751
|
Guo R, Chen X, Lin Y, Xu X, Thu MK, Lai Z. Identification of Novel and Conserved miRNAs in Leaves of In vitro Grown Citrus reticulata "Lugan" Plantlets by Solexa Sequencing. FRONTIERS IN PLANT SCIENCE 2016; 6:1212. [PMID: 26779240 PMCID: PMC4705231 DOI: 10.3389/fpls.2015.01212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/16/2015] [Indexed: 05/23/2023]
Abstract
MicroRNAs (miRNAs) play essential roles in plant development, but the roles in the in vitro plant development are unknown. Leaves of ponkan plantlets derived from mature embryos at in vitro culture conditions were used to sequence small RNA fraction via Solexa sequencing, and the miRNAs expression was analyzed. The results showed that there were 3,065,625 unique sequences in ponkan, of which 0.79% were miRNAs. The RNA sequences with lengths of 18-25 nt derived from the library were analyzed, leading to the identification of 224 known miRNAs, of which the most abundant were miR157, miR156, and miR166. Three hundred and fifty-eight novel miRNA candidates were also identified, and the number of reads of ponkan novel miRNAs varied from 5 to 168,273. The expression of the most known miRNAs obtained was at low levels, which varied from 5 to 4,946,356. To better understand the role of miRNAs during the preservation of ponkan in vitro plantlet, the expression patterns of cre-miR156a/159b/160a/166a/167a/168a/171/398b were validated by quantitative real-time PCR (qPCR). The results showed that not only the development-associated miRNAs, e.g., cre-miR156/159/166/396, expressed highly at the early preservation period in the in vitro ponkan plantlet leaves but also the stress-related miRNAs, e.g., cre-miR171 and cre-miR398b, expressed highly at the same time. The expression levels of most tested miRNAs were found to decrease after 6 months and the amounts of these miRNAs were kept at low levels at 18 months. After analyzing the expression level of their targets during the reservation of the ponkan in vitro plantlet, development-associated cre-ARF6 and stress-related cre-CSD modules exhibited negative correlation with miR167 and miR398, respectively, indicating an involvement of the miRNAs in the in vitro development of ponkan and function in the conservation of ponkan germplasm.
Collapse
Affiliation(s)
- Rongfang Guo
- Department of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
- Department of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xiaodong Chen
- Department of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
- Department of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yuling Lin
- Department of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
- Department of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xuhan Xu
- Department of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
- Institut de la Recherche Interdisciplinaire de ToulouseToulouse, France
| | - Min Kyaw Thu
- Department of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Zhongxiong Lai
- Department of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
- Department of Horticulture, Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|
752
|
Meng Y, Yu D, Xue J, Lu J, Feng S, Shen C, Wang H. A transcriptome-wide, organ-specific regulatory map of Dendrobium officinale, an important traditional Chinese orchid herb. Sci Rep 2016; 6:18864. [PMID: 26732614 PMCID: PMC4702150 DOI: 10.1038/srep18864] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/30/2015] [Indexed: 02/07/2023] Open
Abstract
Dendrobium officinale is an important traditional Chinese herb. Here, we did a transcriptome-wide, organ-specific study on this valuable plant by combining RNA, small RNA (sRNA) and degradome sequencing. RNA sequencing of four organs (flower, root, leaf and stem) of Dendrobium officinale enabled us to obtain 536,558 assembled transcripts, from which 2,645, 256, 42 and 54 were identified to be highly expressed in the four organs respectively. Based on sRNA sequencing, 2,038, 2, 21 and 24 sRNAs were identified to be specifically accumulated in the four organs respectively. A total of 1,047 mature microRNA (miRNA) candidates were detected. Based on secondary structure predictions and sequencing, tens of potential miRNA precursors were identified from the assembled transcripts. Interestingly, phase-distributed sRNAs with degradome-based processing evidences were discovered on the long-stem structures of two precursors. Target identification was performed for the 1,047 miRNA candidates, resulting in the discovery of 1,257 miRNA--target pairs. Finally, some biological meaningful subnetworks involving hormone signaling, development, secondary metabolism and Argonaute 1-related regulation were established. All of the sequencing data sets are available at NCBI Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra/). Summarily, our study provides a valuable resource for the in-depth molecular and functional studies on this important Chinese orchid herb.
Collapse
Affiliation(s)
- Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China.,Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Dongliang Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China
| | - Jie Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China.,Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Jiangjie Lu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China.,Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Shangguo Feng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China.,Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China.,Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China.,Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
753
|
Hamza NB, Sharma N, Tripathi A, Sanan-Mishra N. MicroRNA expression profiles in response to drought stress in Sorghum bicolor. Gene Expr Patterns 2016; 20:88-98. [PMID: 26772909 DOI: 10.1016/j.gep.2016.01.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 12/18/2015] [Accepted: 01/04/2016] [Indexed: 01/08/2023]
Abstract
The regulatory role of small non-coding RNAs that are 20-24 nucleotides in length has become the foremost area of research for biologists. A major class of small RNAs represented by the microRNAs (miRNAs), has been implicated in various aspects of plant development including leaf pattering, meristem function, root patterning etc. Recent findings support that miRNAs are regulated by drought and other abiotic stresses in various plant species. In this study, were report the expression profiling of 8 known abiotic stress deregulated miRNAs in 11 elite sorghum genotypes, under watered and drought conditions. Significant deregulation was observed with miR396, miR393, miR397-5p, miR166, miR167 and miR168. Among these, the expression levels of sbi-miR396 and sbi-miR398 were the highest in all the genotypes. The expression of sbi-miR396 was maximum in the grain sorghum HSD3226 under well-watered conditions and the profile shifted towards HSD3221 under drought stress. Forage accessions, N98 and Atlas, showed an opposite behavior in expression patterns of miR397-5p in drought physiologies. Such dynamic expression patterns could be indicative of prevailing drought tolerant mechanisms present in these sorghum accessions. This data provides insights into sorghum miRNAs which may have potential use in improving drought tolerance in sorghum and other cereal crops.
Collapse
Affiliation(s)
- Nada Babiker Hamza
- Department of Molecular Biology, Commission for Biotechnology and Genetic Engineering, National Center for Research, P.O. Box: 2404, Khartoum, Sudan.
| | - Neha Sharma
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, ArunaAsaf Ali Marg, New Delhi, 110067, India
| | - Anita Tripathi
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, ArunaAsaf Ali Marg, New Delhi, 110067, India
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, ArunaAsaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
754
|
Ding X, Li J, Zhang H, He T, Han S, Li Y, Yang S, Gai J. Identification of miRNAs and their targets by high-throughput sequencing and degradome analysis in cytoplasmic male-sterile line NJCMS1A and its maintainer NJCMS1B of soybean. BMC Genomics 2016; 17:24. [PMID: 26729289 PMCID: PMC4700598 DOI: 10.1186/s12864-015-2352-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 12/21/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cytoplasmic male sterility (CMS) provides crucial breeding materials that facilitate hybrid seed production in various crops, and thus plays an important role in the study of hybrid vigor (heterosis), in plants. However, the CMS regulatory network in soybean remains unclear. MicroRNAs (miRNAs) play crucial roles in flower and pollen development by targeting genes that regulate their expression in plants. To identify the miRNAs and their targets that exist in the soybean CMS line NJCMS1A and its maintainer NJCMS1B, high-throughput sequencing and degradome analysis were conducted in this study. RESULTS Two small RNA libraries were constructed from the flower buds of the soybean CMS line NJCMS1A and its maintainer NJCMS1B. A total of 105 new miRNAs present on the other arm of known pre-miRNAs, 23 new miRNA members, 158 novel miRNAs and 160 high-confidence soybean miRNAs were identified using high-throughput sequencing. Among the identified miRNAs, 101 differentially expressed miRNAs with greater than two-fold changes between NJCMS1A and NJCMS1B were discovered. The different expression levels of selected miRNAs were confirmed by stem-loop quantitative real-time PCR. A degradome analysis showed that 856 targets were predicted to be targeted by 296 miRNAs, including a squamosa promoter-binding protein-like transcription factor family protein, a pentatricopeptide repeat-containing protein, and an auxin response factor, which were previously shown to be involved in floral organ or anther development in plants. Additionally, some targets, including a MADS-box transcription factor, NADP-dependent isocitrate dehydrogenase and NADH-ubiquinone oxidoreductase 24 kDa subunit, were identified, and they may have some relationship with the programmed cell death, reactive oxygen species accumulation and energy deficiencies, which might lead to soybean male sterility. CONCLUSIONS The present study is the first to use deep sequencing technology to identify miRNAs and their targets in the flower buds of the soybean CMS line NJCMS1A and its maintainer NJCMS1B. The results revealed that the miRNAs might participate in flower and pollen development, which could facilitate our understanding of the molecular mechanisms behind CMS in soybean.
Collapse
Affiliation(s)
- Xianlong Ding
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Jiajia Li
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Hao Zhang
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Tingting He
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Shaohuai Han
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Yanwei Li
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Shouping Yang
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Junyi Gai
- Soybean Research Institute, National Center for Soybean Improvement, MOA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
755
|
Tian J, Chen J, Li B, Zhang D. Association genetics in Populus reveals the interactions between Pto-miR160a and its target Pto-ARF16. Mol Genet Genomics 2016; 291:1069-82. [PMID: 26732268 DOI: 10.1007/s00438-015-1165-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/18/2015] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) play important roles in the regulation of gene expression in various biological processes. However, the interactions between miRNAs and their targets are largely unknown in plants. As a powerful tool for identification of variation associated with traits, association genetics provides another strategy for exploration of interactions between miRNAs and their targets. Here, we conducted expression analysis and association mapping to evaluate the interaction between Pto-miR160a and its target Pto-ARF16 in Populus tomentosa. By examining the expression patterns of Pto-MIR160a and Pto-ARF16, we identified a significant, negative correlation between their expression levels, indicating that Pto-miR160a may affect the expression of Pto-ARF16. Among the single nucleotide polymorphisms (SNPs) identified in this study, one common SNP in the pre-miRNA region of Pto-miR160a altered its predicted secondary structure while another common SNP in the predicted miRNA target site changed the binding affinity of Pto-miR160a. Linkage disequilibrium (LD) analysis revealed low LD levels of Pto-MIR160a and Pto-ARF16, indicating that they are suitable for candidate gene-based association analysis. Single SNP-based association analysis identified 19 SNPs (false discovery rate Q < 0.05) in Pto-MIR160a and Pto-ARF16 associated with three phenotypic traits. Epistasis analysis further identified 36 SNP-SNP interactions between SNPs in Pto-MIR160a and SNPs in Pto-ARF16, reflecting the possible genetic interaction of Pto-miR160a and Pto-ARF16. Taking these results together, our study identified SNPs in Pto-MIR160a and Pto-ARF16 associated with tree growth and wood properties, providing SNPs with potential applications in marker-assisted breeding and evidence for the genetic interaction of Pto-miR160a and Pto-ARF16.
Collapse
Affiliation(s)
- Jiaxing Tian
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Jinhui Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Bailian Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China. .,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
756
|
Georgakilas G, Vlachos IS, Zagganas K, Vergoulis T, Paraskevopoulou MD, Kanellos I, Tsanakas P, Dellis D, Fevgas A, Dalamagas T, Hatzigeorgiou AG. DIANA-miRGen v3.0: accurate characterization of microRNA promoters and their regulators. Nucleic Acids Res 2016; 44:D190-5. [PMID: 26586797 PMCID: PMC4702888 DOI: 10.1093/nar/gkv1254] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/01/2015] [Accepted: 11/02/2015] [Indexed: 01/04/2023] Open
Abstract
microRNAs (miRNAs) are small non-coding RNAs that actively fine-tune gene expression. The accurate characterization of the mechanisms underlying miRNA transcription regulation will further expand our knowledge regarding their implication in homeostatic and pathobiological networks. Aim of DIANA-miRGen v3.0 (http://www.microrna.gr/mirgen) is to provide for the first time accurate cell-line-specific miRNA gene transcription start sites (TSSs), coupled with genome-wide maps of transcription factor (TF) binding sites in order to unveil the mechanisms of miRNA transcription regulation. To this end, more than 7.3 billion RNA-, ChIP- and DNase-Seq next generation sequencing reads were analyzed/assembled and combined with state-of-the-art miRNA TSS prediction and TF binding site identification algorithms. The new database schema and web interface facilitates user interaction, provides advanced queries and innate connection with other DIANA resources for miRNA target identification and pathway analysis. The database currently supports 276 miRNA TSSs that correspond to 428 precursors and >19M binding sites of 202 TFs on a genome-wide scale in nine cell-lines and six tissues of Homo sapiens and Mus musculus.
