751
|
Bahieldin A, Atef A, Edris S, Gadalla NO, Ramadan AM, Hassan SM, Al Attas SG, Al-Kordy MA, Al-Hajar ASM, Sabir JSM, Nasr ME, Osman GH, El-Domyati FM. Multifunctional activities of ERF109 as affected by salt stress in Arabidopsis. Sci Rep 2018; 8:6403. [PMID: 29686365 PMCID: PMC5913302 DOI: 10.1038/s41598-018-24452-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 04/04/2018] [Indexed: 11/17/2022] Open
Abstract
Transcriptomic analysis was conducted in leaves of Arabidopsis T-DNA insertion ERF109-knocked out (KO) mutant or plants overexpressing (OE) the gene to detect its role in driving expression of programmed cell death- (PCD-) or growth-related genes under high salt (200 mM NaCl) stress. The analysis yielded ~22–24 million reads, of which 90% mapped to the Arabidopsis reference nuclear genome. Hierarchical cluster analysis of gene expression and principal component analysis (PCA) successfully separated transcriptomes of the two stress time points. Analysis indicated the occurrence of 65 clusters of gene expression with transcripts of four clusters differed at the genotype (e.g., WT (wild type), KOERF109 or OEERF109) level. Regulated transcripts involved DIAP1-like gene encoding a death-associated inhibitor of reactive oxygen species (ROS). Other ERF109-regulated transcripts belong to gene families encoding ROS scavenging enzymes and a large number of genes participating in three consecutive pathways, e.g., phenylalanine, tyrosine and tryptophan biosynthesis, tryptophan metabolism and plant hormone signal transduction. We investigated the possibility that ERF109 acts as a “master switch” mediator of a cascade of consecutive events across these three pathways initially by driving expression of ASA1 and YUC2 genes and possibly driving GST, IGPS and LAX2 genes. Action of downstream auxin-regulator, auxin-responsive as well as auxin carrier genes promotes plant cell growth under adverse conditions.
Collapse
Affiliation(s)
- Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589, Saudi Arabia.
| | - Ahmed Atef
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589, Saudi Arabia
| | - Sherif Edris
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589, Saudi Arabia.,Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.,Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), Faculty of Medicine, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Nour O Gadalla
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia.,Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Ahmed M Ramadan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589, Saudi Arabia.,Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt
| | - Sabah M Hassan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589, Saudi Arabia.,Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Sanaa G Al Attas
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589, Saudi Arabia
| | - Magdy A Al-Kordy
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Abdulrahman S M Al-Hajar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589, Saudi Arabia
| | - Jamal S M Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589, Saudi Arabia
| | - Mahmoud E Nasr
- Faculty of Agriculture, Menofia University, Shebeen Elkom, Egypt
| | - Gamal H Osman
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt. .,Department of Biology, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Fotouh M El-Domyati
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| |
Collapse
|
752
|
A Novel G-Protein-Coupled Receptors Gene from Upland Cotton Enhances Salt Stress Tolerance in Transgenic Arabidopsis. Genes (Basel) 2018; 9:genes9040209. [PMID: 29649144 PMCID: PMC5924551 DOI: 10.3390/genes9040209] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 11/17/2022] Open
Abstract
Plants have developed a number of survival strategies which are significant for enhancing their adaptation to various biotic and abiotic stress factors. At the transcriptome level, G-protein-coupled receptors (GPCRs) are of great significance, enabling the plants to detect a wide range of endogenous and exogenous signals which are employed by the plants in regulating various responses in development and adaptation. In this research work, we carried out genome-wide analysis of target of Myb1 (TOM1), a member of the GPCR gene family. The functional role of TOM1 in salt stress tolerance was studied using a transgenic Arabidopsis plants over-expressing the gene. By the use of the functional domain PF06454, we obtained 16 TOM genes members in Gossypium hirsutum, 9 in Gossypium arboreum, and 11 in Gossypium raimondii. The genes had varying physiochemical properties, and it is significant to note that all the grand average of hydropathy (GRAVY) values were less than one, indicating that all are hydrophobic in nature. In all the genes analysed here, both the exonic and intronic regions were found. The expression level of Gh_A07G0747 (GhTOM) was significantly high in the transgenic lines as compared to the wild type; a similar trend in expression was observed in all the salt-related genes tested in this study. The study in epidermal cells confirmed the localization of the protein coded by the gene TOM1 in the plasma membrane. Analysis of anti-oxidant enzymes showed higher concentrations of antioxidants in transgenic lines and relatively lower levels of oxidant substances such as H₂O₂. The low malondialdehyde (MDA) level in transgenic lines indicated that the transgenic lines had relatively low level of oxidative damage compared to the wild types. The results obtained indicate that Gh_A07G0747 (GhTOM) can be a putative target gene for enhancing salt stress tolerance in plants and could be exploited in the future for the development of salt stress-tolerant cotton cultivars.
Collapse
|
753
|
Laffray X, Alaoui-Sehmer L, Bourioug M, Bourgeade P, Alaoui-Sossé B, Aleya L. Effects of sodium chloride salinity on ecophysiological and biochemical parameters of oak seedlings (Quercus robur L.) from use of de-icing salts for winter road maintenance. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:266. [PMID: 29619577 DOI: 10.1007/s10661-018-6645-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Salt is widely used to melt snow on roads especially in mountain regions. Whether as rock salt or aerosols, spread or sprayed over road surfaces, salt may result in increased salt concentrations in soils, which, in turn, affect natural vegetation, especially tree seedlings already subjected to various other types of abiotic stress. The authors investigated the effects of salt treatment-related stress on seedling growth and certain biochemical parameters in Quercus robur to determine ion concentrations in root tips. Seedlings growing in a quartz sand/vermiculite mixture were subjected to NaCl concentrations of 0, 50, or 100 mM for 5 weeks. The results showed that high NaCl concentrations caused a marked reduction in total leaf biomass 55 and 75% for 50 and 100 mM treatments, respectively, in dry weight of stems (84%) and roots (175%) for 100 mM treatment and modified root architecture, whereas no changes appeared in leaf number. A non-significant decrease in relative water content, with changes in ion balance was recorded. Comparison of stressed to control plants show an increase in sodium (3.5-8-fold), potassium (0.6-fold), and chloride (9.5-14-fold) concentrations in the root tips while the K+/Na+ ratio decreased. In taproots, no significant biochemical differences were observed between the salt-treated and the control plants for acid invertase activity, reducing sugars, sucrose, or soluble protein contents. The significance of ion and sugar accumulations in relation to osmotic adjustment and the ability of oak seedlings to cope with salt stress are discussed.
Collapse
Affiliation(s)
- Xavier Laffray
- Département Systématique et Evolution, Muséum National d'Histoire Naturelle, 75005, Paris, France
| | - Laurence Alaoui-Sehmer
- Laboratoire Chrono-Environnement, UMR CNRS 6249, University of Franche-Comté, F-25030, Besançon, France
| | - Mohamed Bourioug
- Département d'Agronomie, Ecole Nationale d'Agriculture de Meknès (ENAM), km 10, Route Haj Kaddour, B.P. S/40, 50001, Meknès, Morocco
| | - Pascale Bourgeade
- Laboratoire Chrono-Environnement, UMR CNRS 6249, University of Franche-Comté, F-25030, Besançon, France
| | - Badr Alaoui-Sossé
- Laboratoire Chrono-Environnement, UMR CNRS 6249, University of Franche-Comté, F-25030, Besançon, France
| | - Lotfi Aleya
- Laboratoire Chrono-Environnement, UMR CNRS 6249, University of Franche-Comté, F-25030, Besançon, France.
| |
Collapse
|
754
|
Kaleem F, Shabir G, Aslam K, Rasul S, Manzoor H, Shah SM, Khan AR. An Overview of the Genetics of Plant Response to Salt Stress: Present Status and the Way Forward. Appl Biochem Biotechnol 2018; 186:306-334. [PMID: 29611134 DOI: 10.1007/s12010-018-2738-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 03/15/2018] [Indexed: 01/24/2023]
Abstract
Salinity is one of the major threats faced by the modern agriculture today. It causes multidimensional effects on plants. These effects depend upon the plant growth stage, intensity, and duration of the stress. All these lead to stunted growth and reduced yield, ultimately inducing economic loss to the farming community in particular and to the country in general. The soil conditions of agricultural land are deteriorating at an alarming rate. Plants assess the stress conditions, transmit the specific stress signals, and then initiate the response against that stress. A more complete understanding of plant response mechanisms and their practical incorporation in crop improvement is an essential step towards achieving the goal of sustainable agricultural development. Literature survey shows that investigations of plant stresses response mechanism are the focus area of research for plant scientists. Although these efforts lead to reveal different plant response mechanisms against salt stress, yet many questions still need to be answered to get a clear picture of plant strategy to cope with salt stress. Moreover, these studies have indicated the presence of a complicated network of different integrated pathways. In order to work in a progressive way, a review of current knowledge is critical. Therefore, this review aims to provide an overview of our understanding of plant response to salt stress and to indicate some important yet unexplored dynamics to improve our knowledge that could ultimately lead towards crop improvement.
Collapse
Affiliation(s)
- Fawad Kaleem
- Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Ghulam Shabir
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Kashif Aslam
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Sumaira Rasul
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Hamid Manzoor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Shahid Masood Shah
- Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Abdul Rehman Khan
- Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan.
| |
Collapse
|
755
|
Leveraging Sustainable Irrigated Agriculture via Desalination: Evidence from a Macro-Data Case Study in Israel. SUSTAINABILITY 2018. [DOI: 10.3390/su10040974] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
756
|
Flam-Shepherd R, Huynh WQ, Coskun D, Hamam AM, Britto DT, Kronzucker HJ. Membrane fluxes, bypass flows, and sodium stress in rice: the influence of silicon. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1679-1692. [PMID: 29342282 PMCID: PMC5889039 DOI: 10.1093/jxb/erx460] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/12/2017] [Indexed: 05/14/2023]
Abstract
Provision of silicon (Si) to roots of rice (Oryza sativa L.) can alleviate salt stress by blocking apoplastic, transpirational bypass flow of Na+ from root to shoot. However, little is known about how Si affects Na+ fluxes across cell membranes. Here, we measured radiotracer fluxes of 24Na+, plasma membrane depolarization, tissue ion accumulation, and transpirational bypass flow, to examine the influence of Si on Na+ transport patterns in hydroponically grown, salt-sensitive (cv. IR29) and salt-tolerant (cv. Pokkali) rice. Si increased growth and lowered [Na+] in shoots of both cultivars, with minor effects in roots; neither root nor shoot [K+] were affected. In IR29, Si lowered shoot [Na+] via a large reduction in bypass flow, while in Pokkali, where bypass flow was small and not affected by Si, this was achieved mainly via a growth dilution of shoot Na+. Si had no effect on unidirectional 24Na+ fluxes (influx and efflux), or on Na+-stimulated plasma-membrane depolarization, in either IR29 or Pokkali. We conclude that, while Si can reduce Na+ translocation via bypass flow in some (but not all) rice cultivars, it does not affect unidirectional Na+ transport or Na+ cycling in roots, either across root cell membranes or within the bulk root apoplast.
