751
|
Rebsamen M, Pochini L, Stasyk T, de Araújo MEG, Galluccio M, Kandasamy RK, Snijder B, Fauster A, Rudashevskaya EL, Bruckner M, Scorzoni S, Filipek PA, Huber KVM, Bigenzahn J, Heinz LX, Kraft C, Bennett KL, Indiveri C, Huber LA, Superti-Furga G. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 2015; 519:477-81. [PMID: 25561175 PMCID: PMC4376665 DOI: 10.1038/nature14107] [Citation(s) in RCA: 522] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 11/20/2014] [Indexed: 12/23/2022]
Abstract
Cell growth and proliferation are tightly linked to nutrient availability. The mechanistic target of rapamycin complex 1 (mTORC1) integrates the presence of growth factors, energy levels, glucose and amino acids to modulate metabolic status and cellular responses. mTORC1 is activated at the surface of lysosomes by the RAG GTPases and the Ragulator complex through a not fully understood mechanism monitoring amino acid availability in the lysosomal lumen and involving the vacuolar H(+)-ATPase. Here we describe the uncharacterized human member 9 of the solute carrier family 38 (SLC38A9) as a lysosomal membrane-resident protein competent in amino acid transport. Extensive functional proteomic analysis established SLC38A9 as an integral part of the Ragulator-RAG GTPases machinery. Gain of SLC38A9 function rendered cells resistant to amino acid withdrawal, whereas loss of SLC38A9 expression impaired amino-acid-induced mTORC1 activation. Thus SLC38A9 is a physical and functional component of the amino acid sensing machinery that controls the activation of mTOR.
Collapse
Affiliation(s)
- Manuele Rebsamen
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lorena Pochini
- Department DiBEST (Biology, Ecology and Earth Sciences), University of Calabria, Arcavacata di Rende, Italy
| | - Taras Stasyk
- Biocenter, Division of Cell Biology, Innsbruck Medical University, Innsbruck, Austria
| | | | - Michele Galluccio
- Department DiBEST (Biology, Ecology and Earth Sciences), University of Calabria, Arcavacata di Rende, Italy
| | - Richard K. Kandasamy
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Berend Snijder
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Astrid Fauster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Elena L. Rudashevskaya
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Manuela Bruckner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Stefania Scorzoni
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Przemyslaw A. Filipek
- Biocenter, Division of Cell Biology, Innsbruck Medical University, Innsbruck, Austria
| | - Kilian V. M. Huber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Johannes Bigenzahn
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Leonhard X. Heinz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Claudine Kraft
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Keiryn L. Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Cesare Indiveri
- Department DiBEST (Biology, Ecology and Earth Sciences), University of Calabria, Arcavacata di Rende, Italy
| | - Lukas A. Huber
- Biocenter, Division of Cell Biology, Innsbruck Medical University, Innsbruck, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
752
|
A genome-wide siRNA screen in mammalian cells for regulators of S6 phosphorylation. PLoS One 2015; 10:e0116096. [PMID: 25790369 PMCID: PMC4366019 DOI: 10.1371/journal.pone.0116096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 12/04/2014] [Indexed: 11/19/2022] Open
Abstract
mTOR complex1, the major regulator of mRNA translation in all eukaryotic cells, is strongly activated in most cancers. We performed a genome-wide RNAi screen in a human cancer cell line, seeking genes that regulate S6 phosphorylation, readout of mTORC1 activity. Applying a stringent selection, we retrieved nearly 600 genes wherein at least two RNAis gave significant reduction in S6-P. This cohort contains known regulators of mTOR complex 1 and is significantly enriched in genes whose depletion affects the proliferation/viability of the large set of cancer cell lines in the Achilles database in a manner paralleling that caused by mTOR depletion. We next examined the effect of RNAi pools directed at 534 of these gene products on S6-P in TSC1 null mouse embryo fibroblasts. 76 RNAis reduced S6 phosphorylation significantly in 2 or 3 replicates. Surprisingly, among this cohort of genes the only elements previously associated with the maintenance of mTORC1 activity are two subunits of the vacuolar ATPase and the CUL4 subunit DDB1. RNAi against a second set of 84 targets reduced S6-P in only one of three replicates. However, an indication that this group also bears attention is the presence of rpS6KB1 itself, Rac1 and MAP4K3, a protein kinase that supports amino acid signaling to rpS6KB1. The finding that S6 phosphorylation requires a previously unidentified, functionally diverse cohort of genes that participate in fundamental cellular processes such as mRNA translation, RNA processing, DNA repair and metabolism suggests the operation of feedback pathways in the regulation of mTORC1 operating through novel mechanisms.
Collapse
|
753
|
Wang Q, Holst J. L-type amino acid transport and cancer: targeting the mTORC1 pathway to inhibit neoplasia. Am J Cancer Res 2015; 5:1281-1294. [PMID: 26101697 PMCID: PMC4473310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023] Open
Abstract
The L-type amino acid transporter (LAT) family are Na(+)-independent transporters, which deliver neutral amino acids into cells. The four LATs, LAT1 (SLC7A5), LAT2 (SLC7A8), LAT3 (SLC43A1) and LAT4 (SLC43A2), are responsible for the majority of cellular leucine uptake. They show increased expression in many cancers, and are critical for control of protein translation and cell growth through the mTORC1 pathway. The increased transporter expression observed in cancers is regulated by transcriptional pathways such as hormone receptors, c-myc and nutrient starvation responses. We review the expression and function of the LAT family in cancer, as well as the recent development of specific inhibitors targeting LAT1 or LAT3. These LAT family inhibitors may be useful adjuvant therapeutics in multiple cancers.
Collapse
Affiliation(s)
- Qian Wang
- Origins of Cancer Program, Centenary InstituteCamperdown, Australia
- Sydney Medical School, University of SydneyAustralia
| | - Jeff Holst
- Origins of Cancer Program, Centenary InstituteCamperdown, Australia
- Sydney Medical School, University of SydneyAustralia
| |
Collapse
|
754
|
Baulac S, Ishida S, Marsan E, Miquel C, Biraben A, Nguyen DK, Nordli D, Cossette P, Nguyen S, Lambrecq V, Vlaicu M, Daniau M, Bielle F, Andermann E, Andermann F, Leguern E, Chassoux F, Picard F. Familial focal epilepsy with focal cortical dysplasia due toDEPDC5mutations. Ann Neurol 2015; 77:675-83. [DOI: 10.1002/ana.24368] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/07/2015] [Accepted: 01/14/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Stéphanie Baulac
- Sorbonne Universités; Pierre and Marie Curie University; UPMC Univ Paris 06, UM 75, ICM; Paris France
- National Institute of Health and Medical Research, INSERM U1127, ICM; Paris France
- National Center for Scientific Research, CNRS, UMR 7225, ICM; Paris France
- Brain and Spine Institute, Institut du Cerveau et de la Moelle (ICM); Paris France
| | - Saeko Ishida
- Sorbonne Universités; Pierre and Marie Curie University; UPMC Univ Paris 06, UM 75, ICM; Paris France
- National Institute of Health and Medical Research, INSERM U1127, ICM; Paris France
- National Center for Scientific Research, CNRS, UMR 7225, ICM; Paris France
- Brain and Spine Institute, Institut du Cerveau et de la Moelle (ICM); Paris France
| | - Elise Marsan
- Sorbonne Universités; Pierre and Marie Curie University; UPMC Univ Paris 06, UM 75, ICM; Paris France
- National Institute of Health and Medical Research, INSERM U1127, ICM; Paris France
- National Center for Scientific Research, CNRS, UMR 7225, ICM; Paris France
- Brain and Spine Institute, Institut du Cerveau et de la Moelle (ICM); Paris France
| | - Catherine Miquel
- Sainte Anne Hospital Center, Paris Descartes University; Paris France
| | - Arnaud Biraben
- University of Rennes Hospital Center; Rennes France
- National Institute of Health and Medical Research; INSERM U1099, University of Rennes; Rennes France
| | - Dang Khoa Nguyen
- University of Montreal Hospital Center (Notre Dame Hospital); University of Montreal; Montreal Quebec Canada
| | - Doug Nordli
- Epilepsy Division, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University; Chicago IL
| | - Patrick Cossette
- University of Montreal Hospital Center (Notre Dame Hospital); University of Montreal; Montreal Quebec Canada
- Center of Excellence in Neuromics; University of Montreal; Montreal Quebec Canada
| | - Sylvie Nguyen
- Child Neurology Unit, Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS); Angers France
| | - Virginie Lambrecq
- Sorbonne Universités; Pierre and Marie Curie University; UPMC Univ Paris 06, UM 75, ICM; Paris France
- National Institute of Health and Medical Research, INSERM U1127, ICM; Paris France
- National Center for Scientific Research, CNRS, UMR 7225, ICM; Paris France
- Brain and Spine Institute, Institut du Cerveau et de la Moelle (ICM); Paris France
- Epilepsy Unit, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris; Paris France
| | - Mihaela Vlaicu
- Brain and Spine Institute, Institut du Cerveau et de la Moelle (ICM); Paris France
- Neurosurgery Department; Pitié-Salpêtrière Hospital, Public Hospital Network of Paris; Paris France
| | - Maïlys Daniau
- Sorbonne Universités; Pierre and Marie Curie University; UPMC Univ Paris 06, UM 75, ICM; Paris France
- National Institute of Health and Medical Research, INSERM U1127, ICM; Paris France
- National Center for Scientific Research, CNRS, UMR 7225, ICM; Paris France
- Brain and Spine Institute, Institut du Cerveau et de la Moelle (ICM); Paris France
| | - Franck Bielle
- Sorbonne Universités; Pierre and Marie Curie University; UPMC Univ Paris 06, UM 75, ICM; Paris France
- National Institute of Health and Medical Research, INSERM U1127, ICM; Paris France
- National Center for Scientific Research, CNRS, UMR 7225, ICM; Paris France
- Brain and Spine Institute, Institut du Cerveau et de la Moelle (ICM); Paris France
- Neuropathology Department; Pitié-Salpêtrière Hospital, Public Hospital Network of Paris; Paris France
| | - Eva Andermann
- Neurogenetics Unit and Epilepsy Research Group; Montreal Neurological Hospital and Institute; Montreal Quebec Canada
- Departments of Neurology and Neurosurgery and Human Genetics; McGill University; Montreal Quebec Canada
| | - Frederick Andermann
- Seizure Clinic and Epilepsy Research Group; Montreal Neurological Hospital and Institute; Montreal Quebec Canada
- Department of Neurology and Neurosurgery and Department of Pediatrics; McGill University; Montreal Quebec Canada
| | - Eric Leguern
- Sorbonne Universités; Pierre and Marie Curie University; UPMC Univ Paris 06, UM 75, ICM; Paris France
- National Institute of Health and Medical Research, INSERM U1127, ICM; Paris France
- National Center for Scientific Research, CNRS, UMR 7225, ICM; Paris France
- Brain and Spine Institute, Institut du Cerveau et de la Moelle (ICM); Paris France
- Department of Genetics; Pitié-Salpêtrière Hospital, Public Hospital Network of Paris; Paris France
| | - Francine Chassoux
- Sainte Anne Hospital Center, Paris Descartes University; Paris France
- National Institute of Health and Medical Research; INSERM U1129, Paris Descartes University; Sorbonne Paris Cité Gif-sur-Yvette France
| | - Fabienne Picard
- Department of Neurology; University Hospitals of Geneva and Medical School of Geneva; Geneva Switzerland
| |
Collapse
|
755
|
Scerri T, Riseley JR, Gillies G, Pope K, Burgess R, Mandelstam SA, Dibbens L, Chow CW, Maixner W, Harvey AS, Jackson GD, Amor DJ, Delatycki MB, Crino PB, Berkovic SF, Scheffer IE, Bahlo M, Lockhart PJ, Leventer RJ. Familial cortical dysplasia type IIA caused by a germline mutation in DEPDC5. Ann Clin Transl Neurol 2015; 2:575-80. [PMID: 26000329 PMCID: PMC4435711 DOI: 10.1002/acn3.191] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 12/26/2022] Open
Abstract
Whole-exome sequencing of two brothers with drug-resistant, early-onset, focal epilepsy secondary to extensive type IIA focal cortical dysplasia identified a paternally inherited, nonsense variant of DEPDC5 (c.C1663T, p.Arg555*). This variant has previously been reported to cause familial focal epilepsy with variable foci in patients with normal brain imaging. Immunostaining of resected brain tissue from both brothers demonstrated mammalian target of rapamycin (mTOR) activation. This report shows the histopathological features of cortical dysplasia associated with a DEPDC5 mutation, confirms mTOR dysregulation in the malformed tissue and expands the spectrum of neurological manifestations of DEPDC5 mutations to include severe phenotypes with large areas of cortical malformation.
