751
|
Soini Y, Pääkkö P, Lehto VP. Histopathological evaluation of apoptosis in cancer. THE AMERICAN JOURNAL OF PATHOLOGY 1998; 153:1041-53. [PMID: 9777936 PMCID: PMC1853067 DOI: 10.1016/s0002-9440(10)65649-0] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Y Soini
- Department of Pathology, University of Oulu and Oulu University Hospital, Finland.
| | | | | |
Collapse
|
752
|
Virág L, Salzman AL, Szabó C. Poly(ADP-Ribose) Synthetase Activation Mediates Mitochondrial Injury During Oxidant-Induced Cell Death. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.7.3753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Reactive oxidant species are important mediators of tissue injury in shock, inflammation, and reperfusion injury. The actions of a number of these oxidants (e.g., hydroxyl radical and peroxynitrite, a reactive oxidant produced by the reaction of nitric oxide and superoxide) are mediated in part by the activation of the nuclear nick sensor enzyme, poly(ADP)-ribose synthetase (PARS), with consequent cellular energy depletion. Here we investigated whether PARS activation contributes to the mitochondrial alterations in cells exposed to oxidants. Authentic peroxynitrite (20 μM), the peroxynitrite-generating compound 3-morpholinosidnonimine, the combination of pyrogallol and S-nitroso-N-acetyl-d,l-penicillamine, as well as hydrogen peroxide induced a time- and dose-dependent decrease in mitochondrial transmembrane potential (ΔΨm) in thymocytes, as determined by flow cytometry using the mitochondrial potential sensitive dyes DiOC6(3) and JC-1. A time- and dose-dependent increase in secondary reactive oxygen intermediate production and loss of cardiolipin, an indicator of mitochondrial membrane damage, were also observed, as measured by flow cytometry using the fluorescent dyes dihydroethidine and nonyl-acridine orange, respectively. Inhibition of PARS by 3-aminobenzamide or 5-iodo-6-amino-1,2-benzopyrone attenuated peroxynitrite-induced ΔΨm reduction, secondary reactive oxygen intermediate generation, cardiolipin degradation, and intracellular calcium mobilization. Furthermore, thymocytes from PARS-deficient animals were protected against the peroxynitrite- and hydrogen peroxide-induced functional and ultrastructural mitochondrial alterations. In conclusion, mitochondrial perturbations during oxidant-mediated cytotoxicity are, to a significant degree, related to PARS activation rather than to direct effects of the oxidants on the mitochondria.
Collapse
Affiliation(s)
- László Virág
- *Division of Critical Care, Children’s Hospital Medical Center, Cincinnati, OH 45229; and
- †Department of Pathophysiology, University Medical School of Debrecen, Debrecen, Hungary
| | - Andrew L. Salzman
- *Division of Critical Care, Children’s Hospital Medical Center, Cincinnati, OH 45229; and
| | - Csaba Szabó
- *Division of Critical Care, Children’s Hospital Medical Center, Cincinnati, OH 45229; and
| |
Collapse
|
753
|
Tokime T, Nozaki K, Sugino T, Kikuchi H, Hashimoto N, Ueda K. Enhanced poly(ADP-ribosyl)ation after focal ischemia in rat brain. J Cereb Blood Flow Metab 1998; 18:991-7. [PMID: 9740102 DOI: 10.1097/00004647-199809000-00008] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nitric oxide from neuronal cells plays detrimental roles in glutamate neurotoxicity and in focal brain ischemia. Nitric oxide directly damages DNA, and breaks in the DNA strands activate poly(ADP-ribose) polymerase (PARP), which brings poly(ADP-ribosyl)ation of the nuclear proteins. The excessive activation of PARP is thought to cause depletion of ATP and the energy failure resulting in cell death. To clarify the involvement of poly(ADP-ribosyl)ation in ischemic insult, we examined poly(ADP ribosyl)ation by immunohistochemical methods and the protective effect of 3-aminobenzamide, which is a PARP inhibitor, on focal brain ischemia using an intraluminal permanent middle cerebral artery occlusion model in rats. Poly(ADP ribosyl)ation was widely and markedly detected 2 hours after the ischemic insult in the cerebral cortex and striatum in which infarction developed 24 hours later. The enhanced immunoreactivity of poly(ADP-ribose) gradually decreased, and 16 hours later, no immunoreactivity was detected. Intraventricular administration of 3-aminobenzamide (1 to 30 mg/kg) 30 minutes before the ischemic insult decreased infarction volume in a dose-dependent manner along with the immunohistochemical reduction of poly(ADP-ribosyl)ation. Pretreatment with 7-nitroindazole (25 mg/kg, intraperitoneally), a selective neuronal nitric oxide synthetase inhibitor, partially reduced poly(ADP-ribosyl)ation. These data suggest the involvement of poly(ADP-ribosyl)ation in the development of cerebral infarction.
