751
|
Kamphorst AO, Wieland A, Nasti T, Yang S, Zhang R, Barber DL, Konieczny BT, Daugherty CZ, Koenig L, Yu K, Sica GL, Sharpe AH, Freeman GJ, Blazar BR, Turka LA, Owonikoko TK, Pillai RN, Ramalingam SS, Araki K, Ahmed R. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science 2017; 355:1423-1427. [PMID: 28280249 PMCID: PMC5595217 DOI: 10.1126/science.aaf0683] [Citation(s) in RCA: 752] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 11/09/2016] [Accepted: 01/06/2017] [Indexed: 12/12/2022]
Abstract
Programmed cell death-1 (PD-1)-targeted therapies enhance T cell responses and show efficacy in multiple cancers, but the role of costimulatory molecules in this T cell rescue remains elusive. Here, we demonstrate that the CD28/B7 costimulatory pathway is essential for effective PD-1 therapy during chronic viral infection. Conditional gene deletion showed a cell-intrinsic requirement of CD28 for CD8 T cell proliferation after PD-1 blockade. B7-costimulation was also necessary for effective PD-1 therapy in tumor-bearing mice. In addition, we found that CD8 T cells proliferating in blood after PD-1 therapy of lung cancer patients were predominantly CD28-positive. Taken together, these data demonstrate CD28-costimulation requirement for CD8 T cell rescue and suggest an important role for the CD28/B7 pathway in PD-1 therapy of cancer patients.
Collapse
Affiliation(s)
- Alice O Kamphorst
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andreas Wieland
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tahseen Nasti
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shu Yang
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China, 410013
| | - Ruan Zhang
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02144, USA
| | - Daniel L Barber
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Bogumila T Konieczny
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Candace Z Daugherty
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lydia Koenig
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ke Yu
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gabriel L Sica
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Woman's Hospital, Boston, MA 02115, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laurence A Turka
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02144, USA
| | - Taofeek K Owonikoko
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rathi N Pillai
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Koichi Araki
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rafi Ahmed
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
752
|
PD-1 blockade with nivolumab in relapsed/refractory primary central nervous system and testicular lymphoma. Blood 2017; 129:3071-3073. [PMID: 28356247 DOI: 10.1182/blood-2017-01-764209] [Citation(s) in RCA: 351] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/25/2017] [Indexed: 12/16/2022] Open
Abstract
Primary central nervous system (CNS) lymphoma (PCNSL) and primary testicular lymphoma (PTL) are rare extranodal large B-cell lymphomas with similar genetic signatures. There are no standard-of-care treatment options for patients with relapsed and refractory PCNSL and PTL, and the overall prognosis is poor. PCNSLs and PTLs exhibit frequent 9p24.1 copy-number alterations and infrequent translocations of 9p24.1 and associated increased expression of the programmed cell death protein 1 (PD-1) ligands, PD-L1 and PD-L2. The activity of PD-1 blockade in other lymphomas with 9p24.1 alterations prompted us to test the efficacy of the anti-PD1 antibody, nivolumab, in 4 patients with relapsed/refractory PCNSL and 1 patient with CNS relapse of PTL. All 5 patients had clinical and radiographic responses to PD-1 blockade, and 3 patients remain progression-free at 13+ to 17+ months. Our data suggest that nivolumab is active in relapsed/refractory PCNSL and PTL and support further investigation of PD-1 blockade in these diseases.
Collapse
|
753
|
Dong J, Yang XF, Wang LX, Wei X, Wang AH, Hao CQ, Shen HJ, Huang CX, Zhang Y, Lian JQ. Modulation of Tim-3 Expression by Antigen-Dependent and -Independent Factors on T Cells from Patients with Chronic Hepatitis B Virus Infection. Front Cell Infect Microbiol 2017; 7:98. [PMID: 28401068 PMCID: PMC5368241 DOI: 10.3389/fcimb.2017.00098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/13/2017] [Indexed: 12/23/2022] Open
Abstract
T-cell immunoglobulin domain and mucin domain-containing molecule-3 (Tim-3) was up-regulated on viral specific T cells and contributed to T cells exhaustion during chronic hepatitis B virus (HBV) infection. However, modulation of Tim-3 expression was still not fully elucidated. To evaluate the potential viral and inflammatory factors involved in the inductor of Tim-3 expression on T cells, 76 patients with chronic HBV infection (including 40 chronic hepatitis B [CHB] and 36 asymptomatic HBV carriers [AsC]) and 40 of normal controls (NCs) were enrolled in this study. Tim-3 expressions on CD4+ and CD8+ T cells were assessed in response to HBV-encoding antigens, HBV peptide pools, and common γ-chain (γc) cytokines stimulation by flow cytometry. HBV peptides and anti-CD3/CD28 directly induced Tim-3 expression on T cells. γc cytokines also drive Tim-3 up-regulations on both CD4+ and CD8+ T cells in patients with chronic HBV infection. However, γc cytokines did not enhance the Tim-3 inductions by either anti-CD3/CD28 or HBV peptides stimulation. Furthermore, γc cytokines-mediated Tim-3 induction could not be abrogated by γc cytokine receptor-neutralizing antibodies. The current results suggested that elevation of Tim-3 expression on T cells could be regulated by both antigen-dependent and -independent manner in patients with chronic HBV infection. The role of γc cytokines in modulation of inhibitory pathway might be evaluated as immunotherapies in humans.
Collapse
Affiliation(s)
- Jie Dong
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China; Department of Ophthalmology and Otorhinolaryngology, Tenth Hospital of PLAWuwei, China
| | - Xiao-Fei Yang
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University Xi'an, China
| | - Lin-Xu Wang
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University Xi'an, China
| | - Xin Wei
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University Xi'an, China
| | - An-Hui Wang
- Department of Epidemiology, School of Public Health, Fourth Military Medical University Xi'an, China
| | - Chun-Qiu Hao
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University Xi'an, China
| | - Huan-Jun Shen
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University Xi'an, China
| | - Chang-Xing Huang
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University Xi'an, China
| | - Ye Zhang
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University Xi'an, China
| | - Jian-Qi Lian
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University Xi'an, China
| |
Collapse
|
754
|
Analyses of publicly available genomics resources define FGF-2-expressing bladder carcinomas as EMT-prone, proliferative tumors with low mutation rates and high expression of CTLA-4, PD-1 and PD-L1. Signal Transduct Target Ther 2017; 2. [PMID: 28515962 PMCID: PMC5431749 DOI: 10.1038/sigtrans.2016.45] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fibroblast growth factor 2 (FGF-2) is overexpressed in a subset of invasive bladder carcinomas and its overexpression correlates with poor prognosis. Analyses of publicly available databases addressing the molecular mechanisms that may be responsible for the poor prognosis of these tumors, revealed that FGF-2 expression correlates positively with the expression of epithelial to mesenchymal transition (EMT)-promoting transcription factors and with changes in gene expression that are characteristic of EMT. The same analyses also revealed that FGF-2 correlates negatively with the expression, mutation and copy number variations of FGFR-3, all of which are associated with noninvasive bladder carcinomas. Finally, they showed that FGF-2 expression correlates with the expression of FGFR-1, the expression of the IIIc variant of FGFR-2 and with the expression of Akt3. The latter observation is significant because our earlier studies had shown that Akt3 regulates FGFR-2 alternative splicing, shifting the balance toward the IIIc relative to the IIIb FGFR-2 splice variant. As the IIIc variant is recognized by FGF-2, while the IIIb variant is not, we conclude that Akt3 may facilitate the FGF-2 response. FGF-2 is known to promote the expression of KDM2B, which functions in concert with EZH2 to repress the EZH2-targeting microRNA miR-101, activating a switch, which stably upregulates EZH2. The cancer genome atlas (TCGA) data showing a correlation between KDM2B and EZH2 expression and Oncomine data, showing a correlation between KDM2B and tumor progression, strongly support the role of the FGF-2/KDM2B/miR-101/EZH2 pathway in bladder cancer. These observations combined, suggest a model according to which FGF-2 induces EMT, cell proliferation and cancer stem cell self-renewal by coupling the Akt3 and KDM2B-controlled pathways outlined above, in bladder carcinomas. Further analyses of publicly available databases, revealed that FGF-2-expressing bladder carcinomas carry fewer genetic alterations and they tend to express high levels of CTLA-4, PD-1 and PD-L1, which suggests immune blockade by checkpoint activation. EMT, enhanced proliferation and immune checkpoint activation combined, may be responsible for the poor prognosis of FGF-2-expressing bladder carcinomas.
Collapse
|
755
|
Hui E, Cheung J, Zhu J, Su X, Taylor MJ, Wallweber HA, Sasmal DK, Huang J, Kim JM, Mellman I, Vale RD. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 2017; 355:1428-1433. [PMID: 28280247 DOI: 10.1126/science.aaf1292] [Citation(s) in RCA: 1197] [Impact Index Per Article: 149.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 11/09/2016] [Accepted: 02/17/2017] [Indexed: 12/16/2022]
Abstract
Programmed cell death-1 (PD-1) is a coinhibitory receptor that suppresses T cell activation and is an important cancer immunotherapy target. Upon activation by its ligand PD-L1, PD-1 is thought to suppress signaling through the T cell receptor (TCR). By titrating PD-1 signaling in a biochemical reconstitution system, we demonstrate that the co-receptor CD28 is strongly preferred over the TCR as a target for dephosphorylation by PD-1-recruited Shp2 phosphatase. We also show that CD28, but not the TCR, is preferentially dephosphorylated in response to PD-1 activation by PD-L1 in an intact cell system. These results reveal that PD-1 suppresses T cell function primarily by inactivating CD28 signaling, suggesting that costimulatory pathways play key roles in regulating effector T cell function and responses to anti-PD-L1/PD-1 therapy.