Collapse
Affiliation(s)
- Thomas Scerri
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research 1G Royal Parade, Parkville, Victoria, Australia
| | - Jessica R Riseley
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute Parkville, Victoria, Australia
| | - Greta Gillies
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute Parkville, Victoria, Australia
| | - Kate Pope
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute Parkville, Victoria, Australia
| | - Rosemary Burgess
- The Florey Institute of Neuroscience and Mental Health Melbourne, Australia ; Epilepsy Research Centre, University of Melbourne, Austin Health Melbourne, Australia
| | - Simone A Mandelstam
- The Florey Institute of Neuroscience and Mental Health Melbourne, Australia ; Department of Radiology, Royal Children's Hospital Melbourne, Australia ; Department of Radiology, University of Melbourne Melbourne, Australia
| | - Leanne Dibbens
- Epilepsy Research Program, School of Pharmacy and Medical Sciences, University of South Australia Adelaide, Australia ; Sansom Institute for Health Research, University of South Australia Adelaide, Australia
| | - Chung W Chow
- Department of Pediatrics, University of Melbourne Melbourne, Australia ; Department of Anatomical Pathology, Royal Children's Hospital Melbourne, Australia
| | - Wirginia Maixner
- Department of Neurosurgery, Royal Children's Hospital Melbourne, Australia ; Murdoch Childrens Research Institute Melbourne, Australia
| | - Anthony Simon Harvey
- The Florey Institute of Neuroscience and Mental Health Melbourne, Australia ; Department of Pediatrics, University of Melbourne Melbourne, Australia ; Murdoch Childrens Research Institute Melbourne, Australia ; Department of Neurology, Royal Children's Hospital Melbourne, Australia
| | - Graeme D Jackson
- The Florey Institute of Neuroscience and Mental Health Melbourne, Australia ; Epilepsy Research Centre, University of Melbourne, Austin Health Melbourne, Australia
| | - David J Amor
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute Parkville, Victoria, Australia ; Department of Pediatrics, University of Melbourne Melbourne, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute Parkville, Victoria, Australia ; Department of Pediatrics, University of Melbourne Melbourne, Australia ; Clinical Genetics, Austin Health Melbourne, Australia
| | - Peter B Crino
- Shriners Hospital Pediatric Research Center, Temple University Philadelphia, Pennsylvania
| | - Samuel F Berkovic
- The Florey Institute of Neuroscience and Mental Health Melbourne, Australia ; Epilepsy Research Centre, University of Melbourne, Austin Health Melbourne, Australia
| | - Ingrid E Scheffer
- The Florey Institute of Neuroscience and Mental Health Melbourne, Australia ; Epilepsy Research Centre, University of Melbourne, Austin Health Melbourne, Australia ; Department of Pediatrics, University of Melbourne Melbourne, Australia ; Department of Neurology, Royal Children's Hospital Melbourne, Australia
| | - Melanie Bahlo
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research 1G Royal Parade, Parkville, Victoria, Australia
| | - Paul J Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute Parkville, Victoria, Australia ; Department of Pediatrics, University of Melbourne Melbourne, Australia
| | - Richard J Leventer
- Department of Pediatrics, University of Melbourne Melbourne, Australia ; Murdoch Childrens Research Institute Melbourne, Australia ; Department of Neurology, Royal Children's Hospital Melbourne, Australia
| |
Collapse
|
756
|
Zhou X, Clister TL, Lowry PR, Seldin MM, Wong GW, Zhang J. Dynamic Visualization of mTORC1 Activity in Living Cells. Cell Rep 2015; 10:1767-1777. [PMID: 25772363 DOI: 10.1016/j.celrep.2015.02.031] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 01/15/2015] [Accepted: 02/09/2015] [Indexed: 12/18/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) senses diverse signals to regulate cell growth and metabolism. It has become increasingly clear that mTORC1 activity is regulated in time and space inside the cell, but direct interrogation of such spatiotemporal regulation is challenging. Here, we describe a genetically encoded mTORC1 activity reporter (TORCAR) that exhibits a change in FRET in response to phosphorylation by mTORC1. Co-imaging mTORC1 activity and calcium dynamics revealed that a growth-factor-induced calcium transient contributes to mTORC1 activity. Dynamic activity maps generated with the use of subcellularly targeted TORCAR uncovered mTORC1 activity not only in cytosol and at the lysosome but also in the nucleus and at the plasma membrane. Furthermore, a wide distribution of activities was observed upon growth factor stimulation, whereas leucine ester, an amino acid surrogate, induces more compartmentalized activities at the lysosome and in the nucleus. Thus, mTORC1 activities are spatiotemporally regulated in a signal-specific manner.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Terri L Clister
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pamela R Lowry
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Marcus M Seldin
- Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - G William Wong
- Department of Physiology and Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
757
|
Marcotte GR, West DWD, Baar K. The molecular basis for load-induced skeletal muscle hypertrophy. Calcif Tissue Int 2015; 96:196-210. [PMID: 25359125 PMCID: PMC4809742 DOI: 10.1007/s00223-014-9925-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/18/2014] [Indexed: 12/19/2022]
Abstract
In a mature (weight neutral) animal, an increase in muscle mass only occurs when the muscle is loaded sufficiently to cause an increase in myofibrillar protein balance. A tight relationship between muscle hypertrophy, acute increases in protein balance, and the activity of the mechanistic target of rapamycin complex 1 (mTORC1) was demonstrated 15 years ago. Since then, our understanding of the signals that regulate load-induced hypertrophy has evolved considerably. For example, we now know that mechanical load activates mTORC1 in the same way as growth factors, by moving TSC2 (a primary inhibitor of mTORC1) away from its target (the mTORC activator) Rheb. However, the kinase that phosphorylates and moves TSC2 is different in the two processes. Similarly, we have learned that a distinct pathway exists whereby amino acids activate mTORC1 by moving it to Rheb. While mTORC1 remains at the forefront of load-induced hypertrophy, the importance of other pathways that regulate muscle mass are becoming clearer. Myostatin, is best known for its control of developmental muscle size. However, new mechanisms to explain how loading regulates this process are suggesting that it could play an important role in hypertrophic muscle growth as well. Last, new mechanisms are highlighted for how β2 receptor agonists could be involved in load-induced muscle growth and why these agents are being developed as non-exercise-based therapies for muscle atrophy. Overall, the results highlight how studying the mechanism of load-induced skeletal muscle mass is leading the development of pharmaceutical interventions to promote muscle growth in those unwilling or unable to perform resistance exercise.
Collapse
Affiliation(s)
- George R Marcotte
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA
| | | | | |
Collapse
|
758
|
Guipponi M, Chentouf A, Webling KE, Freimann K, Crespel A, Nobile C, Lemke JR, Hansen J, Dorn T, Lesca G, Ryvlin P, Hirsch E, Rudolf G, Rosenberg DS, Weber Y, Becker F, Helbig I, Muhle H, Salzmann A, Chaouch M, Oubaiche ML, Ziglio S, Gehrig C, Santoni F, Pizzato M, Langel Ü, Antonarakis SE. Galanin pathogenic mutations in temporal lobe epilepsy. Hum Mol Genet 2015; 24:3082-91. [DOI: 10.1093/hmg/ddv060] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/11/2015] [Indexed: 12/18/2022] Open
|
759
|
Becchetti A, Aracri P, Meneghini S, Brusco S, Amadeo A. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy. Front Physiol 2015; 6:22. [PMID: 25717303 PMCID: PMC4324070 DOI: 10.3389/fphys.2015.00022] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/14/2015] [Indexed: 11/22/2022] Open
Abstract
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is a focal epilepsy with attacks typically arising in the frontal lobe during non-rapid eye movement (NREM) sleep. It is characterized by clusters of complex and stereotyped hypermotor seizures, frequently accompanied by sudden arousals. Cognitive and psychiatric symptoms may be also observed. Approximately 12% of the ADNFLE families carry mutations on genes coding for subunits of the heteromeric neuronal nicotinic receptors (nAChRs). This is consistent with the widespread expression of these receptors, particularly the α4β2* subtype, in the neocortex and thalamus. However, understanding how mutant nAChRs lead to partial frontal epilepsy is far from being straightforward because of the complexity of the cholinergic regulation in both developing and mature brains. The relation with the sleep-waking cycle must be also explained. We discuss some possible pathogenetic mechanisms in the light of recent advances about the nAChR role in prefrontal regions as well as the studies carried out in murine models of ADNFLE. Functional evidence points to alterations in prefrontal GABA release, and the synaptic unbalance probably arises during the cortical circuit maturation. Although most of the available functional evidence concerns mutations on nAChR subunit genes, other genes have been recently implicated in the disease, such as KCNT1 (coding for a Na+-dependent K+ channel), DEPD5 (Disheveled, Egl-10 and Pleckstrin Domain-containing protein 5), and CRH (Corticotropin-Releasing Hormone). Overall, the uncertainties about both the etiology and the pathogenesis of ADNFLE point to the current gaps in our knowledge the regulation of neuronal networks in the cerebral cortex.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Patrizia Aracri
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Simone Meneghini
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Simone Brusco
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Alida Amadeo
- Department of Biosciences, University of Milano Milano, Italy
| |
Collapse
|
760
|
Nutrient-sensing mechanisms and pathways. Nature 2015; 517:302-10. [PMID: 25592535 DOI: 10.1038/nature14190] [Citation(s) in RCA: 807] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/02/2014] [Indexed: 12/14/2022]
Abstract
The ability to sense and respond to fluctuations in environmental nutrient levels is a requisite for life. Nutrient scarcity is a selective pressure that has shaped the evolution of most cellular processes. Different pathways that detect intracellular and extracellular levels of sugars, amino acids, lipids and surrogate metabolites are integrated and coordinated at the organismal level through hormonal signals. During food abundance, nutrient-sensing pathways engage anabolism and storage, whereas scarcity triggers homeostatic mechanisms, such as the mobilization of internal stores through autophagy. Nutrient-sensing pathways are commonly deregulated in human metabolic diseases.