Collapse
Affiliation(s)
- T Tokime
- Department of Neurosurgery, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
754
|
Affiliation(s)
- A Bürkle
- Deutsches Krebsforschungszentrum, Abteilung Tumorvirologie, Heidelberg, Germany.
| |
Collapse
|
755
|
Bowes J, Piper J, Thiemermann C. Inhibitors of the activity of poly (ADP-ribose) synthetase reduce the cell death caused by hydrogen peroxide in human cardiac myoblasts. Br J Pharmacol 1998; 124:1760-6. [PMID: 9756394 PMCID: PMC1565568 DOI: 10.1038/sj.bjp.0702009] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Poly (ADP-ribose) synthetase (PARS) is a nuclear enzyme activated by strand breaks in DNA which are caused by reactive oxygen species (ROS). Inhibitors of PARS activity reduce the degree of reperfusion injury of the heart in vivo and in vitro. Here we investigate the role of PARS in the cell death of human cardiac myoblasts caused by hydrogen peroxide. Exposure of human cardiac myoblasts to hydrogen peroxide caused a time- and concentration-dependent reduction in mitochondrial respiration (cell injury), an increase in cell death (LDH release), as well as an increase in PARS activity. The PARS inhibitors 3-aminobenzamide (3 mM), 1,5-dehydroxyisoquinoline (300 microM) or nicotinamide (3 mM) attenuated the cell injury and death as well as the increase in PARS activity caused by hydrogen peroxide (3 mM; 4 h for cell injury/death, 60 min for PARS activity) in human cardiac myoblasts. In contrast, the inactive analogues 3-aminobenzoic acid (3 mM) or nicotinic acid (3 mM) were without effect. The iron chelator deferoxamine (1-10 mM) caused a concentration-dependent reduction in the cell injury and death caused by hydrogen peroxide in these human cardiac myoblasts. Thus, the cell injury/death caused by hydrogen peroxide in human cardiac myoblasts is secondary to the formation of hydroxyl radicals and due to an increase in PARS activity. We therefore propose that activation of PARS contributes to the cell injury/cell death associated with oxidant stress in the heart.
Collapse
Affiliation(s)
- J Bowes
- William Harvey Research Institute, St Bartholomew's and the Royal London School of Medicine and Dentistry
| | | | | |
Collapse
|
756
|
Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J Neurosci 1998. [PMID: 9634557 DOI: 10.1523/jneurosci.18-13-04914.1998] [Citation(s) in RCA: 535] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Delayed neuronal death after transient cerebral ischemia may be mediated, in part, by the induction of apoptosis-regulatory gene products. Caspase-3 is a newly characterized mammalian cysteine protease that promotes cell death during brain development, in neuronal cultures, and in other cell types under many different conditions. To determine whether caspase-3 serves to regulate neuronal death after cerebral ischemia, we have (1) cloned a cDNA encoding the rat brain caspase-3; (2) examined caspase-3 mRNA and protein expression in the brain using in situ hybridization, Northern and Western blot analyses, and double-labeled immunohistochemistry; (3) determined caspase-3-like activity in brain cell extracts; and (4) studied the effect of caspase-3 inhibition on cell survival and DNA fragmentation in the hippocampus in a rat model of transient global ischemia. At 8-72 hr after ischemia, caspase-3 mRNA and protein were induced in the hippocampus and caudate-putamen (CPu), accompanied by increased caspase-3-like protease activity. In the hippocampus, caspase-3 mRNA and protein were predominantly increased in degenerating CA1 pyramidal neurons. Proteolytic activation of the caspase-3 precursor was detected in hippocampus and CPu but not in cortex at 4-72 hr after ischemia. Double-label experiments detected DNA fragmentation in the majority of CA1 neurons and selective CPu neurons that overexpressed caspase-3. Furthermore, ventricular infusion of Z-DEVD-FMK, a caspase-3 inhibitor, decreased caspase-3 activity in the hippocampus and significantly reduced cell death and DNA fragmentation in the CA1 sector up to 7 d after ischemia. These data strongly suggest that caspase-3 activity contributes to delayed neuronal death after transient ischemia.