Collapse
Affiliation(s)
- Rubens Flam-Shepherd
- Department of Biological Sciences and Canadian Centre for World Hunger Research (CCWHR), University of Toronto, Toronto, Canada
| | - Wayne Q Huynh
- Department of Biological Sciences and Canadian Centre for World Hunger Research (CCWHR), University of Toronto, Toronto, Canada
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Devrim Coskun
- Department of Biological Sciences and Canadian Centre for World Hunger Research (CCWHR), University of Toronto, Toronto, Canada
- Département de Phytologie, Faculté des Sciences de l’Agriculture et de l’Alimentation (FSAA), Université Laval, Québec, Canada
| | - Ahmed M Hamam
- Department of Biological Sciences and Canadian Centre for World Hunger Research (CCWHR), University of Toronto, Toronto, Canada
| | - Dev T Britto
- Department of Biological Sciences and Canadian Centre for World Hunger Research (CCWHR), University of Toronto, Toronto, Canada
| | - Herbert J Kronzucker
- Department of Biological Sciences and Canadian Centre for World Hunger Research (CCWHR), University of Toronto, Toronto, Canada
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
757
|
Kaashyap M, Ford R, Kudapa H, Jain M, Edwards D, Varshney R, Mantri N. Differential Regulation of Genes Involved in Root Morphogenesis and Cell Wall Modification is Associated with Salinity Tolerance in Chickpea. Sci Rep 2018; 8:4855. [PMID: 29555923 PMCID: PMC5859185 DOI: 10.1038/s41598-018-23116-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/06/2018] [Indexed: 12/18/2022] Open
Abstract
Salinity is a major constraint for intrinsically salt sensitive grain legume chickpea. Chickpea exhibits large genetic variation amongst cultivars, which show better yields in saline conditions but still need to be improved further for sustainable crop production. Based on previous multi-location physiological screening, JG 11 (salt tolerant) and ICCV 2 (salt sensitive) were subjected to salt stress to evaluate their physiological and transcriptional responses. A total of ~480 million RNA-Seq reads were sequenced from root tissues which resulted in identification of 3,053 differentially expressed genes (DEGs) in response to salt stress. Reproductive stage shows high number of DEGs suggesting major transcriptional reorganization in response to salt to enable tolerance. Importantly, cationic peroxidase, Aspartic ase, NRT1/PTR, phosphatidylinositol phosphate kinase, DREB1E and ERF genes were significantly up-regulated in tolerant genotype. In addition, we identified a suite of important genes involved in cell wall modification and root morphogenesis such as dirigent proteins, expansin and casparian strip membrane proteins that could potentially confer salt tolerance. Further, phytohormonal cross-talk between ERF and PIN-FORMED genes which modulate the root growth was observed. The gene set enrichment analysis and functional annotation of these genes suggests they may be utilised as potential candidates for improving chickpea salt tolerance.
Collapse
Affiliation(s)
- Mayank Kaashyap
- School of Science, The Pangenomics Group, RMIT University, Melbourne, Australia
| | - Rebecca Ford
- School of Natural Sciences, Environmental Futures Research Institute, Griffith University, Queensland, Australia
| | - Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Mukesh Jain
- National Institute of Plant Genome Research, New Delhi, India
| | - Dave Edwards
- School of Plant Biology, The University of Western Australia, Perth, Australia
| | - Rajeev Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
| | - Nitin Mantri
- School of Science, The Pangenomics Group, RMIT University, Melbourne, Australia.
| |
Collapse
|
758
|
Wendelberger KS, Gann D, Richards JH. Using Bi-Seasonal WorldView-2 Multi-Spectral Data and Supervised Random Forest Classification to Map Coastal Plant Communities in Everglades National Park. SENSORS (BASEL, SWITZERLAND) 2018; 18:s18030829. [PMID: 29522476 PMCID: PMC5876715 DOI: 10.3390/s18030829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/22/2018] [Accepted: 03/06/2018] [Indexed: 05/29/2023]
Abstract
Coastal plant communities are being transformed or lost because of sea level rise (SLR) and land-use change. In conjunction with SLR, the Florida Everglades ecosystem has undergone large-scale drainage and restoration, altering coastal vegetation throughout south Florida. To understand how coastal plant communities are changing over time, accurate mapping techniques are needed that can define plant communities at a fine-enough resolution to detect fine-scale changes. We explored using bi-seasonal versus single-season WorldView-2 satellite data to map three mangrove and four adjacent plant communities, including the buttonwood/glycophyte community that harbors the federally-endangered plant Chromolaena frustrata. Bi-seasonal data were more effective than single-season to differentiate all communities of interest. Bi-seasonal data combined with Light Detection and Ranging (LiDAR) elevation data were used to map coastal plant communities of a coastal stretch within Everglades National Park (ENP). Overall map accuracy was 86%. Black and red mangroves were the dominant communities and covered 50% of the study site. All the remaining communities had ≤10% cover, including the buttonwood/glycophyte community. ENP harbors 21 rare coastal species threatened by SLR. The spatially explicit, quantitative data provided by our map provides a fine-scale baseline for monitoring future change in these species' habitats. Our results also offer a method to monitor vegetation change in other threatened habitats.
Collapse
Affiliation(s)
- Kristie S Wendelberger
- The Everglades Foundation, 18001 Old Cutler Road, Palmetto Bay, FL 33157, USA.
- Department of Biological Sciences, Florida International University, 11200 S.W. 8th Street, Miami, FL 33199, USA.
| | - Daniel Gann
- Department of Biological Sciences, Florida International University, 11200 S.W. 8th Street, Miami, FL 33199, USA.
- Geographic Information Systems and Remote Sensing Center, Florida International University, 11200 S.W. 8th Street, Miami, FL 33199, USA.
| | - Jennifer H Richards
- Department of Biological Sciences, Florida International University, 11200 S.W. 8th Street, Miami, FL 33199, USA.
| |
Collapse
|
759
|
Pollastri S, Savvides A, Pesando M, Lumini E, Volpe MG, Ozudogru EA, Faccio A, De Cunzo F, Michelozzi M, Lambardi M, Fotopoulos V, Loreto F, Centritto M, Balestrini R. Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. PLANTA 2018; 247:573-585. [PMID: 29124326 DOI: 10.1007/s00425-017-2808-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/03/2017] [Indexed: 05/12/2023]
Abstract
AM symbiosis did not strongly affect Arundo donax performances under salt stress, although differences in the plants inoculated with two different fungi were recorded. The mechanisms at the basis of the improved tolerance to abiotic stresses by arbuscular mycorrhizal (AM) fungi have been investigated mainly focusing on food crops. In this work, the potential impact of AM symbiosis on the performance of a bioenergy crop, Arundo donax, under saline conditions was considered. Specifically, we tried to understand whether AM symbiosis helps this fast-growing plant, often widespread in marginal soils, withstand salt. A combined approach, involving eco-physiological, morphometric and biochemical measurements, was used and the effects of two different AM fungal species (Funneliformis mosseae and Rhizophagus irregularis) were compared. Results indicate that potted A. donax plants do not suffer permanent damage induced by salt stress, but photosynthesis and growth are considerably reduced. Since A. donax is a high-yield biomass crop, reduction of biomass might be a serious agronomical problem in saline conditions. At least under the presently experienced growth conditions, and plant-AM combinations, the negative effect of salt on plant performance was not rescued by AM fungal colonization. However, some changes in plant metabolisms were observed following AM-inoculation, including a significant increase in proline accumulation and a trend toward higher isoprene emission and higher H2O2, especially in plants colonized by R. irregularis. This suggests that AM fungal symbiosis influences plant metabolism, and plant-AM fungus combination is an important factor for improving plant performance and productivity, in presence or absence of stress conditions.
Collapse
Affiliation(s)
- Susanna Pollastri
- The National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), 10125 Turin (M.P., E.L., A.F., R.B.), 50019, Sesto Fiorentino, SP, Italy
| | | | - Massimo Pesando
- The National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), 10125 Turin (M.P., E.L., A.F., R.B.), 50019, Sesto Fiorentino, SP, Italy
| | - Erica Lumini
- The National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), 10125 Turin (M.P., E.L., A.F., R.B.), 50019, Sesto Fiorentino, SP, Italy
| | | | | | - Antonella Faccio
- The National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), 10125 Turin (M.P., E.L., A.F., R.B.), 50019, Sesto Fiorentino, SP, Italy
| | | | - Marco Michelozzi
- CNR, Institute of Biosciences and Bioresources, Sesto Fiorentino, Italy
| | - Maurizio Lambardi
- CNR, Institute of Trees and Timber (IVALSA), Sesto Fiorentino, Italy
| | | | - Francesco Loreto
- CNR, Department of Biology, Agriculture and Food Sciences (DiSBA), Rome, Italy
| | - Mauro Centritto
- CNR, Institute of Trees and Timber (IVALSA), Sesto Fiorentino, Italy
| | - Raffaella Balestrini
- The National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), 10125 Turin (M.P., E.L., A.F., R.B.), 50019, Sesto Fiorentino, SP, Italy.
| |
Collapse
|
760
|
Baetsen-Young AM, Vasher M, Matta LL, Colgan P, Alocilja EC, Day B. Direct colorimetric detection of unamplified pathogen DNA by dextrin-capped gold nanoparticles. Biosens Bioelectron 2018; 101:29-36. [DOI: 10.1016/j.bios.2017.10.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/22/2017] [Accepted: 10/03/2017] [Indexed: 02/05/2023]
|
761
|
Samea-Andabjadid S, Ghassemi-Golezani K, Nasrollahzadeh S, Najafi N. Exogenous salicylic acid and cytokinin alter sugar accumulation, antioxidants and membrane stability of faba bean. ACTA BIOLOGICA HUNGARICA 2018; 69:86-96. [PMID: 29575914 DOI: 10.1556/018.68.2018.1.7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This research was conducted in a greenhouse to evaluate the effects of exogenous application of salicylic acid (SA) (1 mM) and 6-benzylaminopurine (BAP) (50 μM) on physiological performance of faba bean (Vicia faba) under different levels of NaCl salinity (0, 4, 8 and 12 dS/m). The experiment was arranged as factorial on the bases of randomized complete block design in three replications. Leaf Na+ content, root and leaf soluble sugars, antioxidant enzymes activities such as catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD) and lipid peroxidation increased, but K+, K+/Na+ and membrane stability index (MSI) decreased as a result of salt stress. However, foliar sprays of BAP and particularly SA reduced Na+ content and lipid peroxidation, while enhanced the K+ content, K+/Na+, soluble sugars, antioxidant enzymes activities and MSI under different levels of salinity. It was, therefore, concluded that exogenous application of these growth regulators (GR) can considerably improve salt tolerance and physiological performance of faba bean.