Collapse
|
761
|
Mitochondrial dependency in progression of acute myeloid leukemia. Mitochondrion 2015; 21:41-8. [PMID: 25640960 DOI: 10.1016/j.mito.2015.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/23/2014] [Accepted: 01/21/2015] [Indexed: 11/20/2022]
Abstract
Acute myeloid leukemia (AML) is a clonal hematopoietic malignant disorder which arises due to dysregulated differentiation, uncontrolled growth and inhibition of apoptosis leading to the accumulation of immature myeloid progenitor in the bone marrow. The heterogeneity of the disease at the molecular and cytogenetic level has led to the identification of several alteration of biological and clinical significance. One of the alterations which have gained attention in recent times is the altered energy and metabolic dependency of cancer originally proposed by Warburg. Mitochondria are important cell organelles regulating cellular energetic level, metabolism and apoptosis which in turn can affect cell proliferation and differentiation, the major manifestations of diseases like AML. In recent times the importance of mitochondrial generated ATP and mitochondrial localized metabolic pathways has been shown to play important role in the progression of AML. These studies have also demonstrated the clinical significance of mitochondrial targets for its effectiveness in combating relapsed or refractory AML. Here we review the importance of the mitochondrial dependency for the progression of AML and the emergence of the mitochondrial molecular targets which holds therapeutic importance.
Collapse
|
762
|
Jewell JL, Kim YC, Russell RC, Yu FX, Park HW, Plouffe SW, Tagliabracci VS, Guan KL. Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science 2015; 347:194-8. [PMID: 25567907 PMCID: PMC4384888 DOI: 10.1126/science.1259472] [Citation(s) in RCA: 573] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) integrates environmental and intracellular signals to regulate cell growth. Amino acids stimulate mTORC1 activation at the lysosome in a manner thought to be dependent on the Rag small guanosine triphosphatases (GTPases), the Ragulator complex, and the vacuolar H+-adenosine triphosphatase (v-ATPase). We report that leucine and glutamine stimulate mTORC1 by Rag GTPase-dependent and -independent mechanisms, respectively. Glutamine promoted mTORC1 translocation to the lysosome in RagA and RagB knockout cells and required the v-ATPase but not the Ragulator. Furthermore, we identified the adenosine diphosphate ribosylation factor-1 GTPase to be required for mTORC1 activation and lysosomal localization by glutamine. Our results uncover a signaling cascade to mTORC1 activation independent of the Rag GTPases and suggest that mTORC1 is differentially regulated by specific amino acids.
Collapse
Affiliation(s)
- Jenna L Jewell
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Young Chul Kim
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ryan C Russell
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fa-Xing Yu
- Children's Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hyun Woo Park
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Steven W Plouffe
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Vincent S Tagliabracci
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
763
|
Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, Plovanich ME, Yuan ED, Jones TD, Chantranupong L, Comb W, Wang T, Bar-Peled L, Zoncu R, Straub C, Kim C, Park J, Sabatini BL, Sabatini DM. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 2015; 347:188-94. [PMID: 25567906 DOI: 10.1126/science.1257132] [Citation(s) in RCA: 643] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) protein kinase is a master growth regulator that responds to multiple environmental cues. Amino acids stimulate, in a Rag-, Ragulator-, and vacuolar adenosine triphosphatase-dependent fashion, the translocation of mTORC1 to the lysosomal surface, where it interacts with its activator Rheb. Here, we identify SLC38A9, an uncharacterized protein with sequence similarity to amino acid transporters, as a lysosomal transmembrane protein that interacts with the Rag guanosine triphosphatases (GTPases) and Ragulator in an amino acid-sensitive fashion. SLC38A9 transports arginine with a high Michaelis constant, and loss of SLC38A9 represses mTORC1 activation by amino acids, particularly arginine. Overexpression of SLC38A9 or just its Ragulator-binding domain makes mTORC1 signaling insensitive to amino acid starvation but not to Rag activity. Thus, SLC38A9 functions upstream of the Rag GTPases and is an excellent candidate for being an arginine sensor for the mTORC1 pathway.
Collapse
Affiliation(s)
- Shuyu Wang
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Zhi-Yang Tsun
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Rachel L Wolfson
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Kuang Shen
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Gregory A Wyant
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | | | - Elizabeth D Yuan
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Tony D Jones
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Lynne Chantranupong
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - William Comb
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Tim Wang
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Liron Bar-Peled
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Roberto Zoncu
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Christoph Straub
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Choah Kim
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Jiwon Park
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Bernardo L Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA.
| |
Collapse
|
764
|
Abstract
mTOR, a serine/threonine kinase, is a master regulator of cellular metabolism. mTOR regulates cell growth and proliferation in response to a wide range of cues, and its signaling pathway is deregulated in many human diseases. mTOR also plays a crucial role in regulating autophagy. This Review provides an overview of the mTOR signaling pathway, the mechanisms of mTOR in autophagy regulation, and the clinical implications of mTOR inhibitors in disease treatment.
Collapse
|
765
|
Perl A, Hanczko R, Lai ZW, Oaks Z, Kelly R, Borsuk R, Asara JM, Phillips PE. Comprehensive metabolome analyses reveal N-acetylcysteine-responsive accumulation of kynurenine in systemic lupus erythematosus: implications for activation of the mechanistic target of rapamycin. Metabolomics 2015; 11:1157-1174. [PMID: 26366134 PMCID: PMC4559110 DOI: 10.1007/s11306-015-0772-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/10/2015] [Indexed: 01/16/2023]
Abstract
Systemic lupus erythematosus (SLE) patients exhibit depletion of the intracellular antioxidant glutathione and downstream activation of the metabolic sensor, mechanistic target of rapamycin (mTOR). Since reversal of glutathione depletion by the amino acid precursor, N-acetylcysteine (NAC), is therapeutic in SLE, its mechanism of impact on the metabolome was examined within the context of a double-blind placebo-controlled trial. Quantitative metabolome profiling of peripheral blood lymphocytes (PBL) was performed in 36 SLE patients and 42 healthy controls matched for age, gender, and ethnicity of patients using mass spectrometry that covers all major metabolic pathways. mTOR activity was assessed by western blot and flow cytometry. Metabolome changes in lupus PBL affected 27 of 80 KEGG pathways at FDR p < 0.05 with most prominent impact on the pentose phosphate pathway (PPP). While cysteine was depleted, cystine, kynurenine, cytosine, and dCTP were the most increased metabolites. Area under the receiver operating characteristic curve (AUC) logistic regression approach identified kynurenine (AUC = 0.859), dCTP (AUC = 0.762), and methionine sulfoxide (AUC = 0.708), as top predictors of SLE. Kynurenine was the top predictor of NAC effect in SLE (AUC = 0.851). NAC treatment significantly reduced kynurenine levels relative to placebo in vivo (raw p = 2.8 × 10-7, FDR corrected p = 6.6 × 10-5). Kynurenine stimulated mTOR activity in healthy control PBL in vitro. Metabolome changes in lupus PBL reveal a dominant impact on the PPP that reflect greater demand for nucleotides and oxidative stress. The PPP-connected and NAC-responsive accumulation of kynurenine and its stimulation of mTOR are identified as novel metabolic checkpoints in lupus pathogenesis.
Collapse
Affiliation(s)
- Andras Perl
- Division of Rheumatology, Department of Medicine, College of Medicine, Upstate Medical University, State University of New York, Syracuse, NY 13210 USA
- Department of Microbiology and Immunology, College of Medicine, Upstate Medical University, State University of New York, 750 East Adams Street, Syracuse, NY 13210 USA
- Department of Biochemistry and Molecular Biology, College of Medicine, Upstate Medical University, State University of New York, Syracuse, NY 13210 USA
| | - Robert Hanczko
- Division of Rheumatology, Department of Medicine, College of Medicine, Upstate Medical University, State University of New York, Syracuse, NY 13210 USA
| | - Zhi-Wei Lai
- Division of Rheumatology, Department of Medicine, College of Medicine, Upstate Medical University, State University of New York, Syracuse, NY 13210 USA
| | - Zachary Oaks
- Division of Rheumatology, Department of Medicine, College of Medicine, Upstate Medical University, State University of New York, Syracuse, NY 13210 USA
- Department of Biochemistry and Molecular Biology, College of Medicine, Upstate Medical University, State University of New York, Syracuse, NY 13210 USA
| | - Ryan Kelly
- Division of Rheumatology, Department of Medicine, College of Medicine, Upstate Medical University, State University of New York, Syracuse, NY 13210 USA
| | - Rebecca Borsuk
- Division of Rheumatology, Department of Medicine, College of Medicine, Upstate Medical University, State University of New York, Syracuse, NY 13210 USA
| | - John M. Asara
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Paul E. Phillips
- Division of Rheumatology, Department of Medicine, College of Medicine, Upstate Medical University, State University of New York, Syracuse, NY 13210 USA
| |
Collapse
|
766
|
Al-Anazi MR, Matou-Nasri S, Abdo AA, Sanai FM, Khan MQ, Albenmousa A, Al-Ashgar HI, Khalaf NZ, Al-Ahdal MN, Al-Qahtani AA. Variations in DEPDC5 gene and its association with chronic hepatitis C virus infection in Saudi Arabia. BMC Infect Dis 2014; 14:632. [PMID: 25551790 PMCID: PMC4311515 DOI: 10.1186/s12879-014-0632-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 11/13/2014] [Indexed: 02/08/2023] Open
Abstract
Background Variations at DEPDC5 gene have been recently reported as genetic markers associated with hepatocellular carcinoma (HCC) progression in chronic HCV-infected patients. This study was conducted to assess the association of DEPDC5 variants with advanced liver cirrhosis and HCC development among chronic HCV-infected patients in Saudi Arabian population. Methods Six-hundred and one HCV-infected patients were genotyped for DEPDC5 polymorphisms (rs1012068 and rs5998152), in comparison with 592 non-infected healthy control subjects. The allelic frequency and genotype distribution of both DEPDC5 polymorphisms were determined followed by haplotype frequency estimation and multiple logistic regression analysis. Results The frequency of the risk alleles of both rs1012068 and rs5998152 was shown to be more in healthy control subjects than in patients (p = 0.0001, OR = 0.704, CI = 0.591-0.839; p = 0.002, OR = 0.761, CI = 0. 0.639-0.907, respectively). Also, our results revealed that GT for SNP rs1012068 (OR =1.715; 95% CI 1.132-2.597; p = 0.0104) and CT for SNP rs5998152 (OR = 1.932; 95% CI 1.276-2.925; p = 0.0017) showed significant association with development of cirrhosis compared with the GG and CC genotypes, respectively. The data also revealed that subjects with the T allele of both SNPs appeared to have a lower susceptibility to HCV-related cirrhosis/HCC than those with the G allele of rs1012068 (p = 0.038, OR = 1.353, 95 % CI 1.017-1.800) and C allele of rs5998152 (p = 0.043, OR = 1.342, 95 % CI 1.010-1.784). Haplotype analysis showed that a combination of T-T alleles of rs1012068 and rs5998152 was significantly associated with liver cirrhosis (frequency = 71.3% and p = 0.027) and with cirrhosis/HCC (frequency = 71.4% and P = 0.045). Also, multiple logistic regression analysis showed that rs5998152 (OR = 2.844, 95% CI 1.333-6.069 and p = 0.007), rs1012068 (OR = 2.793, 95% CI 1.316-5.928 and p = 0.010), age (OR = 1.029, 95% CI 1.001-1.057 and p = 0.041) and HCV genotypes (OR = 0.247, 95% CI 0.097-0.630 and p = 0.003) were independently associated with chronicity of HCV infection. Conclusion Genetic variations in DEPDC5 gene region may influence HCV-associated liver cirrhosis and/or HCC development.