Collapse
Affiliation(s)
- Enfu Hui
- Department of Cellular and Molecular Pharmacology and the Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Jeanne Cheung
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Jing Zhu
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Xiaolei Su
- Department of Cellular and Molecular Pharmacology and the Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Marcus J Taylor
- Department of Cellular and Molecular Pharmacology and the Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Heidi A Wallweber
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Dibyendu K Sasmal
- Institute for Molecular Engineering, University of Chicago, IL 60637, USA
| | - Jun Huang
- Institute for Molecular Engineering, University of Chicago, IL 60637, USA
| | - Jeong M Kim
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Ira Mellman
- Department of Cancer Immunology, Genentech, South San Francisco, CA 94080, USA.
| | - Ronald D Vale
- Department of Cellular and Molecular Pharmacology and the Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
756
|
Horibe R, Hirohashi Y, Asano T, Mariya T, Suzuki T, Takaya A, Saijo H, Shionoya Y, Kubo T, Nakatsugawa M, Kanaseki T, Tsukahara T, Watanabe K, Atsuyama E, Toji S, Hirano H, Hasegawa T, Takahashi H, Sato N, Torigoe T. Brother of the regulator of the imprinted site (BORIS) variant subfamily 6 is a novel target of lung cancer stem-like cell immunotherapy. PLoS One 2017; 12:e0171460. [PMID: 28248963 PMCID: PMC5332062 DOI: 10.1371/journal.pone.0171460] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/21/2017] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is one of the most common malignancies with a high rate of mortality. Lung cancer stem-like cells (CSCs)/ cancer-initiating cells (CICs) play major role in resistance to treatments, recurrence and distant metastasis and eradication of CSCs/CICs is crucial to improve recent therapy. Cytotoxic T lymphocytes (CTLs) are major effectors of cancer immunotherapy, and CTLs recognize antigenic peptides derived from antigens that are presented by major histocompatibility complex (MHC) class I molecules. In this study, we analyzed the potency of a cancer-testis (CT) antigen, brother of the regulator of the imprinted site variant subfamily 6 (BORIS sf6), in lung CSC/CIC immunotherapy. BORIS sf6 mRNA was expressed in lung carcinoma cells (9/19), especially in sphere-cultured lung cancer stem-like cells, and in primary lung carcinoma tissues (4/9) by RT-PCR. Immunohistochemical staining using BORIS sf6-specific antibody revealed that high expression of BORIS sf6 is related to poorer prognosis. CTLs could be induced by using a human leukocyte antigen, (HLA)-A2 restricted antigenic peptide (BORIS C34_24(9)), from all of 3 HLA-A2-positive individuals, and CTL clone cells specific for BORIS C34_24(9) peptide could recognize BORIS sf6-positive, HLA-A2-positive lung carcinoma cells. These results indicate that BORIS sf6 is a novel target of lung cancer immunotherapy that might be useful for targeting treatment-resistant lung cancer stem-like cells.
Collapse
Affiliation(s)
- Ryota Horibe
- Department of Pathology, Sapporo Medical University School of Medicine, Japan
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Japan
- * E-mail: (TT); (YH)
| | - Takuya Asano
- Department of Pathology, Sapporo Medical University School of Medicine, Japan
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Japan
| | - Tasuku Mariya
- Department of Pathology, Sapporo Medical University School of Medicine, Japan
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Japan
| | - Takeshi Suzuki
- Department of Biology, Sapporo Medical University School of Medicine, Japan
| | - Akari Takaya
- Department of Pathology, Sapporo Medical University School of Medicine, Japan
| | - Hiroshi Saijo
- Department of Pathology, Sapporo Medical University School of Medicine, Japan
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Japan
| | - Yosuke Shionoya
- Department of Pathology, Sapporo Medical University School of Medicine, Japan
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Japan
| | - Terufumi Kubo
- Department of Pathology, Sapporo Medical University School of Medicine, Japan
| | | | - Takayuki Kanaseki
- Department of Pathology, Sapporo Medical University School of Medicine, Japan
| | - Tomohide Tsukahara
- Department of Pathology, Sapporo Medical University School of Medicine, Japan
| | - Kazue Watanabe
- Department of Pathology, Sapporo Medical University School of Medicine, Japan
- MEDICAL and BIOLOGICAL LABORATORIES CO., LTD., Japan
| | - Eri Atsuyama
- MEDICAL and BIOLOGICAL LABORATORIES CO., LTD., Japan
| | - Shingo Toji
- MEDICAL and BIOLOGICAL LABORATORIES CO., LTD., Japan
| | - Hiroshi Hirano
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Japan
| | - Hiroki Takahashi
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Japan
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Japan
- * E-mail: (TT); (YH)
| |
Collapse
|
757
|
Sun M, Ha N, Pham DH, Frederick M, Sharma B, Naruse C, Asano M, Pipkin ME, George RE, Thai TH. Cbx3/HP1γ deficiency confers enhanced tumor-killing capacity on CD8 + T cells. Sci Rep 2017; 7:42888. [PMID: 28220815 PMCID: PMC5318867 DOI: 10.1038/srep42888] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/16/2017] [Indexed: 11/09/2022] Open
Abstract
Cbx3/HP1γ is a histone reader whose function in the immune system is not completely understood. Here, we demonstrate that in CD8+ T cells, Cbx3/HP1γ insufficiency leads to chromatin remodeling accompanied by enhanced Prf1, Gzmb and Ifng expression. In tumors obtained from Cbx3/HP1γ-insufficient mice or wild type mice treated with Cbx3/HP1γ-insufficient CD8+ T cells, there is an increase of CD8+ effector T cells expressing the stimulatory receptor Klrk1/NKG2D, a decrease in CD4+ CD25+ FOXP3+ regulatory T cells (Treg cells) as well as CD25+ CD4+ T cells expressing the inhibitory receptor CTLA4. Together these changes in the tumor immune environment may have mitigated tumor burden in Cbx3/HP1γ-insufficient mice or wild type mice treated with Cbx3/HP1γ-insufficient CD8+ T cells. These findings suggest that targeting Cbx3/HP1γ can represent a rational therapeutic approach to control growth of solid tumors.
Collapse
Affiliation(s)
- Michael Sun
- Beth Israel Deaconess Medical Center, Harvard Medical School, Department of Pathology, Boston, MA 02215, USA
| | - Ngoc Ha
- Beth Israel Deaconess Medical Center, Harvard Medical School, Department of Pathology, Boston, MA 02215, USA.,Department of Neurobiology and Anatomy, Drexel University, College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Duc-Hung Pham
- Beth Israel Deaconess Medical Center, Harvard Medical School, Department of Pathology, Boston, MA 02215, USA.,Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Megan Frederick
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Bandana Sharma
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02215, USA
| | - Chie Naruse
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masahide Asano
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Matthew E Pipkin
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Rani E George
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02215, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - To-Ha Thai
- Beth Israel Deaconess Medical Center, Harvard Medical School, Department of Pathology, Boston, MA 02215, USA
| |
Collapse
|
758
|
He R, Hou S, Liu C, Zhang A, Bai Q, Han M, Yang Y, Wei G, Shen T, Yang X, Xu L, Chen X, Hao Y, Wang P, Zhu C, Ou J, Liang H, Ni T, Zhang X, Zhou X, Deng K, Chen Y, Luo Y, Xu J, Qi H, Wu Y, Ye L. Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection. Nature 2017; 537:412-428. [PMID: 27501245 DOI: 10.1038/nature19317] [Citation(s) in RCA: 509] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/20/2016] [Indexed: 12/29/2022]
Abstract
During chronic viral infection, virus-specific CD8(+) T cells become exhausted, exhibit poor effector function and lose memory potential. However, exhausted CD8(+) T cells can still contain viral replication in chronic infections, although the mechanism of this containment is largely unknown. Here we show that a subset of exhausted CD8(+) T cells expressing the chemokine receptor CXCR5 has a critical role in the control of viral replication in mice that were chronically infected with lymphocytic choriomeningitis virus (LCMV). These CXCR5(+) CD8(+) T cells were able to migrate into B-cell follicles, expressed lower levels of inhibitory receptors and exhibited more potent cytotoxicity than the CXCR5(-) [corrected] subset. Furthermore, we identified the Id2-E2A signalling axis as an important regulator of the generation of this subset. In patients with HIV, we also identified a virus-specific CXCR5(+) CD8(+) T-cell subset, and its number was inversely correlated with viral load. The CXCR5(+) subset showed greater therapeutic potential than the CXCR5(-) [corrected] subset when adoptively transferred to chronically infected mice, and exhibited synergistic reduction of viral load when combined with anti-PD-L1 treatment. This study defines a unique subset of exhausted CD8(+) T cells that has a pivotal role in the control of viral replication during chronic viral infection.
Collapse
Affiliation(s)
- Ran He
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Shiyue Hou
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Cheng Liu
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Anli Zhang
- Shanghai Public Health Clinical Center &Institutes of Biomedical Sciences, Fudan University, Shanghai 201508, China
| | - Qiang Bai
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Miao Han
- State Key Laboratory of Genetic Engineering &MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yu Yang
- Shanghai Public Health Clinical Center &Institutes of Biomedical Sciences, Fudan University, Shanghai 201508, China
| | - Gang Wei
- State Key Laboratory of Genetic Engineering &MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ting Shen
- State Key Laboratory of Genetic Engineering &MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xinxin Yang
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Lifan Xu
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Xiangyu Chen
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Yaxing Hao
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Pengcheng Wang
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Chuhong Zhu
- Department of Anatomy, School of Basic Medicine, Third Military Medical University, Chongqing 400038, China
| | - Juanjuan Ou
- Department of Oncology, Southwestern Hospital, Third Military Medical University, Chongqing 400038, China
| | - Houjie Liang
- Department of Oncology, Southwestern Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering &MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center &Institutes of Biomedical Sciences, Fudan University, Shanghai 201508, China
| | - Xinyuan Zhou
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Kai Deng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yaokai Chen
- Chongqing Public Health Medical Center, Chongqing 400000, China
| | - Yadong Luo
- Chongqing Public Health Medical Center, Chongqing 400000, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center &Institutes of Biomedical Sciences, Fudan University, Shanghai 201508, China
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yuzhang Wu
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
759
|
Lin CF, Lin CM, Lee KY, Wu SY, Feng PH, Chen KY, Chuang HC, Chen CL, Wang YC, Tseng PC, Tsai TT. Escape from IFN-γ-dependent immunosurveillance in tumorigenesis. J Biomed Sci 2017; 24:10. [PMID: 28143527 PMCID: PMC5286687 DOI: 10.1186/s12929-017-0317-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/19/2017] [Indexed: 12/24/2022] Open
Abstract
Immune interferon (IFN), also known as IFN-γ, promotes not only immunomodulation but also antimicrobial and anticancer activity. After IFN-γ binds to the complex of IFN-γ receptor (IFNGR) 1-IFNGR2 and subsequently activates its downstream signaling pathways, IFN-γ immediately causes transcriptional stimulation of a variety of genes that are principally involved in its biological activities. Regarding IFN-γ-dependent immunosurveillance, IFN-γ can directly suppress tumorigenesis and infection and/or can modulate the immunological status in both cancer cells and infected cells. Regarding the anticancer effects of IFN-γ, cancer cells develop strategies to escape from IFN-γ-dependent cancer immunosurveillance. Immune evasion, including the recruitment of immunosuppressive cells, secretion of immunosuppressive factors, and suppression of cytotoxic T lymphocyte responses, is speculated to be elicited by the oncogenic microenvironment. All of these events effectively downregulate IFN-γ-expressing cells and IFN-γ production. In addition to these extrinsic pathways, cancer cells may develop cellular tolerance that manifests as hyporesponsiveness to IFN-γ stimulation. This review discusses the potential escape mechanisms from IFN-γ-dependent immunosurveillance in tumorigenesis.