Collapse
Affiliation(s)
- Samira Samea-Andabjadid
- Department of Plant Eco-physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Kazem Ghassemi-Golezani
- Department of Plant Eco-physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Safar Nasrollahzadeh
- Department of Plant Eco-physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Nosratollah Najafi
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
762
|
Teixeira Lins CM, Rodrigues de Souza E, Farias de Melo H, Silva Souza Paulino MK, Magalhães Dourado PR, Yago de Carvalho Leal L, Bentzen Santos HR. Pressure-volume (P-V) curves in Atriplex nummularia Lindl. for evaluation of osmotic adjustment and water status under saline conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 124:155-159. [PMID: 29414310 DOI: 10.1016/j.plaphy.2018.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
The survival of Atriplex nummularia plants in saline environments is possible mainly due to the presence of salt-accumulating epidermal vesicles. Commonly, destructive methods, such as plant material maceration and subsequent reading in osmometers, are employed in studies on water relations and osmotic adjustment and are inconvenient due to their underestimation of the total water potential inside the cells, which can cause overestimation of an osmotic adjustment that is not present. As a result, methods that preserve leaf structure, such as pressure-volume (P-V) curves, which take into consideration only the salts that compose the symplastic solution, are more adequate. Thus, the main objectives of this study were to evaluate the effect of determination methods of osmotic potential (Ψo) in Atriplex nummularia through destructive and leaf structure-preserving techniques and to determine the water relations of the species under increasing NaCl concentrations. Plants were subjected to daily irrigations, maintaining soil moisture at 80% of field capacity, with solutions of increasing NaCl concentration (0, 0.05, 0.1, 0.2, 0.25 and 0.3 M) for 84 days. Water potential, osmotic potential and osmotic adjustment were determined. In addition, P-V curves were constructed using pressure chambers. Water and osmotic potentials decreased linearly with increasing NaCl concentration in the irrigation solution. The main discrepancies observed were related to the osmotic adjustments determined through maceration and P-V curves. Based on the present research, it was possible to conclude that in studies with species that have salt-accumulating vesicles in the epidermis, such as the plants in the genus Atriplex, constructing P-V curves is more adequate than destructive methods.
Collapse
Affiliation(s)
- Cíntia Maria Teixeira Lins
- Federal Rural University of Pernambuco - UFRPE, Agronomy Department, Rua Dom Manuel de Medeiros, s/n, CEP: 52171-900, Recife, Pernambuco, Brazil.
| | - Edivan Rodrigues de Souza
- Federal Rural University of Pernambuco - UFRPE, Agronomy Department, Rua Dom Manuel de Medeiros, s/n, CEP: 52171-900, Recife, Pernambuco, Brazil.
| | - Hidelblandi Farias de Melo
- Federal Rural University of Pernambuco - UFRPE, Agronomy Department, Rua Dom Manuel de Medeiros, s/n, CEP: 52171-900, Recife, Pernambuco, Brazil.
| | | | - Pablo Rugero Magalhães Dourado
- Federal Rural University of Pernambuco - UFRPE, Agronomy Department, Rua Dom Manuel de Medeiros, s/n, CEP: 52171-900, Recife, Pernambuco, Brazil.
| | - Lucas Yago de Carvalho Leal
- Federal Rural University of Pernambuco - UFRPE, Agronomy Department, Rua Dom Manuel de Medeiros, s/n, CEP: 52171-900, Recife, Pernambuco, Brazil.
| | - Hugo Rafael Bentzen Santos
- Federal Rural University of Pernambuco - UFRPE, Agronomy Department, Rua Dom Manuel de Medeiros, s/n, CEP: 52171-900, Recife, Pernambuco, Brazil.
| |
Collapse
|
763
|
Rouphael Y, Raimondi G, Lucini L, Carillo P, Kyriacou MC, Colla G, Cirillo V, Pannico A, El-Nakhel C, De Pascale S. Physiological and Metabolic Responses Triggered by Omeprazole Improve Tomato Plant Tolerance to NaCl Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:249. [PMID: 29535755 PMCID: PMC5835327 DOI: 10.3389/fpls.2018.00249] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/12/2018] [Indexed: 05/09/2023]
Abstract
Interest in the role of small bioactive molecules (< 500 Da) in plants is on the rise, compelled by plant scientists' attempt to unravel their mode of action implicated in stimulating growth and enhancing tolerance to environmental stressors. The current study aimed at elucidating the morphological, physiological and metabolomic changes occurring in greenhouse tomato (cv. Seny) treated with omeprazole (OMP), a benzimidazole inhibitor of animal proton pumps. The OMP was applied at three rates (0, 10, or 100 μM) as substrate drench for tomato plants grown under nonsaline (control) or saline conditions sustained by nutrient solutions of 1 or 75 mM NaCl, respectively. Increasing NaCl concentration from 1 to 75 mM decreased the tomato shoot dry weight by 49% in the 0 μM OMP treatment, whereas the reduction was not significant at 10 or 100 μM of OMP. Treatment of salinized (75 mM NaCl) tomato plants with 10 and especially 100 μM OMP decreased Na+ and Cl- while it increased Ca2+ concentration in the leaves. However, OMP was not strictly involved in ion homeostasis since the K+ to Na+ ratio did not increase under combined salinity and OMP treatment. OMP increased root dry weight, root morphological characteristics (total length and surface), transpiration, and net photosynthetic rate independently of salinity. Metabolic profiling of leaves through UHPLC liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry facilitated identification of the reprogramming of a wide range of metabolites in response to OMP treatment. Hormonal changes involved an increase in ABA, decrease in auxins and cytokinin, and a tendency for GA down accumulation. Cutin biosynthesis, alteration of membrane lipids and heightened radical scavenging ability related to the accumulation of phenolics and carotenoids were observed. Several other stress-related compounds, such as polyamine conjugates, alkaloids and sesquiterpene lactones, were altered in response to OMP. Although a specific and well-defined mechanism could not be posited, the metabolic processes involved in OMP action suggest that this small bioactive molecule might have a hormone-like activity that ultimately elicits an improved tolerance to NaCl salinity stress.
Collapse
Affiliation(s)
- Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Giampaolo Raimondi
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Marios C. Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus
| | - Giuseppe Colla
- Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
| | - Valerio Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
764
|
Saikia J, Sarma RK, Dhandia R, Yadav A, Bharali R, Gupta VK, Saikia R. Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Sci Rep 2018; 8:3560. [PMID: 29476114 PMCID: PMC5824784 DOI: 10.1038/s41598-018-21921-w] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/13/2018] [Indexed: 11/09/2022] Open
Abstract
The agricultural crops are often affected by the scarcity of fresh water. Seasonal drought is a major constraint on Northeast Indian agriculture. Almost 80% of the agricultural land in this region is acidic and facing severe drought during the winter period. Apart from classical breeding and transgenic approaches, the application of plant-growth-promoting bacteria (PGPB) is an alternative strategy for improving plant fitness under stressful conditions. The 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing PGPB offer drought stress tolerance by regulating plant ethylene levels. The aim of the present study was to evaluate the consortium effect of three ACC-deaminase producing rhizobacteria - Ochrobactrum pseudogrignonenseRJ12, Pseudomonas sp.RJ15 and Bacillus subtilisRJ46 on drought stress alleviation in Vigna mungo L. and Pisum sativum L. Consortium treatment significantly increase seed germination percentage, root length, shoot length, and dry weight of treated plants. An elevated production of reactive oxygen species scavenging enzymes and cellular osmolytes; higher leaf chlorophyll content; increase in relative water content and root recovery intension were observed after consortium treatment in comparison with the uninoculated plants under drought conditions. The consortium treatment decreased the ACC accumulation and down-regulated ACC-oxidase gene expression. This consortium could be an effective bio-formulator for crop health improvement in drought-affected acidic agricultural fields.
Collapse
Affiliation(s)
- Juthika Saikia
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Rupak K Sarma
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Rajashree Dhandia
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Archana Yadav
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
| | - Rupjyoti Bharali
- Department of Biotechnology, Gauhati University, Guwahati, 781014, Assam, India
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, Tallinn, 12618, Estonia
| | - Ratul Saikia
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India.
| |
Collapse
|
765
|
A Tool for the Evaluation of Irrigation Water Quality in the Arid and Semi-Arid Regions. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8020023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
766
|
Etesami H, Beattie GA. Mining Halophytes for Plant Growth-Promoting Halotolerant Bacteria to Enhance the Salinity Tolerance of Non-halophytic Crops. Front Microbiol 2018; 9:148. [PMID: 29472908 PMCID: PMC5809494 DOI: 10.3389/fmicb.2018.00148] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/23/2018] [Indexed: 11/20/2022] Open
Abstract
Salinity stress is one of the major abiotic stresses limiting crop production in arid and semi-arid regions. Interest is increasing in the application of PGPRs (plant growth promoting rhizobacteria) to ameliorate stresses such as salinity stress in crop production. The identification of salt-tolerant, or halophilic, PGPRs has the potential to promote saline soil-based agriculture. Halophytes are a useful reservoir of halotolerant bacteria with plant growth-promoting capabilities. Here, we review recent studies on the use of halophilic PGPRs to stimulate plant growth and increase the tolerance of non-halophytic crops to salinity. These studies illustrate that halophilic PGPRs from the rhizosphere of halophytic species can be effective bio-inoculants for promoting the production of non-halophytic species in saline soils. These studies support the viability of bioinoculation with halophilic PGPRs as a strategy for the sustainable enhancement of non-halophytic crop growth. The potential of this strategy is discussed within the context of ensuring sustainable food production for a world with an increasing population and continuing climate change. We also explore future research needs for using halotolerant PGPRs under salinity stress.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, Faculty of Agricultural Engineering & Technology, University of Tehran, Tehran, Iran
| | - Gwyn A. Beattie
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States
| |
Collapse
|
767
|
Kosová K, Vítámvás P, Urban MO, Prášil IT, Renaut J. Plant Abiotic Stress Proteomics: The Major Factors Determining Alterations in Cellular Proteome. FRONTIERS IN PLANT SCIENCE 2018; 9:122. [PMID: 29472941 PMCID: PMC5810178 DOI: 10.3389/fpls.2018.00122] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/23/2018] [Indexed: 05/19/2023]
Abstract
HIGHLIGHTS: Major environmental and genetic factors determining stress-related protein abundance are discussed.Major aspects of protein biological function including protein isoforms and PTMs, cellular localization and protein interactions are discussed.Functional diversity of protein isoforms and PTMs is discussed. Abiotic stresses reveal profound impacts on plant proteomes including alterations in protein relative abundance, cellular localization, post-transcriptional and post-translational modifications (PTMs), protein interactions with other protein partners, and, finally, protein biological functions. The main aim of the present review is to discuss the major factors determining stress-related protein accumulation and their final biological functions. A dynamics of stress response including stress acclimation to altered ambient conditions and recovery after the stress treatment is discussed. The results of proteomic studies aimed at a comparison of stress response in plant genotypes differing in stress adaptability reveal constitutively enhanced levels of several stress-related proteins (protective proteins, chaperones, ROS scavenging- and detoxification-related enzymes) in the tolerant genotypes with respect to the susceptible ones. Tolerant genotypes can efficiently adjust energy metabolism to enhanced needs during stress acclimation. Stress tolerance vs. stress susceptibility are relative terms which can reflect different stress-coping strategies depending on the given stress treatment. The role of differential protein isoforms and PTMs with respect to their biological functions in different physiological constraints (cellular compartments and interacting partners) is discussed. The importance of protein functional studies following high-throughput proteome analyses is presented in a broader context of plant biology. In summary, the manuscript tries to provide an overview of the major factors which have to be considered when interpreting data from proteomic studies on stress-treated plants.