Collapse
|
767
|
Affiliation(s)
- David J Kwiatkowski
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, United States ; Dana Farber Cancer Institute, Boston, MA 02115, United States ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
| | - Nikhil Wagle
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, United States ; Dana Farber Cancer Institute, Boston, MA 02115, United States ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
| |
Collapse
|
768
|
Laxman S, Sutter BM, Shi L, Tu BP. Npr2 inhibits TORC1 to prevent inappropriate utilization of glutamine for biosynthesis of nitrogen-containing metabolites. Sci Signal 2014; 7:ra120. [PMID: 25515537 DOI: 10.1126/scisignal.2005948] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cells must be capable of switching between growth and autophagy in unpredictable nutrient environments. The conserved Npr2 protein complex (comprising Iml1, Npr2, and Npr3; also called SEACIT) inhibits target of rapamycin complex 1 (TORC1) kinase signaling, which inhibits autophagy in nutrient-rich conditions. In yeast cultured in media with nutrient limitations that promote autophagy and inhibit growth, loss of Npr2 enables cells to bypass autophagy and proliferate. We determined that Npr2-deficient yeast had a metabolic state distinct from that of wild-type yeast when grown in minimal media containing ammonium as a nitrogen source and a nonfermentable carbon source (lactate). Unlike wild-type yeast, which accumulated glutamine, Npr2-deficient yeast metabolized glutamine into nitrogen-containing metabolites and maintained a high concentration of S-adenosyl methionine (SAM). Moreover, in wild-type yeast grown in these nutrient-limited conditions, supplementation with methionine stimulated glutamine consumption for synthesis of nitrogenous metabolites, demonstrating integration of a sulfur-containing amino acid cue and nitrogen utilization. These data revealed the metabolic basis by which the Npr2 complex regulates cellular homeostasis and demonstrated a key function for TORC1 in regulating the synthesis and utilization of glutamine as a nitrogen source.
Collapse
Affiliation(s)
- Sunil Laxman
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Benjamin M Sutter
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Lei Shi
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Benjamin P Tu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.
| |
Collapse
|
769
|
TORC1 regulators Iml1/GATOR1 and GATOR2 control meiotic entry and oocyte development in Drosophila. Proc Natl Acad Sci U S A 2014; 111:E5670-7. [PMID: 25512509 DOI: 10.1073/pnas.1419156112] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In single-cell eukaryotes the pathways that monitor nutrient availability are central to initiating the meiotic program and gametogenesis. In Saccharomyces cerevisiae an essential step in the transition to the meiotic cycle is the down-regulation of the nutrient-sensitive target of rapamycin complex 1 (TORC1) by the increased minichromosome loss 1/ GTPase-activating proteins toward Rags 1 (Iml1/GATOR1) complex in response to amino acid starvation. How metabolic inputs influence early meiotic progression and gametogenesis remains poorly understood in metazoans. Here we define opposing functions for the TORC1 regulatory complexes Iml1/GATOR1 and GATOR2 during Drosophila oogenesis. We demonstrate that, as is observed in yeast, the Iml1/GATOR1 complex inhibits TORC1 activity to slow cellular metabolism and drive the mitotic/meiotic transition in developing ovarian cysts. In iml1 germline depletions, ovarian cysts undergo an extra mitotic division before meiotic entry. The TORC1 inhibitor rapamycin can suppress this extra mitotic division. Thus, high TORC1 activity delays the mitotic/meiotic transition. Conversely, mutations in Tor, which encodes the catalytic subunit of the TORC1 complex, result in premature meiotic entry. Later in oogenesis, the GATOR2 components Mio and Seh1 are required to oppose Iml1/GATOR1 activity to prevent the constitutive inhibition of TORC1 and a block to oocyte growth and development. To our knowledge, these studies represent the first examination of the regulatory relationship between the Iml1/GATOR1 and GATOR2 complexes within the context of a multicellular organism. Our data imply that the central role of the Iml1/GATOR1 complex in the regulation of TORC1 activity in the early meiotic cycle has been conserved from single cell to multicellular organisms.
Collapse
|
770
|
Bar-Peled L. Science & SciLifeLab Prize Essay. Size does matter. Science 2014; 346:1191-2. [PMID: 25477447 DOI: 10.1126/science.aaa1808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
771
|
Gao B, Roux PP. Translational control by oncogenic signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:753-65. [PMID: 25477072 DOI: 10.1016/j.bbagrm.2014.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 01/04/2023]
Abstract
Messenger RNA (mRNA) translation is highly regulated in cells and plays an integral role in the overall process of gene expression. The initiation phase of translation is considered to be the most rate-limiting and is often targeted by oncogenic signaling pathways to promote global protein synthesis and the selective translation of tumor-promoting mRNAs. Translational control is a crucial component of cancer development as it allows cancer cells to adapt to the altered metabolism that is generally associated with the tumor state. The phosphoinositide 3-kinase (PI3K)/Akt and Ras/mitogen-activated protein kinase (MAPK) pathways are strongly implicated in cancer etiology, and they exert their biological effects by modulating both global and specific mRNA translation. In addition to having respective translational targets, these pathways also impinge on the mechanistic/mammalian target of rapamycin (mTOR), which acts as a critical signaling node linking nutrient sensing to the coordinated regulation of cellular metabolism. mTOR is best known as a central regulator of protein synthesis and has been implicated in an increasing number of pathological conditions, including cancer. In this article, we describe the current knowledge on the roles and regulation of mRNA translation by various oncogenic signaling pathways, as well as the relevance of these molecular mechanisms to human malignancies. This article is part of a Special Issue entitled: Translation and cancer.
Collapse
Affiliation(s)
- Beichen Gao
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
772
|
mTOR and the health benefits of exercise. Semin Cell Dev Biol 2014; 36:130-9. [DOI: 10.1016/j.semcdb.2014.08.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/08/2014] [Accepted: 08/22/2014] [Indexed: 01/06/2023]
|
773
|
van Kranenburg M, Hoogeveen-Westerveld M, Nellist M. Preliminary Functional Assessment and Classification ofDEPDC5Variants Associated with Focal Epilepsy. Hum Mutat 2014; 36:200-9. [DOI: 10.1002/humu.22723] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/24/2014] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Mark Nellist
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam The Netherlands
| |
Collapse
|
774
|
Saleiro D, Platanias LC. Intersection of mTOR and STAT signaling in immunity. Trends Immunol 2014; 36:21-9. [PMID: 25592035 DOI: 10.1016/j.it.2014.10.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 10/10/2014] [Accepted: 10/24/2014] [Indexed: 12/17/2022]
Abstract
Optimal regulation of immune networks is essential for the generation of effective immune responses, and defects in such networks can lead to immunodeficiency while uncontrolled responses can result in autoimmune disorders. mTOR and STAT signaling cascades are key regulators of the differentiation and function of cells of the immune system. Both pathways act as sensors and transducers of environmental stimuli, and recent evidence has revealed points of crosstalk between these pathways, highlighting synergistic regulation of immune cell differentiation and function. We review here the current understanding of mTOR and STAT interactions in T cells and innate immune cells, and discuss potential mechanisms underlying these events. We further outline models for the intersection of these pathways in the regulation of immunity and highlight important areas for future research.
Collapse
Affiliation(s)
- Diana Saleiro
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School, Chicago, IL, USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School, Chicago, IL, USA; Division of Hematology-Oncology, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA.
| |
Collapse
|
775
|
Zheng X, Liang Y, He Q, Yao R, Bao W, Bao L, Wang Y, Wang Z. Current models of mammalian target of rapamycin complex 1 (mTORC1) activation by growth factors and amino acids. Int J Mol Sci 2014; 15:20753-69. [PMID: 25402640 PMCID: PMC4264194 DOI: 10.3390/ijms151120753] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 09/24/2014] [Accepted: 10/29/2014] [Indexed: 01/09/2023] Open
Abstract
Mammalian target of rapamycin (mTOR), which is now referred to as mechanistic target of rapamycin, integrates many signals, including those from growth factors, energy status, stress, and amino acids, to regulate cell growth and proliferation, protein synthesis, protein degradation, and other physiological and biochemical processes. The mTOR-Rheb-TSC-TBC complex co-localizes to the lysosome and the phosphorylation of TSC-TBC effects the dissociation of the complex from the lysosome and activates Rheb. GTP-bound Rheb potentiates the catalytic activity of mTORC1. Under conditions with growth factors and amino acids, v-ATPase, Ragulator, Rag GTPase, Rheb, hVps34, PLD1, and PA have important but disparate effects on mTORC1 activation. In this review, we introduce five models of mTORC1 activation by growth factors and amino acids to provide a comprehensive theoretical foundation for future research.
