in loss of inhibitory and induction of cancer promoting activities. Key to the development of stroma-targeted therapies, selective biomarkers were developed for specific imaging of key aspects of the tumor stroma.
Collapse
Affiliation(s)
- Lian Narunsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Roni Oren
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Filip Bochner
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michal Neeman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
766
|
The Chemokine CXCL8 in Carcinogenesis and Drug Response. ISRN ONCOLOGY 2013; 2013:859154. [PMID: 24224100 PMCID: PMC3810054 DOI: 10.1155/2013/859154] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/08/2013] [Indexed: 02/08/2023]
Abstract
Although the functions of chemokines in the regulation of immune processes have been studied in some detail, the role of these biomolecules in cancer is not fully understood. Chemokines mediate migration of immune cells and other functions related to immunity. They are also involved in oncogenesis and in tumor progression, invasion, and metastasis through mechanisms similar to their roles in immune functions. Various chemokines also promote cell proliferation and resistance to apoptosis of stressed cells. Consequently, chemokines and their receptors present potential therapeutic targets for anticancer drugs. The chemokine CXCL8, also known as interleukin-8 (IL8), is a proinflammatory molecule that has functions within the tumor microenvironment. Due to its potent angiogenic effects and the activity of the chemokine and its receptors in the promotion of invasion and metastasis, CXCL8 and its receptors are now considered as attractive targets for cancer therapy. This review relates the current understanding of the regulation, signaling, and functions of CXCL8 that contribute to tumor growth and metastasis, and of its role in drug response.
Collapse
|
767
|
Partanen JI, Tervonen TA, Klefström J. Breaking the epithelial polarity barrier in cancer: the strange case of LKB1/PAR-4. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130111. [PMID: 24062587 DOI: 10.1098/rstb.2013.0111] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The PAR clan of polarity regulating genes was initially discovered in a genetic screen searching for genes involved in asymmetric cell divisions in the Caenorhabditis elegans embryo. Today, investigations in worms, flies and mammals have established PAR proteins as conserved and fundamental regulators of animal cell polarization in a broad range of biological phenomena requiring cellular asymmetries. The human homologue of invertebrate PAR-4, a serine-threonine kinase LKB1/STK11, has caught attention as a gene behind Peutz-Jeghers polyposis syndrome and as a bona fide tumour suppressor gene commonly mutated in sporadic cancer. LKB1 functions as a master regulator of AMP-activated protein kinase (AMPK) and 12 other kinases referred to as the AMPK-related kinases, including four human homologues of PAR-1. The role of LKB1 as part of the energy sensing LKB1-AMPK module has been intensively studied, whereas the polarity function of LKB1, in the context of homoeostasis or cancer, has gained less attention. Here, we focus on the PAR-4 identity of LKB1, discussing the weight of evidence indicating a role for LKB1 in regulation of cell polarity and epithelial integrity across species and highlight recent investigations providing new insight into the old question: does the PAR-4 identity of LKB1 matter in cancer?
Collapse
Affiliation(s)
- Johanna I Partanen
- Cancer Cell Circuitry Laboratory, Translational Cancer Biology Research Program and Institute of Biomedicine, University of Helsinki, , Biomedicum Helsinki, Rm B507b, PO Box 63, Haartmaninkatu 8, 00014 Helsinki, Finland
| | | | | |
Collapse
|
768
|
Balamurugan K, Sterneck E. The many faces of C/EBPδ and their relevance for inflammation and cancer. Int J Biol Sci 2013; 9:917-33. [PMID: 24155666 PMCID: PMC3805898 DOI: 10.7150/ijbs.7224] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/27/2013] [Indexed: 12/29/2022] Open
Abstract
The CCAAT/enhancer binding protein delta (CEBPD, C/EBPδ) is a transcription factor that modulates many biological processes including cell differentiation, motility, growth arrest, proliferation, and cell death. The diversity of C/EBPδ's functions depends in part on the cell type and cellular context and can have opposing outcomes. For example, C/EBPδ promotes inflammatory signaling, but it can also inhibit pro-inflammatory pathways, and in a mouse model of mammary tumorigenesis, C/EBPδ reduces tumor incidence but promotes tumor metastasis. This review highlights the multifaceted nature of C/EBPδ's functions, with an emphasis on pathways that are relevant for cancer and inflammation, and illustrates how C/EBPδ emerged from the shadow of its family members as a fascinating “jack of all trades.” Our current knowledge on C/EBPδ indicates that, rather than being essential for a specific cellular process, C/EBPδ helps to interpret a variety of cues in a cell-type and context-dependent manner, to adjust cellular functions to specific situations. Therefore, insights into the roles and mechanisms of C/EBPδ signaling can lead to a better understanding of how the integration of different signaling pathways dictates normal and pathological cell functions and physiology.
Collapse
Affiliation(s)
- Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD-21702-1201, U.S.A
| | | |
Collapse
|
769
|
Rajaram M, Li J, Egeblad M, Powers RS. System-wide analysis reveals a complex network of tumor-fibroblast interactions involved in tumorigenicity. PLoS Genet 2013; 9:e1003789. [PMID: 24068959 PMCID: PMC3778011 DOI: 10.1371/journal.pgen.1003789] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/26/2013] [Indexed: 12/21/2022] Open
Abstract
Many fibroblast-secreted proteins promote tumorigenicity, and several factors secreted by cancer cells have in turn been proposed to induce these proteins. It is not clear whether there are single dominant pathways underlying these interactions or whether they involve multiple pathways acting in parallel. Here, we identified 42 fibroblast-secreted factors induced by breast cancer cells using comparative genomic analysis. To determine what fraction was active in promoting tumorigenicity, we chose five representative fibroblast-secreted factors for in vivo analysis. We found that the majority (three out of five) played equally major roles in promoting tumorigenicity, and intriguingly, each one had distinct effects on the tumor microenvironment. Specifically, fibroblast-secreted amphiregulin promoted breast cancer cell survival, whereas the chemokine CCL7 stimulated tumor cell proliferation while CCL2 promoted innate immune cell infiltration and angiogenesis. The other two factors tested had minor (CCL8) or minimally (STC1) significant effects on the ability of fibroblasts to promote tumor growth. The importance of parallel interactions between fibroblasts and cancer cells was tested by simultaneously targeting fibroblast-secreted amphiregulin and the CCL7 receptor on cancer cells, and this was significantly more efficacious than blocking either pathway alone. We further explored the concept of parallel interactions by testing the extent to which induction of critical fibroblast-secreted proteins could be achieved by single, previously identified, factors produced by breast cancer cells. We found that although single factors could induce a subset of genes, even combinations of factors failed to induce the full repertoire of functionally important fibroblast-secreted proteins. Together, these results delineate a complex network of tumor-fibroblast interactions that act in parallel to promote tumorigenicity and suggest that effective anti-stromal therapeutic strategies will need to be multi-targeted.