Collapse
|
757
|
Virág L, Scott GS, Cuzzocrea S, Marmer D, Salzman AL, Szabó C. Peroxynitrite-induced thymocyte apoptosis: the role of caspases and poly (ADP-ribose) synthetase (PARS) activation. Immunol Suppl 1998; 94:345-55. [PMID: 9767416 PMCID: PMC1364252 DOI: 10.1046/j.1365-2567.1998.00534.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanisms by which immature thymocyte apoptosis is induced during negative selection are poorly defined. Reports demonstrated that cross-linking of T-cell receptor leads to stromal cell activation, expression of inducible nitric oxide synthase (iNOS) and, subsequently, to thymocyte apoptosis. Therefore we examined, whether NO directly or indirectly, through peroxynitrite formation, causes thymocyte apoptosis. Immuno-histochemical detection of nitrotyrosine revealed in vivo peroxynitrite formation in the thymi of naive mice. Nitrotyrosine, the footprint of peroxynitrite, was predominantly found in the corticomedullary junction and the medulla of naive mice. In the thymi of mice deficient in the inducible isoform of nitric oxide synthase, considerably less nitrotyrosine was found. Exposure of thymocytes in vitro to low concentrations (10 microM) of peroxynitrite led to apoptosis, whereas higher concentrations (50 microM) resulted in intense cell death with the characteristics of necrosis. We also investigated the effect of poly (ADP-ribose) synthetase (PARS) inhibition on thymocyte apoptosis. Using the PARS inhibitor 3-aminobenzamide (3-AB), or thymocytes from PARS-deficient animals, we established that PARS determines the fate of thymocyte death. Suppression of cellular ATP levels, and the cellular necrosis in response to peroxynitrite were prevented by PARS inhibition. Therefore, in the absence of PARS, cells are diverted towards the pathway of apoptotic cell death. Similar results were obtained with H2O2 treatment, while apoptosis induced by non-oxidative stimuli such as dexamethasone or anti-FAS antibody was unaffected by PARS inhibition. In conclusion, we propose that peroxynitrite-induced apoptosis may play a role in the process of thymocyte negative selection. Furthermore, we propose that the physiological role of PARS cleavage by apopain during apoptosis may serve as an energy-conserving step, enabling the cell to complete the process of apoptosis.
Collapse
Affiliation(s)
- L Virág
- Division of Critical Care, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | |
Collapse
|
758
|
Gidday JM, Park TS, Shah AR, Gonzales ER. Modulation of basal and postischemic leukocyte-endothelial adherence by nitric oxide. Stroke 1998; 29:1423-9; discussion 1429-30. [PMID: 9660399 DOI: 10.1161/01.str.29.7.1423] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Recent studies indicate that leukocytes are important contributors to secondary vascular and parenchymal injury after cerebral ischemia. The present study was undertaken to define nitric oxide (NO)-based mechanisms that regulate leukocyte-endothelial interactions in the cerebral vasculature, how these mechanisms are affected by cerebral ischemia, and whether NO-based therapies can affect postischemic leukocyte dynamics. METHODS Leukocyte adherence to pial venules of anesthetized newborn piglets was quantified by in situ fluorescence videomicroscopy through closed cranial windows during basal conditions and during reperfusion after 9 minutes of asphyxia. Nitric oxide synthase (NOS) was inhibited by local window superfusion of L-nitroarginine; superfusion of sodium nitroprusside was used to donate NO. RESULTS Local inhibition of NOS under resting conditions increased leukocyte-endothelial adherence 2.2-fold and 3.9-fold over baseline values after 1 hour and 2 hours, respectively; this response was completely blocked by cosuperfusion with L-arginine. Cosuperfusion of superoxide dismutase reversed L-nitroarginine-induced leukocyte adherence by 89% and 63% at these respective time points. The extent of acute leukocyte adherence elicited by NOS inhibition was similar in magnitude to that observed during the initial 2 hours of reperfusion after asphyxia. Leukocyte adherence was not additionally increased in asphyxic animals treated with L-nitroarginine. Sodium nitroprusside robustly inhibited asphyxia-induced leukocyte adherence back to control levels. CONCLUSIONS NO exerts a tonic antiadherent effect in the cerebral microcirculation by inactivation of adherence-promoting superoxide radical formation. Cerebral ischemia is associated with an inhibition of NOS or lower levels of NO, which results in leukocyte-endothelial adherence that can be prevented by NO donors. The latter may be useful therapeutically to prevent the purported vascular and parenchymal dysfunction and injury caused by activated leukocytes in ischemic brain.
Collapse
Affiliation(s)
- J M Gidday
- Department of Neurosurgery, Washington University School of Medicine, and St Louis Children's Hospital, MO 63110, USA.
| | | | | | | |
Collapse
|
759
|
Bowes J, Thiemermann C. Effects of inhibitors of the activity of poly (ADP-ribose) synthetase on the liver injury caused by ischaemia-reperfusion: a comparison with radical scavengers. Br J Pharmacol 1998; 124:1254-60. [PMID: 9720798 PMCID: PMC1565486 DOI: 10.1038/sj.bjp.0701930] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Poly (ADP-ribose) synthetase (PARS) is a nuclear enzyme activated by strand breaks in DNA which are caused by reactive oxygen species (ROS) and peroxynitrite. Excessive activation of PARS may contribute to the hepatocyte injury caused by ROS in vitro and inhibitors of PARS activity reduce the degree of reperfusion injury of the heart, skeletal muscle and brain in vivo. Here we compared the effects of various inhibitors of the activity of PARS with those of deferoxamine (an iron chelator which prevents the generation of hydroxyl radicals) and tiron (an intracellular scavenger of superoxide anion) on the degree of hepatic injury caused by ischaemia and reperfusion of the liver in the anaesthetized rat or rabbit. 2. In the rat, ischaemia (30 or 60 min) and reperfusion (120 min) of the liver resulted in significant increases in the serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) indicating the development of liver injury. Intravenous administration of the PARS inhibitors 3-aminobenzamide (3-AB, 10 mg kg(-1) or 30 mg kg(-1)), 1,5-dihydroxyisoquinoline (ISO, 1 mg kg(-1)) or 4-amino-1,8-naphthalimide (4-AN, 3 mg kg(-1)) before reperfusion did not reduce the degree of liver injury caused by ischaemia-reperfusion. 3. In contrast to the PARS inhibitors, deferoxamine (40 mg kg(-1)) or tiron (300 mg kg(-1)) significantly attenuated the rise in the serum levels of AST and ALT caused by ischaemia-reperfusion of the liver of the rat. 4. In the rabbit, the degree of liver injury caused by ischaemia (60 min) and reperfusion (120 min) was also not affected by 3-AB (10 mg kg(-1)) or ISO (1 mg kg(-1)). 5. These results support the view that the generation of oxygen-derived free radicals mediates the liver injury associated with reperfusion of the ischaemic liver by mechanism(s) which are independent of the activation of PARS.