Collapse
Affiliation(s)
- Xu Zheng
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Yan Liang
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Qiburi He
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Ruiyuan Yao
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Wenlei Bao
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Lili Bao
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Yanfeng Wang
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Zhigang Wang
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
776
|
Thomas JD, Zhang YJ, Wei YH, Cho JH, Morris LE, Wang HY, Zheng XFS. Rab1A is an mTORC1 activator and a colorectal oncogene. Cancer Cell 2014; 26:754-69. [PMID: 25446900 PMCID: PMC4288827 DOI: 10.1016/j.ccell.2014.09.008] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/16/2014] [Accepted: 09/19/2014] [Indexed: 01/05/2023]
Abstract
Amino acid (AA) is a potent mitogen that controls growth and metabolism. Here we describe the identification of Rab1 as a conserved regulator of AA signaling to mTORC1. AA stimulates Rab1A GTP binding and interaction with mTORC1 and Rheb-mTORC1 interaction in the Golgi. Rab1A overexpression promotes mTORC1 signaling and oncogenic growth in an AA- and mTORC1-dependent manner. Conversely, Rab1A knockdown selectively attenuates oncogenic growth of Rab1-overexpressing cancer cells. Moreover, Rab1A is overexpressed in colorectal cancer (CRC), which is correlated with elevated mTORC1 signaling, tumor invasion, progression, and poor prognosis. Our results demonstrate that Rab1 is an mTORC1 activator and an oncogene and that hyperactive AA signaling through Rab1A overexpression drives oncogenesis and renders cancer cells prone to mTORC1-targeted therapy.
Collapse
Affiliation(s)
- Janice D Thomas
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Yan-Jie Zhang
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA; Department of Gastroenterology, No. 3 People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Yue-Hua Wei
- Cellular and Molecular Pharmacology Graduate Program, Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Jun-Hung Cho
- Cellular and Molecular Pharmacology Graduate Program, Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Laura E Morris
- Cellular and Molecular Pharmacology Graduate Program, Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Hui-Yun Wang
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA; Sun Yat-Sen University Cancer Center, National Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - X F Steven Zheng
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA; Sun Yat-Sen University Cancer Center, National Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| |
Collapse
|
777
|
Xu K, Liu P, Wei W. mTOR signaling in tumorigenesis. Biochim Biophys Acta Rev Cancer 2014; 1846:638-54. [PMID: 25450580 DOI: 10.1016/j.bbcan.2014.10.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/23/2014] [Accepted: 10/25/2014] [Indexed: 12/25/2022]
Abstract
mTOR (the mechanistic target of rapamycin) is an atypical serine/threonine kinase involved in regulating major cellular functions including growth and proliferation. Deregulation of the mTOR signaling pathway is one of the most commonly observed pathological alterations in human cancers. To this end, oncogenic activation of the mTOR signaling pathway contributes to cancer cell growth, proliferation and survival, highlighting the potential for targeting the oncogenic mTOR pathway members as an effective anti-cancer strategy. In order to do so, a thorough understanding of the physiological roles of key mTOR signaling pathway components and upstream regulators would guide future targeted therapies. Thus, in this review, we summarize available genetic mouse models for mTORC1 and mTORC2 components, as well as characterized mTOR upstream regulators and downstream targets, and assign a potential oncogenic or tumor suppressive role for each evaluated molecule. Together, our work will not only facilitate the current understanding of mTOR biology and possible future research directions, but more importantly, provide a molecular basis for targeted therapies aiming at key oncogenic members along the mTOR signaling pathway.
Collapse
Affiliation(s)
- Kai Xu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Pengda Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
778
|
Patursky-Polischuk I, Kasir J, Miloslavski R, Hayouka Z, Hausner-Hanochi M, Stolovich-Rain M, Tsukerman P, Biton M, Mudhasani R, Jones SN, Meyuhas O. Reassessment of the role of TSC, mTORC1 and microRNAs in amino acids-meditated translational control of TOP mRNAs. PLoS One 2014; 9:e109410. [PMID: 25338081 PMCID: PMC4206288 DOI: 10.1371/journal.pone.0109410] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/30/2014] [Indexed: 01/02/2023] Open
Abstract
TOP mRNAs encode components of the translational apparatus, and repression of their translation comprises one mechanism, by which cells encountering amino acid deprivation downregulate the biosynthesis of the protein synthesis machinery. This mode of regulation involves TSC as knockout of TSC1 or TSC2 rescued TOP mRNAs translation in amino acid-starved cells. The involvement of mTOR in translational control of TOP mRNAs is demonstrated by the ability of constitutively active mTOR to relieve the translational repression of TOP mRNA upon amino acid deprivation. Consistently, knockdown of this kinase as well as its inhibition by pharmacological means blocked amino acid-induced translational activation of these mRNAs. The signaling of amino acids to TOP mRNAs involves RagB, as overexpression of active RagB derepressed the translation of these mRNAs in amino acid-starved cells. Nonetheless, knockdown of raptor or rictor failed to suppress translational activation of TOP mRNAs by amino acids, suggesting that mTORC1 or mTORC2 plays a minor, if any, role in this mode of regulation. Finally, miR10a has previously been suggested to positively regulate the translation of TOP mRNAs. However, we show here that titration of this microRNA failed to downregulate the basal translation efficiency of TOP mRNAs. Moreover, Drosha knockdown or Dicer knockout, which carries out the first and second processing steps in microRNAs biosynthesis, respectively, failed to block the translational activation of TOP mRNAs by amino acid or serum stimulation. Evidently, these results are questioning the positive role of microRNAs in this mode of regulation.
Collapse
Affiliation(s)
- Ilona Patursky-Polischuk
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research – Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Judith Kasir
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research – Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Rachel Miloslavski
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research – Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Zvi Hayouka
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research – Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Mirit Hausner-Hanochi
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research – Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Miri Stolovich-Rain
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research – Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Pinchas Tsukerman
- Lautenberg Center for General and Tumor Immunology, The Institute for Medical Research – Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Moshe Biton
- Lautenberg Center for General and Tumor Immunology, The Institute for Medical Research – Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Rajini Mudhasani
- Department of Cell Biology, University of Massachusetts Medical School, North Worcester, Massachusetts, United States of America
| | - Stephen N. Jones
- Department of Cell Biology, University of Massachusetts Medical School, North Worcester, Massachusetts, United States of America
| | - Oded Meyuhas
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research – Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
779
|
Abstract
The mechanistic target of rapamycin (mTOR) signaling pathway is a crucial cellular signaling hub that, like the nervous system itself, integrates internal and external cues to elicit critical outputs including growth control, protein synthesis, gene expression, and metabolic balance. The importance of mTOR signaling to brain function is underscored by the myriad disorders in which mTOR pathway dysfunction is implicated, such as autism, epilepsy, and neurodegenerative disorders. Pharmacological manipulation of mTOR signaling holds therapeutic promise and has entered clinical trials for several disorders. Here, we review the functions of mTOR signaling in the normal and pathological brain, highlighting ongoing efforts to translate our understanding of cellular physiology into direct medical benefit for neurological disorders.
Collapse
|
780
|
Gururajan M, Josson S, Chu GCY, Lu CL, Lu YT, Haga CL, Zhau HE, Liu C, Lichterman J, Duan P, Posadas EM, Chung LWK. miR-154* and miR-379 in the DLK1-DIO3 microRNA mega-cluster regulate epithelial to mesenchymal transition and bone metastasis of prostate cancer. Clin Cancer Res 2014; 20:6559-69. [PMID: 25324143 DOI: 10.1158/1078-0432.ccr-14-1784] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE MicroRNAs in the delta-like 1 homolog-deiodinase, iodothyronine 3 (DLK1-DIO3) cluster have been shown to be critical for embryonic development and epithelial to mesenchymal transition (EMT). DLK1-DIO3 cluster miRNAs are elevated in the serum of patients with metastatic cancer. However, the biologic functions of these miRNAs in the EMT and metastasis of cancer cells are poorly understood. We previously demonstrated the oncogenic and metastatic role of miR-409-3p/5p, a member of this cluster, in prostate cancer. In this study, we defined the role of miR-154* and miR-379, two key members of this cluster, in prostate cancer progression and bone metastasis in both cell line models and clinical specimens. EXPERIMENTAL DESIGN Genetic manipulation of miR-154* and miR-379 was performed to determine their role in tumor growth, EMT, and bone metastasis in mouse models. We determined the expression of miR-154* in prostate cancer clinical samples and bone metastasis samples using in situ hybridization and quantum dot labeling. RESULTS Elevated expression of miR-154* and miR-379 was observed in bone metastatic prostate cancer cell lines and tissues, and miR-379 expression correlated with progression-free survival of patients with prostate cancer. Intracardiac inoculation (to mimic systemic dissemination) of miR-154* inhibitor-treated bone metastatic ARCaPM prostate cancer cells in mice led to decreased bone metastasis and increased survival. CONCLUSION miR-154* and miR-379 play important roles in prostate cancer biology by facilitating tumor growth, EMT, and bone metastasis. This finding has particular translational importance because miRNAs in the DLK1-DIO3 cluster can be attractive biomarkers and possible therapeutic targets to treat bone metastatic prostate cancer.
Collapse
Affiliation(s)
- Murali Gururajan
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Sajni Josson
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Gina Chia-Yi Chu
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Chia-Lun Lu
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Yi-Tsung Lu
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | | | - Haiyen E Zhau
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Chunyan Liu
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jake Lichterman
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Peng Duan
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Edwin M Posadas
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Leland W K Chung
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
781
|
Abstract
DAP-kinase (DAPK) is a Ca(2+)-calmodulin regulated kinase with various, diverse cellular activities, including regulation of apoptosis and caspase-independent death programs, cytoskeletal dynamics, and immune functions. Recently, DAPK has also been shown to be a critical regulator of autophagy, a catabolic process whereby the cell consumes cytoplasmic contents and organelles within specialized vesicles, called autophagosomes. Here we present the latest findings demonstrating how DAPK modulates autophagy. DAPK positively contributes to the induction stage of autophagosome nucleation by modulating the Vps34 class III phosphatidyl inositol 3-kinase complex by two independent mechanisms. The first involves a kinase cascade in which DAPK phosphorylates protein kinase D, which then phosphorylates and activates Vps34. In the second mechanism, DAPK directly phosphorylates Beclin 1, a necessary component of the Vps34 complex, thereby releasing it from its inhibitor, Bcl-2. In addition to these established pathways, we will discuss additional connections between DAPK and autophagy and potential mechanisms that still remain to be fully validated. These include myosin-dependent trafficking of Atg9-containing vesicles to the sites of autophagosome formation, membrane fusion events that contribute to expansion of the autophagosome membrane and maturation through the endocytic pathway, and trafficking to the lysosome on microtubules. Finally, we discuss how DAPK's participation in the autophagic process may be related to its function as a tumor suppressor protein, and its role in neurodegenerative diseases.