Collapse
Affiliation(s)
- Megha Rajaram
- Cancer Genome Center, Cold Spring Harbor Laboratory, Woodbury, New York, United States of America
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, United States of America
| | - Jinyu Li
- Cancer Genome Center, Cold Spring Harbor Laboratory, Woodbury, New York, United States of America
| | - Mikala Egeblad
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, United States of America
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - R. Scott Powers
- Cancer Genome Center, Cold Spring Harbor Laboratory, Woodbury, New York, United States of America
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
770
|
The fibrotic microenvironment as a heterogeneity facet of hepatocellular carcinoma. FIBROGENESIS & TISSUE REPAIR 2013; 6:17. [PMID: 24350713 PMCID: PMC3849063 DOI: 10.1186/1755-1536-6-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/28/2013] [Indexed: 02/07/2023]
Abstract
It has long been recognized that hepatocellular carcinoma heterogeneity arises from variation in the microenvironment or from genomic alteration. Only recently it has become clear that non-genetic alterations, such as cytoskeletal rearrangement, protein localization and formation of protein complexes, are also involved in generating phenotype variability. These proteome fluctuations cause genetically identical cells to vary significantly in their responsiveness to microenvironment stimuli. In the cirrhotic liver pre-malignant hepatocytes are continuously exposed to abnormal microenvironments, such as direct contact with activated hepatic stellate cells (HSCs) and extracellular matrix components. These abnormal environments can have pronounced influences on the epigenetic aspects of cells, translating into abnormal phenotypes. Here we discuss non-genetic causes of phenotypic heterogeneity of hepatocellular carcinoma, with an emphasis on variability of membrane protein complexes and transferred functions raising important implications for diagnosis and treatment.
Collapse
|
771
|
Wu LY, Wen B, Hu FL, Liu JY, Fu DS. DNMTs are differentially expressed in tissues at different distances from colorectal cancer lesions. Shijie Huaren Xiaohua Zazhi 2013; 21:2515-2521. [DOI: 10.11569/wcjd.v21.i25.2515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the expression of DNA methyltransferases (DNMTs) in tissues at different distances from colorectal cancer lesions.
METHODS: Immunohistochemistry and Western blot were used to detect the expression of DNMTs in 25 colorectal cancer specimens and matched tumor-adjacent tissues (> 5 cm apart from the tumor and 2 cm apart from the tumor) and normal tissues (> 10 cm apart from the tumor). None of the patients received preoperative treatments such as radiotherapy or chemotherapy.
RESULTS: The corrected absorbance of DNMT1 detected by immunohistochemistry in tissues > 10, > 5 and 2 cm apart from the tumor was 0.359484 ± 0.037511, 0.460941 ± 0.032146 and 0.498767 ± 0.021143, respectively, showing an upward-trend (P < 0.05). The corresponding relative expression levels of DNMT1detected by Western blot were 0.7173, 0.7418 and 0.8296. Expression of DNMT3A in tissues > 5 and > 10 cm apart from the tumor was significantly higher than that in tissues 2 cm apart from the tumor (both P < 0. 05), although expression of DNMT3A showed no significant difference between tissues > 5 and > 10 cm apart from the tumor (P > 0. 05). Expression of DNMT3B in the above tissues was similar to that of DNMT3A.
CONCLUSION: Up-regulation of DNMT1, DNMT3A and DNMT3B may play a significant role in the occurrence of colorectal carcinoma.
Collapse
|
772
|
Putoczki TL, Thiem S, Loving A, Busuttil RA, Wilson NJ, Ziegler PK, Nguyen PM, Preaudet A, Farid R, Edwards KM, Boglev Y, Luwor RB, Jarnicki A, Horst D, Boussioutas A, Heath JK, Sieber OM, Pleines I, Kile BT, Nash A, Greten FR, McKenzie BS, Ernst M. Interleukin-11 is the dominant IL-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically. Cancer Cell 2013; 24:257-71. [PMID: 23948300 DOI: 10.1016/j.ccr.2013.06.017] [Citation(s) in RCA: 318] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/17/2013] [Accepted: 06/27/2013] [Indexed: 02/08/2023]
Abstract
Among the cytokines linked to inflammation-associated cancer, interleukin (IL)-6 drives many of the cancer "hallmarks" through downstream activation of the gp130/STAT3 signaling pathway. However, we show that the related cytokine IL-11 has a stronger correlation with elevated STAT3 activation in human gastrointestinal cancers. Using genetic mouse models, we reveal that IL-11 has a more prominent role compared to IL-6 during the progression of sporadic and inflammation-associated colon and gastric cancers. Accordingly, in these models and in human tumor cell line xenograft models, pharmacologic inhibition of IL-11 signaling alleviated STAT3 activation, suppressed tumor cell proliferation, and reduced the invasive capacity and growth of tumors. Our results identify IL-11 signaling as a potential therapeutic target for the treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Tracy L Putoczki
- Ludwig Institute for Cancer Research, Melbourne, VIC 3050, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
773
|
Manov I, Hirsh M, Iancu TC, Malik A, Sotnichenko N, Band M, Avivi A, Shams I. Pronounced cancer resistance in a subterranean rodent, the blind mole-rat, Spalax: in vivo and in vitro evidence. BMC Biol 2013; 11:91. [PMID: 23937926 PMCID: PMC3750378 DOI: 10.1186/1741-7007-11-91] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/26/2013] [Indexed: 12/20/2022] Open
Abstract
Background Subterranean blind mole rats (Spalax) are hypoxia tolerant (down to 3% O2), long lived (>20 years) rodents showing no clear signs of aging or aging related disorders. In 50 years of Spalax research, spontaneous tumors have never been recorded among thousands of individuals. Here we addressed the questions of (1) whether Spalax is resistant to chemically-induced tumorigenesis, and (2) whether normal fibroblasts isolated from Spalax possess tumor-suppressive activity. Results Treating animals with 3-Methylcholantrene (3MCA) and 7,12-Dimethylbenz(a) anthracene/12-O-tetradecanoylphorbol-13-acetate (DMBA/TPA), two potent carcinogens, confirmed Spalax high resistance to chemically induced cancers. While all mice and rats developed the expected tumors following treatment with both carcinogens, among Spalax no tumors were observed after DMBA/TPA treatment, while 3MCA induced benign fibroblastic proliferation in 2 Spalax individuals out of12, and only a single animal from the advanced age group developed malignancy 18 months post-treatment. The remaining animals are still healthy 30 months post-treatment. In vitro experiments showed an extraordinary ability of normal Spalax cultured fibroblasts to restrict malignant behavior in a broad spectrum of human-derived and in newly isolated Spalax 3MCA-induced cancer cell lines. Growth of cancer cells was inhibited by either direct interaction with Spalax fibroblasts or with soluble factors released into culture media and soft agar. This was accompanied by decreased cancer cell viability, reduced colony formation in soft agar, disturbed cell cycle progression, chromatin condensation and mitochondrial fragmentation. Cells from another cancer resistant subterranean mammal, the naked mole rat, were also tested for direct effect on cancer cells and, similar to Spalax, demonstrated anti-cancer activity. No effect on cancer cells was observed using fibroblasts from mouse, rat or Acomys. Spalax fibroblast conditioned media had no effect on proliferation of noncancerous cells. Conclusions This report provides pioneering evidence that Spalax is not only resistant to spontaneous cancer but also to experimentally induced cancer, and shows the unique ability of Spalax normal fibroblasts to inhibit growth and kill cancer cells, but not normal cells, either through direct fibroblast-cancer cell interaction or via soluble factors. Obviously, along with adaptation to hypoxia, Spalax has evolved efficient anti-cancer mechanisms yet to be elucidated. Exploring the molecular mechanisms allowing Spalax to survive in extreme environments and to escape cancer as well as to kill homologous and heterologous cancer cells may hold the key for understanding the molecular nature of host resistance to cancer and identify new anti-cancer strategies for treating humans.