Collapse
Affiliation(s)
- J Bowes
- William Harvey Research Institute, St Bartholomew's and the Royal London School of Medicine and Dentistry
| | | |
Collapse
|
760
|
Szabó C, Dawson VL. Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol Sci 1998; 19:287-98. [PMID: 9703762 DOI: 10.1016/s0165-6147(98)01193-6] [Citation(s) in RCA: 534] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oxidative and nitrosative stress can trigger DNA strand breakage, which then activates the nuclear enzyme poly(ADP-ribose) synthetase (PARS). This enzyme has also been termed poly(ADP-ribose) polymerase (PARP) or poly(ADP-ribose) transferase (pADPRT). Rapid activation of the enzyme depletes the intracellular concentration of its substrate, nicotinamide adenine dinucleotide, thus slowing the rate of glycolysis, electron transport and subsequently ATP formation. This process can result in cell dysfunction and cell death. In this article, Csaba Szabó and Valina Dawson overview the impact of pharmacological inhibition or genetic inactivation of PARS on the course of oxidant-induced cell death in vitro, and in inflammation and reperfusion injury in vivo. A major trigger for DNA damage in pathophysiological conditions is peroxynitrite, a cytotoxic oxidant formed by the reaction between the free radicals nitric oxide and superoxide. The pharmacological inhibition of poly(ADP-ribose) synthetase is a novel approach for the experimental therapy of various forms of inflammation and shock, stroke, myocardial and intestinal ischaemia-reperfusion, and diabetes mellitus.
Collapse
Affiliation(s)
- C Szabó
- Division of Critical Care, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | |
Collapse
|
761
|
Endres M, Scott GS, Salzman AL, Kun E, Moskowitz MA, Szabó C. Protective effects of 5-iodo-6-amino-1,2-benzopyrone, an inhibitor of poly(ADP-ribose) synthetase against peroxynitrite-induced glial damage and stroke development. Eur J Pharmacol 1998; 351:377-82. [PMID: 9721031 DOI: 10.1016/s0014-2999(98)00381-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Peroxynitrite triggers DNA single-strand breakage, which activates the nuclear enzyme poly(ADP-ribose) synthetase (PARS). Activation of PARS depletes its substrate, NAD+, slowing the rate of glycolysis, electron transport, and ATP formation, resulting in cell necrosis. Here, we demonstrate that inhibition of PARS with the novel, potent PARS inhibitor 5-iodo-6-amino-1,2-benzopyrone (INH2BP) protects against peroxynitrite-induced cell death (as measured by measurement of mitochondrial respiration and release of lactate dehydrogenase) in C6 glioma cells in vitro, and in a murine stroke model in vivo. Inhibition of PARS with INH2BP may represent a novel approach for the experimental therapy of stroke.
Collapse
Affiliation(s)
- M Endres
- Stroke and Neurovascular Regulation Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown 02129, USA
| | | | | | | | | | | |
Collapse
|
762
|
Depraetere V, Golstein P. Dismantling in cell death: molecular mechanisms and relationship to caspase activation. Scand J Immunol 1998; 47:523-31. [PMID: 9652819 DOI: 10.1046/j.1365-3083.1998.00363.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The notion of a cell death programme was introduced in view of the reproducibility of its occurrence in time and space (e.g. in the developing embryo) and of its genetic determination. Programmed cell death can be schematically subdivided into three steps: a signalling phase, an execution phase and a dismantling phase. This review focuses on the latter. Apoptosis is the most studied form of dismantling of animal cells. The molecular pathways leading to certain apoptotic lesions appear to be dependent on the proteolytic activity of caspases. Death itself can, however, be caspase-independent. Also, non-apoptotic forms of cell death exist, even in animal cells; their molecular bases are still unknown. The relationship between cell death, apoptosis and caspases is discussed.