Collapse
Affiliation(s)
- Chiou-Feng Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan. .,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
| | - Chih-Ming Lin
- Department of Thoracic Surgery, Lotung Poh-Ai Hospital, Yilan, 265, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, 110, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Szu-Yuan Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.,Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.,Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei Medical University, Taipei, 110, Taiwan.,Department of Biotechnology, Hung Kuang University, Taichung, 433, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, 110, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, 110, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Chia-Ling Chen
- Translational Research Center, Taipei Medical University, Taipei, 110, Taiwan
| | - Yu-Chih Wang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Po-Chun Tseng
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Tsung-Ting Tsai
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| |
Collapse
|
760
|
Williams JB, Horton BL, Zheng Y, Duan Y, Powell JD, Gajewski TF. The EGR2 targets LAG-3 and 4-1BB describe and regulate dysfunctional antigen-specific CD8+ T cells in the tumor microenvironment. J Exp Med 2017; 214:381-400. [PMID: 28115575 PMCID: PMC5294847 DOI: 10.1084/jem.20160485] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 09/08/2016] [Accepted: 12/15/2016] [Indexed: 12/19/2022] Open
Abstract
Although the presence of tumor-infiltrating lymphocytes (TILs) indicates an endogenous antitumor response, immune regulatory pathways can subvert the effector phase and enable tumor escape. Negative regulatory pathways include extrinsic suppression mechanisms, but also a T cell-intrinsic dysfunctional state. A more detailed study has been hampered by a lack of cell surface markers defining tumor-specific dysfunctional TILs, and PD-1 alone is not sufficient. Recently, we identified the transcription factor Egr2 as a critical component in controlling the anergic state in vitro. In this study, we show that the Egr2-driven cell surface proteins LAG-3 and 4-1BB can identify dysfunctional tumor antigen-specific CD8+ TIL. Co-expression of 4-1BB and LAG-3 was seen on a majority of CD8+ TILs, but not in lymphoid organs. Functional analysis revealed defective IL-2 and TNF production yet retained expression of IFN-γ and regulatory T cell-recruiting chemokines. Transcriptional and phenotypic characterization revealed coexpression of multiple additional co-stimulatory and co-inhibitory receptors. Administration of anti-LAG-3 plus anti-4-1BB mAbs was therapeutic against tumors in vivo, which correlated with phenotypic normalization. Our results indicate that coexpression of LAG-3 and 4-1BB characterize dysfunctional T cells within tumors, and that targeting these receptors has therapeutic utility.
Collapse
Affiliation(s)
- Jason B Williams
- Departments of Pathology, Section of Hematology/Oncology, the University of Chicago, Chicago, IL 60637
| | - Brendan L Horton
- Departments of Pathology, Section of Hematology/Oncology, the University of Chicago, Chicago, IL 60637
| | - Yan Zheng
- Departments of Pathology, Section of Hematology/Oncology, the University of Chicago, Chicago, IL 60637
| | - Yukan Duan
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Jonathan D Powell
- Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Thomas F Gajewski
- Departments of Pathology, Section of Hematology/Oncology, the University of Chicago, Chicago, IL 60637
- Department of Medicine, Section of Hematology/Oncology, the University of Chicago, Chicago, IL 60637
| |
Collapse
|
761
|
Hamano S, Matsumoto K, Tonai K, Fukuyama S, Kan-O K, Seki N, Inoue H, Nakanishi Y. Effects of corticosteroid plus long-acting beta 2-agonist on the expression of PD-L1 in double-stranded RNA-induced lung inflammation in mice. JOURNAL OF INFLAMMATION-LONDON 2017; 14:2. [PMID: 28115915 PMCID: PMC5240396 DOI: 10.1186/s12950-017-0149-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 01/03/2017] [Indexed: 01/31/2023]
Abstract
Background Airway viral infections cause the exacerbations of asthma and chronic obstructive pulmonary disease. PD-L1, also known as B7-H1, is an immune-checkpoint molecule that plays a role in an escape mechanism of viruses from the host immune systems. This escape may be associated with the persistence of viral infection and the exacerbation of the underlying diseases. In a study in vitro, we have shown that corticosteroids plus long-acting beta2-agonists (LABAs) attenuate the upregulation of PD-L1 on airway epithelial cells stimulated with an analog of viral double-stranded RNA, polyinosinic-polycytidylic acid (poly I:C). To address its biological relevance in vivo, we investigated the effect of corticosteroid plus LABA on the expression of PD-L1 in double-stranded RNA-induced lung inflammation in mice. Methods Mice were intratracheally administered with poly I:C. The expression of PD-L1 on the lung cells was assessed by flow cytometry and inflammation was assessed for bronchoalveolar lavage fluid (BALF). Independent as well as combination effects of ciclesonide and indacaterol were examined. Results Administration of low dose poly I:C upregulated the expression of PD-L1, induced neutrophilia and increased keratinocyte-derived chemokine (KC), macrophage inflammatory protein-1β (MIP-1β), and IL-6 in BALF. The upregulation of PD-L1, neutrophilic inflammation and increase of KC were suppressed by ciclesonide plus indacaterol, but not by either when administered independently. Although the upregulation of PD-L1 by high dose poly I:C was suppressed by ciclesonide plus indacaterol, neutrophilia and increased KC, MIP-1β, and IL-6 in BALF were not attenuated. Conclusions Ciclesonide plus indacaterol attenuate double-stranded RNA-induced upregulation of PD-L1 in the lungs.
Collapse
Affiliation(s)
- Saaka Hamano
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Koichiro Matsumoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Ken Tonai
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Satoru Fukuyama
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Keiko Kan-O
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Nanae Seki
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoichi Nakanishi
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582 Japan
| |
Collapse
|
762
|
Qin Q, Lauver M, Maru S, Lin E, Lukacher AE. Reducing persistent polyomavirus infection increases functionality of virus-specific memory CD8 T cells. Virology 2017; 502:198-205. [PMID: 28063344 DOI: 10.1016/j.virol.2016.12.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/22/2016] [Accepted: 12/27/2016] [Indexed: 11/28/2022]
Abstract
Mouse polyomavirus (MuPyV) causes a smoldering persistent infection in immunocompetent mice. To lower MuPyV infection in acutely and persistently infected mice, and study the impact of a temporal reduction in viral loads on the memory CD8 T cell response, we created a recombinant MuPyV in which a loxP sequence was inserted into the A2 strain genome upstream of the early promoter and another loxP sequence was inserted in cis into the intron shared by all three T antigens. Using mice transgenic for tamoxifen-inducible Cre recombinase, we demonstrated that reduction in MuPyV load during persistent infection was associated with differentiation of virus-specific CD8 T cells having a superior recall response. Evidence presented here supports the concept that reduction in viral load during persistent infection can promote differentiation of protective virus-specific memory CD8 T cells in patients at risk for diseases caused by human polyomaviruses.
Collapse
Affiliation(s)
- Qingsong Qin
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Matthew Lauver
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Saumya Maru
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Eugene Lin
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Aron E Lukacher
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
763
|
Bu X, Yao Y, Li X. Immune Checkpoint Blockade in Breast Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:383-402. [PMID: 29282694 DOI: 10.1007/978-981-10-6020-5_18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer immunotherapy is emerging as the most promising novel strategy for cancer treatment. Cancer immunotherapy is broadly categorized into three forms: immune checkpoint modulation, adoptive cell transfer, and cancer vaccine. Immune checkpoint blockade is demonstrated as the most clinically effective treatment with low immune-related adverse events (irAE). Blockade of PD-1/PD-L1 and CTLA-4 has achieved remarkable success in treating various types of tumors, which sparks great interests in this therapeutic strategy and expands the role of immune checkpoint blockade in treating tumors including breast cancer. Based on the notable results obtained from clinical trials, the United States' Food and Drug Administration (FDA) has approved multiple CTLA-4 monoclonal antibodies as well as the PD-1/PD-L1 monoclonal antibodies for treatment of different types of tumors. The theories of immunoediting, T-cell exhaustions, and co-stimulatory/co-inhibitory pathways are immunological foundations for immune checkpoint blockade therapy. Breast cancers such as triple negative breast cancer and HER-2 negative breast cancer respond to immune checkpoint blockade therapy due to their high immunogenicity. PD-1/PD-L1 blockade has just received FDA approval as a standard cancer therapy for solid tumors such as breast cancer. Development of immune checkpoint blockade focuses on two directions: one is to identify proper biomarkers of immune checkpoint blockade in breast cancer, and the other is to combine therapies with PD-1/PD-L1 blockade antibodies to achieve optimal clinical outcomes.
Collapse
Affiliation(s)
- Xia Bu
- Department of Medical Oncology, The First Affiliated Hospital, Henan University Cancer Center, School of Medicine, Henan University, Kaifeng, People's Republic of China.
| | - Yihui Yao
- Department of Medical Oncology, The First Affiliated Hospital, Henan University Cancer Center, School of Medicine, Henan University, Kaifeng, People's Republic of China
| | - Xiaoyu Li
- Department of Hematology, The First Affiliated Hospital, Henan University Cancer Center, School of Medicine, Henan University, Kaifeng, People's Republic of China
| |
Collapse
|
764
|
Rolfo C, Caglevic C, Santarpia M, Araujo A, Giovannetti E, Gallardo CD, Pauwels P, Mahave M. Immunotherapy in NSCLC: A Promising and Revolutionary Weapon. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 995:97-125. [PMID: 28321814 DOI: 10.1007/978-3-319-53156-4_5] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lung cancer is the leader malignancy worldwide accounting 1.5 millions of deaths every year. In the United States the 5 year-overall survival is less than 20% for all the newly diagnosed patients. Cisplatin-based cytotoxic chemotherapy for unresectable or metastatic NSCLC patients in the first line of treatment, and docetaxel in the second line, have achieved positive results but with limited benefit in overall survival. Targeted therapies for EGFR and ALK mutant patients have showed better results when compared with chemotherapy, nevertheless most of patients will fail and need to be treated with chemotherapy if they still have a good performance status.Immunotherapy recently has become the most revolutionary treatment in solid tumors patients. First results in unresectable and metastatic melanoma patients treated with an anti CTLA-4 monoclonal antibody showed an unexpected 3-year overall survival of at least 25%.Lung cancer cells have multiple immunosuppressive mechanisms that allow to escape of the immune system and survive, however blocking CTLA-4 pathway with antibodies as monotherapy treatment have not achieved same results than in melanoma patients. PD-1 expression has been demonstrated in different tumor types, suggesting than PD-1 / PD-L1 pathway is a common mechanism used by tumors to avoid immune surveillance and favoring tumor growth. Anti PD-1 and anti PD-L1 antibodies have showed activity in non-small cell lung cancer patients with significant benefit in overall survival, long lasting responses and good safety profile, including naïve and pretreated patients regardless of the histological subtype. Even more, PD-1 negative expression patients achieve similar results in overall survival when compared with patients treated with chemotherapy. In the other side high PD-1 expression patients that undergo immunotherapy treatment achieve better results in terms of survival with lesser toxicity. Combining different immunotherapy treatments, combination of immunotherapy with chemotherapy or with targeted treatment are under research with some promising PRELIMINARY results in non-small cell lung cancer patients.This chapter attempts to summarize the development of immunotherapy treatment in non-small cell lung cancer patients and explain the results that have leaded immunotherapy as a new standard of treatment in selected NSCLC patients.