Collapse
Affiliation(s)
- Irena Manov
- Institute of Evolution, University of Haifa, Haifa 31095, Israel
| | | | | | | | | | | | | | | |
Collapse
|
774
|
Lyons SK, Patrick PS, Brindle KM. Imaging mouse cancer models in vivo using reporter transgenes. Cold Spring Harb Protoc 2013; 2013:685-99. [PMID: 23906907 DOI: 10.1101/pdb.top069864] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Imaging mouse models of cancer with reporter transgenes has become a relatively common experimental approach in the laboratory, which allows noninvasive and longitudinal investigation of diverse aspects of tumor biology in vivo. Our goal here is to outline briefly the principles of the relevant imaging modalities, emphasizing particularly their strengths and weaknesses and what the researcher can expect in a practical sense from each of these techniques. Furthermore, we discuss how relatively subtle modifications in the way reporter transgene expression is regulated in the cell underpin the ability of reporter transgenes as a whole to provide readouts on such varied aspects of tumor biology in vivo.
Collapse
Affiliation(s)
- Scott K Lyons
- Department of Molecular Imaging, CRUK Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom
| | | | | |
Collapse
|
775
|
Feller L, Altini M, Lemmer J. Inflammation in the context of oral cancer. Oral Oncol 2013; 49:887-892. [PMID: 23910564 DOI: 10.1016/j.oraloncology.2013.07.003] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/04/2013] [Accepted: 07/06/2013] [Indexed: 01/17/2023]
Abstract
The link between cancer and inflammation is specific transcription factors that once activated have the capacity to enhance expression of genes that are common to both the regulation and the production of mediators of inflammation, and also to the regulation of the survival and proliferation of cancer cells. Cellular pathways activated by chronic inflammation brought about by chronic infections, by immune-mediated diseases, or by dysregulated wound healing at sites of repetitive tissue injury, constitute risk factors for initial cell transformation and for cancer progression. In established cancers, the cancer cells induce development of an exaggerated inflammatory state in the stroma, which in turn promotes cancer growth, invasion and metastasis. Inflammatory cells of myeloid origin in the tumour-associated stroma, mediate suppression of immune responses against cancer cells, which suppression favours tumour growth. Oral submucous fibrosis, and to a lesser extent oral lichen planus are precancerous conditions in which immuno-inflammatory processes are implicated in their pathogenesis, and in their cancerous transformation, if it occurs. Although there is some evidence for an association between oral squamous cell carcinoma on the one hand and dento-gingival bacterial plaques and chronic periodontitis on the other hand, the role of inflammation as the sole cause of cancerous transformation in such cases is not proven. The purpose of this article is to elaborate on some of the more important relationships between oral cancer and inflammation, and to comment on the role of inflammation in the pathogenesis of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- L Feller
- Department of Periodontology and Oral Medicine, University of Limpopo, Medunsa Campus, South Africa.
| | - M Altini
- Division of Anatomical Pathology, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - J Lemmer
- Department of Periodontology and Oral Medicine, University of Limpopo, Medunsa Campus, South Africa
| |
Collapse
|
776
|
Choi IK, Strauss R, Richter M, Yun CO, Lieber A. Strategies to increase drug penetration in solid tumors. Front Oncol 2013; 3:193. [PMID: 23898462 PMCID: PMC3724174 DOI: 10.3389/fonc.2013.00193] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/11/2013] [Indexed: 12/31/2022] Open
Abstract
Despite significant improvement in modalities for treatment of cancer that led to a longer survival period, the death rate of patients with solid tumors has not changed during the last decades. Emerging studies have identified several physical barriers that limit the therapeutic efficacy of cancer therapeutic agents such as monoclonal antibodies, chemotherapeutic agents, anti-tumor immune cells, and gene therapeutics. Most solid tumors are of epithelial origin and, although malignant cells are de-differentiated, they maintain intercellular junctions, a key feature of epithelial cells, both in the primary tumor as well as in metastatic lesions. Furthermore, nests of malignant epithelial tumor cells are shielded by layers of extracellular matrix (ECM) proteins (e.g., collagen, elastin, fibronectin, laminin) whereby tumor vasculature rarely penetrates into the tumor nests. In this chapter, we will review potential strategies to modulate the ECM and epithelial junctions to enhance the intratumoral diffusion and/or to remove physical masking of target receptors on malignant cells. We will focus on peptides that bind to the junction protein desmoglein 2 and trigger intracellular signaling, resulting in the transient opening of intercellular junctions. Intravenous injection of these junction openers increased the efficacy and safety of therapies with monoclonal antibodies, chemotherapeutics, and T cells in mouse tumor models and was safe in non-human primates. Furthermore, we will summarize approaches to transiently degrade ECM proteins or downregulate their expression. Among these approaches is the intratumoral expression of relaxin or decorin after adenovirus- or stem cell-mediated gene transfer. We will provide examples that relaxin-based approaches increase the anti-tumor efficacy of oncolytic viruses, monoclonal antibodies, and T cells.
Collapse
Affiliation(s)
- Il-Kyu Choi
- Department of Bioengineering, College of Engineering, Hanyang University , Seoul , South Korea
| | | | | | | | | |
Collapse
|
777
|
Lokmic Z, Mitchell GM, Koh Wee Chong N, Bastiaanse J, Gerrand YW, Zeng Y, Williams ED, Penington AJ. Isolation of human lymphatic malformation endothelial cells, their in vitro characterization and in vivo survival in a mouse xenograft model. Angiogenesis 2013; 17:1-15. [PMID: 23884796 DOI: 10.1007/s10456-013-9371-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
Abstract
Human lymphatic vascular malformations (LMs), also known as cystic hygromas or lymphangioma, consist of multiple lymphatic endothelial cell-lined lymph-containing cysts. No animal model of this disease exists. To develop a mouse xenograft model of human LM, CD34(Neg)CD31(Pos) LM lymphatic endothelial cells (LM-LEC) were isolated from surgical specimens and compared to foreskin CD34(Neg)CD31(Pos) lymphatic endothelial cells (LECs). Cells were implanted into a mouse tissue engineering model for 1, 2 and 4 weeks. In vitro LM-LECs showed increased proliferation and survival under starvation conditions (P < 0.0005 at 48 h, two-way ANOVA), increased migration (P < 0.001, two-way ANOVA) and formed fewer (P = 0.029, independent samples t test), shorter tubes (P = 0.029, independent samples t test) than foreskin LECs. In vivo LM-LECs implanted into a Matrigel™-containing mouse chamber model assembled to develop vessels with dilated cystic lumens lined with flat endothelium, morphology similar to that of clinical LMs. Human foreskin LECs failed to survive implantation. In LM-LEC implanted chambers the percent volume of podoplanin(Pos) vessels was 1.18 ± 2.24 % at 1 week, 6.34 ± 2.68 % at 2 weeks and increasing to 7.67 ± 3.60 % at 4 weeks. In conclusion, the significantly increased proliferation, migration, resistance to apoptosis and decreased tubulogenesis of LM-LECs observed in vitro is likely to account for their survival and assembly into stable LM-like structures when implanted into a mouse vascularised chamber model. This in vivo xenograft model will provide the basis of future studies of LM biology and testing of potential pharmacological interventions for patients with lymphatic malformations.