Collapse
Affiliation(s)
- Klára Kosová
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Pavel Vítámvás
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Milan O. Urban
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czechia
| | - Ilja T. Prášil
- Division of Crop Genetics and Breeding, Laboratory of Plant Stress Biology and Biotechnology, Crop Research Institute, Prague, Czechia
| | - Jenny Renaut
- Environmental Research and Technology Platform, Environmental Research and Innovation, Luxembourg Institute of Science and Technology (LIST), Esch-sur-Alzette, Luxembourg
| |
Collapse
|
768
|
Carillo P. GABA Shunt in Durum Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:100. [PMID: 29456548 PMCID: PMC5801424 DOI: 10.3389/fpls.2018.00100] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 01/18/2018] [Indexed: 05/19/2023]
Abstract
Plant responses to salinity are complex, especially when combined with other stresses, and involve many changes in gene expression and metabolic fluxes. Until now, plant stress studies have been mainly dealt only with a single stress approach. However, plants exposed to multiple stresses at the same time, a combinatorial approach reflecting real-world scenarios, show tailored responses completely different from the response to the individual stresses, due to the stress-related plasticity of plant genome and to specific metabolic modifications. In this view, recently it has been found that γ-aminobutyric acid (GABA) but not glycine betaine (GB) is accumulated in durum wheat plants under salinity only when it is combined with high nitrate and high light. In these conditions, plants show lower reactive oxygen species levels and higher photosynthetic efficiency than plants under salinity at low light. This is certainly relevant because the most of drought or salinity studies performed on cereal seedlings have been done in growth chambers under controlled culture conditions and artificial lighting set at low light. However, it is very difficult to interpret these data. To unravel the reason of GABA accumulation and its possible mode of action, in this review, all possible roles for GABA shunt under stress are considered, and an additional mechanism of action triggered by salinity and high light suggested.
Collapse
Affiliation(s)
- Petronia Carillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| |
Collapse
|
769
|
Yao Y, Kanai Y. Free Energy Profile of NaCl in Water: First-Principles Molecular Dynamics with SCAN and ωB97X-V Exchange–Correlation Functionals. J Chem Theory Comput 2018; 14:884-893. [DOI: 10.1021/acs.jctc.7b00846] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yi Yao
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Yosuke Kanai
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
770
|
Sagers JK, Waldron BL, Creech JE, Mott IW, Bugbee B. Salinity tolerance of three competing rangeland plant species: Studies in hydroponic culture. Ecol Evol 2018; 7:10916-10929. [PMID: 29299269 PMCID: PMC5743640 DOI: 10.1002/ece3.3607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/11/2017] [Accepted: 10/15/2017] [Indexed: 11/16/2022] Open
Abstract
Halogeton (Halogeton glomeratus) is an invasive species that displaces Gardner's saltbush (Atriplex gardneri) on saline rangelands, whereas, forage kochia (Bassia prostrata) potentially can rehabilitate these ecosystems. Salinity tolerance has been hypothesized as the predominant factor affecting frequency of these species. This study compared relative salinity tolerance of these species, and tall wheatgrass (Thinopyrum ponticum) and alfalfa (Medicago sativa). Plants were evaluated in hydroponics, eliminating the confounding effects of drought, for 28 days at 0, 150, 200, 300, 400, 600, and 800 mmol/L NaCl. Survival, growth, and ion accumulation were determined. Alfalfa and tall wheatgrass shoot mass were reduced to 32% of the control at 150 mmol/L. Forage kochia survived to 600 mmol/L, but mass was reduced at all salinity levels. Halogeton and Gardner's saltbush increased or maintained shoot mass up to 400 mmol/L. Furthermore, both actively accumulated sodium in shoots, indicating that Na+ was the principle ion in osmotic adjustment, whereas, forage kochia exhibited passive (linear) Na+ accumulation as salinity increased. This study confirmed the halophytic nature of these three species, but, moreover, discovered that Gardner's saltbush was as saline tolerant as halogeton, whereas, forage kochia was less tolerant. Therefore, factors other than salinity tolerance drive these species’ differential persistence in saline‐desert ecosystems.
Collapse
Affiliation(s)
- Joseph K Sagers
- Plants, Soils, and Climate Department Utah State University Logan UT USA
| | - Blair L Waldron
- Forage and Range Research Laboratory USDA Agricultural Research Service Logan UT USA
| | - Joseph Earl Creech
- Plants, Soils, and Climate Department Utah State University Logan UT USA
| | - Ivan W Mott
- Forage and Range Research Laboratory USDA Agricultural Research Service Logan UT USA
| | - Bruce Bugbee
- Plants, Soils, and Climate Department Utah State University Logan UT USA
| |
Collapse
|
771
|
Yang Y, Guo Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. THE NEW PHYTOLOGIST 2018; 217:523-539. [PMID: 29205383 DOI: 10.1111/nph.14920] [Citation(s) in RCA: 747] [Impact Index Per Article: 106.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/11/2017] [Indexed: 05/18/2023]
Abstract
Contents Summary 523 I. Introduction 523 II. Sensing salt stress 524 III. Ion homeostasis regulation 524 IV. Metabolite and cell activity responses to salt stress 527 V. Conclusions and perspectives 532 Acknowledgements 533 References 533 SUMMARY: Excess soluble salts in soil (saline soils) are harmful to most plants. Salt imposes osmotic, ionic, and secondary stresses on plants. Over the past two decades, many determinants of salt tolerance and their regulatory mechanisms have been identified and characterized using molecular genetics and genomics approaches. This review describes recent progress in deciphering the mechanisms controlling ion homeostasis, cell activity responses, and epigenetic regulation in plants under salt stress. Finally, we highlight research areas that require further research to reveal new determinants of salt tolerance in plants.
Collapse
Affiliation(s)
- Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
772
|
Roy S, Chakraborty U. Role of sodium ion transporters and osmotic adjustments in stress alleviation of Cynodon dactylon under NaCl treatment: a parallel investigation with rice. PROTOPLASMA 2018; 255:175-191. [PMID: 28710664 DOI: 10.1007/s00709-017-1138-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
Comparative analyses of the responses to NaCl in Cynodon dactylon and a sensitive crop species like rice could effectively unravel the salt tolerance mechanism in the former. C. dactylon, a wild perennial chloridoid grass having a wide range of ecological distribution is generally adaptable to varying degrees of salinity stress. The role of salt exclusion mechanism present exclusively in the wild grass was one of the major factors contributing to its tolerance. Salt exclusion was found to be induced at 4 days when the plants were treated with a minimum conc. of 200 mM NaCl. The structural peculiarities of the salt exuding glands were elucidated by the SEM and TEM studies, which clearly revealed the presence of a bicellular salt gland actively functioning under NaCl stress to remove the excess amount of Na+ ion from the mesophyll tissues. Moreover, the intracellular effect of NaCl on the photosynthetic apparatus was found to be lower in C. dactylon in comparison to rice; at the same time, the vacuolization process increased in the former. Accumulation of osmolytes like proline and glycine betaine also increased significantly in C. dactylon with a concurrent check on the H2O2 levels, electrolyte leakage and membrane lipid peroxidation. This accounted for the proper functioning of the Na+ ion transporters in the salt glands and also in the vacuoles for the exudation and loading of excess salts, respectively, to maintain the osmotic balance of the protoplasm. In real-time PCR analyses, CdSOS1 expression was found to increase by 2.5- and 5-fold, respectively, and CdNHX expression increased by 1.5- and 2-fold, respectively, in plants subjected to 100 and 200 mM NaCl treatment for 72 h. Thus, the comparative analyses of the expression pattern of the plasma membrane and tonoplast Na+ ion transporters, SOS1 and NHX in both the plants revealed the significant role of these two ion transporters in conferring salinity tolerance in Cynodon.
Collapse
Affiliation(s)
- Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Siliguri, West Bengal, 734011, India
- Molecular and Analytical Biochemistry Laboratory, Department of Botany, University of Gour Banga, Mokdumpur, Malda, West Bengal, 732103, India
| | - Usha Chakraborty
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Siliguri, West Bengal, 734011, India.
| |
Collapse
|
773
|
Geilfus CM, Ludwig-Müller J, Bárdos G, Zörb C. Early response to salt ions in maize (Zea mays L.). JOURNAL OF PLANT PHYSIOLOGY 2018; 220:173-180. [PMID: 29195231 DOI: 10.1016/j.jplph.2017.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/06/2017] [Accepted: 11/20/2017] [Indexed: 05/26/2023]
Abstract
Abscisic acid (ABA) regulates leaf growth and transpiration rate of plants exposed to salt stress. Despite the known fact that cell dehydration is instrumental for the modulation of ABA concentrations when NaCl is high in the external environment, it was never tested as to whether sodium (Na) or chlorine (Cl) also modulate ABA concentrations. To answer this question, a hydroponic study on maize (Zea mays) was established, by exposing plants to 50mM of sodium glucosamide or glucosamine chloride. The effect of both ions on ABA was investigated in an early stage before (i) the salt ions accumulated to toxic tissue concentrations and before (ii) cells dehydrated. This allowed studying early responses to Na and Cl separately, well before plants were stressed by these ions. Gas chromatography-mass spectrometry analysis was used to quantify ABA concentrations in roots and in leaves after a period of 2h after ion application. The transcript abundance of the key regulatory enzyme of the biosynthesis of ABA in maize, the 9-cis-epoxycarotenoid dioxygenase gene viviparous 14, was quantified via real-time quantitative-reverse-transcriptase-polymerase-chain-reaction. The results reveal that Cl and Na induce the increase of leaf tissue ABA concentrations at two hours after plants were exposed to 50mM of the ions. Surprisingly, this effect was more pronounced in response to the Cl component. The increase in the guard-cell regulating ABA concentration correlated with a reduced transpiration. Mainly because of this result we suggest that the early accumulation of ABA is useful in maintaining cell turgor.