Collapse
|
782
|
Saxena A, Sampson JR. Phenotypes associated with inherited and developmental somatic mutations in genes encoding mTOR pathway components. Semin Cell Dev Biol 2014; 36:140-6. [PMID: 25263008 DOI: 10.1016/j.semcdb.2014.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/12/2014] [Accepted: 09/18/2014] [Indexed: 11/29/2022]
Abstract
Mutations affecting the genes that encode upstream components in the mammalian (or mechanistic) target of rapamycin signalling pathway are associated with a group of rare inherited and developmental disorders that show overlapping clinical features. These include predisposition to a variety of benign or malignant tumours, localized overgrowth, developmental abnormalities of the brain, neurodevelopmental disorders and epilepsy. Many of these features have been linked to hyperactivation of signalling via mammalian target of rapamycin complex 1, suggesting that inhibitors of this complex such as rapamycin and its derivatives may offer new opportunities for therapy. In this review we describe this group of inherited and developmental disorders and discuss recent progress in their treatment via mTORC1 inhibition.
Collapse
Affiliation(s)
- Anurag Saxena
- Institute of Medical Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - Julian R Sampson
- Institute of Medical Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
783
|
Chantranupong L, Wolfson RL, Orozco JM, Saxton RA, Scaria SM, Bar-Peled L, Spooner E, Isasa M, Gygi SP, Sabatini DM. The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Rep 2014; 9:1-8. [PMID: 25263562 DOI: 10.1016/j.celrep.2014.09.014] [Citation(s) in RCA: 338] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/03/2014] [Accepted: 09/12/2014] [Indexed: 12/21/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) kinase is a major regulator of cell growth that responds to numerous environmental cues. A key input is amino acids, which act through the heterodimeric Rag GTPases (RagA or RagB bound to RagC or RagD) in order to promote the translocation of mTORC1 to the lysosomal surface, its site of activation. GATOR2 is a complex of unknown function that positively regulates mTORC1 signaling by acting upstream of or in parallel to GATOR1, which is a GTPase-activating protein (GAP) for RagA or RagB and an inhibitor of the amino-acid-sensing pathway. Here, we find that the Sestrins, a family of poorly understood growth regulators (Sestrin1-Sestrin3), interact with GATOR2 in an amino-acid-sensitive fashion. Sestrin2-mediated inhibition of mTORC1 signaling requires GATOR1 and the Rag GTPases, and the Sestrins regulate the localization of mTORC1 in response to amino acids. Thus, we identify the Sestrins as GATOR2-interacting proteins that regulate the amino-acid-sensing branch of the mTORC1 pathway.
Collapse
Affiliation(s)
- Lynne Chantranupong
- Department of Biology, Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge MA 02142, USA
| | - Rachel L Wolfson
- Department of Biology, Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge MA 02142, USA
| | - Jose M Orozco
- Department of Biology, Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge MA 02142, USA
| | - Robert A Saxton
- Department of Biology, Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge MA 02142, USA
| | - Sonia M Scaria
- Department of Biology, Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Liron Bar-Peled
- Department of Biology, Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge MA 02142, USA
| | - Eric Spooner
- Department of Biology, Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Marta Isasa
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - David M Sabatini
- Department of Biology, Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge MA 02142, USA.
| |
Collapse
|
784
|
Huang K, Fingar DC. Growing knowledge of the mTOR signaling network. Semin Cell Dev Biol 2014; 36:79-90. [PMID: 25242279 DOI: 10.1016/j.semcdb.2014.09.011] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/05/2014] [Accepted: 09/10/2014] [Indexed: 12/14/2022]
Abstract
The kinase mTOR (mechanistic target of rapamycin) integrates diverse environmental signals and translates these cues into appropriate cellular responses. mTOR forms the catalytic core of at least two functionally distinct signaling complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTORC1 promotes anabolic cellular metabolism in response to growth factors, nutrients, and energy and functions as a master controller of cell growth. While significantly less well understood than mTORC1, mTORC2 responds to growth factors and controls cell metabolism, cell survival, and the organization of the actin cytoskeleton. mTOR plays critical roles in cellular processes related to tumorigenesis, metabolism, immune function, and aging. Consequently, aberrant mTOR signaling contributes to myriad disease states, and physicians employ mTORC1 inhibitors (rapamycin and analogs) for several pathological conditions. The clinical utility of mTOR inhibition underscores the important role of mTOR in organismal physiology. Here we review our growing knowledge of cellular mTOR regulation by diverse upstream signals (e.g. growth factors; amino acids; energy) and how mTORC1 integrates these signals to effect appropriate downstream signaling, with a greater emphasis on mTORC1 over mTORC2. We highlight dynamic subcellular localization of mTORC1 and associated factors as an important mechanism for control of mTORC1 activity and function. We will cover major cellular functions controlled by mTORC1 broadly. While significant advances have been made in the last decade regarding the regulation and function of mTOR within complex cell signaling networks, many important findings remain to be discovered.
Collapse
Affiliation(s)
- Kezhen Huang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, United States
| | - Diane C Fingar
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, United States; Division of Metabolism, Endocrinology, and Diabetes (MEND), Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-2200, United States.
| |
Collapse
|
785
|
The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab 2014; 20:526-40. [PMID: 25002183 DOI: 10.1016/j.cmet.2014.06.014] [Citation(s) in RCA: 407] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/19/2014] [Accepted: 06/23/2014] [Indexed: 12/23/2022]
Abstract
AMPK and mTOR play principal roles in governing metabolic programs; however, mechanisms underlying the coordination of the two inversely regulated kinases remain unclear. In this study we found, most surprisingly, that the late endosomal/lysosomal protein complex v-ATPase-Ragulator, essential for activation of mTORC1, is also required for AMPK activation. We also uncovered that AMPK is a residential protein of late endosome/lysosome. Under glucose starvation, the v-ATPase-Ragulator complex is accessible to AXIN/LKB1 for AMPK activation. Concurrently, the guanine nucleotide exchange factor (GEF) activity of Ragulator toward RAG is inhibited by AXIN, causing dissociation from endosome and inactivation of mTORC1. We have thus revealed that the v-ATPase-Ragulator complex is also an initiating sensor for energy stress and meanwhile serves as an endosomal docking site for LKB1-mediated AMPK activation by forming the v-ATPase-Ragulator-AXIN/LKB1-AMPK complex, thereby providing a switch between catabolism and anabolism. Our current study also emphasizes a general role of late endosome/lysosome in controlling metabolic programs.
Collapse
|
786
|
Dunlop EA, Tee AR. mTOR and autophagy: a dynamic relationship governed by nutrients and energy. Semin Cell Dev Biol 2014; 36:121-9. [PMID: 25158238 DOI: 10.1016/j.semcdb.2014.08.006] [Citation(s) in RCA: 357] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/04/2014] [Accepted: 08/15/2014] [Indexed: 12/11/2022]
Abstract
Mechanistic target of rapamycin (mTOR) functions as a key homeostatic regulator of cell growth and orchestrates whether anabolic or catabolic reactions are favoured. mTOR complex 1 (mTORC1) manages multiple biosynthetic pathways and promotes cell growth when nutrients are in plentiful supply. Many advances have been made over the last decade on nutrient sensing centred on mTORC1. Recent research reveals that mTORC1 maintains nutrient homeostasis through lysosomal biogenesis and autophagic processes. Cells utilise autophagy to recycle damaged or unwanted organelles and macromolecules and in so doing, generate energy and recover precursor building blocks necessary for normal growth. It is clear that mTOR and autophagy are closely integrated within cells, where defects in signalling through both pathways are known to drive the onset of a range of human diseases, such as cancer and neurodegenerative disease. This review focuses on the dynamic signalling interplay between mTOR and autophagy, which is governed by a core set of proteins that sense nutrients at lysosomal membranes.
Collapse
Affiliation(s)
- E A Dunlop
- Institute of Cancer and Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - A R Tee
- Institute of Cancer and Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
787
|
Algret R, Fernandez-Martinez J, Shi Y, Kim SJ, Pellarin R, Cimermancic P, Cochet E, Sali A, Chait BT, Rout MP, Dokudovskaya S. Molecular architecture and function of the SEA complex, a modulator of the TORC1 pathway. Mol Cell Proteomics 2014; 13:2855-70. [PMID: 25073740 DOI: 10.1074/mcp.m114.039388] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The TORC1 signaling pathway plays a major role in the control of cell growth and response to stress. Here we demonstrate that the SEA complex physically interacts with TORC1 and is an important regulator of its activity. During nitrogen starvation, deletions of SEA complex components lead to Tor1 kinase delocalization, defects in autophagy, and vacuolar fragmentation. TORC1 inactivation, via nitrogen deprivation or rapamycin treatment, changes cellular levels of SEA complex members. We used affinity purification and chemical cross-linking to generate the data for an integrative structure modeling approach, which produced a well-defined molecular architecture of the SEA complex and showed that the SEA complex comprises two regions that are structurally and functionally distinct. The SEA complex emerges as a platform that can coordinate both structural and enzymatic activities necessary for the effective functioning of the TORC1 pathway.
Collapse
Affiliation(s)
- Romain Algret
- From the ‡CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France
| | - Javier Fernandez-Martinez
- §Laboratory of Cellular and Structural Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065
| | - Yi Shi
- ¶Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, 1230 York Avenue, New York, New York 10065
| | - Seung Joong Kim
- ‖Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, UCSF MC 2552, Byers Hall Room 503B, 1700 4th Street, San Francisco, California 94158-2330
| | - Riccardo Pellarin
- ‖Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, UCSF MC 2552, Byers Hall Room 503B, 1700 4th Street, San Francisco, California 94158-2330
| | - Peter Cimermancic
- ‖Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, UCSF MC 2552, Byers Hall Room 503B, 1700 4th Street, San Francisco, California 94158-2330
| | - Emilie Cochet
- From the ‡CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France
| | - Andrej Sali
- ‖Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, UCSF MC 2552, Byers Hall Room 503B, 1700 4th Street, San Francisco, California 94158-2330
| | - Brian T Chait
- ¶Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, 1230 York Avenue, New York, New York 10065
| | - Michael P Rout
- §Laboratory of Cellular and Structural Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065
| | - Svetlana Dokudovskaya
- From the ‡CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France;
| |
Collapse
|
788
|
[New aspects in the field of epilepsy]. DER NERVENARZT 2014; 85:955-64. [PMID: 25022893 DOI: 10.1007/s00115-014-4039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Regarding epilepsy several new developments can be reported. The International League Against Epilepsy (ILAE) has suggested a new definition of epilepsy, for the first time including a definition of epilepsy resolution. Progress in the diagnosis relates to new genetic findings, improvements in magnetic resonance imaging (MRI) and the increasing use of stereo electroencephalograms (sEEG). Regarding treatment there are new clinically relevant data on the pathophysiology and prevention of sudden unexpected death in epilepsy (SUDEP). Zonisamide has been approved by the European Medicines Agency (EMA) for monotherapy in adults with focal seizures and combination therapy in children aged ≥ 6 years. Retigabin and perampanel have been approved but are currently taken off the market in Germany (only) because the Gemeinsamer Bundesausschuss (GBA, Joint Federal Committee) did not find any additional therapeutic value as compared to lamotrigine due to a lack of data. A decision regarding a new application for perampanel is pending. Regarding surgical treatment novel ablation techniques (e.g. stereotactic radiofrequency and laser ablation as well as focussed ultrasound ablation) and brain stimulation paradigms are under investigation. Experimental studies, generously supported by the European Union (EU) and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) are focusing on (opto-)genetic (e.g. using lentoviral transfection), epigenetic (e.g. micro-RNA-related) approaches and on the investigation of neuronal micronetworks.