Collapse
Affiliation(s)
- Georgios Georgakilas
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 382 21 Volos, Greece Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Ioannis S Vlachos
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 382 21 Volos, Greece Hellenic Pasteur Institute, 115 21 Athens, Greece Laboratory for Experimental Surgery and Surgical Research 'N.S. Christeas', Medical School of Athens, University of Athens, 11527 Athens, Greece
| | - Konstantinos Zagganas
- 'Athena' Research and Innovation Center, 11524 Athens, Greece University of Peloponnese, Department of Informatics and Telecommunications, 22100 Tripoli, Greece
| | | | - Maria D Paraskevopoulou
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 382 21 Volos, Greece Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Ilias Kanellos
- 'Athena' Research and Innovation Center, 11524 Athens, Greece School of Electrical and Computer Engineering, NTUA, 15773 Zografou, Greece
| | - Panayiotis Tsanakas
- School of Electrical and Computer Engineering, NTUA, 15773 Zografou, Greece Greek Research and Technology Network (GRNET), Athens 11527, Greece
| | - Dimitris Dellis
- Greek Research and Technology Network (GRNET), Athens 11527, Greece
| | - Athanasios Fevgas
- Department of Electrical & Computer Engineering, University of Thessaly, 382 21 Volos, Greece
| | | | - Artemis G Hatzigeorgiou
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 382 21 Volos, Greece Hellenic Pasteur Institute, 115 21 Athens, Greece 'Athena' Research and Innovation Center, 11524 Athens, Greece
| |
Collapse
|
757
|
Duan H, Lu X, Lian C, An Y, Xia X, Yin W. Genome-Wide Analysis of MicroRNA Responses to the Phytohormone Abscisic Acid in Populus euphratica. FRONTIERS IN PLANT SCIENCE 2016; 7:1184. [PMID: 27582743 PMCID: PMC4988358 DOI: 10.3389/fpls.2016.01184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 07/22/2016] [Indexed: 05/20/2023]
Abstract
MicroRNA (miRNA) is a type of non-coding small RNA with a regulatory function at the posttranscriptional level in plant growth development and in response to abiotic stress. Previous studies have not reported on miRNAs responses to the phytohormone abscisic acid (ABA) at a genome-wide level in Populus euphratica, a model tree for studying abiotic stress responses in woody plants. Here we analyzed the miRNA response to ABA at a genome-wide level in P. euphratica utilizing high-throughput sequencing. To systematically perform a genome-wide analysis of ABA-responsive miRNAs in P. euphratica, nine sRNA libraries derived from three groups (control, treated with ABA for 1 day and treated with ABA for 4 days) were constructed. Each group included three libraries from three individual plantlets as biological replicate. In total, 151 unique mature sequences belonging to 75 conserved miRNA families were identified, and 94 unique sequences were determined to be novel miRNAs, including 56 miRNAs with miRNA(*) sequences. In all, 31 conserved miRNAs and 31 novel miRNAs response to ABA significantly differed among the groups. In addition, 4132 target genes were predicted for the conserved and novel miRNAs. Confirmed by real-time qPCR, expression changes of miRNAs were inversely correlated with the expression profiles of their putative targets. The Populus special or novel miRNA-target interactions were predicted might be involved in some biological process related stress tolerance. Our analysis provides a comprehensive view of how P. euphratica miRNA respond to ABA, and moreover, different temporal dynamics were observed in different ABA-treated libraries.
Collapse
|
758
|
Chu Z, Chen J, Xu H, Dong Z, Chen F, Cui D. Identification and Comparative Analysis of microRNA in Wheat (Triticum aestivum L.) Callus Derived from Mature and Immature Embryos during In vitro Culture. FRONTIERS IN PLANT SCIENCE 2016; 7:1302. [PMID: 27625667 PMCID: PMC5003897 DOI: 10.3389/fpls.2016.01302] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/15/2016] [Indexed: 05/02/2023]
Abstract
Feasible and efficient tissue culture plays an important role in plant genetic engineering. Wheat (Triticum aestivum L.) immature embryos (IMEs) are preferred for tissue culture to mature embryos (MEs) because IMEs easily generate embryogenic callus, producing large number of plants. The molecular mechanisms of regulation and the biological pathways involved in embryogenic callus formation in wheat remain unclear. Here, microRNAs (miRNAs) potentially involved in embryogenic callus formation and somatic embryogenesis were identified through deep sequencing of small RNAs (sRNAs) and analyzed with bioinformatics tools. Six sRNA libraries derived from calli of IMEs and MEs after 3, 6, or 15 d of culture (DC) were constructed and sequenced. A total of 85 known miRNAs were identified, of which 30, 33, and 18 were differentially expressed (P < 0.05) between the IME and ME libraries at 3, 6, and 15 DC, respectively. Additionally, 171 novel and 41 candidate miRNAs were also identified, of the novel miRNA, 69, 67, and 37 were differentially expressed (P < 0.05) between the two types of libraries at 3, 6, and 15 DC, respectively. The expression patterns of eight known and eight novel miRNAs were validated using quantitative real-time polymerase chain reaction. Gene ontology annotation of differentially expressed miRNA targets provided information regarding the underlying molecular functions, biological processes, and cellular components involved in embryogenic callus development. Functional miRNAs, such as miR156, miR164, miR1432, miR398, and miR397, differentially expressed in IMEs and MEs might be related to embryogenic callus formation and somatic embryogenesis. This study suggests that miRNA plays an important role in embryogenic callus formation and somatic embryogenesis in wheat, and our data provide a useful resource for further research.
Collapse
|
759
|
Wang Y, Ding Y, Liu JY. Identification and Profiling of microRNAs Expressed in Elongating Cotton Fibers Using Small RNA Deep Sequencing. FRONTIERS IN PLANT SCIENCE 2016; 7:1722. [PMID: 27909445 PMCID: PMC5112280 DOI: 10.3389/fpls.2016.01722] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/02/2016] [Indexed: 05/03/2023]
Abstract
Plant microRNAs (miRNAs) have been shown to play essential roles in the regulation of gene expression. In this study, small RNA deep sequencing was applied to explore novel miRNAs expressed in elongating cotton fibers. A total of 46 novel and 96 known miRNAs, primarily derived from the corresponding specific loci in genome of Gossypium arboreum, were identified. 64 miRNAs were shown to be differentially expressed during the fiber elongation process; 16 were predicted to be novel miRNAs while the remaining 48 belong to known miRNA families. Furthermore, RLM-5' RACE (RNA ligase-mediated rapid amplification of 5'-cDNA ends) experiments identified the targets of eight important miRNAs, and the expression levels of these target genes were confirmed to be negatively correlated with the expression patterns of their corresponding miRNAs. We propose a potential functional network mediated through these eight miRNAs to illustrate their important functions in fiber elongation. Our study provides novel insights into the dynamic profiles of these miRNAs and a basis for investigating the regulatory mechanisms involved in the elongation of cotton fibers.
Collapse
|
760
|
Ivanov KI, Eskelin K, Bašić M, De S, Lõhmus A, Varjosalo M, Mäkinen K. Molecular insights into the function of the viral RNA silencing suppressor HCPro. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:30-45. [PMID: 26611351 DOI: 10.1111/tpj.13088] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 05/23/2023]
Abstract
Potyviral helper component proteinase (HCPro) is a well-characterized suppressor of antiviral RNA silencing, but its mechanism of action is not yet fully understood. In this study, we used affinity purification coupled with mass spectrometry to identify binding partners of HCPro in potyvirus-infected plant cells. This approach led to identification of various HCPro interactors, including two key enzymes of the methionine cycle, S-adenosyl-L-methionine synthase and S-adenosyl-L-homocysteine hydrolase. This finding, together with the results of enzymatic activity and gene knockdown experiments, suggests a mechanism in which HCPro complexes containing viral and host proteins act to suppress antiviral RNA silencing through local disruption of the methionine cycle. Another group of HCPro interactors identified in this study comprised ribosomal proteins. Immunoaffinity purification of ribosomes demonstrated that HCPro is associated with ribosomes in virus-infected cells. Furthermore, we show that HCPro and ARGONAUTE1 (AGO1), the core component of the RNA-induced silencing complex (RISC), interact with each other and are both associated with ribosomes in planta. These results, together with the fact that AGO1 association with ribosomes is a hallmark of RISC-mediated translational repression, suggest a second mechanism of HCPro action, whereby ribosome-associated multiprotein complexes containing HCPro relieve viral RNA translational repression through interaction with AGO1.
Collapse
Affiliation(s)
- Konstantin I Ivanov
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Katri Eskelin
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Marta Bašić
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Swarnalok De
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Andres Lõhmus
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014, Finland
| | - Kristiina Mäkinen
- Department of Food and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| |
Collapse
|
761
|
Shriram V, Kumar V, Devarumath RM, Khare TS, Wani SH. MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:817. [PMID: 27379117 PMCID: PMC4906921 DOI: 10.3389/fpls.2016.00817] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/25/2016] [Indexed: 05/19/2023]
Abstract
The microRNAs (miRNAs) are small (20-24 nt) sized, non-coding, single stranded riboregulator RNAs abundant in higher organisms. Recent findings have established that plants assign miRNAs as critical post-transcriptional regulators of gene expression in sequence-specific manner to respond to numerous abiotic stresses they face during their growth cycle. These small RNAs regulate gene expression via translational inhibition. Usually, stress induced miRNAs downregulate their target mRNAs, whereas, their downregulation leads to accumulation and function of positive regulators. In the past decade, investigations were mainly aimed to identify plant miRNAs, responsive to individual or multiple environmental factors, profiling their expression patterns and recognizing their roles in stress responses and tolerance. Altered expressions of miRNAs implicated in plant growth and development have been reported in several plant species subjected to abiotic stress conditions such as drought, salinity, extreme temperatures, nutrient deprivation, and heavy metals. These findings indicate that miRNAs may hold the key as potential targets for genetic manipulations to engineer abiotic stress tolerance in crop plants. This review is aimed to provide recent updates on plant miRNAs, their biogenesis and functions, target prediction and identification, computational tools and databases available for plant miRNAs, and their roles in abiotic stress-responses and adaptive mechanisms in major crop plants. Besides, the recent case studies for overexpressing the selected miRNAs for miRNA-mediated enhanced abiotic stress tolerance of transgenic plants have been discussed.