Collapse
Affiliation(s)
- Christoph-Martin Geilfus
- Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Lentzeallee, 14195, Berlin, Germany
| | - Jutta Ludwig-Müller
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, D-01062 Dresden, Germany
| | - Gyöngyi Bárdos
- Institute of Crop Science, Quality of Plant Products, University of Hohenheim, Emil-Wolff-Straße 25, 70599, Stuttgart, Germany
| | - Christian Zörb
- Institute of Crop Science, Quality of Plant Products, University of Hohenheim, Emil-Wolff-Straße 25, 70599, Stuttgart, Germany.
| |
Collapse
|
774
|
Soares ALC, Geilfus CM, Carpentier SC. Genotype-Specific Growth and Proteomic Responses of Maize Toward Salt Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:661. [PMID: 29899749 PMCID: PMC5989331 DOI: 10.3389/fpls.2018.00661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/30/2018] [Indexed: 05/20/2023]
Abstract
Salt stress in plants triggers complex physiological responses that are genotype specific. Many of these responses are either not yet described or not fully understood or both. In this work, we phenotyped three maize genotypes of the CIMMYT gene bank alongside the reference B73 genotype (NCRPIS - United States) under both control and salt-stressed conditions. We have ranked their growth potential and we observed significant differences in Na+ and Cl- ion accumulation. Genotype CML421 showed the slowest growth, while CML451 had the lowest accumulation of ions in its leaves. The phenotyping defined the right timing for the proteomics analysis, allowing us to compare the contrasting genotypes. In general 1,747 proteins were identified, of which 209 were significantly more abundant in response to salt stress. The five most significantly enriched annotations that positively correlated with stress were oxidation reduction, catabolic process, response to chemical stimulus, translational elongation and response to water. We observed a higher abundance of proteins involved in reactions to oxidative stress, dehydration, respiration, and translation. The five most significantly enriched annotations negatively correlated with stress were nucleosome organization, chromatin assembly, protein-DNA complex assembly, DNA packaging and nucleosome assembly. The genotypic analysis revealed 52 proteins that were correlated to the slow-growing genotype CML421. Their annotations point toward cellular dehydration and oxidative stress. Three root proteins correlated to the CML451 genotype were annotated to protein synthesis and ion compartmentalization. In conclusion, our results highlight the importance of the anti-oxidative system for acclimatization to salt stress and identify potential genotypic marker proteins involved in salt-stress responses.
Collapse
Affiliation(s)
- Ana L. C. Soares
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Leuven, Belgium
| | - Christoph-Martin Geilfus
- Controlled Environment Horticulture, Faculty of Life Sciences, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt University of Berlin, Berlin, Germany
| | - Sebastien C. Carpentier
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Leuven, Belgium
- Genetic Resources, Bioversity International, Leuven, Belgium
- SYBIOMA, KU Leuven, Leuven, Belgium
- *Correspondence: Sebastien C. Carpentier,
| |
Collapse
|
775
|
Cavalcante Granja MM, Lacerda e Medeiros MJ, Medeiros de Araújo Silva M, Camara T, Willadino L, Ulisses C. Response to in vitro salt stress in sugarcane is conditioned by concentration and condition of exposure to NaCl. ACTA BIOLÓGICA COLOMBIANA 2018. [DOI: 10.15446/abc.v23n1.63513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
La salinidad es uno de los principales factores de estrés ambiental, además de interferir en el crecimiento de las plantas perjudica directamente la producción agrícola. En ese contexto, se destaca la importancia de investigaciones direccionadas a la respuesta de las plantas sometidas al estrés salino, con el fin de evaluar el comportamiento fisiológico y bioquímico con el objetivo de seleccionar genotipos tolerantes a dicha condición. Una de las técnicas más utilizadas para uniformizar la respuesta de las plantas a una condición en particular es el cultivo de tejidos in vitro. Por lo tanto, el objetivo de este estudio fue evaluar la respuesta de dos variedades comerciales de caña de azúcar (RB931011 e RB872552) expuestas a estrés salino con NaCl (56 mM e 112 mM) en diferentes condiciones, gradual y abrupta. Las respuestas del sistema antioxidante enzimático (catalasa, peroxidasa y ascorbato peroxidasa) y prolina libre, asi como las concentraciones de Na+ e K+ fueron evaluadas 30 días después del inicio de los tratamientos. Fueron observadas diferencias en la respuesta de las variedades en función del modo de inducción del estrés salino, graduado o abrupto, y no solo en función de las concentraciones de NaCl en el medio de cultivo. La respuesta al estrés es condicionada no solo por la concentración de sal sino también por la forma de exposición al medio salino.
Collapse
|
776
|
Rezaei N, Razzaghi F. Effect of different levels of water salinity and biochar on wheat yield under greenhouse conditions. ACTA ACUST UNITED AC 2018. [DOI: 10.17660/actahortic.2018.1190.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
777
|
van Ginneken V. Some Mechanism Seaweeds Employ to Cope with Salinity Stress in the Harsh Euhaline Oceanic Environment. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/ajps.2018.96089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
778
|
Elmaghrabi AM, Rogers HJ, Francis D, Ochatt S. Toward Unravelling the Genetic Determinism of the Acquisition of Salt and Osmotic Stress Tolerance Through In Vitro Selection in Medicago truncatula. Methods Mol Biol 2018; 1822:291-314. [PMID: 30043311 DOI: 10.1007/978-1-4939-8633-0_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Changes in global climate and the nonstop increase in demographic pressure have provoked a stronger demand for agronomic resources at a time where land suitable for agriculture is becoming a rare commodity. They have also generated a number of abiotic stresses which exacerbate effects of diseases and pests and result in physiological and metabolic disorders that ultimately impact on yield when and where it is most needed. Therefore, a major scientific and agronomic challenge today is that of understanding and countering the impact of stress on yield. In this respect, in vitro biotechnology would be an efficient and feasible breeding alternative, particularly now that the genetic and genomic tools needed to unravel the mechanisms underlying the acquisition of tolerance to stress have become available. Legumes in general play a central role in a sustainable agriculture due to their capacity to symbiotically fix the atmospheric nitrogen, thereby reducing the need for fertilizers. They also produce grains that are rich in protein and thus are important as food and feed. However, they also suffer from abiotic stresses in general and osmotic stress and salinity in particular. This chapter provides a detailed overview of the methods employed for in vitro selection in the model legume Medicago truncatula for the generation of novel germplasm capable of resisting NaCl- and PEG-induced osmotic stress. We also address the understanding of the genetic determinism in the acquisition of stress resistance, which differs between NaCl and PEG. Thus, the expression of genes linked to growth (WEE1), in vitro embryogenesis (SERK), salt tolerance (SOS1) proline synthesis (P5CS), and ploidy level and cell cycle (CCS52 and WEE1) was upregulated under NaCl stress, while under PEG treatment the expression of MtWEE1 and MtCCS52 was significantly increased, but no significant differences were observed in the expression of genes MtSERK1 and MtP5CS, and MtSOS1 was downregulated. A number of morphological and physiological traits relevant to the acquisition of stress resistance were also assessed, and methods used to do so are also detailed.
Collapse
Affiliation(s)
- Adel M Elmaghrabi
- Biotechnology Research Center (BTRC), Tripoli, Libya
- School of Biosciences, Cardiff University, Cardiff, UK
| | | | | | - Sergio Ochatt
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
779
|
Lin J, Peng X, Hua X, Sun S, Wang Y, Yan X. Effects of arbuscular mycorrhizal fungi on Leymus chinensis seedlings under salt–alkali stress and nitrogen deposition conditions: from osmotic adjustment and ion balance. RSC Adv 2018; 8:14500-14509. [PMID: 35540780 PMCID: PMC9079982 DOI: 10.1039/c8ra00721g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/23/2018] [Indexed: 11/23/2022] Open
Abstract
Nitrogen deposition and soil salinization–alkalization have become major environmental problems throughout the world. Leymus chinensis is the dominant, and considered the most valuable, species for grassland restoration in the Northeast of China. However, little information exists concerning the role of arbuscular mycorrhizal fungi (AMF) in the adaptation of seedlings to the interactive effects of nitrogen and salt–alkali stress, especially from the perspective of osmotic adjustment and ion balance. Experiments were conducted in a greenhouse and Leymus chinensis seedlings were cultivated with NaCl/NaHCO3 under two nitrogen treatments (different concentrations of NH4+/NO3−). Root colonization, seedling growth, ion content, and solute accumulation were measured. The results showed that the colonization rate and the dry weights of the seedlings were both decreased with the increasing salt–alkali concentration, and were much lower under alkali stress. Both of the nitrogen treatments decreased the colonization rate and dry weights compared with those of the AM seedlings, especially under the N2 (more NH4+–N content) treatment. The Na+ content increased but the K+ content decreased under salt–alkali stress, and more markedly under alkali stress. AMF colonization decreased the Na+ content and increased the K+ content to some extent. In addition, the nitrogen treatments had a negative effect on the two ions in the AM seedlings. Under salt stress, the seedlings accumulated abundant Cl− to maintain osmotic and ionic balance, but alkali stress inhibited the absorption of anions and the seedlings accumulated organic acids in order to resist the imbalance of both osmosis and ions, whether under the AM or nitrogen treatments. In addition, proline accumulation is thought to be a typical adaptive feature in both AM and non-AM plants under nitrogen and salt–alkali stress. Our results suggest that the salt–alkali tolerance of Leymus chinensis seedlings is enhanced by association with arbuscular mycorrhizal fungi, and the seedlings can adapt to the nitrogen and salt–alkali conditions by adjusting their osmotic adjustment and ion balance. Excessive nitrogen partly decreased the salt–alkali tolerance of the Leymus chinensis seedlings. We evaluated the contribution of arbuscular mycorrhizal fungi to the growth, ion content, and solute accumulation of Leymus chinensis seedlings under salt–alkali stress and nitrogen deposition.![]()
Collapse
Affiliation(s)
- Jixiang Lin
- Alkali Soil Natural Environmental Science Center
- Northeast Forestry University
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field
- Ministry of Education
- Harbin
| | - Xiaoyuan Peng
- Alkali Soil Natural Environmental Science Center
- Northeast Forestry University
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field
- Ministry of Education
- Harbin
| | - Xiaoyu Hua
- Alkali Soil Natural Environmental Science Center
- Northeast Forestry University
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field
- Ministry of Education
- Harbin
| | - Shengnan Sun
- Colleges of Animal Science and Technology
- Yangzhou University
- Yangzhou 225009
- China
| | - Yingnan Wang
- Alkali Soil Natural Environmental Science Center
- Northeast Forestry University
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field
- Ministry of Education
- Harbin
| | - Xiufeng Yan
- Alkali Soil Natural Environmental Science Center
- Northeast Forestry University
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field
- Ministry of Education
- Harbin
| |
Collapse
|
780
|
Yeo BPH, Bhave M, Hwang SS. Effects of acute salt stress on modulation of gene expression in a Malaysian salt-tolerant indigenous rice variety, Bajong. JOURNAL OF PLANT RESEARCH 2018; 131:191-202. [PMID: 28921169 DOI: 10.1007/s10265-017-0977-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 08/01/2017] [Indexed: 06/07/2023]
Abstract
The small genome size of rice relative to wheat and barley, together with its salt sensitivity, make it an ideal candidate for studies of salt stress response. Transcriptomics has emerged as a powerful technique to study salinity responses in many crop species. By identifying a large number of differentially expressed genes (DEGs) simultaneously after the stress induction, it can provide crucial insight into the immediate responses towards the stressor. In this study, a Malaysian salt-tolerant indigenous rice variety named Bajong and one commercial rice variety named MR219 were investigated for their performance in plant growth and ion accumulation properties after salt stress treatment. Bajong was further investigated for the changes in leaf's transcriptome after 6 h of stress treatment using 100 mM NaCl. Based on the results obtained, Bajong is found to be significantly more salt tolerant than MR219, showing better growth and a lower sodium ion accumulation after the stress treatment. Additionally, Bajong was analysed by transcriptomic sequencing, generating a total of 130 millions reads. The reads were assembled into de novo transcriptome and each transcript was annotated using several pre-existing databases. The transcriptomes of control and salt-stressed samples were then compared, leading to the discovery of 4096 DEGs. Based on the functional annotation results obtained, the enrichment factor of each functional group in DEGs was calculated in relation to the total reads obtained. It was found that the group with the highest gene modulation was involved in the secondary metabolite biosynthesis of plants, with approximately 2.5% increase in relation to the total reads obtained. This suggests an extensive transcriptional reprogramming of the secondary metabolic pathways after stress induction, which could be directly responsible for the salt tolerance capability of Bajong.