Collapse
Affiliation(s)
- Zerina Lokmic
- O'Brien Institute, 42 Fitzroy Street, Fitzroy, VIC, 3065, Australia,
| | | | | | | | | | | | | | | |
Collapse
|
778
|
Acoustic angiography: a new imaging modality for assessing microvasculature architecture. Int J Biomed Imaging 2013; 2013:936593. [PMID: 23997762 PMCID: PMC3730364 DOI: 10.1155/2013/936593] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/18/2013] [Indexed: 11/26/2022] Open
Abstract
The purpose of this paper is to provide the biomedical imaging community with details of a new high resolution contrast imaging approach referred to as “acoustic angiography.” Through the use of dual-frequency ultrasound transducer technology, images acquired with this approach possess both high resolution and a high contrast-to-tissue ratio, which enables the visualization of microvascular architecture without significant contribution from background tissues. Additionally, volumetric vessel-tissue integration can be visualized by using b-mode overlays acquired with the same probe. We present a brief technical overview of how the images are acquired, followed by several examples of images of both healthy and diseased tissue volumes. 3D images from alternate modalities often used in preclinical imaging, contrast-enhanced micro-CT and photoacoustics, are also included to provide a perspective on how acoustic angiography has qualitatively similar capabilities to these other techniques. These preliminary images provide visually compelling evidence to suggest that acoustic angiography may serve as a powerful new tool in preclinical and future clinical imaging.
Collapse
|
779
|
Wang Z, Deisboeck TS. Mathematical modeling in cancer drug discovery. Drug Discov Today 2013; 19:145-50. [PMID: 23831857 DOI: 10.1016/j.drudis.2013.06.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 12/20/2022]
Abstract
Mathematical models have the potential to help discover new therapeutic targets and treatment strategies. In this review, we discuss how the latest developments in mathematical modeling can provide useful context for the rational design, validation and prioritization of novel cancer drug targets and their combinations. We give special attention to two modeling approaches: network-based modeling and multiscale modeling, because they have begun to show promise in facilitating the process of effective cancer drug discovery. Both modeling approaches are integrated with a variety of experimental methods to ensure proper parameterization and to maximize their predictive value. We also discuss several challenges faced in modeling-based drug discovery.
Collapse
Affiliation(s)
- Zhihui Wang
- Department of Pathology, University of New Mexico, Albuquerque, NM 87131, USA
| | | |
Collapse
|
780
|
Vaughan AE, Chapman HA. Regenerative activity of the lung after epithelial injury. Biochim Biophys Acta Mol Basis Dis 2013; 1832:922-30. [DOI: 10.1016/j.bbadis.2012.11.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 12/22/2022]
|
781
|
Becker JC, Andersen MH, Schrama D, Thor Straten P. Immune-suppressive properties of the tumor microenvironment. Cancer Immunol Immunother 2013; 62:1137-48. [PMID: 23666510 PMCID: PMC11029603 DOI: 10.1007/s00262-013-1434-6] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 04/30/2013] [Indexed: 02/06/2023]
Abstract
Solid tumors are more than an accumulation of cancer cells. Indeed, cancerous cells create a permissive microenvironment by exploiting non-transformed host cells. Thus, solid tumors rather resemble abnormal organs composed of the cancerous cells itself and the stroma providing the supportive framework. The stroma can be divided into the extracellular matrix consisting of proteoglycans, hyaluronic acid, and fibrous proteins, as well as stromal cells including mesenchymal and immune cells; moreover, it contains various peptide factors and metabolites. Here, we will focus on immune-modulating capacities of the tumor microenvironment.
Collapse
Affiliation(s)
- Jürgen C Becker
- Department of General Dermatology, Medical University of Graz, Auenbruggerplatz 8, 8010, Graz, Austria.
| | | | | | | |
Collapse
|
782
|
Piccolo S, Cordenonsi M, Dupont S. Molecular pathways: YAP and TAZ take center stage in organ growth and tumorigenesis. Clin Cancer Res 2013; 19:4925-30. [PMID: 23797907 DOI: 10.1158/1078-0432.ccr-12-3172] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The evolution of a solid tumor is fueled by genetic aberrations. Yet, the tumor environment often dominates over the effects of genetics: normal tissues have powerful tumor-suppressive properties that constantly tame or eliminate cells carrying transforming mutations. Critical elements of such a suppressive microenvironment are structural characteristics of normal cells and tissues, such as cell polarity, attachment to the extracellular matrix (ECM), and epithelial organization. Once these tissue-level checkpoints have been overcome, tumor growth is enhanced by recruitment of stromal cells and remodeling of the ECM. Genetic inactivation in mouse models indicates the Hippo pathway as a fundamental inhibitor of organ growth during development and as a critical tumor suppressor in epithelial tissues, such as the liver, skin, and ovaries, and soft tissues. At the centerpiece of this pathway lie two related transcriptional coactivators, YAP and TAZ, that promote tissue proliferation and the self-renewal of normal and cancer stem cells, and incite metastasis. Strikingly, YAP and TAZ are controlled by the same architectural features that first inhibit and then foster cancer growth, such as ECM elasticity, cell shape, and epithelial-to-mesenchymal transition. These findings open unexpected opportunities for the development of new cancer therapeutics targeting key YAP/TAZ regulatory inputs such as Wnt signaling, cytoskeletal contractility, G-protein-coupled receptors, or YAP/TAZ-regulated transcription.