Collapse
Affiliation(s)
- Christian Rolfo
- Phase I-Early Clinical Trials Unit, Oncology Department, University Hospital Antwerp, Edegem, Belgium.
- Center or Oncological Research (CORE), Antwerp University, Antwerp, Belgium.
| | - Christian Caglevic
- Department of Investigational Cancer Drugs, Medical Oncology Department, Instituto Oncológico Fundación Arturo López Pérez, Santiago, Chile
- Medical Oncology Department, Instituto Oncológico Fundación Arturo López Pérez, Santiago, Chile
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology 'G. Barresi', University of Messina, Messina, Italy
| | - Antonio Araujo
- Medical Oncology Department, Centro Hospitalar do Porto, Porto, Portugal
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Patrick Pauwels
- Molecular Pathology Unit, Pathology Department, Antwerp University Hospital, Edegem, Belgium
| | - Mauricio Mahave
- Medical Oncology Department, Instituto Oncológico Fundación Arturo López Pérez, Santiago, Chile
| |
Collapse
|
765
|
Abstract
Co-inhibitory receptors play a key role in regulating T cell responses and maintaining immune homeostasis. Their inhibitory function prevents autoimmune responses but also restricts the ability of T cells to mount effective immune responses against tumors or persistent pathogens. T cells express a module of co-inhibitory receptors, which display great diversity in expression, structure, and function. Here, we focus on the co-inhibitory receptors Tim-3, Lag-3, and TIGIT and how they regulate T cell function, maintenance of self-tolerance, their role in regulating ongoing T cell responses at peripheral tissues, and their synergistic effects in regulating autoimmunity and antitumor responses.
Collapse
Affiliation(s)
- Nicole Joller
- Institute for Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Vijay K Kuchroo
- Harvard Medical School and Brigham & Women's Hospital, Evergrande Center for Immunologic Diseases, Boston, MA, USA.
| |
Collapse
|
766
|
Abstract
Immune checkpoint blockade (ICB) is revolutionizing cancer medicine, yet the molecular basis of resistance remains unclear. In a recent issue of Cell, Benci et al. (2016) demonstrate that sustained interferon signaling is central to the development of PD-L1-dependent and -independent resistance to ICB.
Collapse
Affiliation(s)
- James L Reading
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Sergio A Quezada
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London WC1E 6DD, UK.
| |
Collapse
|
767
|
Mirzaei R, Sarkar S, Yong VW. T Cell Exhaustion in Glioblastoma: Intricacies of Immune Checkpoints. Trends Immunol 2016; 38:104-115. [PMID: 27964820 DOI: 10.1016/j.it.2016.11.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/06/2016] [Accepted: 11/10/2016] [Indexed: 12/25/2022]
Abstract
Glioblastoma is an aggressive and incurable primary brain tumor. While the blockade of immune checkpoints leads to reversal of T cell exhaustion in many cancers, the efficacy of this therapy in glioblastoma requires further consideration of the brain microenvironment beyond T cell activity. Neural cells are crucially dependent on glucose for survival, and tumor cells rabidly consume glucose; the glucose-deprived microenvironment further elevates immune checkpoint molecules to benefit tumor growth and exacerbate T cell exhaustion. We review here how immune checkpoints drive exhaustion in T cells while favoring tumor metabolism, and discuss how glucose competition in the unique CNS milieu is an important consideration to improve the outcomes of immune checkpoint blockade in glioblastoma.
Collapse
Affiliation(s)
- Reza Mirzaei
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Susobhan Sarkar
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
768
|
Nuro-Gyina PK, Rieser EL, Granitto MC, Pei W, Liu Y, Lee PW, Aqel S, Zhang J, Lovett-Racke AE, Racke MK, Yang Y. Regulation of effector function of CNS autoreactive CD4 T cells through inhibitory receptors and IL-7Rα. J Neuroinflammation 2016; 13:302. [PMID: 27912762 PMCID: PMC5135771 DOI: 10.1186/s12974-016-0768-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 11/24/2016] [Indexed: 12/14/2022] Open
Abstract
Background Multiple sclerosis (MS) is a chronic CNS autoimmune disease characterized by inflammation, demyelination, and neuronal degeneration, where myelin-specific CD4 T cells play critical roles in the formation of acute MS lesions and disease progression. The suppression of IL-7Rα expression and the upregulation of inhibitory receptors (PD-1, etc.) are essential parts of the cell-intrinsic immunosuppressive program regulating T effector functions to prevent autoimmunity. However, little is known on the factors regulating IL-7Rα/PD-1 balance in myelin-specific CD4 T effector/memory cells during the development of CNS autoimmunity. Methods We analyzed the roles of the transcription factor T-bet in regulating the expression of IL-7Rα and inhibitory receptors in myelin-specific CD4 T cells. Furthermore, we compared the effects of different inflammatory cytokines that are crucial for Th1 and Th17 development in regulating the IL-7Rα/PD-1 balance. Results We discovered that T-bet suppresses the expression of inhibitory receptors (PD-1 and LAG-3) and promotes IL-7Rα expression in myelin-specific CD4 T cells in vitro and in vivo. As a result, T-bet skews IL-7Rα/PD-1 balance towards IL-7Rα and promotes enhanced effector function. Furthermore, IL-12 enhances IL-7Rα expression in a T-bet independent manner in myelin-specific Th1 cells. Meanwhile, IL-6, the cytokine inducing highly encephalitogenic Th17 differentiation, suppresses PD-1 while upregulating IL-7Rα, skewing IL-7Rα/PD-1 balance towards IL-7Rα, and promoting enhanced effector function. Moreover, blocking IL-7 signaling in myelin-specific CD4 T cells by αIL-7Rα significantly delays experimental autoimmune encephalomyelitis (EAE) onset and reduces disease severity. Conclusions T-bet is a major transcription factor regulating IL-7Rα/PD-1 balance in myelin-specific CD4 T cells during EAE development, and there is a positive correlation between several major determinants promoting T cell encephalitogenicity (T-bet, IL-6, IL-12) and an IL-7Rα/PD-1 balance skewed towards IL-7Rα. Furthermore, IL-7 signaling inhibits PD-1 expression in myelin-specific CD4 T cells and blocking IL-7 signaling suppresses T cell encephalitogenicity. Therefore, interference with inhibitory pathways and IL-7Rα expression may suppress the encephalitogenic potential of myelin-specific CD4 T cells and have therapeutic benefits for MS patients. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0768-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patrick K Nuro-Gyina
- Postbacculaureate Research Education Program, The Ohio State University, Columbus, OH, USA
| | - Elizabeth L Rieser
- Neuroscience program, College of Arts and Sciences, The Ohio State University, Columbus, OH, USA
| | - Marissa C Granitto
- Neuroscience program, College of Arts and Sciences, The Ohio State University, Columbus, OH, USA
| | - Wei Pei
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Yue Liu
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Priscilla W Lee
- Molecular Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Saba Aqel
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Jian Zhang
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Amy E Lovett-Racke
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.,Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Michael K Racke
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.,Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Yuhong Yang
- Department of Neurology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA. .,Department of Neurology, Wexner Medical Center, Biomedical Research Tower, The Ohio State University, 460 W 12th Ave, Room 0604, Columbus, OH, 43210, USA.
| |
Collapse
|
769
|
Characterization of Human CD8 T Cell Responses in Dengue Virus-Infected Patients from India. J Virol 2016; 90:11259-11278. [PMID: 27707928 PMCID: PMC5126381 DOI: 10.1128/jvi.01424-16] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 09/27/2016] [Indexed: 11/20/2022] Open
Abstract
Epidemiological studies suggest that India has the largest number of dengue virus infection cases worldwide. However, there is minimal information about the immunological responses in these patients. CD8 T cells are important in dengue, because they have been implicated in both protection and immunopathology. Here, we provide a detailed analysis of HLA-DR+ CD38+ and HLA-DR- CD38+ effector CD8 T cell subsets in dengue patients from India and Thailand. Both CD8 T cell subsets expanded and expressed markers indicative of antigen-driven proliferation, tissue homing, and cytotoxic effector functions, with the HLA-DR+ CD38+ subset being the most striking in these effector qualities. The breadth of the dengue-specific CD8 T cell response was diverse, with NS3-specific cells being the most dominant. Interestingly, only a small fraction of these activated effector CD8 T cells produced gamma interferon (IFN-γ) when stimulated with dengue virus peptide pools. Transcriptomics revealed downregulation of key molecules involved in T cell receptor (TCR) signaling. Consistent with this, the majority of these CD8 T cells remained IFN-γ unresponsive even after TCR-dependent polyclonal stimulation (anti-CD3 plus anti-CD28) but produced IFN-γ by TCR-independent polyclonal stimulation (phorbol 12-myristate 13-acetate [PMA] plus ionomycin). Thus, the vast majority of these proliferating, highly differentiated effector CD8 T cells probably acquire TCR refractoriness at the time the patient is experiencing febrile illness that leads to IFN-γ unresponsiveness. Our studies open novel avenues for understanding the mechanisms that fine-tune the balance between CD8 T cell-mediated protective versus pathological effects in dengue. IMPORTANCE Dengue is becoming a global public health concern. Although CD8 T cells have been implicated both in protection and in the cytokine-mediated immunopathology of dengue, how the balance is maintained between these opposing functions remains unknown. We comprehensively characterized CD8 T cell subsets in dengue patients from India and Thailand and show that these cells expand massively and express phenotypes indicative of overwhelming antigenic stimulus and tissue homing/cytotoxic-effector functions but that a vast majority of them fail to produce IFN-γ in vitro Interestingly, the cells were fully capable of producing the cytokine when stimulated in a T cell receptor (TCR)-independent manner but failed to do so in TCR-dependent stimulation. These results, together with transcriptomics, revealed that the vast majority of these CD8 T cells from dengue patients become cytokine unresponsive due to TCR signaling insufficiencies. These observations open novel avenues for understanding the mechanisms that fine-tune the balance between CD8-mediated protective versus pathological effects.
Collapse
|
770
|
O'Donnell JS, Long GV, Scolyer RA, Teng MWL, Smyth MJ. Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treat Rev 2016; 52:71-81. [PMID: 27951441 DOI: 10.1016/j.ctrv.2016.11.007] [Citation(s) in RCA: 427] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 11/19/2016] [Indexed: 12/16/2022]
Abstract
For the first time in decades, patients with difficult-to-treat cancers such as advanced stage metastatic melanoma are being offered a glimpse of hope in the form of immunotherapies. By targeting factors that foster the development and maintenance of an immunosuppressive microenvironment within tumors, these therapies release the brakes on the host's own immune system; allowing cure of disease. Indeed, phase III clinical trials have revealed that therapies such as ipilimumab and pembrolizumab which target the CTLA4 and PD-1 immune checkpoints, respectively, have raised the three-year survival of patients with melanoma to ∼70%, and overall survival (>5years) to ∼30%. Despite this unprecedented efficacy, many patients fail to respond, and more concerning, some patients who demonstrate encouraging initial responses to immunotherapy, can acquire resistance over time. There is now an urgent need to identify mechanisms of resistance, to predict outcome and to identify targets for combination therapy. Here, with the aim of guiding future combination trials that target specific resistance mechanisms to immunotherapies, we have summarised and discussed the current understanding of mechanisms promoting resistance to anti-PD1/PDL1 therapies, and how combination strategies which target these pathways might yield better outcomes for patients.