Collapse
Affiliation(s)
- Varsha Shriram
- Department of Botany, Prof. Ramkrishna More Arts, Commerce and Science College, Savitribai Phule Pune UniversityPune, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune UniversityPune, India
- *Correspondence: Vinay Kumar
| | - Rachayya M. Devarumath
- Molecular Biology and Genetic Engineering Section, Vasantdada Sugar InstitutePune, India
| | - Tushar S. Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune UniversityPune, India
| | - Shabir H. Wani
- Division of Genetics and Plant Breeding, Faculty of Agriculture WADURA, Sher-e-Kashmir University of Agricultural Sciences and TechnologyKashmir, India
| |
Collapse
|
762
|
Tang F, Wei H, Zhao S, Wang L, Zheng H, Lu M. Identification of microRNAs Involved in Regeneration of the Secondary Vascular System in Populus tomentosa Carr. FRONTIERS IN PLANT SCIENCE 2016; 7:724. [PMID: 27303419 PMCID: PMC4885845 DOI: 10.3389/fpls.2016.00724] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/10/2016] [Indexed: 05/20/2023]
Abstract
Wood formation is a complex developmental process primarily controlled by a regulatory transcription network. MicroRNAs (miRNAs) can modulate the expression of target genes involved in plant growth and development by inducing mRNA degradation and translational repression. In this study, we used a model of secondary vascular system regeneration established in Populus tomentosa to harvest differentiating xylem tissues over time for high-throughput sequencing of small RNAs. Analysis of the sequencing data identified 209 known and 187 novel miRNAs during this regeneration process. Degradome sequencing analysis was then performed, revealing 157 and 75 genes targeted by 21 known and 30 novel miRNA families, respectively. Gene ontology enrichment of these target genes revealed that the targets of 15 miRNAs were enriched in the auxin signaling pathway, cell differentiation, meristem development, and pattern specification process. The major biological events during regeneration of the secondary vascular system included the sequential stages of vascular cambium initiation, formation, and differentiation stages in sequence. This study provides the basis for further analysis of these miRNAs to gain greater insight into their regulatory roles in wood development in trees.
Collapse
Affiliation(s)
- Fang Tang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
- Key Laboratory of Science and Technology of Bamboo and Rattan of State Forestry Administration, International Centre for Bamboo and RattanBeijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry UniversityNanjing, China
| | - Hairong Wei
- School of Forestry Resources and Environmental Science, Michigan Technological UniversityHoughton, MI, USA
| | - Shutang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Lijuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Huanquan Zheng
- Department of Biology, McGill UniversityMontreal, QC, Canada
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry UniversityNanjing, China
- *Correspondence: Mengzhu Lu
| |
Collapse
|
763
|
Zhang W, Xie Y, Xu L, Wang Y, Zhu X, Wang R, Zhang Y, Muleke EM, Liu L. Identification of microRNAs and Their Target Genes Explores miRNA-Mediated Regulatory Network of Cytoplasmic Male Sterility Occurrence during Anther Development in Radish (Raphanus sativus L.). FRONTIERS IN PLANT SCIENCE 2016; 7:1054. [PMID: 27499756 PMCID: PMC4956657 DOI: 10.3389/fpls.2016.01054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 07/05/2016] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) are a type of endogenous non-coding small RNAs that play critical roles in plant growth and developmental processes. Cytoplasmic male sterility (CMS) is typically a maternally inherited trait and widely used in plant heterosis utilization. However, the miRNA-mediated regulatory network of CMS occurrence during anther development remains largely unknown in radish. In this study, a comparative small RNAome sequencing was conducted in floral buds of CMS line 'WA' and its maintainer line 'WB' by high-throughput sequencing. A total of 162 known miRNAs belonging to 25 conserved and 24 non-conserved miRNA families were isolated and 27 potential novel miRNA families were identified for the first time in floral buds of radish. Of these miRNAs, 28 known and 14 potential novel miRNAs were differentially expressed during anther development. Several target genes for CMS occurrence-related miRNAs encode important transcription factors and functional proteins, which might be involved in multiple biological processes including auxin signaling pathways, signal transduction, miRNA target silencing, floral organ development, and organellar gene expression. Moreover, the expression patterns of several CMS occurrence-related miRNAs and their targets during three stages of anther development were validated by qRT-PCR. In addition, a potential miRNA-mediated regulatory network of CMS occurrence during anther development was firstly proposed in radish. These findings could contribute new insights into complex miRNA-mediated genetic regulatory network of CMS occurrence and advance our understanding of the roles of miRNAs during CMS occurrence and microspore formation in radish and other crops.
Collapse
Affiliation(s)
- Wei Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yang Xie
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xianwen Zhu
- Department of Plant Sciences, North Dakota State UniversityFargo, ND, USA
| | - Ronghua Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yang Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Everlyne M. Muleke
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- *Correspondence: Liwang Liu
| |
Collapse
|
764
|
Han L, Weng K, Ma H, Xiang G, Li Z, Wang Y, Liu G, Xu Y. Identification and Characterization of Erysiphe necator-Responsive MicroRNAs in Chinese Wild Vitis pseudoreticulata by High-Throughput Sequencing. FRONTIERS IN PLANT SCIENCE 2016; 7:621. [PMID: 27303408 PMCID: PMC4885880 DOI: 10.3389/fpls.2016.00621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 04/22/2016] [Indexed: 05/21/2023]
Abstract
Grapevine powdery mildew is one of the most damaging fungal diseases. Therefore, a precise understanding of the grapevine disease resistance system becomes a subject of significant importance. Plant microRNAs(miRNAs) have been implicated to play regulatory roles in plant biotic stress responses. In this study, high-throughput sequencing and miRDeep-P were employed to identify miRNAs in Chinese wild Vitis pseudoreticulata leaves following inoculation with Erysiphe necator. Altogether, 126 previously identified microRNAs and 124 novel candidates of miRNA genes were detected. Among them, 43 conserved miRNAs belong to 20 families and 23 non-conserved but previously-known miRNAs belong to 15 families. Following E. necator inoculation, 119 miRNAs were down-regulated and 131 were up-regulated. Furthermore, the expression changes occurring in 32 miRNAs were significant. The expression patterns of some miRNAs were validated by semi-quantitative RT-PCR and qRT-PCR. A total of 485 target genes were predicted and categorized by Gene Ontology (GO). In addition, 14 vvi-miRNAs were screened with 36 targets which may be involved in powdery mildew resistance in grape. Highly accumulated vvi-NewmiR2118 was detected from accession "Baihe-35-1," whose targets were mostly NBS-LRR resistance genes. It was down-regulated rapidly and strongly in "Baihe-35-1" leaves after inoculated with E. necator, indicating its involvement in grape powdery mildew resistance. Finally, the study verified interaction between vvi-NewmiR2118 and RPP13 by histochemical staining and GUS fluorescence quantitative assay.
Collapse
Affiliation(s)
- Lijuan Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A& F UniversityYangling, China
| | - Kai Weng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A& F UniversityYangling, China
| | - Hui Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A& F UniversityYangling, China
| | - Gaoqing Xiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A& F UniversityYangling, China
| | - Zhiqian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A& F UniversityYangling, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A& F UniversityYangling, China
| | - Guotian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A& F UniversityYangling, China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A& F UniversityYangling, China
- *Correspondence: Yan Xu
| |
Collapse
|
765
|
Lv DW, Zhen S, Zhu GR, Bian YW, Chen GX, Han CX, Yu ZT, Yan YM. High-Throughput Sequencing Reveals H 2O 2 Stress-Associated MicroRNAs and a Potential Regulatory Network in Brachypodium distachyon Seedlings. FRONTIERS IN PLANT SCIENCE 2016; 7:1567. [PMID: 27812362 PMCID: PMC5071335 DOI: 10.3389/fpls.2016.01567] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/05/2016] [Indexed: 05/07/2023]
Abstract
Oxidative stress in plants can be triggered by many environmental stress factors, such as drought and salinity. Brachypodium distachyon is a model organism for the study of biofuel plants and crops, such as wheat. Although recent studies have found many oxidative stress response-related proteins, the mechanism of microRNA (miRNA)-mediated oxidative stress response is still unclear. Using next generation high-throughput sequencing technology, the small RNAs were sequenced from the model plant B. distachyon 21 (Bd21) under H2O2 stress and normal growth conditions. In total, 144 known B. distachyon miRNAs and 221 potential new miRNAs were identified. Further analysis of potential new miRNAs suggested that 36 could be clustered into known miRNA families, while the remaining 185 were identified as B. distachyon-specific new miRNAs. Differential analysis of miRNAs from the normal and H2O2 stress libraries identified 31 known and 30 new H2O2 stress responsive miRNAs. The expression patterns of seven representative miRNAs were verified by reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis, which produced results consistent with those of the deep sequencing method. Moreover, we also performed RT-qPCR analysis to verify the expression levels of 13 target genes and the cleavage site of 5 target genes by known or novel miRNAs were validated experimentally by 5' RACE. Additionally, a miRNA-mediated gene regulatory network for H2O2 stress response was constructed. Our study identifies a set of H2O2-responsive miRNAs and their target genes and reveals the mechanism of oxidative stress response and defense at the post-transcriptional regulatory level.
Collapse
Affiliation(s)
- Dong-Wen Lv
- College of Life Science, Capital Normal UniversityBeijing, China
- Department of Oral and Craniofacial Molecular Biology, VCU Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Shoumin Zhen
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Geng-Rui Zhu
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Yan-Wei Bian
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Guan-Xing Chen
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Cai-Xia Han
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Zi-Tong Yu
- State Agriculture Biotechnology Centre, Murdoch UniversityPerth, WA, Australia
| | - Yue-Ming Yan
- College of Life Science, Capital Normal UniversityBeijing, China
- *Correspondence: Yue-Ming Yan
| |
Collapse
|
766
|
Hivrale V, Zheng Y, Puli COR, Jagadeeswaran G, Gowdu K, Kakani VG, Barakat A, Sunkar R. Characterization of drought- and heat-responsive microRNAs in switchgrass. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:214-223. [PMID: 26566839 DOI: 10.1016/j.plantsci.2015.07.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/17/2015] [Accepted: 07/25/2015] [Indexed: 05/21/2023]
Abstract
Recent investigations revealed that microRNAs (miRNAs) play crucial roles in plant acclimation to stress conditions. Switchgrass, one of the important biofuel crop species can withstand hot and dry climates but the molecular basis of stress tolerance is relatively unknown. To identify miRNAs that are important for tolerating drought or heat, small RNAs were profiled in leaves of adult plants exposed to drought or heat. Sequence analysis enabled the identification of 29 conserved and 62 novel miRNA families. Notably, the abundances of several conserved and novel miRNAs were dramatically altered following drought or heat. Using at least one fold (log2) change as cut off, we observed that 13 conserved miRNA families were differentially regulated by both stresses, and, five and four families were specifically regulated by drought and heat, respectively. Similarly, using a more stringent cut off of two fold (log2) regulation, we found 5 and 16 novel miRNA families were upregulated but 6 and 7 families were downregulated under drought and heat, respectively. The stress-altered expression of a subset of miRNAs and their targets was confirmed using quantitative PCR. Overall, the switchgrass plants exposed to drought or heat revealed similarities as well as differences with respect to miRNA regulation, which could be important for enduring different stress conditions.
Collapse
Affiliation(s)
- Vandana Hivrale
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yun Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Chandra Obul Reddy Puli
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Guru Jagadeeswaran
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Kanchana Gowdu
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Vijaya Gopal Kakani
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Abdelali Barakat
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
767
|
Asha S, Sreekumar S, Soniya EV. Unravelling the complexity of microRNA-mediated gene regulation in black pepper (Piper nigrum L.) using high-throughput small RNA profiling. PLANT CELL REPORTS 2016; 35:53-63. [PMID: 26400683 DOI: 10.1007/s00299-015-1866-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 05/24/2023]
Abstract
Analysis of high-throughput small RNA deep sequencing data, in combination with black pepper transcriptome sequences revealed microRNA-mediated gene regulation in black pepper ( Piper nigrum L.). Black pepper is an important spice crop and its berries are used worldwide as a natural food additive that contributes unique flavour to foods. In the present study to characterize microRNAs from black pepper, we generated a small RNA library from black pepper leaf and sequenced it by Illumina high-throughput sequencing technology. MicroRNAs belonging to a total of 303 conserved miRNA families were identified from the sRNAome data. Subsequent analysis from recently sequenced black pepper transcriptome confirmed precursor sequences of 50 conserved miRNAs and four potential novel miRNA candidates. Stem-loop qRT-PCR experiments demonstrated differential expression of eight conserved miRNAs in black pepper. Computational analysis of targets of the miRNAs showed 223 potential black pepper unigene targets that encode diverse transcription factors and enzymes involved in plant development, disease resistance, metabolic and signalling pathways. RLM-RACE experiments further mapped miRNA-mediated cleavage at five of the mRNA targets. In addition, miRNA isoforms corresponding to 18 miRNA families were also identified from black pepper. This study presents the first large-scale identification of microRNAs from black pepper and provides the foundation for the future studies of miRNA-mediated gene regulation of stress responses and diverse metabolic processes in black pepper.