Collapse
Affiliation(s)
- V Depraetere
- Centre d'Immunologie INSERM/CNRS de Marseille-Luminy, France
| | | |
Collapse
|
763
|
Abstract
Peroxynitrite and hydroxyl radicals are potent initiators of DNA single strand breakage, which is an obligatory stimulus for the activation of the nuclear enzyme poly(ADP-ribose)synthetase (PARS). Rapid activation of PARS depletes the intracellular concentration of its substrate, NAD+, slowing the rate of glycolysis, electron transport and ATP formation. This process can result in acute cell dysfunction and cell necrosis. Accordingly, inhibitors of PARS protect against cell death under these conditions. In addition to the direct cytotoxic pathway regulated by DNA injury and PARS activation, PARS also appears to modulate the course of inflammation by regulating the expression of a number of genes, including the gene for intercellular adhesion molecule 1, collagenase and the inducible nitric oxide synthase. The research into the role of PARS in inflammatory conditions is now supported by novel tools, such as novel, potent inhibitors of PARS, and genetically engineered animals lacking the gene for PARS. In vivo data demonstrate that inhibition of PARS protects against various forms of inflammation, including zymosan or endotoxin induced multiple organ failure, arthritis, allergic encephalomyelitis, and diabetic islet cell destruction. Pharmacological inhibition of PARS may be a promising novel approach for the experimental therapy of various forms of inflammation.
Collapse
Affiliation(s)
- C Szabó
- Children's Hospital Medical Center, Division of Critical Care, Cincinnati, OH 45229, USA
| |
Collapse
|
764
|
Endres M, Scott G, Namura S, Salzman AL, Huang PL, Moskowitz MA, Szabó C. Role of peroxynitrite and neuronal nitric oxide synthase in the activation of poly(ADP-ribose) synthetase in a murine model of cerebral ischemia-reperfusion. Neurosci Lett 1998; 248:41-4. [PMID: 9665659 DOI: 10.1016/s0304-3940(98)00224-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Poly(ADP-ribose) synthetase (PARS) activation, a downstream event of nitric oxide (NO) neurotoxicity has been implicated in cerebral reperfusion injury. The aim of our study was to identify the trigger of PARS activation during stroke. Formation of poly(ADP-ribose) profoundly increased in the early phase of reperfusion. Poly(ADP-ribose) formation was attenuated in mice deficient for neuronal NO synthase (nNOS). We next tested in glioma cells whether NO, or peroxynitrite (a cytotoxic oxidant formed from NO and superoxide) is the actual trigger of PARS activation. Peroxynitrite, but not various NO donors, activated PARS and suppressed cellular viability in a PARS-dependent fashion. Thus, nNOS is responsible for PARS activation in stroke. PARS activation, however, is not a direct result of NO production, but it occurs via peroxynitrite formation.
Collapse
Affiliation(s)
- M Endres
- Stroke and Neurovascular Regulation Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown 02129, USA
| | | | | | | | | | | | | |
Collapse
|
765
|
Messmer UK, Reimer DM, Brüne B. Protease activation during nitric oxide-induced apoptosis: comparison between poly(ADP-ribose) polymerase and U1-70kDa cleavage. Eur J Pharmacol 1998; 349:333-43. [PMID: 9671115 DOI: 10.1016/s0014-2999(98)00189-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitric oxide (NO) promotes apoptotic cell death in the mouse macrophage cell line RAW 264.7 and in the human promyelocytic leukaemia cell line U937, which exemplifies p53-dependent and p53-independent executive death pathways. Here, we followed the cleavage of two caspase substrates during NO-intoxication, assaying poly(ADP-ribose) polymerase and U1-70kDa small ribonucleoprotein (U1-70kDa) degradation. By using pharmacological inhibitors, we found that Z-aspartyl-2,6-dichlorobenzoyloxymethylketone (Z-Asp-CH2-DCB; 100 microM), a caspase-like protease inhibitor, completely blocked S-nitrosoglutathione (GSNO)-induced apoptosis in both RAW 264.7 and U937 cells (IC50 = 50 microM for RAW 264.7 macrophages vs. IC50 = 33 microM for U937 cells). Notably, a characterized caspase-3 (Ac-DEVD-CHO) inhibitor left NO-induced DNA fragmentation and the appearance of an apoptotic morphology unaltered, although completely blocking caspase-3 activity. However, Z-Asp-CH2-DCB suppressed protease-mediated U1-70kDa cleavage and DNA fragmentation in parallel. In contrast, poly(ADP-ribose) polymerase cleavage in U937 cells was only delayed by Z-Asp-CH2-DCB, while poly(ADP-ribose) polymerase digestion in RAW 264.7 macrophages proceeded unaltered. We further compared U1-70kDa and poly(ADP-ribose) polymerase cleavage in stably Bcl-2 transfected RAW 264.7 macrophages. Rbcl2-2, a Bcl-2 overexpressing clone, suppressed DNA fragmentation and U1-70kDa digestion in response to GSNO, although allowing delayed but complete poly(ADP-ribose) polymerase degradation. Conclusively, poly(ADP-ribose) polymerase cleavage not causatively coincided with the appearance of other apoptotic parameters. Our results suggest that NO-induced apoptosis demands a Z-Asp-CH2-DCB inhibitable caspase activity, most likely distinct from caspase-3 and caspase-1. NO-mediated executive apoptotic signaling results in U1-70kDa and poly(ADP-ribose) polymerase cleavage. Whereas U1-70kDa digestion closely correlates to the occurrence of apoptotic parameters such as DNA fragmentation or an apoptotic morphology, poly(ADP-ribose) polymerase-breakdown does not.