Collapse
|
789
|
Abstract
Autophagy is the main cellular catabolic process responsible for degrading organelles and large protein aggregates. It is initiated by the formation of a unique membrane structure, the phagophore, which engulfs part of the cytoplasm and forms a double-membrane vesicle termed the autophagosome. Fusion of the outer autophagosomal membrane with the lysosome and degradation of the inner membrane contents complete the process. The extent of autophagy must be tightly regulated to avoid destruction of proteins and organelles essential for cell survival. Autophagic activity is thus regulated by external and internal cues, which initiate the formation of well-defined autophagy-related protein complexes that mediate autophagosome formation and selective cargo recruitment into these organelles. Autophagosome formation and the signaling pathways that regulate it have recently attracted substantial attention. In this review, we analyze the different signaling pathways that regulate autophagy and discuss recent progress in our understanding of autophagosome biogenesis.
Collapse
Affiliation(s)
- Adi Abada
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Zvulun Elazar
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
790
|
Kira S, Tabata K, Shirahama-Noda K, Nozoe A, Yoshimori T, Noda T. Reciprocal conversion of Gtr1 and Gtr2 nucleotide-binding states by Npr2-Npr3 inactivates TORC1 and induces autophagy. Autophagy 2014; 10:1565-78. [PMID: 25046117 PMCID: PMC4206535 DOI: 10.4161/auto.29397] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Autophagy is an intracellular degradation process that delivers cytosolic material to
lysosomes and vacuoles. To investigate the mechanisms that regulate autophagy, we
performed a genome-wide screen using a yeast deletion-mutant collection, and found that
Npr2 and Npr3 mutants were defective in autophagy. Their mammalian homologs, NPRL2 and
NPRL3, were also involved in regulation of autophagy. Npr2-Npr3 function upstream of
Gtr1-Gtr2, homologs of the mammalian RRAG GTPase complex, which is crucial for TORC1
regulation. Both npr2∆ mutants and a GTP-bound Gtr1 mutant suppressed
autophagy and increased Tor1 vacuole localization. Furthermore, Gtr2 binds to the TORC1
subunit Kog1. A GDP-bound Gtr1 mutant induced autophagy even under nutrient-rich
conditions, and this effect was dependent on the direct binding of Gtr2 to Kog1. These
results revealed that 2 molecular mechanisms, Npr2-Npr3-dependent GTP hydrolysis of Gtr1
and direct binding of Gtr2 to Kog1, are involved in TORC1 inactivation and autophagic
induction.
Collapse
Affiliation(s)
- Shintaro Kira
- Center for Frontier Oral Science; Graduate School of Dentistry; Osaka University, Osaka, Japan; Graduate School of Frontier Bioscience; Osaka University; Osaka, Japan
| | - Keisuke Tabata
- Laboratory of Viral Infection; International Research Center for Infectious Diseases; Research Institute for Microbial Diseases; Osaka University; Osaka, Japan
| | - Kanae Shirahama-Noda
- Center for Frontier Oral Science; Graduate School of Dentistry; Osaka University, Osaka, Japan
| | - Akiko Nozoe
- Graduate School of Medicine, Osaka University; Osaka, Japan
| | - Tamotsu Yoshimori
- Graduate School of Frontier Bioscience; Osaka University; Osaka, Japan; Graduate School of Medicine, Osaka University; Osaka, Japan
| | - Takeshi Noda
- Center for Frontier Oral Science; Graduate School of Dentistry; Osaka University, Osaka, Japan; Graduate School of Frontier Bioscience; Osaka University; Osaka, Japan
| |
Collapse
|
791
|
Carroll B, Korolchuk VI, Sarkar S. Amino acids and autophagy: cross-talk and co-operation to control cellular homeostasis. Amino Acids 2014; 47:2065-88. [PMID: 24965527 DOI: 10.1007/s00726-014-1775-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/29/2014] [Indexed: 12/13/2022]
Abstract
Maintenance of amino acid homeostasis is important for healthy cellular function, metabolism and growth. Intracellular amino acid concentrations are dynamic; the high demand for protein synthesis must be met with constant dietary intake, followed by cellular influx, utilization and recycling of nutrients. Autophagy is a catabolic process via which superfluous or damaged proteins and organelles are delivered to the lysosome and degraded to release free amino acids into the cytoplasm. Furthermore, autophagy is specifically activated in response to amino acid starvation via two key signaling cascades: the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) and the general control nonderepressible 2 (GCN2) pathways. These pathways are key regulators of the integration between anabolic (amino acid depleting) and catabolic (such as autophagy which is amino acid replenishing) processes to ensure intracellular amino acid homeostasis. Here, we discuss the key roles that amino acids, along with energy (ATP, glucose) and oxygen, are playing in cellular growth and proliferation. We further explore how sophisticated methods are employed by cells to sense intracellular amino acid concentrations, how amino acids can act as a switch to dictate the temporal and spatial activation of anabolic and catabolic processes and how autophagy contributes to the replenishment of free amino acids, all to ensure cell survival. Relevance of these molecular processes to cellular and organismal physiology and pathology is also discussed.
Collapse
Affiliation(s)
- Bernadette Carroll
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Viktor I Korolchuk
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK.
| | - Sovan Sarkar
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA, 02142, USA.
| |
Collapse
|
792
|
Averous J, Lambert-Langlais S, Carraro V, Gourbeyre O, Parry L, B'Chir W, Muranishi Y, Jousse C, Bruhat A, Maurin AC, Proud CG, Fafournoux P. Requirement for lysosomal localization of mTOR for its activation differs between leucine and other amino acids. Cell Signal 2014; 26:1918-27. [PMID: 24793303 DOI: 10.1016/j.cellsig.2014.04.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 04/27/2014] [Indexed: 11/17/2022]
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth and metabolism. It controls many cell functions by integrating nutrient availability and growth factor signals. Amino acids, and in particular leucine, are among the main positive regulators of mTORC1 signaling. The current model for the regulation of mTORC1 by amino acids involves the movement of mTOR to the lysosome mediated by the Rag-GTPases. Here, we have examined the control of mTORC1 signaling and mTOR localization by amino acids and leucine in serum-fed cells, because both serum growth factors (or, e.g., insulin) and amino acids are required for full activation of mTORC1 signaling. We demonstrate that mTORC1 activity does not closely correlate with the lysosomal localization of mTOR. In particular, leucine controls mTORC1 activity without any detectable modification of the lysosomal localization of mTOR, indicating that the signal(s) exerted by leucine is likely distinct from those exerted by other amino acids. In addition, knock-down of the Rag-GTPases attenuated the inhibitory effect of amino acid- or leucine-starvation on the phosphorylation of mTORC1 targets. Furthermore, data from cells where Rag expression has been knocked down revealed that leucine can promote mTORC1 signaling independently of the lysosomal localization of mTOR. Our data complement existing models for the regulation of mTORC1 by amino acids and provide new insights into this important topic.
Collapse
Affiliation(s)
- Julien Averous
- INRA, UMR 1019 Nutrition Humaine, Centre de Clermont-Ferrand-Theix, F-63122 Saint Genès Champanelle, France; Université Clermont 1, UFR Médecine, UMR 1019 Nutrition Humaine, Clermont-Ferrand, France.
| | - Sarah Lambert-Langlais
- INRA, UMR 1019 Nutrition Humaine, Centre de Clermont-Ferrand-Theix, F-63122 Saint Genès Champanelle, France; Université Clermont 1, UFR Médecine, UMR 1019 Nutrition Humaine, Clermont-Ferrand, France
| | - Valérie Carraro
- INRA, UMR 1019 Nutrition Humaine, Centre de Clermont-Ferrand-Theix, F-63122 Saint Genès Champanelle, France; Université Clermont 1, UFR Médecine, UMR 1019 Nutrition Humaine, Clermont-Ferrand, France
| | - Ophélie Gourbeyre
- INRA, UMR 1019 Nutrition Humaine, Centre de Clermont-Ferrand-Theix, F-63122 Saint Genès Champanelle, France; Université Clermont 1, UFR Médecine, UMR 1019 Nutrition Humaine, Clermont-Ferrand, France
| | - Laurent Parry
- INRA, UMR 1019 Nutrition Humaine, Centre de Clermont-Ferrand-Theix, F-63122 Saint Genès Champanelle, France; Université Clermont 1, UFR Médecine, UMR 1019 Nutrition Humaine, Clermont-Ferrand, France
| | - Wafa B'Chir
- INRA, UMR 1019 Nutrition Humaine, Centre de Clermont-Ferrand-Theix, F-63122 Saint Genès Champanelle, France; Université Clermont 1, UFR Médecine, UMR 1019 Nutrition Humaine, Clermont-Ferrand, France
| | - Yuki Muranishi
- INRA, UMR 1019 Nutrition Humaine, Centre de Clermont-Ferrand-Theix, F-63122 Saint Genès Champanelle, France; Université Clermont 1, UFR Médecine, UMR 1019 Nutrition Humaine, Clermont-Ferrand, France
| | - Céline Jousse
- INRA, UMR 1019 Nutrition Humaine, Centre de Clermont-Ferrand-Theix, F-63122 Saint Genès Champanelle, France; Université Clermont 1, UFR Médecine, UMR 1019 Nutrition Humaine, Clermont-Ferrand, France
| | - Alain Bruhat
- INRA, UMR 1019 Nutrition Humaine, Centre de Clermont-Ferrand-Theix, F-63122 Saint Genès Champanelle, France; Université Clermont 1, UFR Médecine, UMR 1019 Nutrition Humaine, Clermont-Ferrand, France
| | - Anne-Catherine Maurin
- INRA, UMR 1019 Nutrition Humaine, Centre de Clermont-Ferrand-Theix, F-63122 Saint Genès Champanelle, France; Université Clermont 1, UFR Médecine, UMR 1019 Nutrition Humaine, Clermont-Ferrand, France
| | - Christopher G Proud
- Centre for Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Pierre Fafournoux
- INRA, UMR 1019 Nutrition Humaine, Centre de Clermont-Ferrand-Theix, F-63122 Saint Genès Champanelle, France; Université Clermont 1, UFR Médecine, UMR 1019 Nutrition Humaine, Clermont-Ferrand, France.