Collapse
Affiliation(s)
- Stefano Piccolo
- Authors' Affiliation: Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
| | | | | |
Collapse
|
783
|
Cunderlíková B, Peng Q, Mateasík A. Factors implicated in the assessment of aminolevulinic acid-induced protoporphyrin IX fluorescence. Biochim Biophys Acta Gen Subj 2013; 1830:2750-62. [PMID: 23142760 DOI: 10.1016/j.bbagen.2012.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 10/16/2012] [Accepted: 10/29/2012] [Indexed: 01/27/2023]
Abstract
BACKGROUND Photodynamic therapy and photodiagnosis of cancer requires preferential accumulation of fluorescent photosensitizers in tumors. Clinical evidence documents feasibility of ALA-based photodiagnosis for tumor detection. However, false positive results and large variations in fluorescence intensities are also reported. Furthermore, selective accumulation of fluorescent species of photosensitizers in tumor cell lines, as compared to normal ones, when cultured in vitro, is not always observed. To understand this discrepancy we analyzed the impact of various factors on the intensity of detected PpIX fluorescence. METHODS Impacts of cell type, mitochondrial potential, cell-cell interactions and relocalization of PpIX among different cell types in co-cultures of different cell lines were analyzed by confocal microscopy and flow cytometry. Fluorescence spectroscopy was used to estimate absolute amounts of ALA-induced PpIX in individual cell lines. Immunofluorescence staining was applied to evaluate the ability of cell lines to produce collagen. RESULTS Higher ALA-induced PpIX fluorescence in cancer cell lines as compared to normal ones was not detected by all the methods used. Mitochondrial activity was heterogeneous throughout the cell monolayers and could not be clearly correlated with PpIX fluorescence. Positive collagen staining was detected in all cell lines tested. CONCLUSIONS Contrary to in vivo situation, ALA-induced PpIX production by cell lines in vitro may not result in higher PpIX fluorescence signals in tumor cells than in normal ones. We suggest that a combination of several properties of tumor tissue, instead of tumor cells only, is responsible for increased ALA-induced PpIX fluorescence in solid tumors. GENERAL SIGNIFICANCE Understanding the reasons of increased ALA-induced PpIX fluorescence in tumors is necessary for reliable ALA-based photodiagnosis, which is used in various oncological fields.
Collapse
|
784
|
Barik S, Banerjee S, Mallick A, Goswami KK, Roy S, Bose A, Baral R. Normalization of tumor microenvironment by neem leaf glycoprotein potentiates effector T cell functions and therapeutically intervenes in the growth of mouse sarcoma. PLoS One 2013; 8:e66501. [PMID: 23785504 PMCID: PMC3681973 DOI: 10.1371/journal.pone.0066501] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/06/2013] [Indexed: 11/18/2022] Open
Abstract
We have observed restriction of the murine sarcoma growth by therapeutic intervention of neem leaf glycoprotein (NLGP). In order to evaluate the mechanism of tumor growth restriction, here, we have analyzed tumor microenvironment (TME) from sarcoma bearing mice with NLGP therapy (NLGP-TME, in comparison to PBS-TME). Analysis of cytokine milieu within TME revealed IL-10, TGFβ, IL-6 rich type 2 characters was switched to type 1 microenvironment with dominance of IFNγ secretion within NLGP-TME. Proportion of CD8(+) T cells was increased within NLGP-TME and these T cells were protected from TME-induced anergy by NLGP, as indicated by higher expression of pNFAT and inhibit related downstream signaling. Moreover, low expression of FasR(+) cells within CD8(+) T cell population denotes prevention from activation induced cell death. Using CFSE as a probe, better migration of T cells was noted within TME from NLGP treated mice than PBS cohort. CD8(+) T cells isolated from NLGP-TME exhibited greater cytotoxicity to sarcoma cells in vitro and these cells show higher expression of cytotoxicity related molecules, perforin and granzyme B. Adoptive transfer of NLGP-TME exposed T cells, but not PBS-TME exposed cells in mice, is able to significantly inhibit the growth of sarcoma in vivo. Such tumor growth inhibition by NLGP-TME exposed T cells was not observed when mice were depleted for CD8(+) T cells. Accumulated evidences strongly suggest NLGP mediated normalization of TME allows T cells to perform optimally to inhibit the tumor growth.
Collapse
Affiliation(s)
- Subhasis Barik
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI); Kolkata, India
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI); Kolkata, India
| | - Atanu Mallick
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI); Kolkata, India
| | - Kuntal Kanti Goswami
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI); Kolkata, India
| | - Soumyabrata Roy
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI); Kolkata, India
| | - Anamika Bose
- Department of Molecular Medicine, Bose Institute, C.I.T. Scheme, Kolkata, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI); Kolkata, India
- * E-mail:
| |
Collapse
|
785
|
Sakakura T, Suzuki Y, Shiurba R. Mammary stroma in development and carcinogenesis. J Mammary Gland Biol Neoplasia 2013; 18:189-97. [PMID: 23604977 DOI: 10.1007/s10911-013-9281-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/10/2013] [Indexed: 12/13/2022] Open
Abstract
Mammary glands of adult human females are secretory organs comprised of interdependent epithelial and mesenchymal cells. These cells constitute an assemblage of collecting ducts that end in terminal duct lobular units with hollow alveolar ductules that can differentiate to produce and expel milk. Systemic and maternal hormones, autocrine and paracrine growth factors, and cytokines regulate virtually all phases of mammary gland development. During organogenesis, epithelial and mesenchymal cells interact to form precursors of the parenchyma and stroma in the mature gland. Organogenesis precedes five stages of postnatal development: puberty, pregnancy, lactation, involution, and menopause. Each stage requires a specific set of morphogenetic changes in glandular structure and function. Cycles of cell proliferation, differentiation, and involution may recur until menopause. In addition, physiological responses such as inflammation and pathological events such as tumorigenesis are remarkable for their similarities to embryonic morphogenesis. Here we take a succinct look at the ever-improving understanding of stroma-epithelial interactions and mesenchyme function in mammary gland biology.
Collapse
|
786
|
Swamydas M, Ricci K, Rego SL, Dréau D. Mesenchymal stem cell-derived CCL-9 and CCL-5 promote mammary tumor cell invasion and the activation of matrix metalloproteinases. Cell Adh Migr 2013; 7:315-24. [PMID: 23722213 DOI: 10.4161/cam.25138] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Stromal chemokine gradients within the breast tissue microenvironment play a critical role in breast cancer cell invasion, a prerequisite to metastasis. To elucidate which chemokines and mechanisms are involved in mammary cell migration we determined whether mesenchymal D1 stem cells secreted specific chemokines that differentially promoted the invasion of mammary tumor cells in vitro. Results indicate that mesenchymal D1 cells produced concentrations of CCL5 and CCL9 4- to 5-fold higher than the concentrations secreted by 4T1 tumor cells (P < 0.01). Moreover, 4T1 tumor cell invasion toward D1 mesenchymal stem cell conditioned media (D1CM), CCL5 alone, CCL9 alone or a combination CCL5 and CCL9 was observed. The invasion of 4T1 cells toward D1 mesenchymal stem CM was dose-dependently suppressed by pre-incubation with the CCR1/CCR5 antagonist met-CCL5 (P < 0.01). Furthermore, the invasion of 4T1 cells toward these chemokines was prevented by incubation with the broad-spectrum MMP inhibitor GM6001. Additionally, the addition of specific MMP9/MMP13 and MMP14 inhibitors prevented the MMP activities of supernatants collected from 4T1 cells incubated with D1CM, CCL5 or CCL9. Taken together these data highlight the role of CCL5 and CCL9 produced by mesenchymal stem cells in mammary tumor cell invasion.