Collapse
Affiliation(s)
- U K Messmer
- University of Erlangen-Nürnberg, Faculty of Medicine, Department of Medicine IV, Erlangen, Germany
| | | | | |
Collapse
|
766
|
Snyder SH, Jaffrey SR, Zakhary R. Nitric oxide and carbon monoxide: parallel roles as neural messengers. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 26:167-75. [PMID: 9651518 DOI: 10.1016/s0165-0173(97)00032-5] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nitric oxide is now appreciated to be a molecule with important signaling functions in the body. The purification and cloning of the first NO synthesizing enzyme, NO synthase (NOS), from brain has led to the characterization of the roles of NO in normal physiology and in pathogenic states. NO synthesis is regulated in a complex manner, involving the association of activatory and inhibitory proteins. The body appears to use at least one other, highly related gas in a signaling function, carbon monoxide (CO). The enzyme responsible for CO biosynthesis in brain, heme oxygenase-2 (HO2), is rapidly regulated by neurotransmitter stimulation. The role for CO as neurotransmitter is suggested by the altered intestinal motility in mice harboring a genomic deletion of HO2.
Collapse
Affiliation(s)
- S H Snyder
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
767
|
Abstract
Neuronal nitric oxide synthase (nNOS) neurons kill adjacent neurons through the action of NMDA-glutamate receptor activation, although they remain relatively resistant to the toxic effects of NMDA and NO. The molecular basis of the resistance of nNOS neurons to toxic insults is unknown. To begin to understand the molecular mechanisms of the resistance of nNOS neurons, we developed a pheochromacytoma-derived cell line (PC12) that is resistant to the toxic effects of NO. We found through serial analysis of gene expression (SAGE) that manganese superoxide dismutase (MnSOD) is enriched in the NO-resistant PC12 cell-derived line (PC12-R). Antisense MnSOD renders PC12-R cells sensitive to NO toxicity and increases the sensitivity to NO in the parental, NO-sensitive PC12 line (PC12-S). Adenoviral transfer of MnSOD protects PC12-S cells against NO toxicity. We extended these studies to cortical cultures and showed that MnSOD is enriched in nNOS neurons and that antisense MnSOD renders nNOS neurons susceptible to NMDA neurotoxicity, although it has little effect on the overall susceptibility of cortical neurons to NMDA toxicity. Overexpression of MnSOD provides dramatic protection against NMDA and NO toxicity in cortical cultures, but not against kainate or AMPA neurotoxicity. Furthermore, nNOS neurons from MnSOD -/- mice are markedly sensitive to NMDA toxicity. Adenoviral transfer of MnSOD to MnSOD-/- cultures restores resistance of nNOS neurons to NMDA toxicity. Thus, MnSOD is a major protective protein that appears to be essential for the resistance of nNOS neurons in cortical cultures to NMDA mediated neurotoxicity.
Collapse
|
768
|
Le Rhun Y, Kirkland JB, Shah GM. Cellular responses to DNA damage in the absence of Poly(ADP-ribose) polymerase. Biochem Biophys Res Commun 1998; 245:1-10. [PMID: 9535773 DOI: 10.1006/bbrc.1998.8257] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme which is catalytically activated by DNA strand interruptions. The involvement of PARP has been implicated in different cellular responses to genotoxic damage, including cell survival, DNA repair, transformation, and cell death. However, the exact contribution of PARP polypeptide or its enzymatic product has remained ill defined. Recent studies with two different PARP knock out mice have demonstrated the beneficial role of PARP in maintaining genomic integrity and in survival responses after exposure to whole body gamma-irradiation. Other studies have demonstrated the instrumental role of PARP in death of the neuronal cells after ischemia-reperfusion injury. The recombination inhibiting function of PARP at DNA strand breaks was more evident in a model system deficient in activities of two major DNA strand break binding proteins, PARP and DNA-dependent protein kinase. The present review summarizes similarities and differences obtained with the two PARP knock out mice and reanalyzes the role of PARP in various cellular responses to DNA damage.