Collapse
Affiliation(s)
- Jake S O'Donnell
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston 4006, Queensland, Australia; School of Medicine, The University of Queensland, Herston 4006, Queensland, Australia; Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston 4006, Queensland, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, and Royal North Shore and Mater Hospitals, Sydney, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, and Royal Prince Alfred Hospital, Australia
| | - Michele W L Teng
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston 4006, Queensland, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston 4006, Queensland, Australia; School of Medicine, The University of Queensland, Herston 4006, Queensland, Australia.
| |
Collapse
|
771
|
Menon S, Shin S, Dy G. Advances in Cancer Immunotherapy in Solid Tumors. Cancers (Basel) 2016; 8:E106. [PMID: 27886124 PMCID: PMC5187504 DOI: 10.3390/cancers8120106] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/13/2016] [Accepted: 11/13/2016] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy is heralded as one of the most important advances in oncology. Until recently, only limited immunotherapeutic options were available in selected immunogenic cancers like melanoma and renal cell carcinomas. Nowadays, there is an improved understanding that anti-tumor immunity is controlled by a delicate balance in the tumor microenvironment between immune stimulatory and immune inhibitory pathways. Either by blocking the inhibitory pathways or stimulating the activating pathways that regulate cytotoxic lymphocytes, anti-tumor immunity can be enhanced leading to durable anti-tumor responses. Drugs which block the immune regulatory checkpoints namely the PD-1/PDL1 and CTLA 4 pathway have shown tremendous promise in a wide spectrum of solid and hematological malignancies, significantly improving overall survival in newly diagnosed and heavily pretreated patients alike. Hence there is renewed enthusiasm in the field of immune oncology with current research focused on augmenting responses to checkpoint inhibitors by combination therapy as well as studies looking at other immune modulators and adoptive T cell therapy. In this article, we highlight the key clinical advances and concepts in immunotherapy with particular emphasis on checkpoint inhibition as well as the future direction in this field.
Collapse
Affiliation(s)
- Smitha Menon
- Division of Hematology and Oncology, Department of Internal Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Sarah Shin
- Department of Internal Medicine, State University of New York at Buffalo, Buffalo, NY 14228, USA.
| | - Grace Dy
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA.
| |
Collapse
|
772
|
RAS-Mitogen-Activated Protein Kinase Signal Is Required for Enhanced PD-L1 Expression in Human Lung Cancers. PLoS One 2016. [PMID: 27846317 DOI: 10.1371/journal.pone.0166626.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ectopic programmed cell death ligand 1 (PD-L1) expression in non-small cell lung cancers (NSCLCs) is related to immune evasion by cancer, and it is a molecular target of immune checkpoint therapies. Although some altered signals in NSCLCs are responsible for ectopic PD-L1 expression, the precise mechanisms remain obscure. Because we found a higher frequency of EGFR/KRAS mutations in NSCLC cell lines with high PD-L1 expression (p < 0.001), we evaluated the relationships between downstream signals and PD-L1 expression, particularly in three KRAS-mutant adenocarcinoma cell lines. The MEK inhibitor U0126 (20 μM) significantly decreased the surface PD-L1 levels by 50-60% compared with dimethyl sulfoxide (p < 0.0001). Phorbol 12-myristate 13-acetate stimulation (100 nM, 15 min) increased (p < 0.05) and two ERK2 siRNAs as well as KRAS siRNAs decreased (p < 0.05) PD-L1 expression. The transcriptional activity of the potential AP-1 site (+4785 to +5056 from the transcription start site) in the PD-L1 gene was demonstrated by luciferase assays, which was inhibited by U0126. The chromatin immunoprecipitation assay demonstrated the binding of cJUN to the AP-1 site. Two STAT3 siRNAs decreased PD-L1 expression by 10-32% in two of the three KRAS-mutant lung adenocarcinoma cell lines (p < 0.05), while the PI3K inhibitor LY294002 (40 μM) did not change the expression level. Supervised cluster analysis and gene set enrichment analysis between the PD-L1-high and -low NSCLCs revealed a correlation between PD-L1 expression and genes/pathways related to cell motility/adhesion. These results indicate that MAPK signaling is the dominant downstream signal responsible for ectopic PD-L1 expression, in which STAT3 is also involved to some extent. Furthermore, MAPK signaling may control the expression of PD-L1 and several genes related to enhanced cell motility. Our findings suggest that MAPK, along with STAT3, is important for determining PD-L1 expression, which could be useful for targeted therapies against lung cancers.
Collapse
|
773
|
Sumimoto H, Takano A, Teramoto K, Daigo Y. RAS-Mitogen-Activated Protein Kinase Signal Is Required for Enhanced PD-L1 Expression in Human Lung Cancers. PLoS One 2016; 11:e0166626. [PMID: 27846317 PMCID: PMC5112979 DOI: 10.1371/journal.pone.0166626] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 11/01/2016] [Indexed: 01/09/2023] Open
Abstract
Ectopic programmed cell death ligand 1 (PD-L1) expression in non-small cell lung cancers (NSCLCs) is related to immune evasion by cancer, and it is a molecular target of immune checkpoint therapies. Although some altered signals in NSCLCs are responsible for ectopic PD-L1 expression, the precise mechanisms remain obscure. Because we found a higher frequency of EGFR/KRAS mutations in NSCLC cell lines with high PD-L1 expression (p < 0.001), we evaluated the relationships between downstream signals and PD-L1 expression, particularly in three KRAS-mutant adenocarcinoma cell lines. The MEK inhibitor U0126 (20 μM) significantly decreased the surface PD-L1 levels by 50–60% compared with dimethyl sulfoxide (p < 0.0001). Phorbol 12-myristate 13-acetate stimulation (100 nM, 15 min) increased (p < 0.05) and two ERK2 siRNAs as well as KRAS siRNAs decreased (p < 0.05) PD-L1 expression. The transcriptional activity of the potential AP-1 site (+4785 to +5056 from the transcription start site) in the PD-L1 gene was demonstrated by luciferase assays, which was inhibited by U0126. The chromatin immunoprecipitation assay demonstrated the binding of cJUN to the AP-1 site. Two STAT3 siRNAs decreased PD-L1 expression by 10–32% in two of the three KRAS-mutant lung adenocarcinoma cell lines (p < 0.05), while the PI3K inhibitor LY294002 (40 μM) did not change the expression level. Supervised cluster analysis and gene set enrichment analysis between the PD-L1-high and -low NSCLCs revealed a correlation between PD-L1 expression and genes/pathways related to cell motility/adhesion. These results indicate that MAPK signaling is the dominant downstream signal responsible for ectopic PD-L1 expression, in which STAT3 is also involved to some extent. Furthermore, MAPK signaling may control the expression of PD-L1 and several genes related to enhanced cell motility. Our findings suggest that MAPK, along with STAT3, is important for determining PD-L1 expression, which could be useful for targeted therapies against lung cancers.
Collapse
Affiliation(s)
- Hidetoshi Sumimoto
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Atsushi Takano
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga, Japan
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koji Teramoto
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yataro Daigo
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Otsu, Shiga, Japan
- Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
774
|
Combinatorial immunotherapy for melanoma. Cancer Gene Ther 2016; 24:141-147. [PMID: 27834353 DOI: 10.1038/cgt.2016.56] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 12/18/2022]
Abstract
Melanoma has been a long-standing focal point for immunotherapy development. In this review, we explore the evolution of melanoma treatments with particular attention to the history and recent advances in melanoma immunotherapy. We also discuss novel combinations of these modalities and their potential to offer novel therapeutic options for patients with advanced melanoma.
Collapse
|
775
|
Pham EA, Perumpail RB, Fram BJ, Glenn JS, Ahmed A, Gish RG. Future Therapy for Hepatitis B Virus: Role of Immunomodulators. CURRENT HEPATOLOGY REPORTS 2016; 15:237-244. [PMID: 27917363 PMCID: PMC5112294 DOI: 10.1007/s11901-016-0315-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although currently available therapies for chronic hepatitis B virus infection can suppress viremia and provide long-term benefits for patients, they do not lead to a functional cure for most patients. Advances in our understanding of the virus-host interaction and the recent remarkable success of immunotherapy in cancer offer new and promising strategies for developing immune modulators that may become important components of a total therapeutic approach to hepatitis B, some of which are now in clinical development. Among the immunomodulatory agents currently being investigated to combat chronic HBV are toll-like receptor agonists, immune checkpoint inhibitors, therapeutic vaccines, and engineered T cells. The efficacy of some immune modulatory therapies is compromised by high viral antigen levels. Cutting edge strategies, including RNA interference and CRISPR/Cas9, are now being studied that may ultimately be shown to have the capacity to lower viral antigen levels sufficiently to substantially increase the efficacy of these agents. The current advances in therapies for chronic hepatitis B are leading us toward the possibility of a functional cure.
Collapse
Affiliation(s)
- Edward A. Pham
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA USA
| | - Ryan B. Perumpail
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA USA
| | - Benjamin J. Fram
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA USA
| | - Jeffrey S. Glenn
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA USA
- Veterans Administration Medical Center, Palo Alto, CA USA
| | - Aijaz Ahmed
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA USA
| | - Robert G. Gish
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA USA
- Hepatitis B Foundation, Doylestown, PA USA
| |
Collapse
|
776
|
Abstract
Hepatitis B virus (HBV) infection is a major global health challenge. HBV can cause significant morbidity and mortality by establishing acute and chronic hepatitis. Approximately 250 million people worldwide are chronically infected, and more than 2 billion people have been exposed to HBV. Since the discovery of HBV, the advances in our understanding of HBV virology and immunology have translated into effective vaccines and therapies for HBV infection. Although current therapies successfully suppress viral replication but rarely succeed in viral eradication, recent discoveries in HBV virology and immunology provide exciting rationales for novel treatment strategies aiming at HBV cure.