Collapse
Affiliation(s)
- Muthulekha Swamydas
- Cell and Molecular Division; Department of Biology, University of North Carolina, Charlotte, Charlotte, NC, USA
| | | | | | | |
Collapse
|
787
|
Murray MY, Birkland TP, Howe JD, Rowan AD, Fidock M, Parks WC, Gavrilovic J. Macrophage migration and invasion is regulated by MMP10 expression. PLoS One 2013; 8:e63555. [PMID: 23691065 PMCID: PMC3653827 DOI: 10.1371/journal.pone.0063555] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 04/03/2013] [Indexed: 12/31/2022] Open
Abstract
This study was designed to identify metalloproteinase determinants of macrophage migration and led to the specific hypothesis that matrix metalloproteinase 10 (MMP10/stromelysin-2) facilitates macrophage migration. We first profiled expression of all MMPs in LPS-stimulated primary murine bone marrow-derived macrophages and Raw264.7 cells and found that MMP10 was stimulated early (3 h) and down-regulated later (24 h). Based on this pattern of expression, we speculated that MMP10 plays a role in macrophage responses, such as migration. Indeed, using time lapse microscopy, we found that RNAi silencing of MMP10 in primary macrophages resulted in markedly reduced migration, which was reversed with exogenous active MMP10 protein. Mmp10 (-/-) bone marrow-derived macrophages displayed significantly reduced migration over a two-dimensional fibronectin matrix. Invasion of primary wild-type macrophages into Matrigel supplemented with fibronectin was also markedly impaired in Mmp10 (-/-) cells. MMP10 expression in macrophages thus emerges as an important moderator of cell migration and invasion. These findings support the hypothesis that MMP10 promotes macrophage movement and may have implications in understanding the control of macrophages in several pathologies, including the abnormal wound healing response associated with pro-inflammatory conditions.
Collapse
Affiliation(s)
- Megan Y. Murray
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Timothy P. Birkland
- Center for Lung Biology, University of Washington, Seattle, Washington, United States of America
| | - Jonathan D. Howe
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Andrew D. Rowan
- Musculoskeletal Research Group, Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle, United Kingdom
| | - Mark Fidock
- Pfizer Global Research and Development, Sandwich, Kent, United Kingdom
| | - William C. Parks
- Center for Lung Biology, University of Washington, Seattle, Washington, United States of America
| | - Jelena Gavrilovic
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, United Kingdom
- * E-mail:
| |
Collapse
|
788
|
Hölzel M, Bovier A, Tüting T. Plasticity of tumour and immune cells: a source of heterogeneity and a cause for therapy resistance? Nat Rev Cancer 2013; 13:365-76. [PMID: 23535846 DOI: 10.1038/nrc3498] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Immunotherapies, signal transduction inhibitors and chemotherapies can successfully achieve remissions in advanced stage cancer patients, but durable responses are rare. Using malignant melanoma as a paradigm, we propose that therapy-induced injury to tumour tissue and the resultant inflammation can activate protective and regenerative responses that represent a shared resistance mechanism to different treatments. Inflammation-driven phenotypic plasticity alters the antigenic landscape of tumour cells, rewires oncogenic signalling networks, protects against cell death and reprogrammes immune cell functions. We propose that the successful combination of cancer treatments to tackle resistance requires an interdisciplinary understanding of these resistance mechanisms, supported by mathematical models.
Collapse
Affiliation(s)
- Michael Hölzel
- Unit for RNA Biology, Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, 53105 Bonn, Germany
| | | | | |
Collapse
|
789
|
Klotz D. Colorectal cancer stem cells and their implications for novel anticancer therapy. Expert Rev Anticancer Ther 2013; 13:461-8. [PMID: 23560840 DOI: 10.1586/era.13.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Anticancer therapy relies on targeting highly proliferative cells. Commonly used chemotherapy does not selectively target individual cancer cells. The identification of distinct cancer stem cells that have the unique ability to engraft tumors and maintain cancer self-renewal may prove vital in the development of novel and selective anticancer therapy. Therefore, the discovery of colorectal cancer stem cell markers has attracted much attention. However, it is still controversial whether current markers for cancer cell subpopulations are selectively labeling cancer stem cells, whether these markers contribute to cancer stem cell function and how many cells within tumors maintain this stemness. For this reason, novel anticancer drug approaches need to be considered, that target selective cell death pathways, the tissue microenvironment and, additionally, multiple specific cancer (stem) cell markers. This triple approach of anticancer therapy may contribute to novel chemotherapeutic strategies and improve the understanding of human intestinal tumorigenesis; in particular, the distinct contribution of human cancer stem cells.
Collapse
Affiliation(s)
- Daniel Klotz
- Medical Sciences Division, University of Oxford and Pembroke College, Oxford, OX1 1DW, UK.
| |
Collapse
|
790
|
Lum DH, Matsen C, Welm AL, Welm BE. Overview of human primary tumorgraft models: comparisons with traditional oncology preclinical models and the clinical relevance and utility of primary tumorgrafts in basic and translational oncology research. ACTA ACUST UNITED AC 2013; Chapter 14:Unit 14.22. [PMID: 23258598 DOI: 10.1002/0471141755.ph1422s59] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Laboratory models that accurately replicate human tumor initiation and characteristics are integral to advancing knowledge in cancer research. However, comparative studies between commonly employed laboratory models and human tumors have demonstrated that some models have molecular and genomic alterations dissimilar to the cancer type they attempt to replicate. In contrast, several recent comparative studies suggest that because patient-derived tumors grown in mice maintain many of the important characteristics of the original tumor, they represent an important tool for the development of new cancer therapeutics. Detailed in this overview are the advantages and disadvantages of the most commonly used cancer models for mechanistic and therapeutic research, with an emphasis on the advances made in the production and use of patient-derived tumorgrafts.
Collapse
Affiliation(s)
- David H Lum
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | | | | | | |
Collapse
|
791
|
Wagner M, Dudley AC. A three-party alliance in solid tumors: Adipocytes, macrophages and vascular endothelial cells. Adipocyte 2013; 2:67-73. [PMID: 23805401 PMCID: PMC3661111 DOI: 10.4161/adip.23016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/27/2012] [Accepted: 11/27/2012] [Indexed: 02/07/2023] Open
Abstract
In tumors, cross talk between malignant and non-malignant cells (stroma) influences tumor growth, angiogenesis and metastasis. Stromal cells in tumors typically include vascular cells, fibroblasts and a heterogeneous population of inflammatory cells. Adipocytes may also be present. Adipose tissue is perhaps the least studied stromal cell “compartment” despite the fact that some tumors, particularly breast tumors, grow in close proximity to or physically interact with adipocytes. Apart from adipocytes and numerous blood vessels, adipose tissue harbors macrophages, which increase in proportion to adipose tissue mass. While circulating or bone marrow-derived macrophages play a well-defined role in tumor growth, it is less understood how resident adipose tissue-associated macrophages contribute to tumor progression. Here, we will review the role of adipose tissue in tumor growth and angiogenesis with emphasis on the specific functions of adipose tissue macrophages in these processes.