Collapse
Affiliation(s)
- Brandon Pei Hui Yeo
- Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350, Kuching, Sarawak, Malaysia
| | - Mrinal Bhave
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC, 3122, Australia
| | - Siaw San Hwang
- Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350, Kuching, Sarawak, Malaysia.
| |
Collapse
|
781
|
Ouda SAH, Zohry AEH. Introductory Overview of the Projected Distress. SPRINGERBRIEFS IN WATER SCIENCE AND TECHNOLOGY 2018:1-7. [DOI: 10.1007/978-3-319-69880-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
782
|
Zhang B, Gui D, Gao X, Shareef M, Li L, Zeng F. Controlling Soil Factor in Plant Growth and Salt Tolerance of Leguminous Plant Alhagi sparsifolia Shap. in Saline Deserts, Northwest China. CONTEMP PROBL ECOL+ 2018. [DOI: 10.1134/s199542551801002x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
783
|
Biradar H, Karan R, Subudhi PK. Transgene Pyramiding of Salt Responsive Protein 3-1 ( SaSRP3-1) and SaVHAc1 From Spartina alterniflora L. Enhances Salt Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:1304. [PMID: 30258451 PMCID: PMC6143679 DOI: 10.3389/fpls.2018.01304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/17/2018] [Indexed: 05/13/2023]
Abstract
The transgenic technology using a single gene has been widely used for crop improvement. But the transgenic pyramiding of multiple genes, a promising alternative especially for enhancing complexly inherited abiotic stress tolerance, has received little attention. Here, we developed and evaluated transgenic rice lines with a single Salt Responsive Protein 3-1 (SaSRP3-1) gene as well as pyramids with two-genes SaSRP3-1 and Vacuolar H+-ATPase subunit c1 (SaVHAc1) derived from a halophyte grass Spartina alterniflora L. for salt tolerance at seedling, vegetative, and reproductive stages. The overexpression of this novel gene SaSRP3-1 resulted in significantly better growth of E. coli with the recombinant plasmid under 600 mM NaCl stress condition compared with the control. During early seedling and vegetative stages, the single gene and pyramided transgenic rice plants showed enhanced tolerance to salt stress with minimal wilting and drying symptoms, improved shoot and root growth, and significantly higher chlorophyll content, relative water content, and K+/Na+ ratio than the control plants. The salt stress screening during reproductive stage revealed that the transgenic plants with single gene and pyramids had better grain filling, whereas the pyramided plants showed significantly higher grain yield and higher grain weight compared to control plants. Our study demonstrated transgenic pyramiding as a viable approach to achieve higher level of salt tolerance in crop plants.
Collapse
Affiliation(s)
- Hanamareddy Biradar
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Ratna Karan
- Department of Agronomy, University of Florida, Gainesville, FL, United States
| | - Prasanta K. Subudhi
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
- *Correspondence: Prasanta K. Subudhi,
| |
Collapse
|
784
|
Khaleda L, Park HJ, Yun DJ, Jeon JR, Kim MG, Cha JY, Kim WY. Humic Acid Confers HIGH-AFFINITY K+ TRANSPORTER 1-Mediated Salinity Stress Tolerance in Arabidopsis. Mol Cells 2017; 40:966-975. [PMID: 29276942 PMCID: PMC5750715 DOI: 10.14348/molcells.2017.0229] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/05/2017] [Accepted: 11/05/2017] [Indexed: 11/27/2022] Open
Abstract
Excessive salt disrupts intracellular ion homeostasis and inhibits plant growth, which poses a serious threat to global food security. Plants have adapted various strategies to survive in unfavorable saline soil conditions. Here, we show that humic acid (HA) is a good soil amendment that can be used to help overcome salinity stress because it markedly reduces the adverse effects of salinity on Arabidopsis thaliana seedlings. To identify the molecular mechanisms of HA-induced salt stress tolerance in Arabidopsis, we examined possible roles of a sodium influx transporter HIGH-AFFINITY K+ TRANSPORTER 1 (HKT1). Salt-induced root growth inhibition in HKT1 overexpressor transgenic plants (HKT1-OX) was rescued by application of HA, but not in wild-type and other plants. Moreover, salt-induced degradation of HKT1 protein was blocked by HA treatment. In addition, the application of HA to HKT1-OX seedlings led to increased distribution of Na+ in roots up to the elongation zone and caused the reabsorption of Na+ by xylem and parenchyma cells. Both the influx of the secondary messenger calcium and its cytosolic release appear to function in the destabilization of HKT1 protein under salt stress. Taken together, these results suggest that HA could be applied to the field to enhance plant growth and salt stress tolerance via post-transcriptional control of the HKT1 transporter gene under saline conditions.
Collapse
Affiliation(s)
- Laila Khaleda
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Life Sciences (RILS), Gyeongsang National University, Jinju 52828,
Korea
| | - Hee Jin Park
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029,
Korea
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029,
Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029,
Korea
| | - Jong-Rok Jeon
- Department of Agriculture Chemistry and Food Science & Technology, Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828,
Korea
| | - Min Gab Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University, Jinju 52828,
Korea
| | - Joon-Yung Cha
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Life Sciences (RILS), Gyeongsang National University, Jinju 52828,
Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Life Sciences (RILS), Gyeongsang National University, Jinju 52828,
Korea
- Department of Agriculture Chemistry and Food Science & Technology, Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828,
Korea
| |
Collapse
|
785
|
Boughalleb F, Abdellaoui R, Nbiba N, Mahmoudi M, Neffati M. Effect of NaCl stress on physiological, antioxidant enzymes and anatomical responses of Astragalus gombiformis. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
786
|
Kiełkowska A. Cytogenetic effect of prolonged in vitro exposure of Allium cepa L. root meristem cells to salt stress. CYTOL GENET+ 2017. [DOI: 10.3103/s0095452717060068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
787
|
Growth, Physiological, Biochemical, and Ionic Responses of Morus alba L. Seedlings to Various Salinity Levels. FORESTS 2017. [DOI: 10.3390/f8120488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
788
|
Attempting to predict the plant-mediated trophic effects of soil salinity: A mechanistic approach to supplementing insufficient information. FOOD WEBS 2017. [DOI: 10.1016/j.fooweb.2017.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
789
|
Nja RB, Merceron B, Faucher M, Fleurat-Lessard P, Béré E. NaCl - Changes stem morphology, anatomy and phloem structure in Lucerne (Medicago sativa cv. Gabès): Comparison of upper and lower internodes. Micron 2017; 105:70-81. [PMID: 29190502 DOI: 10.1016/j.micron.2017.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 12/19/2022]
Abstract
In M. sativa cv. Gabès plants treated with 150mM NaCl, the height of the stem is decreased and the internode number, length and diameter are reduced. This depressive effect on growth, but also on photosynthetic activity and water balance, is accompanied by structural changes. In the upper internodes, NaCl treatment increases cambium development, so that the vascular ring is initiated earlier than in controls. In the lower internodes, the number of lignified phloem fibers is increased by NaCl, and their wall thickness is augmented, compared to controls; in the phloem complex, the nacreous layer is enlarged, the number of internal wall ingrowths is increased, but companion cells are damaged. In the treated lower internodes, few vessels occur in the secondary xylem, which is by contrast rich in lignified fibers and in wide vessels grouped in the metaxylem area; protoxylem parenchyma and adjacent pith are also lignified. In addition, in treated lower internodes, starch grains are less abundant than in controls, and this variation might be related to the decrease of photosynthesis. When taken together, qualitative and quantitative results indicate that the saline stress has a marked morpho-anatomical impact on the M. sativa Gabès stem. In particular, variations of secondary derivative distribution, increased wall thickening, lignification of phloem and xylem fibers and damage in the phloem complex are NaCl-induced responses, and are more expressed in the lower than in the upper internodes. The reinforcement of the stem lignified vasculature is thus a positive response to stress, but it has a negative impact on the quality of the forage.