Collapse
Affiliation(s)
- Bertram Bengsch
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, 331 Biomedical Research Building II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Kyong-Mi Chang
- Medical Research, Philadelphia Corporal Michael J. Crescenz VA Medical Center (CMC VAMC), A424, University and Woodland Avenue, Philadelphia, PA 19104, USA; Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
777
|
Khan N, Vidyarthi A, Amir M, Mushtaq K, Agrewala JN. T-cell exhaustion in tuberculosis: pitfalls and prospects. Crit Rev Microbiol 2016; 43:133-141. [DOI: 10.1080/1040841x.2016.1185603] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nargis Khan
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, India
| | - Aurobind Vidyarthi
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, India
| | - Mohammed Amir
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, India
| | - Khurram Mushtaq
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, India
| | | |
Collapse
|
778
|
T‐cell exhaustion: understanding the interface of chronic viral and autoinflammatory diseases. Immunol Cell Biol 2016; 94:935-942. [DOI: 10.1038/icb.2016.81] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 12/19/2022]
|
779
|
Zhou S, Jin X, Li Y, Li W, Chen X, Xu L, Zhu J, Xu Z, Zhang Y, Liu F, Su C. Blockade of PD-1 Signaling Enhances Th2 Cell Responses and Aggravates Liver Immunopathology in Mice with Schistosomiasis japonica. PLoS Negl Trop Dis 2016; 10:e0005094. [PMID: 27792733 PMCID: PMC5085144 DOI: 10.1371/journal.pntd.0005094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 10/05/2016] [Indexed: 11/19/2022] Open
Abstract
Background More than 220 million people worldwide are chronically infected with schistosomes, causing severe disease or even death. The major pathological damage occurring in schistosomiasis is attributable to the granulomatous inflammatory response and liver fibrosis induced by schistosome eggs. The inflammatory response is tightly controlled and parallels immunosuppressive regulation, constantly maintaining immune homeostasis and limiting excessive immunopathologic damage in important host organs. It is well known that the activation of programmed death 1 (PD-1) signaling causes a significant suppression of T cell function. However, the roles of PD-1 signaling in modulating CD4+ T cell responses and immunopathology during schistosome infection, have yet to be defined. Methodology/Principal Findings Here, we show that PD-1 is upregulated in CD4+ T cells in Schistosoma japonicum (S. japonicum)-infected patients. We also show the upregulation of PD-1 expression in CD4+ T cells in the spleens, mesenteric lymph nodes, and livers of mice with S. japonicum infection. Finally, we found that the blockade of PD-1 signaling enhanced CD4+ T helper 2 (Th2) cell responses and led to more severe liver immunopathology in mice with S. japonicum infection, without a reduction of egg production or deposition in the host liver. Conclusions/Significance Overall, our study suggests that PD-1 signaling is specifically induced to control Th2-associated inflammatory responses during schistosome infection and is beneficial to the development of PD-1-based control of liver immunopathology. Schistosomiasis is a parasitic disease that affects approximately 220 million people and causes serious morbidity and economic problems mainly in (sub)tropical regions. After Schistosoma japonicum or Schistosoma mansoni infection, parasite eggs are trapped in host liver and induce liver inflammation and fibrosis, leading to irreversible impairment of the liver, and even death of the host. Meanwhile, schistosomes also induce strong regulatory mechanisms to suppress inflammation and prevent excessive immunopathology. Considering it is well known that PD-1 plays a critical role in suppressing T cell function, understanding the role of PD-1 in modulating immune responses during schistosome infection is necessary for the development of PD-1-based control of liver damage in schistosomiasis. Here, increased PD-1 expression in CD4+ T cells from both humans and mice with schistosome infection was shown. We further showed that PD-1 blockade preferentially augmented Th2 cell responses and ultimately resulted in more severe liver immunopathology in mice with Schistosomiasis japonica, suggesting that PD-1 signaling is beneficial to further explore therapeutic possibilities for preventing the excessive liver immunopathology.
Collapse
Affiliation(s)
- Sha Zhou
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Jin
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yalin Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaojun Chen
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Xu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jifeng Zhu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhipeng Xu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Zhang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Liu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuan Su
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
- * E-mail:
| |
Collapse
|
780
|
Programed death-1/programed death-ligand 1 expression in lymph nodes of HIV infected patients: results of a pilot safety study in rhesus macaques using anti-programed death-ligand 1 (Avelumab). AIDS 2016; 30:2487-2493. [PMID: 27490642 PMCID: PMC5051527 DOI: 10.1097/qad.0000000000001217] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The programed death-1 (PD1)/programed death-ligand 1 (PD-L1) pathway plays a critical role in balancing immunity and host immunopathology. During chronic HIV/SIV infection, there is persistent immune activation accompanied by accumulation of virus-specific cells with terminally differentiated phenotypes and expression of regulatory receptors such as PD1. These observations led us to hypothesize that the PD1/PD-L1 pathway contributes to the functional dysregulation and ineffective viral control, and its blockade may be a potential immunotherapeutic target.
Collapse
|
781
|
Park J, Kwon M, Shin EC. Immune checkpoint inhibitors for cancer treatment. Arch Pharm Res 2016; 39:1577-1587. [PMID: 27770382 DOI: 10.1007/s12272-016-0850-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/15/2016] [Indexed: 12/22/2022]
Abstract
During immune responses antigen-specific T cells are regulated by several mechanisms, including through inhibitory receptors and regulatory T cells, to avoid excessive or persistent immune responses. These regulatory mechanisms, which are called 'immune checkpoints', suppress T cell responses, particularly in patients with chronic viral infections and cancer where viral antigens or tumor antigens persist for a long time and contribute to T cell exhaustion. Among these regulatory mechanisms, cytotoxic T lymphocyte associated protein-4 (CTLA-4) and programmed cell death 1 (PD-1) are the most well-known receptors and both have been targeted for drug development. As a result, anti-CTLA-4 and anti-PD-1 (or anti-PD-L1) antibodies were recently developed as immune checkpoint inhibitors for use in cancer treatments. In this review we describe several receptors that function as immunological checkpoints as well as the pharmaceuticals that target them.
Collapse
Affiliation(s)
- Junsik Park
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Minsuk Kwon
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
782
|
Wang S, Li J. [Progress in Immunotherapy for Squamous Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 19:682-686. [PMID: 27760599 PMCID: PMC5973414 DOI: 10.3779/j.issn.1009-3419.2016.10.09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
近几年来,肺鳞癌在化疗及靶向治疗上的进展不够显著,但免疫治疗却在肺鳞癌的治疗上取得了突破性的进展。免疫治疗通过免疫系统来清除肿瘤细胞,主要分为免疫检查点抑制剂及治疗性疫苗。免疫检查点抑制剂,包括抗细胞毒性T淋巴细胞抗原4(cytotoxic T-lymphocyte associated antigen 4, CTLA-4)抗体与抗程序性死亡受体-1(programmed death receptor 1, PD-1)抗体等多种药物已进行了肺鳞癌的Ⅱ期、Ⅲ期临床试验,并取得了一定成果。免疫治疗将成为肺鳞癌治疗的一种重要手段。
Collapse
Affiliation(s)
- Shouzheng Wang
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College,
Beijing 100021, China
| | - Junling Li
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College,
Beijing 100021, China
| |
Collapse
|
783
|
T cell exhaustion and immune-mediated disease-the potential for therapeutic exhaustion. Curr Opin Immunol 2016; 43:74-80. [PMID: 27744240 DOI: 10.1016/j.coi.2016.09.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/23/2016] [Indexed: 12/22/2022]
Abstract
T cell exhaustion represents a continuous spectrum of cellular dysfunction induced during chronic viral infection, facilitating viral persistence and associating with poor clinical outcome. Modulation of T cell exhaustion can restore function in exhausted CD8 T cells, promoting viral clearance. Exhaustion has also been implicated as playing an important role in anti-tumour responses, whereby exhausted tumour-infiltrating lymphocytes fail to control tumour progression. More recently exhaustion has been linked to long-term clinical outcome in multiple autoimmune diseases but, in contrast to cancer or infection, it is associated with a favourable clinical outcome characterised by fewer relapses. An increasing understanding of key inhibitory signals promoting exhaustion has led to advances in therapy for chronic infection and cancer. An increasing understanding of this biology may facilitate novel treatment approaches for autoimmunity through the therapeutic induction of exhaustion.
Collapse
|
784
|
Schats KA, Van Vré EA, De Schepper S, Boeckx C, Schrijvers DM, Waelput W, Fransen E, Vanden Bempt I, Neyns B, De Meester I, Kockx MM. Validated programmed cell death ligand 1 immunohistochemistry assays (E1L3N and SP142) reveal similar immune cell staining patterns in melanoma when using the same sensitive detection system. Histopathology 2016; 70:253-263. [PMID: 27496355 DOI: 10.1111/his.13056] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/28/2016] [Accepted: 08/03/2016] [Indexed: 12/16/2022]
Abstract
AIMS Tumour cell and/or immune cell programmed cell death ligand 1 (PD-L1) expression is considered as a potential biomarker for anti-PD1 and anti-PD-L1 immunotherapy. Currently, different PD-L1 assays are used. This study aims to compare the staining patterns of two PD-L1 antibody clones in melanoma metastases and correlate them with PD-L1 mRNA expression. METHODS AND RESULTS The immunohistochemistry assays were optimized and validated independently on a Ventana Benchmark Ultra (Ventana Medical Systems Inc., Tucson, AZ, USA) (E1L3N) and XT (SP142), using the same detection system. In total, 46 melanoma metastases were stained with both validated immunohistochemistry assays. Stained slides were digitized for qualitative and semi-quantitative evaluation; done by pathologist and semi-automated software analysis. A subset of 21 melanoma metastases was selected for quantification of the PD-L1 mRNA expression. Accuracy and precision criteria were met for both assays. PD-L1 protein and mRNA expression showed remarkably good Spearman's coefficients of 0.90 (E1L3N) and 0.87 (SP142). Despite the remarkable correlation between both PD-L1 assays in expression patterns and quantification values (ρ > 0.90), E1L3N showed significantly more tumour cell staining than SP142. CONCLUSIONS E1L3N and SP142 IHC assays were optimized and validated successfully and independently for sensitive and accurate PD-L1 detection. Concordance was best for immune cell scoring, while E1L3N tended to detect more tumour cells. Determination of the clinically relevant cut-off values for immune cell versus tumour cell detection requires further research.