Collapse
|
792
|
Treatment-induced host-mediated mechanisms reducing the efficacy of antitumor therapies. Oncogene 2013; 33:1341-7. [PMID: 23524584 DOI: 10.1038/onc.2013.94] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 02/03/2013] [Accepted: 02/03/2013] [Indexed: 12/22/2022]
Abstract
In addition to its direct effects on tumor cells, chemotherapy can rapidly activate various host processes that contribute to therapy resistance and tumor regrowth. The host response to chemotherapy consists of changes in numerous cell types and cytokines. Examples include the acute mobilization and tumor homing of pro-angiogenic bone marrow-derived cells, activation of cells in the tumor microenvironment to produce systemic or paracrine factors, and tissue-specific responses that provide a protective niche for tumor cells. All of these factors reduce chemotherapy efficacy, and blocking the host response at various levels may therefore significantly improve treatment outcome. However, before the combination of conventional chemotherapy with agents blocking specific aspects of the host response can be implemented into clinical practice, a better understanding of the molecular mechanisms behind the host response is required.
Collapse
|
793
|
Nakasone ES, Askautrud HA, Egeblad M. Live imaging of drug responses in the tumor microenvironment in mouse models of breast cancer. J Vis Exp 2013:e50088. [PMID: 23542634 PMCID: PMC3639729 DOI: 10.3791/50088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The tumor microenvironment plays a pivotal role in tumor initiation, progression, metastasis, and the response to anti-cancer therapies. Three-dimensional co-culture systems are frequently used to explicate tumor-stroma interactions, including their role in drug responses. However, many of the interactions that occur in vivo in the intact microenvironment cannot be completely replicated in these in vitro settings. Thus, direct visualization of these processes in real-time has become an important tool in understanding tumor responses to therapies and identifying the interactions between cancer cells and the stroma that can influence these responses. Here we provide a method for using spinning disk confocal microscopy of live, anesthetized mice to directly observe drug distribution, cancer cell responses and changes in tumor-stroma interactions following administration of systemic therapy in breast cancer models. We describe procedures for labeling different tumor components, treatment of animals for observing therapeutic responses, and the surgical procedure for exposing tumor tissues for imaging up to 40 hours. The results obtained from this protocol are time-lapse movies, in which such processes as drug infiltration, cancer cell death and stromal cell migration can be evaluated using image analysis software.
Collapse
|
794
|
Zvelebil M, Oliemuller E, Gao Q, Wansbury O, Mackay A, Kendrick H, Smalley MJ, Reis-Filho JS, Howard BA. Embryonic mammary signature subsets are activated in Brca1-/- and basal-like breast cancers. Breast Cancer Res 2013; 15:R25. [PMID: 23506684 PMCID: PMC3672751 DOI: 10.1186/bcr3403] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 03/14/2013] [Indexed: 12/21/2022] Open
Abstract
Introduction Cancer is often suggested to result from development gone awry. Links between normal embryonic development and cancer biology have been postulated, but no defined genetic basis has been established. We recently published the first transcriptomic analysis of embryonic mammary cell populations. Embryonic mammary epithelial cells are an immature progenitor cell population, lacking differentiation markers, which is reflected in their very distinct genetic profiles when compared with those of their postnatal descendents. Methods We defined an embryonic mammary epithelial signature that incorporates the most highly expressed genes from embryonic mammary epithelium when compared with the postnatal mammary epithelial cells. We looked for activation of the embryonic mammary epithelial signature in mouse mammary tumors that formed in mice in which Brca1 had been conditionally deleted from the mammary epithelium and in human breast cancers to determine whether any genetic links exist between embryonic mammary cells and breast cancers. Results Small subsets of the embryonic mammary epithelial signature were consistently activated in mouse Brca1-/- tumors and human basal-like breast cancers, which encoded predominantly transcriptional regulators, cell-cycle, and actin cytoskeleton components. Other embryonic gene subsets were found activated in non-basal-like tumor subtypes and repressed in basal-like tumors, including regulators of neuronal differentiation, transcription, and cell biosynthesis. Several embryonic genes showed significant upregulation in estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and/or grade 3 breast cancers. Among them, the transcription factor, SOX11, a progenitor cell and lineage regulator of nonmammary cell types, is found highly expressed in some Brca1-/- mammary tumors. By using RNA interference to silence SOX11 expression in breast cancer cells, we found evidence that SOX11 regulates breast cancer cell proliferation and cell survival. Conclusions Specific subsets of embryonic mammary genes, rather than the entire embryonic development transcriptomic program, are activated in tumorigenesis. Genes involved in embryonic mammary development are consistently upregulated in some breast cancers and warrant further investigation, potentially in drug-discovery research endeavors.
Collapse
|
795
|
Samaniego R, Estecha A, Relloso M, Longo N, Escat JL, Longo-Imedio I, Avilés JA, del Pozo MA, Puig-Kröger A, Sánchez-Mateos P. Mesenchymal contribution to recruitment, infiltration, and positioning of leukocytes in human melanoma tissues. J Invest Dermatol 2013; 133:2255-64. [PMID: 23446986 DOI: 10.1038/jid.2013.88] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/25/2013] [Accepted: 02/06/2013] [Indexed: 02/04/2023]
Abstract
To understand factors that regulate leukocyte entry and positioning within human melanoma tissues, we performed a multiparametric quantitative analysis of two separated regions: the intratumoral area and the peritumoral stroma. Using two mesenchymal markers, fibroblast activation protein (FAP) and CD90, we identified three subsets of mesenchymal cells (MCs): (i) intratumoral FAP(+)CD90(low/-) MC, (ii) peritumoral FAP(+)CD90(+) MC, and (iii) FAP(-)CD90(+) perivascular MC. We characterized CD90(+) MCs, which showed a stable CCL2-secretory phenotype when long-term expanded ex vivo, and heavily surrounded peritumoral Duffy antigen receptor for chemokine(+) (DARC) postcapillary venules, supporting a role for these vessels in peritumoral inflammatory leukocyte recruitment. Conversely, the intratumoral area was variably invaded by FAP(+)CD90(low/-) MCs that colocalized with a distinct extracellular matrix (ECM) network. A positive correlation was observed between intratumoral stromal cell/ECM networks and leukocyte infiltration among tumor cells (TCs), as well as in a stroma-dependent xenograft tumor model. Adoptively transferred T lymphocytes preferentially infiltrated tumors composed of TC+MC, compared with TCs only. Altogether, our results suggest that a variety of MCs contribute to regulate different steps of leukocyte tumor infiltration, that is, CD90(+) cells surrounding peritumoral vessels secrete CCL2 to recruit CCR2(+) leukocytes at the tumor periphery, whereas intratumoral FAP(+) cells organize a stromal scaffold that contact guide further invasion among densely packed tumor cells.