| |
Collapse
|
793
|
Wei Y, Lilly MA. The TORC1 inhibitors Nprl2 and Nprl3 mediate an adaptive response to amino-acid starvation in Drosophila. Cell Death Differ 2014; 21:1460-8. [PMID: 24786828 DOI: 10.1038/cdd.2014.63] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 01/09/2023] Open
Abstract
Target of rapamycin complex 1 (TORC1) is a master regulator of metabolism in eukaryotes that integrates information from multiple upstream signaling pathways. In yeast, the Nitrogen permease regulators 2 and 3 (Npr2 and Npr3) mediate an essential response to amino-acid limitation upstream of TORC1. In mammals, the Npr2 ortholog, Nprl2, is a putative tumor suppressor gene that inhibits cell growth and enhances sensitivity to numerous anticancer drugs including cisplatin. However, the precise role of Nprl2 and Nprl3 in the regulation of metabolism in metazoans remains poorly defined. Here we demonstrate that the central importance of Nprl2 and Nprl3 in the response to amino-acid starvation has been conserved from single celled to multicellular animals. We find that in Drosophila Nprl2 and Nprl3 physically interact and are targeted to lysosomes and autolysosomes. Using oogenesis as a model system, we show that Nprl2 and Nprl3 inhibit TORC1 signaling in the female germline in response to amino-acid starvation. Moreover, the inhibition TORC1 by Nprl2/3 is critical to the preservation of female fertility during times of protein scarcity. In young egg chambers the failure to downregulate TORC1 in response to amino-acid limitation triggers apoptosis. Thus, our data suggest the presence of a metabolic checkpoint that initiates a cell death program when TORC1 activity remains inappropriately high during periods of amino-acid and/or nutrient scarcity in oogenesis. Finally, we demonstrate that Nprl2/3 work in concert with the TORC1 inhibitors Tsc1/2 to fine tune TORC1 activity during oogenesis and that Tsc1 is a critical downstream effector of Akt1 in the female germline.
Collapse
Affiliation(s)
- Y Wei
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - M A Lilly
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
794
|
Grabiner BC, Nardi V, Birsoy K, Possemato R, Shen K, Sinha S, Jordan A, Beck AH, Sabatini DM. A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov 2014; 4:554-63. [PMID: 24631838 PMCID: PMC4012430 DOI: 10.1158/2159-8290.cd-13-0929] [Citation(s) in RCA: 343] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Genes encoding components of the PI3K-AKT-mTOR signaling axis are frequently mutated in cancer, but few mutations have been characterized in MTOR, the gene encoding the mTOR kinase. Using publicly available tumor genome sequencing data, we generated a comprehensive catalog of mTOR pathway mutations in cancer, identifying 33 MTOR mutations that confer pathway hyperactivation. The mutations cluster in six distinct regions in the C-terminal half of mTOR and occur in multiple cancer types, with one cluster particularly prominent in kidney cancer. The activating mutations do not affect mTOR complex assembly, but a subset reduces binding to the mTOR inhibitor DEPTOR. mTOR complex 1 (mTORC1) signaling in cells expressing various activating mutations remains sensitive to pharmacologic mTOR inhibition, but is partially resistant to nutrient deprivation. Finally, cancer cell lines with hyperactivating MTOR mutations display heightened sensitivity to rapamycin both in culture and in vivo xenografts, suggesting that such mutations confer mTOR pathway dependency.
Collapse
Affiliation(s)
- Brian C. Grabiner
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Howard Hughes Medical Institute and Department of Biology, MIT, Cambridge, MA 02139
- Broad Institute of Harvard and MIT, Cambridge, MA 02142
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139
| | - Valentina Nardi
- Department of Pathology and Massachusetts General Hospital Cancer Center, Boston, MA 02114
| | - Kivanc Birsoy
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Howard Hughes Medical Institute and Department of Biology, MIT, Cambridge, MA 02139
- Broad Institute of Harvard and MIT, Cambridge, MA 02142
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139
| | - Richard Possemato
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Howard Hughes Medical Institute and Department of Biology, MIT, Cambridge, MA 02139
- Broad Institute of Harvard and MIT, Cambridge, MA 02142
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139
| | - Kuang Shen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Howard Hughes Medical Institute and Department of Biology, MIT, Cambridge, MA 02139
- Broad Institute of Harvard and MIT, Cambridge, MA 02142
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139
| | - Sumi Sinha
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Alexander Jordan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Andrew H. Beck
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215
| | - David M. Sabatini
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Howard Hughes Medical Institute and Department of Biology, MIT, Cambridge, MA 02139
- Broad Institute of Harvard and MIT, Cambridge, MA 02142
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139
| |
Collapse
|
795
|
Demetriades C, Doumpas N, Teleman AA. Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell 2014; 156:786-99. [PMID: 24529380 DOI: 10.1016/j.cell.2014.01.024] [Citation(s) in RCA: 333] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/12/2013] [Accepted: 01/09/2014] [Indexed: 01/09/2023]
Abstract
TOR complex 1 (TORC1) is a potent anabolic regulator of cellular growth and metabolism. When cells have sufficient amino acids, TORC1 is active due to its lysosomal localization mediated via the Rag GTPases. Upon amino acid removal, the Rag GTPases release TORC1, causing it to become cytoplasmic and inactive. We show here that, upon amino acid removal, the Rag GTPases also recruit TSC2 to the lysosome, where it can act on Rheb. Only when both the Rag GTPases and Rheb are inactive is TORC1 fully released from the lysosome. Upon amino acid withdrawal, cells lacking TSC2 fail to completely release TORC1 from the lysosome, fail to completely inactivate TORC1, and fail to adjust physiologically to amino acid starvation. These data suggest that regulation of TSC2 subcellular localization may be a general mechanism to control its activity and place TSC2 in the amino-acid-sensing pathway to TORC1.
Collapse
|
796
|
Menon S, Dibble CC, Talbott G, Hoxhaj G, Valvezan AJ, Takahashi H, Cantley LC, Manning BD. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 2014; 156:771-85. [PMID: 24529379 DOI: 10.1016/j.cell.2013.11.049] [Citation(s) in RCA: 614] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/14/2013] [Accepted: 12/24/2013] [Indexed: 12/22/2022]
Abstract
mTORC1 promotes cell growth in response to nutrients and growth factors. Insulin activates mTORC1 through the PI3K-Akt pathway, which inhibits the TSC1-TSC2-TBC1D7 complex (the TSC complex) to turn on Rheb, an essential activator of mTORC1. However, the mechanistic basis of how this pathway integrates with nutrient-sensing pathways is unknown. We demonstrate that insulin stimulates acute dissociation of the TSC complex from the lysosomal surface, where subpopulations of Rheb and mTORC1 reside. The TSC complex associates with the lysosome in a Rheb-dependent manner, and its dissociation in response to insulin requires Akt-mediated TSC2 phosphorylation. Loss of the PTEN tumor suppressor results in constitutive activation of mTORC1 through the Akt-dependent dissociation of the TSC complex from the lysosome. These findings provide a unifying mechanism by which independent pathways affecting the spatial recruitment of mTORC1 and the TSC complex to Rheb at the lysosomal surface serve to integrate diverse growth signals.
Collapse
Affiliation(s)
- Suchithra Menon
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Christian C Dibble
- Department of Systems Biology, Harvard Medical School and Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | - George Talbott
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Gerta Hoxhaj
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Alexander J Valvezan
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Hidenori Takahashi
- Department of Systems Biology, Harvard Medical School and Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Lewis C Cantley
- Department of Systems Biology, Harvard Medical School and Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Brendan D Manning
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
797
|
|
798
|
Ou X, Liu M, Luo H, Dong LQ, Liu F. Ursolic acid inhibits leucine-stimulated mTORC1 signaling by suppressing mTOR localization to lysosome. PLoS One 2014; 9:e95393. [PMID: 24740400 PMCID: PMC3989317 DOI: 10.1371/journal.pone.0095393] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/26/2014] [Indexed: 02/02/2023] Open
Abstract
Ursolic acid (UA), a pentacyclic triterpenoid widely found in medicinal herbs and fruits, has been reported to possess a wide range of beneficial properties including anti-hyperglycemia, anti-obesity, and anti-cancer. However, the molecular mechanisms underlying the action of UA remain largely unknown. Here we show that UA inhibits leucine-induced activation of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway in C2C12 myotubes. The UA-mediated inhibition of mTORC1 is independent of Akt, tuberous sclerosis complex 1/2 (TSC1/2), and Ras homolog enriched in brain (Rheb), suggesting that UA negatively regulates mTORC1 signaling by targeting at a site downstream of these mTOR regulators. UA treatment had no effect on the interaction between mTOR and its activator Raptor or inhibitor Deptor, but suppressed the binding of RagB to Raptor and inhibited leucine-induced mTOR lysosomal localization. Taken together, our study identifies UA as a direct negative regulator of the mTORC1 signaling pathway and suggests a novel mechanism by which UA exerts its beneficial function.
Collapse
Affiliation(s)
- Xiang Ou
- Metabolic Syndrome Research Center and Diabetes Center, Key Laboratory of Diabetes Immunology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pharmacology University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Meilian Liu
- Metabolic Syndrome Research Center and Diabetes Center, Key Laboratory of Diabetes Immunology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pharmacology University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Hairong Luo
- Metabolic Syndrome Research Center and Diabetes Center, Key Laboratory of Diabetes Immunology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lily Q. Dong
- Department of Cellular & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Feng Liu
- Metabolic Syndrome Research Center and Diabetes Center, Key Laboratory of Diabetes Immunology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pharmacology University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
799
|
|
800
|
Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 2014; 15:155-62. [PMID: 24556838 DOI: 10.1038/nrm3757] [Citation(s) in RCA: 828] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
More than 20 years after its discovery, our understanding of target of rapamycin (TOR) signalling continues to grow. Recent global 'omics' studies have revealed physiological roles of mammalian TOR (mTOR) in protein, nucleotide and lipid synthesis. Furthermore, emerging evidence provides new insight into the control of mTOR by other pathways such as Hippo, WNT and Notch signalling. Together, this progress has expanded the list of downstream effectors and upstream regulators of mTOR signalling.
Collapse
Affiliation(s)
| | - Michael N Hall
- Biozentrum, University of Basel, Basel 4056, Switzerland
| |
Collapse
|