Collapse
Affiliation(s)
- Srinivasan Asha
- Plant Molecular Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| | - Sweda Sreekumar
- Plant Molecular Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| | - E V Soniya
- Plant Molecular Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
768
|
Šurbanovski N, Brilli M, Moser M, Si-Ammour A. A highly specific microRNA-mediated mechanism silences LTR retrotransposons of strawberry. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:70-82. [PMID: 26611654 DOI: 10.1111/tpj.13090] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/06/2015] [Accepted: 11/20/2015] [Indexed: 06/05/2023]
Abstract
Small RNAs are involved in a plethora of functions in plant genomes. In general, transcriptional gene silencing is mediated by 24-nucleotide siRNAs and is required for maintaining transposable elements in a silenced state. However, microRNAs are not commonly associated with transposon silencing. In this study, we performed small RNA transcriptome and degradome analyses of the Rosaceae model plant Fragaria vesca (the woodland strawberry) at the genome-wide level, and identified miRNA families and their targets. We report a highly specific mechanism of LTR retrotransposon silencing mediated by an abundant, ubiquitously expressed miRNA (fve-miR1511) generated from a single locus. This miRNA specifically targets LTR retroelements, silencing them post-transcriptionally by perfectly pairing to the highly conserved primer binding site for methionyl initiator tRNA that is essential for reverse transcription. We investigated the possible origins of this miRNA, and present evidence that the pre-miR1511 hairpin structure probably derived from a locus coding for tRNA(iM) (et) through a single microinversion event. Our study shows that this miRNA targets retrotransposons specifically and constitutively, and contributes to features such as genome stability, size and architecture in a far more direct way than previously thought.
Collapse
Affiliation(s)
- Nada Šurbanovski
- Functional Genomics, Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all' Adige, 38010, Italy
| | - Matteo Brilli
- Functional Genomics, Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all' Adige, 38010, Italy
| | - Mirko Moser
- Functional Genomics, Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all' Adige, 38010, Italy
| | - Azeddine Si-Ammour
- Functional Genomics, Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all' Adige, 38010, Italy
| |
Collapse
|
769
|
Paim Pinto DL, Brancadoro L, Dal Santo S, De Lorenzis G, Pezzotti M, Meyers BC, Pè ME, Mica E. The Influence of Genotype and Environment on Small RNA Profiles in Grapevine Berry. FRONTIERS IN PLANT SCIENCE 2016; 7:1459. [PMID: 27761135 PMCID: PMC5050227 DOI: 10.3389/fpls.2016.01459] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 09/13/2016] [Indexed: 05/21/2023]
Abstract
Understanding the molecular mechanisms involved in the interaction between the genetic composition and the environment is crucial for modern viticulture. We approached this issue by focusing on the small RNA transcriptome in grapevine berries of the two varieties Cabernet Sauvignon and Sangiovese, growing in adjacent vineyards in three different environments. Four different developmental stages were studied and a total of 48 libraries of small RNAs were produced and sequenced. Using a proximity-based pipeline, we determined the general landscape of small RNAs accumulation in grapevine berries. We also investigated the presence of known and novel miRNAs and analyzed their accumulation profile. The results showed that the distribution of small RNA-producing loci is variable between the two cultivars, and that the level of variation depends on the vineyard. Differently, the profile of miRNA accumulation mainly depends on the developmental stage. The vineyard in Riccione maximizes the differences between the varieties, promoting the production of more than 1000 specific small RNA loci and modulating their expression depending on the cultivar and the maturation stage. In total, 89 known vvi-miRNAs and 33 novel vvi-miRNA candidates were identified in our samples, many of them showing the accumulation profile modulated by at least one of the factors studied. The in silico prediction of miRNA targets suggests their involvement in berry development and in secondary metabolites accumulation such as anthocyanins and polyphenols.
Collapse
Affiliation(s)
| | - Lucio Brancadoro
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of MilanMilan, Italy
| | - Silvia Dal Santo
- Laboratory of Plant Genetics, Department of Biotechnology, University of VeronaVerona, Italy
| | - Gabriella De Lorenzis
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of MilanMilan, Italy
| | - Mario Pezzotti
- Laboratory of Plant Genetics, Department of Biotechnology, University of VeronaVerona, Italy
| | - Blake C. Meyers
- Donald Danforth Plant Science CenterSt. Louis, MO, USA
- Division of Plant Sciences, University of Missouri–ColumbiaColumbia, MO, USA
| | - Mario E. Pè
- Institute of Life Sciences, Sant'Anna School of Advanced StudiesPisa, Italy
| | - Erica Mica
- Institute of Life Sciences, Sant'Anna School of Advanced StudiesPisa, Italy
- Genomics Research Centre, Agricultural Research CouncilFiorenzuola d'Arda, Italy
- *Correspondence: Erica Mica
| |
Collapse
|
770
|
Khaldun ABM, Huang W, Lv H, Liao S, Zeng S, Wang Y. Comparative Profiling of miRNAs and Target Gene Identification in Distant-Grafting between Tomato and Lycium (Goji Berry). FRONTIERS IN PLANT SCIENCE 2016; 7:1475. [PMID: 27803702 PMCID: PMC5067468 DOI: 10.3389/fpls.2016.01475] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/16/2016] [Indexed: 05/10/2023]
Abstract
Local translocation of small RNAs between cells is proved. Long distance translocation between rootstock and scion is also well documented in the homo-grafting system, but the process in distant-grafting is widely unexplored where rootstock and scion belonging to different genera. Micro RNAs are a class of small, endogenous, noncoding, gene silencing RNAs that regulate target genes of a wide range of important biological pathways in plants. In this study, tomato was grafted onto goji (Lycium chinense Mill.) to reveal the insight of miRNAs regulation and expression patterns within a distant-grafting system. Goji is an important traditional Chinese medicinal plant with enriched phytochemicals. Illumina sequencing technology has identified 68 evolutionary known miRNAs of 37 miRNA families. Moreover, 168 putative novel miRNAs were also identified. Compared with control tomato, 43 (11 known and 32 novels) and 163 (33 known and 130 novels) miRNAs were expressed significantly different in shoot and fruit of grafted tomato, respectively. The fruiting stage was identified as the most responsive in the distant-grafting approach and 123 miRNAs were found as up-regulating in the grafted fruit which is remarkably higher compare to the grafted shoot tip (28). Potential targets of differentially expressed miRNAs were found to be involved in diverse metabolic and regulatory pathways. ADP binding activities, molybdopterin synthase complex and RNA helicase activity were found as enriched terms in GO (Gene Ontology) analysis. Additionally, "metabolic pathways" was revealed as the most significant pathway in KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. The information of the small RNA transcriptomes that are obtained from this study might be the first miRNAs elucidation for a distant-grafting system, particularly between goji and tomato. The results from this study will provide the insights into the molecular aspects of miRNA-mediated regulation in the medicinal plant goji, and in grafted tomato. Noteworthy, it would provide a basis how miRNA signals could exchange between rootstock and scion, and the relevance to diverse biological processes.
Collapse
Affiliation(s)
- A. B. M. Khaldun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden (CAS)Wuhan, China
- University of the Chinese Academy of SciencesBeijing, China
- Oilseed Research Center, Bangladesh Agricultural Research Institute (BARI)Joydebpur, Gazipur, Bangladesh
| | - Wenjun Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden (CAS)Wuhan, China
| | - Haiyan Lv
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden (CAS)Wuhan, China
| | - Sihong Liao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden (CAS)Wuhan, China
- University of the Chinese Academy of SciencesBeijing, China
| | - Shaohua Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden (CAS)Guangzhou, China
| | - Ying Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden (CAS)Wuhan, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden (CAS)Guangzhou, China
- Northwest Center for Agrobiotechnology (Ningxia), CASBeijing, China
- *Correspondence: Ying Wang
| |
Collapse
|
771
|
Guo W, Zhang Y, Wang Q, Zhan Y, Zhu G, Yu Q, Zhu L. High-throughput sequencing and degradome analysis reveal neutral evolution of Cercis gigantea microRNAs and their targets. PLANTA 2016; 243:83-95. [PMID: 26342708 PMCID: PMC4698290 DOI: 10.1007/s00425-015-2389-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/20/2015] [Indexed: 05/24/2023]
Abstract
High-throughput sequencing and degradome analysis for Cercis gigantea identified 194 known miRNAs and 23 novel miRNAs with 61 targets. The comparison results of highly conserved miRNAs and non-conserved miRNAs implied that C. gigantea miRNAs were subjected to the neutral evolution. MicroRNAs play a key role in post-transcriptionally regulating gene expression during plant growth, development and other various biological processes. Although numerous miRNAs have been identified and documented, to date, there are no reports on Cercis gigantea (C. gigantea) miRNAs. In this study, C. gigantea miRNAs and their target genes were investigated by extracting RNA from young roots, tender stems, young leaves, and flower buds of C. gigantea to establish a small RNA and a degradome library to further sequence. This study identified 194 known miRNAs belonging to 52 miRNA families and 23 novel miRNAs. Among these, 158 miRNAs from 27 miRNA families were highly conserved and existed in a plurality of plants. In addition, 60 different targets for 30 known families and one target for novel miRNA were identified by high-throughput sequencing and degradome analysis in C. gigantea. The comparison results revealed that highly conserved miRNAs have higher expression levels, more family members and more targets than non-conserved miRNAs, indicating that C. gigantea miRNAs were subjected to the neutral evolution. Meanwhile, these conserved miRNAs were also found to be involved in auxin signal transduction, regulation of transcription, and other developmental processes, which will help further understanding regulatory mechanisms of C. gigantea miRNAs.
Collapse
Affiliation(s)
- Wenna Guo
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Ying Zhang
- Yangzhou Breeding Biological Agriculture Technology Co. Ltd, Yangzhou, 225200, People's Republic of China.
| | - Qiang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, People's Republic of China.
| | - Yueping Zhan
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Guanghui Zhu
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Qi Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.
| | - Liucun Zhu
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
772
|
Wang J, Jian H, Wang T, Wei L, Li J, Li C, Liu L. Identification of microRNAs Actively Involved in Fatty Acid Biosynthesis in Developing Brassica napus Seeds Using High-Throughput Sequencing. FRONTIERS IN PLANT SCIENCE 2016; 7:1570. [PMID: 27822220 PMCID: PMC5075540 DOI: 10.3389/fpls.2016.01570] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/05/2016] [Indexed: 05/21/2023]
Abstract
Seed development has a critical role during the spermatophyte life cycle. In Brassica napus, a major oil crop, fatty acids are synthesized and stored in specific tissues during embryogenesis, and understanding the molecular mechanism underlying fatty acid biosynthesis during seed development is an important research goal. In this study, we constructed three small RNA libraries from early seeds at 14, 21, and 28 days after flowering (DAF) and used high-throughput sequencing to examine microRNA (miRNA) expression. A total of 85 known miRNAs from 30 families and 1160 novel miRNAs were identified, of which 24, including 5 known and 19 novel miRNAs, were found to be involved in fatty acid biosynthesis.bna-miR156b, bna-miR156c, bna-miR156g, novel_mir_1706, novel_mir_1407, novel_mir_173, and novel_mir_104 were significantly down-regulated at 21 DAF and 28 DAF, whereas bna-miR159, novel_mir_1081, novel_mir_19 and novel_mir_555 were significantly up-regulated. In addition, we found that some miRNAs regulate functional genes that are directly involved in fatty acid biosynthesis and that other miRNAs regulate the process of fatty acid biosynthesis by acting on a large number of transcription factors. The miRNAs and their corresponding predicted targets were partially validated by quantitative RT-PCR. Our data suggest that diverse and complex miRNAs are involved in the seed development process and that miRNAs play important roles in fatty acid biosynthesis during seed development.