Collapse
Affiliation(s)
- Y Le Rhun
- Laboratory for Skin Research, Hospital Research Center for University Laval, CHUL Research Center of CHUQ, Québec, Québec, G1V 4G2, Canada
| | | | | |
Collapse
|
769
|
Lo EH, Bosque-Hamilton P, Meng W. Inhibition of poly(ADP-ribose) polymerase: reduction of ischemic injury and attenuation of N-methyl-D-aspartate-induced neurotransmitter dysregulation. Stroke 1998; 29:830-6. [PMID: 9550519 DOI: 10.1161/01.str.29.4.830] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE The nuclear enzyme poly(ADP-ribose) polymerase (PARP) may play a role in DNA repair. However, in cerebral ischemia, excessive PARP activation may lead to energy depletion and exacerbation of neuronal damage. We examined the effect of inhibiting PARP on (1) the degree of cerebral injury in a rat model of transient focal ischemia and (2) the degree of neurotransmitter dysregulation induced by local cortical perfusion of N-methyl-D-aspartate (NMDA). METHODS In experiment 1, rats were subjected to transient ischemia for 90 minutes by occlusion of the middle cerebral artery. After 22.5 hours of reperfusion, lesions were quantified by tetrazolium staining. Untreated rats were compared with those treated with the PARP inhibitor 3-aminobenzamide (10 mg/kg). In experiment 2, rats were implanted with microdialysis probes in the cortex, and 1 mmol/L NMDA was perfused for 2 hours. Extracellular concentrations of neurotransmitter and neuromodulator amino acids were measured. Untreated rats were compared with those given 10 mg/kg 3-aminobenzamide. RESULTS In experiment 1, PARP inhibition significantly reduced lesion volumes: 204+/-43 mm3 (untreated) versus 90+/-24 mm3 (treated). Neuroprotection was primarily manifested in the cortex. In experiment 2, NMDA perfusion resulted in large elevations of glutamate, taurine, and the lipid component phosphoethanolamine. Levels of the NMDA site modulator D-serine were reduced, and glycine levels appeared unchanged. 3-Aminobenzamide significantly attenuated the elevations in glutamate and phosphoethanolamine but had no effects on D-serine and glycine. CONCLUSIONS Inhibition of PARP reduced injury after transient focal ischemia in rats and attenuated NMDA-induced glutamate efflux and overall neurotransmitter dysregulation. The deleterious effects of excessive PARP activation may be related in part to amplification of excitotoxicity, possibly by cellular energy depletion and additional transmitter release and/or reduced reuptake.
Collapse
Affiliation(s)
- E H Lo
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown 02129, USA.
| | | | | |
Collapse
|
770
|
Abstract
While a high rate of cell loss is tolerated and even required to model the developing nervous system, an increased rate of cell death in the adult nervous system underlies neurodegenerative disease. Evolutionarily conserved mechanisms involving proteases, Bcl-2-related proteins, p53, and mitochondrial factors participate in the modulation and execution of cell death. In addition, specific death mechanisms, based on specific neuronal characteristics such as excitability and the presence of specific channels or enzymes, have been unraveled in the brain. Particularly important for various human diseases are excessive nitric oxide (NO) production and excitotoxicity. These two pathological mechanisms are closely linked, since excitotoxic stimulation of neurons may trigger enhanced NO production and exposure of neurons to NO may trigger the release of excitotoxins. Depending on the experimental situation and cell type, excitotoxic neuronal death may either be apoptotic or necrotic.
Collapse
Affiliation(s)
- M Leist
- Faculty of Biology, University of Konstanz, Germany
| | | |
Collapse
|
771
|
Dawson TM, Gonzalez-ZuluetaS M, Kusel J, Dawson VL. Nitric Oxide: Diverse Actions in the Central and Peripheral Nervous Systems. Neuroscientist 1998. [DOI: 10.1177/107385849800400206] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) has revolutionized our conceptions about neurotransmission. NO is not stored in synaptic vesicles, is not released by exocytosis, and does not mediate its action by binding to cell surface receptors. Instead, NO simply diffuses to its targets, and its actions are mediated through molecules that accept or share its unpaired electron. NO has diverse biological roles, including functions as the nitrergic transmitter of the peripheral nervous system, the major regulator of blood vessel tone, and actions as the cytotoxic agent of activated macrophages. In the CNS, NO function is just beginning to be explored, but it seems to play prominent roles in plasticity and the regulation of complex behaviors. Under conditions of excessive formation. NO has emerged as an important endogenous neurotoxin. Strategies aimed at reducing NO formation may therefore have therapeutic benefit. NEUROSCIENTIST 4:96–112, 1998
Collapse
Affiliation(s)
- Ted M. Dawson
- Departments of Neurology (TMD, MG-Z, JK, VLD), Neuroscience (TMD, VLD), and Physiology (VLD), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mirella Gonzalez-ZuluetaS
- Departments of Neurology (TMD, MG-Z, JK, VLD), Neuroscience (TMD, VLD), and Physiology (VLD), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Julian Kusel