Collapse
Affiliation(s)
- Kelly A Schats
- Department of Immunohistochemistry, HistoGeneX, Antwerp, Belgium.,Department of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Emily A Van Vré
- Department of Immunohistochemistry, HistoGeneX, Antwerp, Belgium
| | | | - Carolien Boeckx
- Department of Immunohistochemistry, HistoGeneX, Antwerp, Belgium
| | | | - Wim Waelput
- Department of Pathology, Universitair Ziekenhuis, Brussels, Belgium.,Department of Molecular Pathology, HistoGeneX, Antwerp, Belgium
| | - Erik Fransen
- StatUa Center for Statistics, University of Antwerp, Antwerp, Belgium
| | | | - Bart Neyns
- Medical Oncology, Universitair Ziekenhuis, Brussels, Belgium
| | - Ingrid De Meester
- Department of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Mark M Kockx
- Department of Molecular Pathology, HistoGeneX, Antwerp, Belgium
| |
Collapse
|
785
|
Mann J, Pasternak AO, Chahroudi A, Singh JA, Ross AL. The latest science from the IAS Towards an HIV Cure Symposium: 16-17 July 2016, Durban, South Africa. J Virus Erad 2016; 2:235-241. [PMID: 27781107 PMCID: PMC5075352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jaclyn Mann
- HIV Pathogenesis Programme,
University of KwaZulu-Natal,
Durban,
South Africa
| | - Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology,
Academic Medical Center of the University of Amsterdam,
the Netherlands
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine,
Atlanta,
Georgia,
USA
| | | | - Anna Laura Ross
- International and Scientific Relations, ANRS,
Paris,
France,Corresponding author: Anna Laura Ross,
International and Scientific Relations, ANRS,
101 rue de Tolbiac,
75013Paris,
France
| |
Collapse
|
786
|
Prevailing over T cell exhaustion: New developments in the immunotherapy of pancreatic cancer. Cancer Lett 2016; 381:259-68. [DOI: 10.1016/j.canlet.2016.02.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/11/2016] [Accepted: 02/29/2016] [Indexed: 11/16/2022]
|
787
|
|
788
|
Chang KM, Liu M. Chronic hepatitis B: immune pathogenesis and emerging immunotherapeutics. Curr Opin Pharmacol 2016; 30:93-105. [PMID: 27570126 DOI: 10.1016/j.coph.2016.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/21/2016] [Accepted: 07/25/2016] [Indexed: 12/22/2022]
Abstract
Hepatitis B virus (HBV) evades, subverts, activates and regulates host immune components, thereby impacting its natural history and disease pathogenesis. Recent advances in our understanding of immune interactions in chronic viral infection and tumor therapy are applicable to chronic hepatitis B (CHB). With recent successes of tumor immunotherapy, there is a renewed interest in exploring immunotherapeutics in achieving sustained and functional cure of chronic hepatitis B. In this review, we discuss aspects of host innate and adaptive immune regulatory and pathogenic responses relevant for HBV infection. We also highlight several immune modulatory approaches in clinical development to treat CHB.
Collapse
Affiliation(s)
- Kyong-Mi Chang
- University of Pennsylvania Perelman School of Medicine, USA; Philadelphia Corporal Michael J. Crescenz VA Medical Center, USA.
| | - Mengfei Liu
- University of Pennsylvania Perelman School of Medicine, USA
| |
Collapse
|
789
|
Villegas-Mendez A, Inkson CA, Shaw TN, Strangward P, Couper KN. Long-Lived CD4+IFN-γ+ T Cells rather than Short-Lived CD4+IFN-γ+IL-10+ T Cells Initiate Rapid IL-10 Production To Suppress Anamnestic T Cell Responses during Secondary Malaria Infection. THE JOURNAL OF IMMUNOLOGY 2016; 197:3152-3164. [PMID: 27630165 PMCID: PMC5055201 DOI: 10.4049/jimmunol.1600968] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/21/2016] [Indexed: 01/01/2023]
Abstract
CD4+ T cells that produce IFN-γ are the source of host-protective IL-10 during primary infection with a number of different pathogens, including Plasmodium spp. The fate of these CD4+IFN-γ+IL-10+ T cells following clearance of primary infection and their subsequent influence on the course of repeated infections is, however, presently unknown. In this study, utilizing IFN-γ-yellow fluorescent protein (YFP) and IL-10-GFP dual reporter mice, we show that primary malaria infection-induced CD4+YFP+GFP+ T cells have limited memory potential, do not stably express IL-10, and are disproportionately lost from the Ag-experienced CD4+ T cell memory population during the maintenance phase postinfection. CD4+YFP+GFP+ T cells generally exhibited a short-lived effector rather than effector memory T cell phenotype postinfection and expressed high levels of PD-1, Lag-3, and TIGIT, indicative of cellular exhaustion. Consistently, the surviving CD4+YFP+GFP+ T cell-derived cells were unresponsive and failed to proliferate during the early phase of secondary infection. In contrast, CD4+YFP+GFP- T cell-derived cells expanded rapidly and upregulated IL-10 expression during secondary infection. Correspondingly, CD4+ T cells were the major producers within an accelerated and amplified IL-10 response during the early stage of secondary malaria infection. Notably, IL-10 exerted quantitatively stronger regulatory effects on innate and CD4+ T cell responses during primary and secondary infections, respectively. The results in this study significantly improve our understanding of the durability of IL-10-producing CD4+ T cells postinfection and provide information on how IL-10 may contribute to optimized parasite control and prevention of immune-mediated pathology during repeated malaria infections.
Collapse
Affiliation(s)
- Ana Villegas-Mendez
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Colette A Inkson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Tovah N Shaw
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Patrick Strangward
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Kevin N Couper
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
790
|
Healy ZR, Murdoch DM. OMIP-036: Co-inhibitory receptor (immune checkpoint) expression analysis in human T cell subsets. Cytometry A 2016; 89:889-892. [PMID: 27623134 DOI: 10.1002/cyto.a.22938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/10/2016] [Accepted: 08/18/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Zachary R Healy
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Hospital, Durham, North Carolina.
| | - David M Murdoch
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Hospital, Durham, North Carolina
| |
Collapse
|
791
|
Ngiow SF, Young A, Blake SJ, Hill GR, Yagita H, Teng MWL, Korman AJ, Smyth MJ. Agonistic CD40 mAb-Driven IL12 Reverses Resistance to Anti-PD1 in a T-cell–Rich Tumor. Cancer Res 2016; 76:6266-6277. [DOI: 10.1158/0008-5472.can-16-2141] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 08/26/2016] [Indexed: 11/16/2022]
|
792
|
Oien DB, Chien J, Cheng N. Regulation of chemo-sensitivity in ovarian cancer via a stroma dependent glutathione pathway. Transl Cancer Res 2016; 5:S514-S519. [PMID: 30542639 PMCID: PMC6287752 DOI: 10.21037/tcr.2016.09.32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The primary chemotherapeutic agents for epithelial ovarian cancer are platinum-based drugs, which are commonly used in combination with a taxane regimen. These treatments are generally effective at achieving remission, but the remission is often followed by a relapse and acquired resistance to chemotherapy. In order to overcome these barriers of drug resistance, it is important to understand the underlying mechanisms regulating the development of drug-resistant tumors. Tumors evolve through interactions with the surrounding microenvironment, which are comprised of a complex mixture of cells including fibroblasts and immune cells. In ovarian cancer, fibroblasts can make up a significant component of the primary tumor. While fibroblasts are known to influence the behavior of cancer cells directly through secretion of growth factors, and extracellular matrix (ECM) proteins, the interactions between fibroblasts and immune cells are less understood. In a recently published study from Cell, Wang and colleagues present intriguing work characterizing the role of fibroblast and T cells in modulating platinum resistance in ovarian cancer. Here, we briefly summarize and comment on their findings in relation to the tumor microenvironment and chemoresistance.
Collapse
Affiliation(s)
- Derek B. Oien
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jeremy Chien
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Nikki Cheng
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
793
|
Combination Cancer Therapies with Immune Checkpoint Blockade: Convergence on Interferon Signaling. Cell 2016; 165:272-5. [PMID: 27058661 DOI: 10.1016/j.cell.2016.03.031] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 01/07/2023]
Abstract
Improving efficacy of immune checkpoint blockade for cancer can be facilitated by combining these agents with each other and/or with other conventional or targeted therapies. Interferon and innate immune signaling pathways in immune and tumor cells have emerged as intriguing determinants of response and resistance, often in complex and seemingly paradoxical ways.
Collapse
|
794
|
Kano Y, Iguchi T, Matsui H, Adachi K, Sakoda Y, Miyakawa T, Doi S, Hazama S, Nagano H, Ueyama Y, Tamada K. Combined adjuvants of poly(I:C) plus LAG-3-Ig improve antitumor effects of tumor-specific T cells, preventing their exhaustion. Cancer Sci 2016; 107:398-406. [PMID: 27079438 PMCID: PMC4832865 DOI: 10.1111/cas.12861] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/03/2015] [Accepted: 12/13/2015] [Indexed: 12/22/2022] Open
Abstract
Therapeutic cancer vaccines are designed to treat cancer by boosting the endogenous immune system to fight against the cancer. In the development of clinically effective cancer vaccines, one of the most practical objectives is to identify adjuvants that are capable of optimizing the vaccine effects. In this study, we explored the potential of polyinosinic-polycytidylic acid (poly(I:C)) and LAG-3-Ig (soluble recombinant protein of lymphocyte activation gene-3 [LAG-3] extracellular domain fused with human IgG Fc region) as adjuvants for P1A tumor antigen peptide vaccine in a pre-established P815 mouse tumor model with a transfer of tumor-specific T cells. Whereas the use of poly(I:C) or LAG-3-Ig as a signal adjuvant induced a slight enhancement of P1A vaccine effects compared to incomplete Freund's adjuvant, combined treatment with poly(I:C) plus LAG-3-Ig remarkably potentiated antitumor effects, leading to complete rejection of pre-established tumor and long-term survival of mice. The potent adjuvant effects of poly(I:C) plus LAG-3-Ig were associated with an enhanced infiltration of T cells in the tumor tissues, and an increased proliferation and Th1-type cytokine production of tumor-reactive T cells. Importantly, the combined adjuvant of poly(I:C) plus LAG-3-Ig downregulated expressions of PD-1, LAG-3, and TIGIT on P1A-specific T cells, indicating prevention of T cell exhaustion. Taken together, the results of the current study show that the combined adjuvants of poly(I:C) plus LAG-3-Ig with tumor peptide vaccine induce profound antitumor effects by activating tumor-specific T cells.
Collapse
Affiliation(s)
- Yosuke Kano
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Takahiro Iguchi
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Hiroto Matsui
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Keishi Adachi
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yukimi Sakoda
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | | | | | - Shoichi Hazama
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Hiroaki Nagano
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yoshiya Ueyama
- Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Koji Tamada
- Department of Immunology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
795
|
Scharping NE, Menk AV, Moreci RS, Whetstone RD, Dadey RE, Watkins SC, Ferris RL, Delgoffe GM. The Tumor Microenvironment Represses T Cell Mitochondrial Biogenesis to Drive Intratumoral T Cell Metabolic Insufficiency and Dysfunction. Immunity 2016; 45:374-88. [PMID: 27496732 PMCID: PMC5207350 DOI: 10.1016/j.immuni.2016.07.009] [Citation(s) in RCA: 558] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/16/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023]
Abstract
Although tumor-specific T cells recognize cancer cells, they are often rendered dysfunctional due to an immunosuppressive microenvironment. Here we showed that T cells demonstrated persistent loss of mitochondrial function and mass when infiltrating murine and human tumors, an effect specific to the tumor microenvironment and not merely caused by activation. Tumor-infiltrating T cells showed a progressive loss of PPAR-gamma coactivator 1α (PGC1α), which programs mitochondrial biogenesis, induced by chronic Akt signaling in tumor-specific T cells. Reprogramming tumor-specific T cells through enforced expression of PGC1α resulted in superior intratumoral metabolic and effector function. Our data support a model in which signals in the tumor microenvironment repress T cell oxidative metabolism, resulting in effector cells with metabolic needs that cannot be met. Our studies also suggest that modulation or reprogramming of the altered metabolism of tumor-infiltrating T cells might represent a potential strategy to reinvigorate dysfunctional T cells for cancer treatment.