Collapse
Affiliation(s)
- Jia Wang
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Nanchong Academy of Agricultural SciencesNanchong, China
| | - Hongju Jian
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
| | - Tengyue Wang
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
| | - Lijuan Wei
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
| | - Chao Li
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Guizhou Province Institute of Oil CropsGuiyang, China
- *Correspondence: Chao Li
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Southwest UniversityChongqing, China
- Liezhao Liu
| |
Collapse
|
773
|
Sattar S, Thompson GA. Small RNA Regulators of Plant-Hemipteran Interactions: Micromanagers with Versatile Roles. FRONTIERS IN PLANT SCIENCE 2016; 7:1241. [PMID: 27625654 PMCID: PMC5003895 DOI: 10.3389/fpls.2016.01241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/04/2016] [Indexed: 05/13/2023]
Abstract
Non-coding small RNAs (sRNAs) in plants have important roles in regulating biological processes, including development, reproduction, and stress responses. Recent research indicates significant roles for sRNA-mediated gene silencing during plant-hemipteran interactions that involve all three of these biological processes. Plant responses to hemipteran feeding are determined by changes in the host transcriptome that appear to be fine-tuned by sRNAs. The role of sRNA in plant defense responses is complex. Different forms of sRNAs, with specific modes of action, regulate changes in the host transcriptome primarily through post-transcriptional gene silencing and occasionally through translational repression. Plant genetic resistance against hemipterans provides a model to explore the regulatory roles of sRNAs in plant defense. Aphid-induced sRNA expression in resistance genotypes delivers a new paradigm in understanding the regulation of R gene-mediated resistance in host plants. Unique sRNA profiles, including changes in sRNA biogenesis and expression can also provide insights into susceptibility to insect herbivores. Activation of phytohormone-mediated defense responses against insect herbivory is another hallmark of this interaction, and recent studies have shown that regulation of phytohormone signaling is under the control of sRNAs. Hemipterans feeding on resistant plants also show changes in insect sRNA profiles, possibly influencing insect development and reproduction. Changes in insect traits such as fecundity, host range, and resistance to insecticides are impacted by sRNAs and can directly contribute to the success of certain insect biotypes. In addition to causing direct damage to the host plant, hemipteran insects are often vectors of viral pathogens. Insect anti-viral RNAi machinery is activated to limit virus accumulation, suggesting a role in insect immunity. Virus-derived long sRNAs strongly resemble insect piRNAs, leading to the speculation that the piRNA pathway is induced in response to viral infection. Evidence for robust insect RNAi machinery in several hemipteran species is of immense interest and is being actively pursued as a possible tool for insect control. RNAi-induced gene silencing following uptake of exogenous dsRNA was successfully demonstrated in several hemipterans and the presence of sid-1 like genes support the concept of a systemic response in some species.
Collapse
|
774
|
Dukowic-Schulze S, Sundararajan A, Ramaraj T, Kianian S, Pawlowski WP, Mudge J, Chen C. Novel Meiotic miRNAs and Indications for a Role of PhasiRNAs in Meiosis. FRONTIERS IN PLANT SCIENCE 2016; 7:762. [PMID: 27313591 PMCID: PMC4889585 DOI: 10.3389/fpls.2016.00762] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/17/2016] [Indexed: 05/03/2023]
Abstract
Small RNAs (sRNA) add additional layers to the regulation of gene expression, with siRNAs directing gene silencing at the DNA level by RdDM (RNA-directed DNA methylation), and micro RNAs (miRNAs) directing post-transcriptional regulation of specific target genes, mostly by mRNA cleavage. We used manually isolated male meiocytes from maize (Zea mays) to investigate sRNA and DNA methylation landscapes during zygotene, an early stage of meiosis during which steps of meiotic recombination and synapsis of paired homologous chromosomes take place. We discovered two novel miRNAs from meiocytes, zma-MIR11969 and zma-MIR11970, and identified putative target genes. Furthermore, we detected abundant phasiRNAs of 21 and 24 nt length. PhasiRNAs are phased small RNAs which occur in 21 or 24 nt intervals, at a few hundred loci, specifically in male reproductive tissues in grasses. So far, the function of phasiRNAs remained elusive. Data from isolated meiocytes now revealed elevated DNA methylation at phasiRNA loci, especially in the CHH context, suggesting a role for phasiRNAs in cis DNA methylation. In addition, we consider a role of these phasiRNAs in chromatin remodeling/dynamics during meiosis. However, this is not well supported yet and will need more additional data. Here, we only lay out the idea due to other relevant literature and our additional observation of a peculiar GC content pattern at phasiRNA loci. Chromatin remodeling is also indicated by the discovery that histone genes were enriched for sRNA of 22 nt length. Taken together, we gained clues that lead us to hypothesize sRNA-driven DNA methylation and possibly chromatin remodeling during male meiosis in the monocot maize which is in line with and extends previous knowledge.
Collapse
Affiliation(s)
| | | | | | - Shahryar Kianian
- Cereal Disease Laboratory, United States Department of Agriculture – Agricultural Research Service, St. PaulMN, USA
| | - Wojciech P. Pawlowski
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, IthacaNY, USA
| | - Joann Mudge
- National Center for Genome Resources, Santa FeNM, USA
| | - Changbin Chen
- Department of Horticultural Science, University of Minnesota, St. PaulMN, USA
- *Correspondence: Changbin Chen,
| |
Collapse
|
775
|
Gao F, Nan F, Feng J, Lv J, Liu Q, Xie S. Identification and characterization of microRNAs in Eucheuma denticulatum by high-throughput sequencing and bioinformatics analysis. RNA Biol 2015; 13:343-52. [PMID: 26717154 DOI: 10.1080/15476286.2015.1125075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Eucheuma denticulatum, an economically and industrially important red alga, is a valuable marine resource. Although microRNAs (miRNAs) play an essential role in gene post-transcriptional regulation, no research has been conducted to identify and characterize miRNAs in E. denticulatum. In this study, we identified 134 miRNAs (133 conserved miRNAs and one novel miRNA) from 2,997,135 small-RNA reads by high-throughput sequencing combined with bioinformatics analysis. BLAST searching against miRBase uncovered 126 potential miRNA families. A conservation and diversity analysis of predicted miRNA families in different plant species was performed by comparative alignment and homology searching. A total of 4 and 13 randomly selected miRNAs were respectively validated by northern blotting and stem-loop reverse transcription PCR, thereby demonstrating the reliability of the miRNA sequencing data. Altogether, 871 potential target genes were predicted using psRobot and TargetFinder. Target genes classification and enrichment were conducted based on Gene Ontology analysis. The functions of target gene products and associated metabolic pathways were predicted by Kyoto Encyclopedia of Genes and Genomes pathway analysis. A Cytoscape network was constructed to explore the interrelationships of miRNAs, miRNA-target genes and target genes. A large number of miRNAs with diverse target genes will play important roles for further understanding some essential biological processes in E. denticulatum. The uncovered information can serve as an important reference for the protection and utilization of this unique red alga in the future.
Collapse
Affiliation(s)
- Fan Gao
- a School of Life Science, Shanxi University , Taiyuan , PR China
| | - Fangru Nan
- a School of Life Science, Shanxi University , Taiyuan , PR China
| | - Jia Feng
- a School of Life Science, Shanxi University , Taiyuan , PR China
| | - Junping Lv
- a School of Life Science, Shanxi University , Taiyuan , PR China
| | - Qi Liu
- a School of Life Science, Shanxi University , Taiyuan , PR China
| | - Shulian Xie
- a School of Life Science, Shanxi University , Taiyuan , PR China
| |
Collapse
|
776
|
Gao F, Wang K, Liu Y, Chen Y, Chen P, Shi Z, Luo J, Jiang D, Fan F, Zhu Y, Li S. Blocking miR396 increases rice yield by shaping inflorescence architecture. NATURE PLANTS 2015; 2:15196. [PMID: 27250748 DOI: 10.1038/nplants.2015.196] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/03/2015] [Indexed: 05/22/2023]
Abstract
Strategies to increase rice productivity to meet the global demand have been the main concern of breeders around the world. Although a growing number of functional genes related to crop yield have been characterized, our understanding of its associated regulatory pathways is limited. Using rice as a model, we find that blocking miR396 greatly increases grain yield by modulating development of auxiliary branches and spikelets through direct induction of the growth regulating factor 6 (OsGRF6) gene. The upregulation of OsGRF6 results in the coordinated activation of several immediate downstream biological clades, including auxin (IAA) biosynthesis, auxin response factors, and branch and spikelet development-related transcription factors. This study describes a conserved microRNA (miRNA)-dependent regulatory module that integrates inflorescence development, auxin biosynthesis and signalling pathways, and could potentially be used in engineering high-yield crop plants.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Kun Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Ying Liu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Yunping Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Pian Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Zhenying Shi
- Institute of Plant Physiology &Ecology, SIBS, CAS
| | - Jie Luo
- National Key Laboratory of Genetic Crop Improvement, Huazhong Agriculture University, Wuhan 430070, China
| | - Daqing Jiang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Fengfeng Fan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Science, Wuhan University, Wuhan 430072, China
| |
Collapse
|
777
|
Zhang P, Zhu Y, Wang L, Chen L, Zhou S. Mining candidate genes associated with powdery mildew resistance in cucumber via super-BSA by specific length amplified fragment (SLAF) sequencing. BMC Genomics 2015; 16:1058. [PMID: 26668009 PMCID: PMC4677437 DOI: 10.1186/s12864-015-2041-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 10/08/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Powdery mildew (PM) is the most common fungal disease of cucumber and other cucurbit crops, while breeding the PM-resistant materials is the effective way to defense this disease, and the recent development of modern genetics and genomics make us aware of that studying the resistance genes is the essential way to breed the PM high-resistance plant. With the ever increasing throughput of next-generation sequencing (NGS), the development of specific length amplified fragment sequencing (SLAF-seq) as a high-resolution strategy for large-scale de novo SNP discovery is gradually applied for functional gene mining. Here we combined the bulked segregant analysis (BSA) with SLAF-seq to identify candidate genes associated with PM resistance in cucumber. METHODS A segregating population comprising 251 F2 individuals was developed using H136 (female parent) as susceptible parent and BK2 (male parent) as resistance donor. After PMR test, total genomic DNA was prepared from each plant. Systemic genomic analysis of the GC content, repeat sequence, etc. was carried out by prediction software SLAF_Predict to establish condition to ensure the uniformity and density of the molecular markers. After samples were gel purified, SLAFs were generated at Biomarker Technologies Corporation in Beijing. Based on SLAF tags and the PMR test result, the hot region were annotated. RESULTS A total of 73,100 high-quality SLAF tags with an average depth of 99.11× were sequenced. Among these, 5,355 polymorphic tags were identified with a polymorphism rate of 7.34 %, including 7.09 % SNPs and other polymorphism types. Finally, 140 associated SLAFs were identified, and two main Hot Regions were detected on chromosome 1 and 6, which contained five genes invovled in defense response, toxin metabolism, cell stress response, and injury response in cucumber. CONCLUSIONS Associated markers identified by super-BSA in this study, could not only speed up the study of the PMR genes, but also provide a feasible solution for breeding the marker-assisted PMR cucumber. Moreover, this study could also be extended to any other species with reference genome.