- Departments of Neurology (TMD, MG-Z, JK, VLD), Neuroscience (TMD, VLD), and Physiology (VLD), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Valina L. Dawson
- Departments of Neurology (TMD, MG-Z, JK, VLD), Neuroscience (TMD, VLD), and Physiology (VLD), Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
772
|
Shaikh AY, Ezekiel UR, Liu PK, Hsu CY. Ischemic Neuronal Apoptosis: A View Based on Free Radical-Induced DNA Damage and Repair. Neuroscientist 1998. [DOI: 10.1177/107385849800400205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neurons are different from other cells in that they are postmitotic and not replaced after they are lost. The CNS is thus particularly vulnerable to neuronal cell loss from various causes, including ischemic injury. Recent observations show that apoptosis is a common feature in neurons dying of ischemic injury. Free radicals have been implicated in the pathogenesis of ischemic brain injury. Reperfusion after cerebral ischemia is accompanied by excessive free radical formation. Many of these free radicals are reactive oxygen species and cause oxidative damage to DNA. The base-excision repair pathway is believed to repair oxidative DNA damage in the brain after ischemia-reperfusion. We review recent laboratory findings that provide evidence of free radical-induced DNA damage and repair after ischemic injury. The polymerase responsible for replication during base-excision repair, DNA polymerase-β, lacks proofreading activity and is considered error prone. This may lead to the accumulation of DNA damage and genomic instability, probable causes of accelerated neuronal aging. A number of DNA repair genes, including ataxia teleangiectasia, p53, and poly(ADP-ribose) polymerase, are activated after DNA damage. The pathogenetic roles of these genes in ischemia-induced neuronal apoptosis are under active investigation. NEUROSCIENTIST 4:88-95, 1998
Collapse
Affiliation(s)
- Arif Y. Shaikh
- Department of Neurology (AYS, URE, CYH) Washington University School of Medicine St. Louis, Missouri
- Department of Neurosurgery (PKL) Baylor College of Medicine Houston, Texas
| | - Uthayshanker R. Ezekiel
- Department of Neurology (AYS, URE, CYH) Washington University School of Medicine St. Louis, Missouri
- Department of Neurosurgery (PKL) Baylor College of Medicine Houston, Texas
| | - Philip K. Liu
- Department of Neurology (AYS, URE, CYH) Washington University School of Medicine St. Louis, Missouri
- Department of Neurosurgery (PKL) Baylor College of Medicine Houston, Texas
| | - Chung Y. Hsu
- Department of Neurology (AYS, URE, CYH) Washington University School of Medicine St. Louis, Missouri
- Department of Neurosurgery (PKL) Baylor College of Medicine Houston, Texas
| |
Collapse
|
773
|
Takamura T, Kato I, Kimura N, Nakazawa T, Yonekura H, Takasawa S, Okamoto H. Transgenic mice overexpressing type 2 nitric-oxide synthase in pancreatic beta cells develop insulin-dependent diabetes without insulitis. J Biol Chem 1998; 273:2493-6. [PMID: 9446547 DOI: 10.1074/jbc.273.5.2493] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We generated transgenic mice carrying the mouse type 2 nitric-oxide synthase (NOS2) cDNA under the control of the insulin promoter. Western and immunohistochemical analyses revealed that NOS2 was expressed abundantly in transgenic islets but not in control islets. When islets were isolated and cultured, high levels of nitrite were released from the transgenic islets. In transgenic mice, the beta cell mass was markedly reduced without the infiltration of macrophages or lymphocytes, and extensive DNA strand breaks were detected in the islets by in situ nick translation. All the transgenic mice developed hypoinsulinemic diabetes by 4 weeks of age, and treatment with an inhibitor of NOS2, aminoguanidine (200 mg/kg body weight every 12 h), prevented or delayed the development of diabetes. The present study shows that the production of nitric oxide by beta cell NOS2 plays an essential role in the beta cell degeneration.
Collapse
Affiliation(s)
- T Takamura
- Department of Biochemistry, Tohoku University School of Medicine, Sendai 980-77, Miyagi, Japan
| | | | | | | | | | | | | |
Collapse
|
774
|
Abstract
Cell lines and mice defective in poly(ADP-ribose) polymerase (PARP) have elevated spontaneous genetic rearrangements and abnormal responses to stresses. These results may be explained by an altered response to damage induced by free radicals, and suggest that PARP limits genomic instability from such damage.
Collapse
Affiliation(s)
- P A Jeggo
- MRC Cell Mutation Unit, University of Sussex, Brighton, BN1 9RR, UK.
| |
Collapse
|
775
|
Poly(ADP-Ribose) Polymerase Is Required for Maintenance of Genomic Integrity During Base Excision Repair. DNA Repair (Amst) 1998. [DOI: 10.1007/978-3-642-48770-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
776
|
Morrison RS, Kinoshita Y, Xiang H, Johnson MD, Kuntz C, Ghatan S, Ho JT, Schwartzkroin PA. Mechanisms of neuronal cell death. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1098-2779(1998)4:3<157::aid-mrdd3>3.0.co;2-l] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
777
|
|