Collapse
Affiliation(s)
- Riheb Ben Nja
- Université de Carthage, Faculté des Sciences de Bizerte, Tunisie et Université de Limoges, Faculté des Sciences et techniques, 87100 Limoges Cedex, France.
| | - Bruno Merceron
- Université de Poitiers, Image UP, Service de Microscopie Electronique et Photonique, Pôle Biologie Santé, 1 rue Georges Bonnet, TSA 51106, Poitiers Cedex 9, France.
| | - Mireille Faucher
- Université de Poitiers, Campus Sciences, Laboratoire EBI, UMR CNRS 7267, Equipe SEVE, Bâtiment B31, 3, Rue Jacques Fort, TSA 51106, 86022, Poitiers Cedex 9, France.
| | - Pierrette Fleurat-Lessard
- Université de Poitiers, Campus Sciences, Laboratoire EBI, UMR CNRS 7267, Equipe SEVE, Bâtiment B31, 3, Rue Jacques Fort, TSA 51106, 86022, Poitiers Cedex 9, France.
| | - Emile Béré
- Université de Poitiers, Campus Sciences, Image UP, Service de Microscopie Electronique et Photonique, Pôle Biologie Santé, Bâtiment B36 BP 633, 1, Rue Georges Bonnet, TSA 51106, 86022 Poitiers Cedex 9, France.
| |
Collapse
|
790
|
Li WQ, Zhang MJ, Gan PF, Qiao L, Yang SQ, Miao H, Wang GF, Zhang MM, Liu WT, Li HF, Shi CH, Chen KM. CLD1/SRL1 modulates leaf rolling by affecting cell wall formation, epidermis integrity and water homeostasis in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:904-923. [PMID: 28960566 DOI: 10.1111/tpj.13728] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 08/29/2017] [Accepted: 09/22/2017] [Indexed: 05/20/2023]
Abstract
Leaf rolling is considered as one of the most important agronomic traits in rice breeding. It has been previously reported that SEMI-ROLLED LEAF 1 (SRL1) modulates leaf rolling by regulating the formation of bulliform cells in rice (Oryza sativa); however, the regulatory mechanism underlying SRL1 has yet to be further elucidated. Here, we report the functional characterization of a novel leaf-rolling mutant, curled leaf and dwarf 1 (cld1), with multiple morphological defects. Map-based cloning revealed that CLD1 is allelic with SRL1, and loses function in cld1 through DNA methylation. CLD1/SRL1 encodes a glycophosphatidylinositol (GPI)-anchored membrane protein that modulates leaf rolling and other aspects of rice growth and development. The cld1 mutant exhibits significant decreases in cellulose and lignin contents in secondary cell walls of leaves, indicating that the loss of function of CLD1/SRL1 affects cell wall formation. Furthermore, the loss of CLD1/SRL1 function leads to defective leaf epidermis such as bulliform-like epidermal cells. The defects in leaf epidermis decrease the water-retaining capacity and lead to water deficits in cld1 leaves, which contribute to the main cause of leaf rolling. As a result of the more rapid water loss and lower water content in leaves, cld1 exhibits reduced drought tolerance. Accordingly, the loss of CLD1/SRL1 function causes abnormal expression of genes and proteins associated with cell wall formation, cuticle development and water stress. Taken together, these findings suggest that the functional roles of CLD1/SRL1 in leaf-rolling regulation are closely related to the maintenance of cell wall formation, epidermal integrity and water homeostasis.
Collapse
Affiliation(s)
- Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Min-Juan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peng-Fei Gan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lei Qiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuai-Qi Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hai Miao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Gang-Feng Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mao-Mao Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hai-Feng Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chun-Hai Shi
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
791
|
Çamlıca M, Yaldız G. Effect of Salt Stress on Seed Germination, Shoot and Root Length in Basil (Ocimum basilicum). INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2017. [DOI: 10.21448/ijsm.356250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
792
|
Zhao L, Yang Z, Guo Q, Mao S, Li S, Sun F, Wang H, Yang C. Transcriptomic Profiling and Physiological Responses of Halophyte Kochia sieversiana Provide Insights into Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:1985. [PMID: 29225608 PMCID: PMC5705942 DOI: 10.3389/fpls.2017.01985] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 11/03/2017] [Indexed: 05/25/2023]
Abstract
Halophytes are remarkable plants that can tolerate extremely high-salinity conditions, and have different salinity tolerance mechanisms from those of glycophytic plants. In this work, we investigated the mechanisms of salinity tolerance of an extreme halophyte, Kochia sieversiana (Pall.) C. A. M, using RNA sequencing and physiological tests. The results showed that moderate salinity stimulated the growth and water uptake of K. sieversiana and, even under 480-mM salinity condition, K. sieversiana maintained an extremely high water content. This high water content may be a specific adaptive strategy of K. sieversiana to high salinity. The physiological analysis indicated that increasing succulence and great accumulations of sodium, alanine, sucrose, and maltose may be favorable to the water uptake and osmotic regulation of K. sieversiana under high-salinity stress. Transcriptome data indicated that some aquaporin genes and potassium (K+) transporter genes may be important for water uptake and ion balance, respectively, while different members of those gene families were employed under low- and high-salinity stresses. In addition, several aquaporin genes were up-regulated in low- but not high-salinity stressed roots. The highly expressed aquaporin genes may allow low-salinity stressed K. sieversiana plants to uptake more water than control plants. The leaf K+/root K+ ratio was enhanced under low- but not high-salinity stress, which suggested that low salinity might promote K+ transport from the roots to the shoots. Hence, we speculated that low salinity might allow K. sieversiana to uptake more water and transport more K+ from roots to shoots, increasing the growth rate of K. sieversiana.
Collapse
Affiliation(s)
- Long Zhao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Zongze Yang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Qiaobing Guo
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Shun Mao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Shaoqiang Li
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Fasheng Sun
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Huan Wang
- Department of Agronomy, Jilin Agricultural University, Changchun, China
| | - Chunwu Yang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| |
Collapse
|
793
|
Maoela MA, Esler KJ, Roets F, Jacobs SM. Physiological responses to folivory and phytopathogens in a riparian tree, Brabejum stellatifolium
, native to the fynbos biome of South Africa. Afr J Ecol 2017. [DOI: 10.1111/aje.12481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Malebajoa A. Maoela
- Department of Conservation Ecology and Entomology; Stellenbosch University; Matieland South Africa
| | - Karen J. Esler
- Department of Conservation Ecology and Entomology; Stellenbosch University; Matieland South Africa
- DST/NRF Centre of Excellence for Invasion Biology; Stellenbosch University; Matieland South Africa
- Water Institute; Stellenbosch University; Stellenbosch South Africa
| | - Francois Roets
- Department of Conservation Ecology and Entomology; Stellenbosch University; Matieland South Africa
- DST/NRF Centre of Excellence in Tree Health Biotechnology (CTHB); Forestry and Agricultural Biotechnology Institute (FABI); University of Pretoria; Pretoria South Africa
| | - Shayne M. Jacobs
- Department of Conservation Ecology and Entomology; Stellenbosch University; Matieland South Africa
- Water Institute; Stellenbosch University; Stellenbosch South Africa
| |
Collapse
|
794
|
Yi SY, Ku SS, Sim HJ, Kim SK, Park JH, Lyu JI, So EJ, Choi SY, Kim J, Ahn MS, Kim SW, Park H, Jeong WJ, Lim YP, Min SR, Liu JR. An Alcohol Dehydrogenase Gene from Synechocystis sp. Confers Salt Tolerance in Transgenic Tobacco. FRONTIERS IN PLANT SCIENCE 2017; 8:1965. [PMID: 29204151 PMCID: PMC5698875 DOI: 10.3389/fpls.2017.01965] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/31/2017] [Indexed: 06/01/2023]
Abstract
Synechocystis salt-responsive gene 1 (sysr1) was engineered for expression in higher plants, and gene construction was stably incorporated into tobacco plants. We investigated the role of Sysr1 [a member of the alcohol dehydrogenase (ADH) superfamily] by examining the salt tolerance of sysr1-overexpressing (sysr1-OX) tobacco plants using quantitative real-time polymerase chain reactions, gas chromatography-mass spectrometry, and bioassays. The sysr1-OX plants exhibited considerably increased ADH activity and tolerance to salt stress conditions. Additionally, the expression levels of several stress-responsive genes were upregulated. Moreover, airborne signals from salt-stressed sysr1-OX plants triggered salinity tolerance in neighboring wild-type (WT) plants. Therefore, Sysr1 enhanced the interconversion of aldehydes to alcohols, and this occurrence might affect the quality of green leaf volatiles (GLVs) in sysr1-OX plants. Actually, the Z-3-hexenol level was approximately twofold higher in sysr1-OX plants than in WT plants within 1-2 h of wounding. Furthermore, analyses of WT plants treated with vaporized GLVs indicated that Z-3-hexenol was a stronger inducer of stress-related gene expression and salt tolerance than E-2-hexenal. The results of the study suggested that increased C6 alcohol (Z-3-hexenol) induced the expression of resistance genes, thereby enhancing salt tolerance of transgenic plants. Our results revealed a role for ADH in salinity stress responses, and the results provided a genetic engineering strategy that could improve the salt tolerance of crops.
Collapse
Affiliation(s)
- So Young Yi
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Institute of Agricultural Science, Chungnam National University, Daejeon, South Korea
| | - Seong Sub Ku
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Hee-Jung Sim
- Center for Genome Engineering, Institute for Basic Science, Daejeon, South Korea
| | - Sang-Kyu Kim
- Center for Genome Engineering, Institute for Basic Science, Daejeon, South Korea
| | - Ji Hyun Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jae Il Lyu
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Eun Jin So
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - So Yeon Choi
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jonghyun Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Myung Suk Ahn
- Biological Resources Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Suk Weon Kim
- Biological Resources Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Hyunwoo Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Won Joong Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Yong Pyo Lim
- Department of Horticulture, Chungnam National University, Daejeon, South Korea
| | - Sung Ran Min
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jang Ryol Liu
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| |
Collapse
|
795
|
Yang H, Sun M, Lin S, Guo Y, Yang Y, Zhang T, Zhang J. Transcriptome analysis of Crossostephium chinensis provides insight into the molecular basis of salinity stress responses. PLoS One 2017; 12:e0187124. [PMID: 29131853 PMCID: PMC5683599 DOI: 10.1371/journal.pone.0187124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/13/2017] [Indexed: 01/18/2023] Open
Abstract
Soil salinization is becoming a limitation to the utilization of ornamental plants worldwide. Crossostephium chinensis (Linnaeus) Makino is often cultivated along the southeast coast of China for its desirable ornamental qualities and high salt tolerance. However, little is known about the genomic background of the salt tolerance mechanism in C. chinensis. In the present study, we used Illumina paired-end sequencing to systematically investigate leaf transcriptomes derived from C. chinensis seedlings grown under normal conditions and under salt stress. A total of 105,473,004 bp of reads were assembled into 163,046 unigenes, of which 65,839 (40.38% of the total) and 54,342 (33.32% of the total) were aligned in Swiss-Prot and Nr protein, respectively. A total of 11,331 (6.95%) differentially expressed genes (DEGs) were identified among three comparisons, including 2,239 in ‘ST3 vs ST0’, 5,880 in ‘ST9 vs ST3’ and 9,718 in ‘ST9 vs ST0’, and they were generally classified into 26 Gene Ontology terms and 58 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway terms. Many genes encoding important transcription factors (e.g., WRKY, MYB, and AP2/EREBP) and proteins involved in starch and sucrose metabolism, arginine and proline metabolism, plant hormone signal transduction, amino acid biosynthesis, plant-pathogen interactions and carbohydrate metabolism, among others, were substantially up-regulated under salt stress. These genes represent important candidates for studying the salt-response mechanism and molecular biology of C. chinensis and its relatives. Our findings provide a genomic sequence resource for functional genetic assignments in C. chinensis. These transcriptome datasets will help elucidate the molecular mechanisms responsible for salt-stress tolerance in C. chinensis and facilitate the breeding of new stress-tolerant cultivars for high-saline areas using this valuable genetic resource.