Collapse
Affiliation(s)
- Peng Zhang
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, 310021, China.
| | - Yuqiang Zhu
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, 310021, China.
| | - Lili Wang
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, 310021, China.
| | - Liping Chen
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, 310021, China.
| | - Shengjun Zhou
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, 310021, China.
| |
Collapse
|
778
|
Wang C, Fang J. miR-RACE: an effective approach to accurately determine the sequence of computationally identified miRNAs. Methods Mol Biol 2015; 1296:109-18. [PMID: 25791595 DOI: 10.1007/978-1-4939-2547-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Computational prediction of microRNAs (miRNAs) is one of the most important approaches in microRNA studies. While validation of the predicted microRNAs' precise sequences is essential for further studies on their biogenesis, evolution, and functions, computational miRNA prediction methods, however, often fail to predict the accurate sequence of the mature miRNA within the precursor at the nucleotide precision level. Here, we depict a highly efficient method for determining the precise sequences of computationally predicted miRNAs. The method combines the generation of miRNA-enriched libraries, with 5'- and 3'-end adaptors being linked to the miRNA molecules, the reverse transcription of small RNAs with an oligo-d(T) anchor primer, two specific 5'- and 3'-miRNA-RACE (miR-RACE) PCR reactions and sequence-directed cloning. The efficiency of this method was demonstrated by the precise sequence validation of computationally predicted miRNAs in citrus, apple, and other fruit crops. Our ongoing research indicates that miR-RACE is also very useful to verify the sequences of putative miRNAs obtained by deep sequencing of small RNA libraries. The protocol of miR-RACE is rapid and can be completed within 2-3 days. miR-RACE should make the bioinformatic prediction of miRNAs more powerful and accurate.
Collapse
Affiliation(s)
- Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | | |
Collapse
|
779
|
Wu BF, Li WF, Xu HY, Qi LW, Han SY. Role of cin-miR2118 in drought stress responses in Caragana intermedia and Tobacco. Gene 2015; 574:34-40. [PMID: 26216304 DOI: 10.1016/j.gene.2015.07.072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/05/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022]
Abstract
The miR2118 is highly conserved in leguminous plants. Its function is to regulate the expression of genes encoding the TIR-NBS-LRR resistance protein. In this study, cin-miR2118 from Caragana intermedia was functionally characterized, especially with regard to its role in drought stress resistance. Two target genes of cin-miR2118 were predicted and cloned, the occurrence of miR2118 target sequence in both genes indicated that they might be targets of cin-miR2118. We investigated the expression patterns of cin-miR2118 and its target genes in C. intermedia stems and found diverse changes in expression in response to drought stress. CiDR1 was negatively correlated with corresponding miR2118 expression while CiDR2 was positively correlated with cin-miR2118. For further study, induced tolerance was observed in the transgenic Tobacco with overexpression cin-miR2118 upon 140-min water deficiency. And the expression level of cin-miR2118 was dramatically increased under drought stress. These results reveal that cin-miR2118 exert positive effects on drought stress tolerance. In addition, our study unexpectedly found that overexpression of cin-miR2118 in Tobacco can cause phenotype changes, which suggested that cin-miR2118 may have a novel function as a growth regulator in Tobacco.
Collapse
Affiliation(s)
- Bi-Fei Wu
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Wan-Feng Li
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Hai-Yan Xu
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Li-Wang Qi
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Su-Ying Han
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
780
|
Computational exploration of microRNAs from expressed sequence tags of Humulus lupulus , target predictions and expression analysis. Comput Biol Chem 2015; 59 Pt A:131-41. [DOI: 10.1016/j.compbiolchem.2015.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/02/2015] [Accepted: 09/07/2015] [Indexed: 11/19/2022]
|
781
|
Yang L, Mu X, Liu C, Cai J, Shi K, Zhu W, Yang Q. Overexpression of potato miR482e enhanced plant sensitivity to Verticillium dahliae infection. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:1078-88. [PMID: 25735453 DOI: 10.1111/jipb.12348] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/28/2015] [Indexed: 05/21/2023]
Abstract
Verticillium wilt of potato is caused by the fungus pathogen Verticillium dahliae. Present sRNA sequencing data revealed that miR482 was in response to V. dahliae infection, but the function in potato is elusive. Here, we characterized potato miR482 family and its putative role resistance to Verticillium wilt. Members of the potato miR482 superfamily are variable in sequence, but all variants target a class of disease-resistance proteins with nucleotide binding site (NBS) and leucine-rich repeat (LRR) motifs. When potato plantlets were infected with V. dahliae, the expression level of miR482e was downregulated, and that of several NBS-LRR targets of miR482e were upregulated. Transgenic potato plantlets overexpressing miR482e showed hypersensitivity to V. dahliae infection. Using sRNA and degradome datasets, we validated that miR482e targets mRNAs of NBS-LRR disease-resistance proteins and triggers the production of trans-acting (ta)-siRNAs, most of which target mRNAs of defense-related proteins. Thus, the hypersensitivity of transgenic potato could be explained by enhanced miR482e and miR482e-derived ta-siRNA-mediated silencing on NBS-LRR-disease-resistance proteins. It is speculated that a miR482-mediated silencing cascade mechanism is involved in regulating potato resistance against V. dahliae infection and could be a counter defense action of plant in response to pathogen infection.
Collapse
Affiliation(s)
- Liu Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210095, China
| | - Xiaoying Mu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chao Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinghui Cai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ke Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenjiao Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qing Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
782
|
Li X, Gao S, Tang Y, Li L, Zhang F, Feng B, Fang Z, Ma L, Zhao C. Genome-wide identification and evolutionary analyses of bZIP transcription factors in wheat and its relatives and expression profiles of anther development related TabZIP genes. BMC Genomics 2015; 16:976. [PMID: 26581444 PMCID: PMC4652339 DOI: 10.1186/s12864-015-2196-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/05/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Among the largest and most diverse transcription factor families in plants, basic leucine zipper (bZIP) family participate in regulating various processes, including floral induction and development, stress and hormone signaling, photomorphogenesis, seed maturation and germination, and pathogen defense. Although common wheat (Triticum aestivum L.) is one of the most widely cultivated and consumed food crops in the world, there is no comprehensive analysis of bZIPs in wheat, especially those involved in anther development. Previous studies have demonstrated wheat, T. urartu, Ae. tauschii, barley and Brachypodium are evolutionarily close in Gramineae family, however, the real evolutionary relationship still remains mysterious. RESULTS In this study, 187 bZIP family genes were comprehensively identified from current wheat genome. 98, 96 and 107 members of bZIP family were also identified from the genomes of T.urartu, Ae.tauschii and barley, respectively. Orthology analyses suggested 69.4 % of TubZIPs were orthologous to 68.8 % of AetbZIPs and wheat had many more in-paralogs in the bZIP family than its relatives. It was deduced wheat had a closer phylogenetic relationship with barley and Brachypodium than T.urartu and Ae.tauschii. bZIP proteins in wheat, T.urartu and Ae.tauschii were divided into 14 subgroups based on phylogenetic analyses. Using Affymetrix microarray data, 48 differentially expressed TabZIP genes were identified to be related to anther development from comparison between the male sterility line and the restorer line. Genes with close evolutionary relationship tended to share similar gene structures. 15 of 23 selected TabZIP genes contained LTR elements in their promoter regions. Expression of 21 among these 23 TabZIP genes were obviously responsive to low temperature. These 23 TabZIP genes all exhibited distinct tissue-specific expression pattern. Among them, 11 TabZIP genes were predominantly expressed in anther and most of them showed over-dominance expression mode in the cross combination TY806 × BS366. CONCLUSIONS The genome-wide identification provided an overall insight of bZIP gene family in wheat and its relatives. The evolutionary relationship of wheat and its relatives was proposed based on orthology analyses. Microarray and expression analyses suggested the potential involvement of bZIP genes in anther development and facilitated selection of anther development related gene for further functional characterization.
Collapse
Affiliation(s)
- Xueyin Li
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
- College of Agronomy, Northwest A & F University, Yangling, 712100, China.
| | - Shiqing Gao
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Yimiao Tang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Fengjie Zhang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
- College of Agriculture, Shanxi Agricultural University, Taigu, 030800, China.
| | - Biane Feng
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
- College of Agriculture, Shanxi Agricultural University, Taigu, 030800, China.
| | - Zhaofeng Fang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Lingjian Ma
- College of Agronomy, Northwest A & F University, Yangling, 712100, China.
| | - Changping Zhao
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
783
|
Liu J, Zhang X, Zhang F, Hong N, Wang G, Wang A, Wang L. Identification and characterization of microRNAs from in vitro-grown pear shoots infected with Apple stem grooving virus in response to high temperature using small RNA sequencing. BMC Genomics 2015; 16:945. [PMID: 26573813 PMCID: PMC4647338 DOI: 10.1186/s12864-015-2126-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/22/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) have functions in diverse biological processes such as growth, signal transduction, disease resistance, and stress responses in plants. Thermotherapy is an effective approach for elimination of viruses from fruit trees. However, the role of miRNAs in this process remains elusive. Previously, we showed that high temperature treatment reduces the titers of Apple stem grooving virus (ASGV) from the tips of in vitro-grown Pyrus pyrifolia plants. In this study, we identified high temperature-altered pear miRNAs using the next generation sequencing technology, and futher molecularly characterized miRNA-mediated regulaton of target gene expression in the meristem tip and base tissues of in vitro-grown, ASGV-infected pear shoots under different temperatures. RESULTS Using in vitro-grown P. pyrifolia shoot meristem tips infected with ASGV, a total of 22,592,997 and 20,411,254 clean reads were obtained from Illumina high-throughput sequencing of small RNA libraries at 24 °C and 37 °C, respectively. We identified 149 conserved and 141 novel miRNAs. Seven conserved miRNAs and 77 novel miRNAs were differentially expressed at different temperatures. Target genes for differentially expressed known and novel miRNAs were predicted and functionally annotated. Gene Ontology (GO) analysis showed that high-ranking miRNA target genes were involved in metabolic processes, responses to stress, and signaling, indicating that these high temperature-responsive miRNAs have functions in diverse gene regulatory networks. Spatial expression patterns of the miRNAs and their target genes were found to be expressed in shoot tip and base tissues by qRT-PCR. In addition, high temperature reduced viral titers in the shoot meristem tip, while negatively regulated miRNA-mediated target genes related to resistance disease defense and hormone signal transduction pathway were up-regulated in the P. pyrifolia shoot tip in response to high temperature. These results suggested that miRNAs may have important functions in the high temperature-dependent decrease of ASGV titer in in vitro-grown pear shoots. CONCLUSIONS This is the first report of miRNAs differentially expressed at 24 °C and 37 °C in the meristem tip of pear shoots infected with ASGV. The results of this study provide valuable information for further exploration of the function of high temperature-altered miRNAs in suppressing viral infections in pear and other fruit trees.