Collapse
Affiliation(s)
- Rafael Samaniego
- Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
796
|
Rosenfeld S. Global consensus theorem and self-organized criticality: unifying principles for understanding self-organization, swarm intelligence and mechanisms of carcinogenesis. GENE REGULATION AND SYSTEMS BIOLOGY 2013; 7:23-39. [PMID: 23471309 PMCID: PMC3583443 DOI: 10.4137/grsb.s10885] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Complex biological systems manifest a large variety of emergent phenomena among which prominent roles belong to self-organization and swarm intelligence. Generally, each level in a biological hierarchy possesses its own systemic properties and requires its own way of observation, conceptualization, and modeling. In this work, an attempt is made to outline general guiding principles in exploration of a wide range of seemingly dissimilar phenomena observed in large communities of individuals devoid of any personal intelligence and interacting with each other through simple stimulus-response rules. Mathematically, these guiding principles are well captured by the Global Consensus Theorem (GCT) equally applicable to neural networks and to Lotka-Volterra population dynamics. Universality of the mechanistic principles outlined by GCT allows for a unified approach to such diverse systems as biological networks, communities of social insects, robotic communities, microbial communities, communities of somatic cells, social networks and many other systems. Another cluster of universal laws governing the self-organization in large communities of locally interacting individuals is built around the principle of self-organized criticality (SOC). The GCT and SOC, separately or in combination, provide a conceptual basis for understanding the phenomena of self-organization occurring in large communities without involvement of a supervisory authority, without system-wide informational infrastructure, and without mapping of general plan of action onto cognitive/behavioral faculties of its individual members. Cancer onset and proliferation serves as an important example of application of these conceptual approaches. In this paper, the point of view is put forward that apparently irreconcilable contradictions between two opposing theories of carcinogenesis, that is, the Somatic Mutation Theory and the Tissue Organization Field Theory, may be resolved using the systemic approaches provided by GST and SOC.
Collapse
|
797
|
Triulzi T, Casalini P, Sandri M, Ratti M, Carcangiu ML, Colombo MP, Balsari A, Ménard S, Orlandi R, Tagliabue E. Neoplastic and stromal cells contribute to an extracellular matrix gene expression profile defining a breast cancer subtype likely to progress. PLoS One 2013; 8:e56761. [PMID: 23441215 PMCID: PMC3575489 DOI: 10.1371/journal.pone.0056761] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 01/16/2013] [Indexed: 12/02/2022] Open
Abstract
We recently showed that differential expression of extracellular matrix (ECM) genes delineates four subgroups of breast carcinomas (ECM1, -2, -3- and -4) with different clinical outcome. To further investigate the characteristics of ECM signature and its impact on tumor progression, we conducted unsupervised clustering analyses in 6 additional independent datasets of invasive breast tumors from different platforms for a total of 643 samples. Use of four different clustering algorithms identified ECM3 tumors as an independent group in all datasets tested. ECM3 showed a homogeneous gene pattern, consisting of 58 genes encoding 43 structural ECM proteins. From 26 to 41% of the cases were ECM3-enriched, and analysis of datasets relevant to gene expression in neoplastic or corresponding stromal cells showed that both stromal and breast carcinoma cells can coordinately express ECM3 genes. In in vitro experiments, β-estradiol induced ECM3 gene production in ER-positive breast carcinoma cell lines, whereas TGFβ induced upregulation of the genes leading to ECM3 gene classification, especially in ER-negative breast carcinoma cells and in fibroblasts. Multivariate analysis of distant metastasis-free survival in untreated breast tumor patients revealed a significant interaction between ECM3 and histological grade (p = 0.001). Cox models, estimated separately in grade I-II and grade III tumors, indicated a highly significant association between ECM3 and worse survival probability only in grade III tumors (HR = 3.0, 95% CI = 1.3-7.0, p = 0.0098). Gene Set Enrichment analysis of ECM3 compared to non-ECM3 tumors revealed significant enrichment of epithelial-mesenchymal transition (EMT) genes in both grade I-II and grade III subsets of ECM3 tumors. Thus, ECM3 is a robust cluster that identifies breast carcinomas with EMT features but with accelerated metastatic potential only in the undifferentiated (grade III) phenotype. These findings support the key relevance of neoplastic and stroma interaction in breast cancer progression.
Collapse
Affiliation(s)
- Tiziana Triulzi
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Patrizia Casalini
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Marco Sandri
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Manuela Ratti
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Maria L. Carcangiu
- Anatomic Pathology A Unit, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Mario P. Colombo
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Andrea Balsari
- Dipartimento di Scienze Biomediche per la salute, Università degli Studi di Milano, Milano, Italy
| | - Sylvie Ménard
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Rosaria Orlandi
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| |
Collapse
|
798
|
Li S, Sun Y, Gao D. Role of the nervous system in cancer metastasis. Oncol Lett 2013; 5:1101-1111. [PMID: 23599747 PMCID: PMC3629128 DOI: 10.3892/ol.2013.1168] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/17/2012] [Indexed: 12/17/2022] Open
Abstract
The notion that tumors lack innervation was proposed several years ago. However, nerve fibers are irregulatedly found in some tumor tissues. Their terminals interaction with cancer cells are considered to be neuro-neoplastic synapses. Moreover, neural-related factors, which are important players in the development and activity of the nervous system, have been found in cancer cells. Thus, they establish a direct connection between the nervous system and tumor cells. They modulate the process of metastasis, including degradation of base membranes, cancer cell invasion, migration, extravasation and colonization. Peripheral nerve invasion provides another pathway for the spread of cancer cells when blood and lymphatic metastases are absent, which is based on the interactions between the microenvironments of nerve fibers and tumor cells. The nervous system also modulates angiogenesis, the tumor microenvironment, bone marrow, immune functions and inflammatory pathways to influence metastases. Denervation of the tumor has been reported to enhance cancer metastasis. Stress, social isolation and other emotional factors may increase distant metastasis through releasing hormones from the brain, the hypothalamic-pituitary-adrenal axis and autonomic nervous system. Disruption of circadian rhythms will also promote cancer metastasis through direct and indirect actions of the nervous system. Therefore, the nervous system plays an important role in cancer metastasis.
Collapse
Affiliation(s)
- Sha Li
- Department of Radiation Oncology, Lanzhou General Hospital of PLA, Lanzhou, Gansu 730050
| | | | | |
Collapse
|
799
|
Vaccination for the prevention and treatment of breast cancer with special focus on Her-2/neu peptide vaccines. Breast Cancer Res Treat 2013; 138:1-12. [PMID: 23340862 DOI: 10.1007/s10549-013-2410-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 01/07/2013] [Indexed: 01/18/2023]
Abstract
Immunologic interventions in a subset of breast cancer patients represent a well-established therapeutic approach reflecting individualized treatment modalities. Thus, the therapeutic administration of monoclonal antibodies targeting tumor-associated antigens (TAA), such as Her-2/neu, represents a milestone in cancer treatment. However, passive antibody administration suffers from several drawbacks, including frequency and long duration of treatment. These undesirables may be avoidable in an approach based on generating active immune responses against these same targets. Only recently has the significance of tumors in relation to their microenvironments been understood as essential for creating an effective cancer vaccine. In particular, the immune system plays an important role in suppressing or promoting tumor formation and growth. Therefore, activation of appropriate triggers (such as induction of Th1 cells, CD8+ T cells, and suppression of regulatory cells in combination with generation of antibodies with anti-tumor activity) is a desirable goal. Current vaccination approaches have concentrated on therapeutic vaccines using certain TAA. Many cancer antigens, including breast cancer antigens, have been described and also given priority ranking for use as vaccine antigens by the US National Cancer Institute. One of the TAA antigens which has been thoroughly examined in numerous trials is Her-2/neu. This review will discuss delivery systems for this antigen with special focus on T and B cell peptide vaccines. Attention will be given to their advantages and limitations, as well as the use of certain adjuvants to improve anti-cancer responses.
Collapse
|
800
|
|