Collapse
Affiliation(s)
- Haiyan Yang
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plant Germplasm Innovation & Molecular Breeding, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
| | - Ming Sun
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plant Germplasm Innovation & Molecular Breeding, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
- National Engineering Research Center for Floriculture, Beijing, China
- * E-mail:
| | - Shuangji Lin
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plant Germplasm Innovation & Molecular Breeding, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
| | - Yanhong Guo
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plant Germplasm Innovation & Molecular Breeding, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
| | - Yongjuan Yang
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plant Germplasm Innovation & Molecular Breeding, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
| | - Tengxun Zhang
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plant Germplasm Innovation & Molecular Breeding, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
| | - Jingxing Zhang
- College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Ornamental Plant Germplasm Innovation & Molecular Breeding, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
| |
Collapse
|
796
|
Tilbrook J, Schilling RK, Berger B, Garcia AF, Trittermann C, Coventry S, Rabie H, Brien C, Nguyen M, Tester M, Roy SJ. Variation in shoot tolerance mechanisms not related to ion toxicity in barley. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:1194-1206. [PMID: 32480644 DOI: 10.1071/fp17049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/26/2017] [Indexed: 06/11/2023]
Abstract
Soil salinity can severely reduce crop growth and yield. Many studies have investigated salinity tolerance mechanisms in cereals using phenotypes that are relatively easy to measure. The majority of these studies measured the accumulation of shoot Na+ and the effect this has on plant growth. However, plant growth is reduced immediately after exposure to NaCl before Na+ accumulates to toxic concentrations in the shoot. In this study, nondestructive and destructive measurements are used to evaluate the responses of 24 predominately Australian barley (Hordeum vulgare L.) lines at 0, 150 and 250mM NaCl. Considerable variation for shoot tolerance mechanisms not related to ion toxicity (shoot ion-independent tolerance) was found, with some lines being able to maintain substantial growth rates under salt stress, whereas others stopped growing. Hordeum vulgare spp. spontaneum accessions and barley landraces predominantly had the best shoot ion independent tolerance, although two commercial cultivars, Fathom and Skiff, also had high tolerance. The tolerance of cv. Fathom may be caused by a recent introgression from H. vulgare L. spp. spontaneum. This study shows that the most salt-tolerant barley lines are those that contain both shoot ion-independent tolerance and the ability to exclude Na+ from the shoot (and thus maintain high K+:Na+ ratios).
Collapse
Affiliation(s)
- Joanne Tilbrook
- Australian Centre for Plant Functional Genomics, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - Rhiannon K Schilling
- Australian Centre for Plant Functional Genomics, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - Bettina Berger
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - Alexandre F Garcia
- Australian Centre for Plant Functional Genomics, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - Christine Trittermann
- Australian Centre for Plant Functional Genomics, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - Stewart Coventry
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| | - Huwaida Rabie
- School of Information Technology and Mathematical Services, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Chris Brien
- School of Information Technology and Mathematical Services, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Martin Nguyen
- School of Information Technology and Mathematical Services, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Mark Tester
- King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering, Thuwal 23955-6900, Saudi Arabia
| | - Stuart J Roy
- Australian Centre for Plant Functional Genomics, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia
| |
Collapse
|
797
|
Sithtisarn S, Yokthongwattana K, Mahong B, Roytrakul S, Paemanee A, Phaonakrop N, Yokthongwattana C. Comparative proteomic analysis of Chlamydomonas reinhardtii control and a salinity-tolerant strain revealed a differential protein expression pattern. PLANTA 2017; 246:843-856. [PMID: 28688014 DOI: 10.1007/s00425-017-2734-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/01/2017] [Indexed: 06/07/2023]
Abstract
Proteins involved in membrane transport and trafficking, stress and defense, iron uptake and metabolism, as well as proteolytic enzymes, were remarkably up-regulated in the salinity-tolerant strain of Chlamydomonas reinhardtii. Excessive concentration of NaCl in the environment can cause adverse effects on plants and microalgae. Successful adaptation of plants to long-term salinity stress requires complex cellular adjustments at different levels from molecular, biochemical and physiological processes. In this study, we developed a salinity-tolerant strain (ST) of the model unicellular green alga, Chlamydomonas reinhardtii, capable of growing in medium containing 300 mM NaCl. Comparative proteomic analyses were performed to assess differential protein expression pattern between the ST and the control progenitor cells. Proteins involved in membrane transport and trafficking, stress and defense, iron uptake and metabolism, as well as protein degradation, were remarkably up-regulated in the ST cells, suggesting the importance of these processes in acclimation mechanisms to salinity stress. Moreover, 2-DE-based proteomic also revealed putative salinity-specific post-translational modifications (PTMs) on several important housekeeping proteins. Discussions were made regarding the roles of these differentially expressed proteins and the putative PTMs in cellular adaptation to long-term salinity stress.
Collapse
Affiliation(s)
- Sayamon Sithtisarn
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Rd., Bangkok, 10900, Thailand
| | - Kittisak Yokthongwattana
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Bangkok, 10400, Thailand
| | - Bancha Mahong
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Bangkok, 10400, Thailand
| | - Sittiruk Roytrakul
- Genome Institute, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Rd., Pathumthani, 12120, Thailand
| | - Atchara Paemanee
- Genome Institute, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Rd., Pathumthani, 12120, Thailand
| | - Narumon Phaonakrop
- Genome Institute, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Rd., Pathumthani, 12120, Thailand
| | - Chotika Yokthongwattana
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Rd., Bangkok, 10900, Thailand.
| |
Collapse
|
798
|
Adem GD, Roy SJ, Huang Y, Chen ZH, Wang F, Zhou M, Bowman JP, Holford P, Shabala S. Expressing Arabidopsis thaliana V-ATPase subunit C in barley (Hordeum vulgare) improves plant performance under saline condition by enabling better osmotic adjustment. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:1147-1159. [PMID: 32480640 DOI: 10.1071/fp17133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/28/2017] [Indexed: 06/11/2023]
Abstract
Salinity is a global problem affecting agriculture that results in an estimated US$27 billion loss in revenue per year. Overexpression of vacuolar ATPase subunits has been shown to be beneficial in improving plant performance under saline conditions. Most studies, however, have not shown whether overexpression of genes encoding ATPase subunits results in improvements in grain yield, and have not investigated the physiological mechanisms behind the improvement in plant growth. In this study, we constitutively expressed Arabidopsis Vacuolar ATPase subunit C (AtVHA-C) in barley. Transgenic plants were assessed for agronomical and physiological characteristics, such as fresh and dry biomass, leaf pigment content, stomatal conductance, grain yield, and leaf Na+ and K+ concentration, when grown in either 0 or 300mM NaCl. When compared with non-transformed barley, AtVHA-C expressing barley lines had a smaller reduction in both biomass and grain yield under salinity stress. The transgenic lines accumulated Na+ and K+ in leaves for osmotic adjustment. This in turn saves energy consumed in the synthesis of organic osmolytes that otherwise would be needed for osmotic adjustment.
Collapse
Affiliation(s)
- Getnet D Adem
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | - Stuart J Roy
- Australian Centre for Plant Functional Genomics, Private Mail Bag 1, Glen Osmond, SA 5064, Australia
| | - Yuqing Huang
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Zhong-Hua Chen
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Feifei Wang
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | - Meixue Zhou
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | - John P Bowman
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| | - Paul Holford
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| |
Collapse
|
799
|
Dragana R, Nikola G, Željko D, Gordana A, Olgica N. Separation of peroxidases from Miscanthus x giganteus, their partial characterisation and application for degradation of dyes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 120:179-185. [PMID: 29035771 DOI: 10.1016/j.plaphy.2017.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
Due to wide applicative potential of peroxidases (POXs), the search for novel sources and forms, possibly with better characteristics and performances, is justified. In this study, POXs from Miscanthus x giganteus rhizomes grown in chernozem-like soil and mine tailings were examined. Higher activity of POXs in samples originating from the metal-contaminated soil was found. The quantity of acidic isoforms was much greater than basic. The rates of reactions catalysed by acidic POX isoforms decreased slightly at 50 °C, whereas stability of basic isoforms was affected at 40 °C. Concentrations of Zn, Mn and Fe were higher in rhizomes grown in mine tailings, and negatively correlated with the concentration of proteins. Basic POX isoforms effectively degraded CBB R250, while Amidoblack 10b was predominantly degraded by acidic isoforms. Thus, Miscanthus x giganteus can be used as a source of POXs which can be applied for dye decomposition and, possibly, waste water management.
Collapse
Affiliation(s)
- Robajac Dragana
- Institute for the Application of Nuclear Energy - INEP, University of Belgrade, Belgrade, Serbia.
| | - Gligorijević Nikola
- Institute for the Application of Nuclear Energy - INEP, University of Belgrade, Belgrade, Serbia
| | - Dželetović Željko
- Institute for the Application of Nuclear Energy - INEP, University of Belgrade, Belgrade, Serbia
| | - Andrejić Gordana
- Institute for the Application of Nuclear Energy - INEP, University of Belgrade, Belgrade, Serbia
| | - Nedić Olgica
- Institute for the Application of Nuclear Energy - INEP, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
800
|
Guittonny-Larchevêque M, Lortie S. Above- and Belowground Development of a Fast-Growing Willow Planted in Acid-Generating Mine Technosol. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:1462-1471. [PMID: 29293827 DOI: 10.2134/jeq2017.03.0128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Surface metal mining produces large volumes of waste rocks. If they contain sulfide minerals, these rocks can generate a flow of acidic water from the mining site, known as acid mine drainage (AMD), which increases trace metals availability for plant roots. Adequate root development is crucial to decreasing planting stress and improving phytoremediation with woody species. However, techniques to improve revegetation success rarely take into account root development. An experiment was conducted at a gold mine in Quebec, Canada, to evaluate the establishment ability over 3 yr of a fast-growing willow ( Sx64) planted in acid-generating waste rocks. The main objective was to study root development in the soil profile and trace element accumulation in leaves among substrates varying in thickness (0, 20, and 40 cm of soil) and composition (organic carbon [OC] and alkaline AMD treatment sludge). Trees directly planted in waste rocks survived well (69%) but had the lowest productivity (lowest growth in height and diameter, aerial biomass, total leaf area, and root-system size). By contrast, the treatment richer in OC showed the greatest aerial biomass and total leaf area the first year; the thicker treatment resulted in the greatest growth in height and diameter, aboveground biomass, and root-system size in both the first and third years. Willow root development was restricted to soil layers during the first year, but this restriction was overcome in the third year after planting. Willow accumulation factors in leaves were below one for all investigated trace metals except for zinc (Zn), cadmium (Cd), and strontium. For Cd and Zn, concentrations increased with time in willow foliage, decreasing the potential of this willow species use for phytostabilization, despite its ability to rapidly develop extensive root systems in the mine Technosol.
Collapse
|