Collapse
Affiliation(s)
- Juan Liu
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, P. R. China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China.,National Indoor Conservation Center of Virus-Free Germplasms of Fruit Crops, Wuhan, Hubei, 430070, P. R. China.,Lab of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, P. R. China
| | - XueJiao Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China.,Shihezi University, Shihezi City, Xinjiang Uyghur Autonomous Region, 832003, P. R. China
| | - FangPeng Zhang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, P. R. China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China.,National Indoor Conservation Center of Virus-Free Germplasms of Fruit Crops, Wuhan, Hubei, 430070, P. R. China.,Lab of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, P. R. China
| | - Ni Hong
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, P. R. China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China.,National Indoor Conservation Center of Virus-Free Germplasms of Fruit Crops, Wuhan, Hubei, 430070, P. R. China.,Lab of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, P. R. China
| | - GuoPing Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, P. R. China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China.,National Indoor Conservation Center of Virus-Free Germplasms of Fruit Crops, Wuhan, Hubei, 430070, P. R. China.,Lab of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, P. R. China
| | - Aiming Wang
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, N5V 4T3, ON, Canada
| | - LiPing Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, P. R. China. .,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China. .,National Indoor Conservation Center of Virus-Free Germplasms of Fruit Crops, Wuhan, Hubei, 430070, P. R. China. .,Lab of Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, P. R. China.
| |
Collapse
|
784
|
Liu H, Searle IR, Watson-Haigh NS, Baumann U, Mather DE, Able AJ, Able JA. Genome-Wide Identification of MicroRNAs in Leaves and the Developing Head of Four Durum Genotypes during Water Deficit Stress. PLoS One 2015; 10:e0142799. [PMID: 26562166 PMCID: PMC4643036 DOI: 10.1371/journal.pone.0142799] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/27/2015] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in plant development and abiotic stress responses. The miRNA transcriptome (miRNAome) under water deficit stress has been investigated in many plant species, but is poorly characterised in durum wheat (Triticum turgidum L. ssp. durum). Water stress during early reproductive stages can result in significant yield loss in durum wheat and this study describes genotypic differences in the miRNAome between water deficit tolerant and sensitive durum genotypes. Small RNA libraries (96 in total) were constructed from flag leaf and developing head tissues of four durum genotypes, with or without water stress to identify differentially abundant miRNAs. Illumina sequencing detected 110 conserved miRNAs and 159 novel candidate miRNA hairpins with 66 conserved miRNAs and five novel miRNA hairpins differentially abundant under water deficit stress. Ten miRNAs (seven conserved, three novel) were validated through qPCR. Several conserved and novel miRNAs showed unambiguous inverted regulatory profiles between the durum genotypes. Several miRNAs also showed differential abundance between two tissue types regardless of treatment. Predicted mRNA targets (130) of four novel durum miRNAs were characterised using Gene Ontology (GO) which revealed functions common to stress responses and plant development. Negative correlation was observed between several target genes and the corresponding miRNA under water stress. For the first time, we present a comprehensive study of the durum miRNAome under water deficit stress. The identification of differentially abundant miRNAs provides molecular evidence that miRNAs are potential determinants of water stress tolerance in durum wheat. GO analysis of predicted targets contributes to the understanding of genotypic physiological responses leading to stress tolerance capacity. Further functional analysis of specific stress responsive miRNAs and their interaction with targets is ongoing and will assist in developing future durum wheat varieties with enhanced water deficit stress tolerance.
Collapse
Affiliation(s)
- Haipei Liu
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Iain R. Searle
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- The University of Adelaide-Shanghai Jiao Tong University Joint International Centre for Agriculture & Health, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Nathan S. Watson-Haigh
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia, Australia
| | - Ute Baumann
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia, Australia
| | - Diane E. Mather
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Amanda J. Able
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
| | - Jason A. Able
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, South Australia, Australia
- * E-mail:
| |
Collapse
|
785
|
Evers M, Huttner M, Dueck A, Meister G, Engelmann JC. miRA: adaptable novel miRNA identification in plants using small RNA sequencing data. BMC Bioinformatics 2015; 16:370. [PMID: 26542525 PMCID: PMC4635600 DOI: 10.1186/s12859-015-0798-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/22/2015] [Indexed: 12/21/2022] Open
Abstract
Background MicroRNAs (miRNAs) are short regulatory RNAs derived from longer precursor RNAs. miRNA biogenesis has been studied in animals and plants, recently elucidating more complex aspects, such as non-conserved, species-specific, and heterogeneous miRNA precursor populations. Small RNA sequencing data can help in computationally identifying genomic loci of miRNA precursors. The challenge is to predict a valid miRNA precursor from inhomogeneous read coverage from a complex RNA library: while the mature miRNA typically produces many sequence reads, the remaining part of the precursor is covered very sparsely. As recent results suggest, alternative miRNA biogenesis pathways may lead to a more diverse miRNA precursor population than previously assumed. In plants, the latter manifests itself in e.g. complex secondary structures and expression from multiple loci within precursors. Current miRNA identification algorithms often depend on already existing gene annotation, and/or make use of specific miRNA precursor features such as precursor lengths, secondary structures etc. Consequently and in view of the emerging new understanding of a more complex miRNA biogenesis in plants, current tools may fail to characterise organism-specific and heterogeneous miRNA populations. Results miRA is a new tool to identify miRNA precursors in plants, allowing for heterogeneous and complex precursor populations. miRA requires small RNA sequencing data and a corresponding reference genome, and evaluates precursor secondary structures and precursor processing accuracy; key parameters can be adapted based on the specific organism under investigation. We show that miRA outperforms the currently best plant miRNA prediction tools both in sensitivity and specificity, for data involving Arabidopsis thaliana and the Volvocine algae Chlamydomonas reinhardtii; the latter organism has been shown to exhibit a heterogeneous and complex precursor population with little cross-species miRNA sequence conservation, and therefore constitutes an ideal model organism. Furthermore we identify novel miRNAs in the Chlamydomonas-related organism Volvox carteri. Conclusions We propose miRA, a new plant miRNA identification tool that is well adapted to complex precursor populations. miRA is particularly suited for organisms with no existing miRNA annotation, or without a known related organism with well characterized miRNAs. Moreover, miRA has proven its ability to identify species-specific miRNAs. miRA is flexible in its parameter settings, and produces user-friendly output files in various formats (pdf, csv, genome-browser-suitable annotation files, etc.). It is freely available at https://github.com/mhuttner/miRA. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0798-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maurits Evers
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany.
| | - Michael Huttner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Anne Dueck
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Julia C Engelmann
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| |
Collapse
|
786
|
Lu YB, Qi YP, Yang LT, Guo P, Li Y, Chen LS. Boron-deficiency-responsive microRNAs and their targets in Citrus sinensis leaves. BMC PLANT BIOLOGY 2015; 15:271. [PMID: 26538180 PMCID: PMC4634795 DOI: 10.1186/s12870-015-0642-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 10/08/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND MicroRNAs play important roles in the adaptive responses of plants to nutrient deficiencies. Most research, however, has focused on nitrogen (N), phosphorus (P), sulfur (S), copper (Cu) and iron (Fe) deficiencies, limited data are available on the differential expression of miRNAs and their target genes in response to deficiencies of other nutrient elements. In this study, we identified the known and novel miRNAs as well as the boron (B)-deficiency-responsive miRNAs from citrus leaves in order to obtain the potential miRNAs related to the tolerance of citrus to B-deficiency. METHODS Seedlings of 'Xuegan' [Citrus sinensis (L.) Osbeck] were supplied every other day with B-deficient (0 μM H3BO3) or -sufficient (10 μM H3BO3) nutrient solution for 15 weeks. Thereafter, we sequenced two small RNA libraries from B-deficient and -sufficient (control) citrus leaves, respectively, using Illumina sequencing. RESULTS Ninety one (83 known and 8 novel) up- and 81 (75 known and 6 novel) down-regulated miRNAs were isolated from B-deficient leaves. The great alteration of miRNA expression might contribute to the tolerance of citrus to B-deficiency. The adaptive responses of miRNAs to B-deficiency might related to several aspects: (a) attenuation of plant growth and development by repressing auxin signaling due to decreased TIR1 level and ARF-mediated gene expression by altering the expression of miR393, miR160 and miR3946; (b) maintaining leaf phenotype and enhancing the stress tolerance by up-regulating NACs targeted by miR159, miR782, miR3946 and miR7539; (c) activation of the stress responses and antioxidant system through down-regulating the expression of miR164, miR6260, miR5929, miR6214, miR3946 and miR3446; (d) decreasing the expression of major facilitator superfamily protein genes targeted by miR5037, thus lowering B export from plants. Also, B-deficiency-induced down-regulation of miR408 might play a role in plant tolerance to B-deficiency by regulating Cu homeostasis and enhancing superoxide dismutase activity. CONCLUSIONS Our study reveals some novel responses of citrus to B-deficiency, which increase our understanding of the adaptive mechanisms of citrus to B-deficiency at the miRNA (post-transcriptional) level.
Collapse
Affiliation(s)
- Yi-Bin Lu
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou, 350001, China.
| | - Lin-Tong Yang
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Peng Guo
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yan Li
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Li-Song Chen
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Fujian Key Laboratory for Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
787
|
Song J, Song J, Mo B, Chen X. Uridylation and adenylation of RNAs. SCIENCE CHINA. LIFE SCIENCES 2015; 58:1057-66. [PMID: 26563174 PMCID: PMC5089844 DOI: 10.1007/s11427-015-4954-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 10/15/2015] [Indexed: 11/26/2022]
Abstract
The posttranscriptional addition of nontemplated nucleotides to the 3' ends of RNA molecules can have a significant impact on their stability and biological function. It has been recently discovered that nontemplated addition of uridine or adenosine to the 3' ends of RNAs occurs in different organisms ranging from algae to humans, and on different kinds of RNAs, such as histone mRNAs, mRNA fragments, U6 snRNA, mature small RNAs and their precursors etc. These modifications may lead to different outcomes, such as increasing RNA decay, promoting or inhibiting RNA processing, or changing RNA activity. Growing pieces of evidence have revealed that such modifications can be RNA sequence-specific and subjected to temporal or spatial regulation in development. RNA tailing and its outcomes have been associated with human diseases such as cancer. Here, we review recent developments in RNA uridylation and adenylation and discuss the future prospects in this research area.
Collapse
Affiliation(s)
- JianBo Song
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Science, Shenzhen University, Shenzhen, 518060, China
- Department of Biochemistry and Molecular Biology, College of Science, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - BeiXin Mo
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Science, Shenzhen University, Shenzhen, 518060, China.
| | - XueMei Chen
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Science, Shenzhen University, Shenzhen, 518060, China.
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
- Howard Hughes Medical Institute, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
788
|
Neto LB, Arenhart RA, de Oliveira LFV, de Lima JC, Bodanese-Zanettini MH, Margis R, Margis-Pinheiro M. ASR5 is involved in the regulation of miRNA expression in rice. PLANT CELL REPORTS 2015; 34:1899-1907. [PMID: 26183952 DOI: 10.1007/s00299-015-1836-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/25/2015] [Accepted: 06/30/2015] [Indexed: 06/04/2023]
Abstract
The work describes an ASR knockdown transcriptomic analysis by deep sequencing of rice root seedlings and the transactivation of ASR cis-acting elements in the upstream region of a MIR gene. MicroRNAs are key regulators of gene expression that guide post-transcriptional control of plant development and responses to environmental stresses. ASR (ABA, Stress and Ripening) proteins are plant-specific transcription factors with key roles in different biological processes. In rice, ASR proteins have been suggested to participate in the regulation of stress response genes. This work describes the transcriptomic analysis by deep sequencing two libraries, comparing miRNA abundance from the roots of transgenic ASR5 knockdown rice seedlings with that of the roots of wild-type non-transformed rice seedlings. Members of 59 miRNA families were detected, and 276 mature miRNAs were identified. Our analysis detected 112 miRNAs that were differentially expressed between the two libraries. A predicted inverse correlation between miR167abc and its target gene (LOC_Os07g29820) was confirmed using RT-qPCR. Protoplast transactivation assays showed that ASR5 is able to recognize binding sites upstream of the MIR167a gene and drive its expression in vivo. Together, our data establish a comparative study of miRNAome profiles and is the first study to suggest the involvement of ASR proteins in miRNA gene regulation.