Collapse
Affiliation(s)
- Nicole E Scharping
- Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15261, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ashley V Menk
- Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15261, USA
| | - Rebecca S Moreci
- Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15261, USA
| | - Ryan D Whetstone
- Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15261, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Rebekah E Dadey
- Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15261, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Simon C Watkins
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Robert L Ferris
- Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15261, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Greg M Delgoffe
- Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15261, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
796
|
Daud AI, Loo K, Pauli ML, Sanchez-Rodriguez R, Sandoval PM, Taravati K, Tsai K, Nosrati A, Nardo L, Alvarado MD, Algazi AP, Pampaloni MH, Lobach IV, Hwang J, Pierce RH, Gratz IK, Krummel MF, Rosenblum MD. Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. J Clin Invest 2016; 126:3447-52. [PMID: 27525433 DOI: 10.1172/jci87324] [Citation(s) in RCA: 408] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/23/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Immune checkpoint blockade is revolutionizing therapy for advanced cancer, but many patients do not respond to treatment. The identification of robust biomarkers that predict clinical response to specific checkpoint inhibitors is critical in order to stratify patients and to rationally select combinations in the context of an expanding array of therapeutic options. METHODS We performed multiparameter flow cytometry on freshly isolated metastatic melanoma samples from 2 cohorts of 20 patients each prior to treatment and correlated the subsequent clinical response with the tumor immune phenotype. RESULTS Increasing fractions of programmed cell death 1 high/cytotoxic T lymphocyte-associated protein 4 high (PD-1hiCTLA-4hi) cells within the tumor-infiltrating CD8+ T cell subset strongly correlated with response to therapy (RR) and progression-free survival (PFS). Functional analysis of these cells revealed a partially exhausted T cell phenotype. Assessment of metastatic lesions during anti-PD-1 therapy demonstrated a release of T cell exhaustion, as measured by an accumulation of highly activated CD8+ T cells within tumors, with no effect on Tregs. CONCLUSIONS Our data suggest that the relative abundance of partially exhausted tumor-infiltrating CD8+ T cells predicts response to anti-PD-1 therapy. This information can be used to appropriately select patients with a high likelihood of achieving a clinical response to PD-1 pathway inhibition. FUNDING This work was funded by a generous gift provided by Inga-Lill and David Amoroso as well as a generous gift provided by Stephen Juelsgaard and Lori Cook.
Collapse
|
797
|
Gilboa E, Berezhnoy A, Schrand B. Reducing Toxicity of Immune Therapy Using Aptamer-Targeted Drug Delivery. Cancer Immunol Res 2016; 3:1195-200. [PMID: 26541880 DOI: 10.1158/2326-6066.cir-15-0194] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Modulating the function of immune receptors with antibodies is ushering in a new era in cancer immunotherapy. With the notable exception of PD-1 blockade used as monotherapy, immune modulation can be associated with significant toxicities that are expected to escalate with the development of increasingly potent immune therapies. A general way to reduce toxicity is to target immune potentiating drugs to the tumor or immune cells of the patient. This Crossroads article discusses a new class of nucleic acid-based immune-modulatory drugs that are targeted to the tumor or to the immune system by conjugation to oligonucleotide aptamer ligands. Cell-free chemically synthesized short oligonucleotide aptamers represent a novel and emerging platform technology for generating ligands with desired specificity that offer exceptional versatility and feasibility in terms of development, manufacture, and conjugation to an oligonucleotide cargo. In proof-of-concept studies, aptamer ligands were used to target immune-modulatory siRNAs or aptamers to induce neoantigens in the tumor cells, limit costimulation to the tumor lesion, or enhance the persistence of vaccine-induced immunity. Using increasingly relevant murine models, the aptamer-targeted immune-modulatory drugs engendered protective antitumor immunity that was superior to that of current "gold-standard" therapies in terms of efficacy and lack of toxicity or reduced toxicity. To overcome immune exhaustion aptamer-targeted siRNA conjugates could be used to downregulate intracellular mediators of exhaustion that integrate signals from multiple inhibitory receptors. Recent advances in aptamer development and second-generation aptamer-drug conjugates suggest that we have only scratched the surface.
Collapse
Affiliation(s)
- Eli Gilboa
- Department of Microbiology and Immunology, Dodson Interdisciplinary Immunotherapy Institute, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida.
| | - Alexey Berezhnoy
- Department of Microbiology and Immunology, Dodson Interdisciplinary Immunotherapy Institute, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Brett Schrand
- Department of Microbiology and Immunology, Dodson Interdisciplinary Immunotherapy Institute, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
798
|
Schaller TH, Sampson JH. Advances and challenges: dendritic cell vaccination strategies for glioblastoma. Expert Rev Vaccines 2016; 16:27-36. [PMID: 27500911 DOI: 10.1080/14760584.2016.1218762] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Glioblastoma is the most common primary brain tumor in adults and prognosis remains poor with a median survival of approximately 15-17 months. This review provides an overview of recent advances in the field of glioblastoma immunotherapy. Areas covered: Recent advances in dendritic cell vaccination immunotherapy are showing encouraging results in clinical trials and promise to extend patient survival. In this report we discuss current scientific knowledge regarding dendritic cell (DC) vaccines, including approaches to differentiating, priming, and injecting dendritic cells to achieve maximal anti-tumor efficacy in glioblastoma. These findings are compared to recently completed and currently ongoing glioblastoma clinical trials. Novel methods such as 'fastDCs' and vaccines targeting DCs in-vivo may offer more effective treatment when compared to traditional DC vaccines and have already entered the clinic. Expert commentary: Finally, we discuss the challenges of T-cell dysfunctions caused by glioblastoma immunosuppression and how they affect dendritic cell vaccinations approaches.
Collapse
Affiliation(s)
- Teilo H Schaller
- a Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA
| | - John H Sampson
- a Department of Neurosurgery , Duke University Medical Center , Durham , NC , USA
| |
Collapse
|
799
|
Gu X, Gao XS, Xiong W, Guo W, Han L, Bai Y, Peng C, Cui M, Xie M. Increased programmed death ligand-1 expression predicts poor prognosis in hepatocellular carcinoma patients. Onco Targets Ther 2016; 9:4805-13. [PMID: 27536144 PMCID: PMC4976917 DOI: 10.2147/ott.s110713] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Accumulating studies have investigated the prognostic and clinical significance of programmed death ligand-1 (PD-L1) expression in patients with hepatocellular carcinoma (HCC); however, the results were conflicting and inconclusive. We conducted a meta-analysis to combine controversial data to precisely evaluate this issue. Methods Relevant studies were thoroughly searched on PubMed, Web of Science, and Embase until April 2016. Eligible studies were evaluated by selection criteria. Hazard ratio (HR) with 95% confidence interval (CI) was used to estimate the prognostic role of PD-L1 for overall survival (OS) and disease-free survival (DFS)/recurrence-free survival (RFS). Odds ratio (OR) with 95% CI were selected to assess the relationship between PD-L1 and clinicopathological features of HCC patients. Publication bias was tested using Begg’s funnel plot. Results A total of seven studies published from 2009 to 2016 were included for meta-analysis. The data showed that high PD-L1 expression was correlated to shorter OS (HR =2.09, 95% CI: 1.66–2.64, P<0.001) as well as poor DFS/RFS (HR =2.3, 95% CI: 1.46–3.62, P<0.001). In addition, increased PD-L1 expression was also associated with tumor differentiation (HR =1.51, 95% CI: 1–2.29, P=0.05), vascular invasion (HR =2.16, 95% CI: 1.43–3.27, P<0.001), and α-fetoprotein (AFP; HR =1.46, 95% CI: 1–2.14, P=0.05), but had no association with tumor stage, tumor size, hepatitis history, sex, age, or tumor multiplicity. No publication bias was found for all analyses. Conclusion This meta-analysis revealed that overexpression of PD-L1 was predictive for shortened OS and DFS/RFS in HCC. Furthermore, increased PD-L1 expression was associated with less differentiation, vascular invasion, and AFP elevation.
Collapse
Affiliation(s)
- Xiaobin Gu
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Xian-Shu Gao
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Wei Xiong
- Department of Oncology, Tangshan People's Hospital, Hebei, People's Republic of China
| | - Wei Guo
- Graduate School of Medicine, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
| | - Linjun Han
- Graduate School of Medicine, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
| | - Yun Bai
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Chuan Peng
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Ming Cui
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Mu Xie
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| |
Collapse
|
800
|
Hwang S, Cobb DA, Bhadra R, Youngblood B, Khan IA. Blimp-1-mediated CD4 T cell exhaustion causes CD8 T cell dysfunction during chronic toxoplasmosis. J Exp Med 2016; 213:1799-818. [PMID: 27481131 PMCID: PMC4995081 DOI: 10.1084/jem.20151995] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/03/2016] [Indexed: 12/26/2022] Open
Abstract
CD8, but not CD4, T cells are considered critical for control of chronic toxoplasmosis. Although CD8 exhaustion has been previously reported in Toxoplasma encephalitis (TE)-susceptible model, our current work demonstrates that CD4 not only become exhausted during chronic toxoplasmosis but this dysfunction is more pronounced than CD8 T cells. Exhausted CD4 population expressed elevated levels of multiple inhibitory receptors concomitant with the reduced functionality and up-regulation of Blimp-1, a transcription factor. Our data demonstrates for the first time that Blimp-1 is a critical regulator for CD4 T cell exhaustion especially in the CD4 central memory cell subset. Using a tamoxifen-dependent conditional Blimp-1 knockout mixed bone marrow chimera as well as an adoptive transfer approach, we show that CD4 T cell-intrinsic deletion of Blimp-1 reversed CD8 T cell dysfunction and resulted in improved pathogen control. To the best of our knowledge, this is a novel finding, which demonstrates the role of Blimp-1 as a critical regulator of CD4 dysfunction and links it to the CD8 T cell dysfunctionality observed in infected mice. The critical role of CD4-intrinsic Blimp-1 expression in mediating CD4 and CD8 T cell exhaustion may provide a rational basis for designing novel therapeutic approaches.
Collapse
Affiliation(s)
- SuJin Hwang
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC 20037
| | - Dustin A Cobb
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC 20037 Department of Microbiology, Immunology, and Cancer Biology, Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908
| | - Rajarshi Bhadra
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC 20037
| | - Ben Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Imtiaz A Khan
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC 20037
| |
Collapse
|