Collapse
Affiliation(s)
- Lauro Bücker Neto
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, prédio 43312, Porto Alegre, RS, 91501-970, Brazil.
| | - Rafael Augusto Arenhart
- Centro Nacional de Pesquisa de Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária, Rua Livramento 515, Bento Gonçalves, RS, 95700-000, Brazil.
| | - Luiz Felipe Valter de Oliveira
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, prédio 43431, Porto Alegre, RS, 91501-970, Brazil.
| | - Júlio Cesar de Lima
- Universidade de Passo Fundo, Laboratório de Genética Molecular, BR285, Passo Fundo, RS, 99052-900, Brazil.
| | - Maria Helena Bodanese-Zanettini
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, prédio 43312, Porto Alegre, RS, 91501-970, Brazil.
| | - Rogerio Margis
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, prédio 43431, Porto Alegre, RS, 91501-970, Brazil.
| | - Márcia Margis-Pinheiro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, prédio 43312, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
789
|
Xia R, Xu J, Arikit S, Meyers BC. Extensive Families of miRNAs and PHAS Loci in Norway Spruce Demonstrate the Origins of Complex phasiRNA Networks in Seed Plants. Mol Biol Evol 2015; 32:2905-18. [PMID: 26318183 PMCID: PMC4651229 DOI: 10.1093/molbev/msv164] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In eudicot plants, the miR482/miR2118 superfamily regulates and instigates the production of phased secondary small interfering RNAs (siRNAs) from NB-LRR (nucleotide binding leucine-rich repeat) genes that encode disease resistance proteins. In grasses, this miRNA family triggers siRNA production specifically in reproductive tissues from long noncoding RNAs. To understand this functional divergence, we examined the small RNA population in the ancient gymnosperm Norway spruce (Picea abies). As many as 41 miRNA families in spruce were found to trigger phasiRNA (phased, secondary siRNAs) production from diverse PHAS loci, with a remarkable 19 miRNA families capable of targeting over 750 NB-LRR genes to generate phasiRNAs. miR482/miR2118, encoded in spruce by at least 24 precursor loci, targets not only NB-LRR genes to trigger phasiRNA production (as in eudicots) but also noncoding PHAS loci, generating phasiRNAs preferentially in male or female cones, reminiscent of its role in the grasses. These data suggest a dual function of miR482/miR2118 present in gymnosperms that was selectively yet divergently retained in flowering plants. A few MIR482/MIR2118 precursors possess an extremely long stem-loop structure, one arm of which shows significant sequence similarity to spruce NB-LRR genes, suggestive of an evolutionary origin from NB-LRR genes through gene duplication. We also characterized an expanded miR390-TAS3 (TRANS-ACTING SIRNA GENE 3)-ARF (AUXIN RESPONSIVE FACTOR) pathway, comprising 18 TAS3 genes of diverse features. Finally, we annotated spruce miRNAs and their targets. Taken together, these data expand our understanding of phasiRNA network in plants and the evolution of plant miRNAs, particularly miR482/miR2118 and its functional diversification.
Collapse
Affiliation(s)
- Rui Xia
- Department of Plant & Soil Sciences, University of Delaware Delaware Biotechnology Institute, University of Delaware
| | - Jing Xu
- Department of Plant & Soil Sciences, University of Delaware Delaware Biotechnology Institute, University of Delaware
| | - Siwaret Arikit
- Delaware Biotechnology Institute, University of Delaware Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen and Rice Science Center, Kasetsart University, Nakhon Pathom, Thailand
| | - Blake C Meyers
- Department of Plant & Soil Sciences, University of Delaware Delaware Biotechnology Institute, University of Delaware
| |
Collapse
|
790
|
Sherman JH, Munyikwa T, Chan SY, Petrick JS, Witwer KW, Choudhuri S. RNAi technologies in agricultural biotechnology: The Toxicology Forum 40th Annual Summer Meeting. Regul Toxicol Pharmacol 2015; 73:671-80. [DOI: 10.1016/j.yrtph.2015.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 11/28/2022]
|
791
|
Huang Y, Cheng JH, Luo FN, Pan H, Sun XJ, Diao LY, Qin XJ. Genome-wide identification and characterization of microRNA genes and their targets in large yellow croaker (Larimichthys crocea). Gene 2015; 576:261-7. [PMID: 26523500 DOI: 10.1016/j.gene.2015.10.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/04/2015] [Accepted: 10/13/2015] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs or miRs) are a class of non-coding RNAs of 20-25 nucleotides (nt) in length, which regulates the expression of gene in eukaryotic organism. Studies has been confirmed that miRNA plays an important role in various biological and metabolic processes in both animals and plants. Predicting new miRNAs by computer based homology search analysis is an effective way to discover novel miRNAs. Though a large number of miRNAs have been reported in many fish species, reports of miRNAs in large yellow croaker (L. crocea) are limited especially via the computational-based approaches. In this paper, a method of comparative genomic approach by computational genomic homology based on the conservation of miRNA sequences and the stem-loop hairpin secondary structures of miRNAs was adopted. A total of 199 potential miRNAs were predicted representing 81 families. 12 of them were chose to be validated by real time RT-PCR, apart from miR-7132b-5p which was not detected. Results indicated that the prediction method that we used to identify the miRNAs was effective. Furthermore, 948 potential target genes were predicted. Gene ontology (GO) analysis revealed that 175, 287, and 486 target genes were involved in cellular components, biological processes and molecular functions, respectively. Overall, our findings provide a first computational identification and characterization of L. crocea miRNAs and their potential targets in functional analysis, and will be useful in laying the foundation for further characterization of their role in the regulation of diversity of physiological processes.
Collapse
Affiliation(s)
- Yong Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.
| | - Jia-Heng Cheng
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Fu-Nong Luo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Hao Pan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xiao-Juan Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Lan-Yu Diao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xiao-Juan Qin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
792
|
Omidvar V, Mohorianu I, Dalmay T, Fellner M. Identification of miRNAs with potential roles in regulation of anther development and male-sterility in 7B-1 male-sterile tomato mutant. BMC Genomics 2015; 16:878. [PMID: 26511108 PMCID: PMC4625851 DOI: 10.1186/s12864-015-2077-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 10/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The 7B-1 tomato line (Solanum lycopersicum cv. Rutgers) is a photoperiod-sensitive male-sterile mutant, with potential application in hybrid seed production. Small RNAs (sRNAs) in tomato have been mainly characterized in fruit development and ripening, but none have been studied with respect to flower development and regulation of male-sterility. Using sRNA sequencing, we identified miRNAs that are potentially involved in anther development and regulation of male-sterility in 7B-1 mutant. RESULTS Two sRNA libraries from 7B-1 and wild type (WT) anthers were sequenced and thirty two families of known miRNAs and 23 new miRNAs were identified in both libraries. MiR390, miR166, miR159 were up-regulated and miR530, miR167, miR164, miR396, miR168, miR393, miR8006 and two new miRNAs, miR#W and miR#M were down-regulated in 7B-1 anthers. Ta-siRNAs were not differentially expressed and likely not associated with 7B-1 male-sterility. miRNA targets with potential roles in anther development were validated using 5'-RACE. QPCR analysis showed differential expression of miRNA/target pairs of interest in anthers and stem of 7B-1, suggesting that they may regulate different biological processes in these tissues. Expression level of most miRNA/target pairs showed negative correlation, except for few. In situ hybridization showed predominant expression of miR159, GAMYBL1, PMEI and cystatin in tapetum, tetrads and microspores. CONCLUSION Overall, we identified miRNAs with potential roles in anther development and regulation of male-sterility in 7B-1. A number of new miRNAs were also identified from tomato for the first time. Our data could be used as a benchmark for future studies of the molecular mechanisms of male-sterility in other crops.
Collapse
Affiliation(s)
- Vahid Omidvar
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany AS CR, Šlechtitelů 11, CZ-78371, Olomouc, Czech Republic.
| | - Irina Mohorianu
- School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK. .,School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - Martin Fellner
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University and Institute of Experimental Botany AS CR, Šlechtitelů 11, CZ-78371, Olomouc, Czech Republic.
| |
Collapse
|
793
|
Mondal TK, Ganie SA, Debnath AB. Identification of Novel and Conserved miRNAs from Extreme Halophyte, Oryza coarctata, a Wild Relative of Rice. PLoS One 2015; 10:e0140675. [PMID: 26506249 PMCID: PMC4623511 DOI: 10.1371/journal.pone.0140675] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/29/2015] [Indexed: 01/25/2023] Open
Abstract
Oryza coarctata, a halophyte and wild relative of rice, is grown normally in saline water. MicroRNAs (miRNAs) are non-coding RNAs that play pivotal roles in every domain of life including stress response. There are very few reports on the discovery of salt-responsive miRNAs from halophytes. In this study, two small RNA libraries, one each from the control and salt-treated (450 mM NaCl for 24 h) leaves of O. coarctata were sequenced, which yielded 338 known and 95 novel miRNAs. Additionally, we used publicly available transcriptomics data of O. coarctata which led to the discovery of additional 48 conserved miRNAs along with their pre-miRNA sequences through in silico analysis. In total, 36 known and 7 novel miRNAs were up-regulated whereas, 12 known and 7 novel miRNAs were down-regulated under salinity stress. Further, 233 and 154 target genes were predicted for 48 known and 14 novel differentially regulated miRNAs respectively. These targets with the help of gene ontology analysis were found to be involved in several important biological processes that could be involved in salinity tolerance. Relative expression trends of majority of the miRNAs as detected by real time-PCR as well as predicted by Illumina sequencing were found to be coherent. Additionally, expression of most of the target genes was negatively correlated with their corresponding miRNAs. Thus, the present study provides an account of miRNA-target networking that is involved in salinity adaption of O. coarctata.
Collapse
Affiliation(s)
- Tapan Kumar Mondal
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, Pusa, IARI Campus, New Delhi-4, 110012, India
| | - Showkat Ahmad Ganie
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, Pusa, IARI Campus, New Delhi-4, 110012, India
| | - Ananda Bhusan Debnath
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, Pusa, IARI Campus, New Delhi-4, 110012, India
| |
Collapse
|
794
|
Ahmed F, Senthil-Kumar M, Lee S, Dai X, Mysore KS, Zhao PX. Comprehensive analysis of small RNA-seq data reveals that combination of miRNA with its isomiRs increase the accuracy of target prediction in Arabidopsis thaliana. RNA Biol 2015; 11:1414-29. [PMID: 25629686 PMCID: PMC4615835 DOI: 10.1080/15476286.2014.996474] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Along with the canonical miRNA, distinct miRNA-like sequences called sibling miRNAs (sib-miRs) are generated from the same pre-miRNA. Among them, isomeric sequences featuring slight variations at the terminals, relative to the canonical miRNA, constitute a pool of isomeric sibling miRNAs (isomiRs). Despite the high prevalence of isomiRs in eukaryotes, their features and relevance remain elusive. In this study, we performed a comprehensive analysis of mature precursor miRNA (pre-miRNA) sequences from Arabidopsis to understand their features and regulatory targets. The influence of isomiR terminal heterogeneity in target binding was examined comprehensively. Our comprehensive analyses suggested a novel computational strategy that utilizes miRNA and its isomiRs to enhance the accuracy of their regulatory target prediction in Arabidopsis. A few targets are shared by several members of isomiRs; however, this phenomenon was not typical. Gene Ontology (GO) enrichment analysis showed that commonly targeted mRNAs were enriched for certain GO terms. Moreover, comparison of these commonly targeted genes with validated targets from published data demonstrated that the validated targets are bound by most isomiRs and not only the canonical miRNA. Furthermore, the biological role of isomiRs in target cleavage was supported by degradome data. Incorporating this finding, we predicted potential target genes of several miRNAs and confirmed them by experimental assays. This study proposes a novel strategy to improve the accuracy of predicting miRNA targets through combined use of miRNA with its isomiRs.
Collapse
Affiliation(s)
- Firoz Ahmed
- a Plant Biology Division; Samuel Roberts Noble Foundation ; Ardmore , OK USA
| | | | | | | | | | | |
Collapse
|
795
|
Tripathi A, Goswami K, Sanan-Mishra N. Role of bioinformatics in establishing microRNAs as modulators of abiotic stress responses: the new revolution. Front Physiol 2015; 6:286. [PMID: 26578966 PMCID: PMC4620411 DOI: 10.3389/fphys.2015.00286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022] Open
Abstract
microRNAs (miRs) are a class of 21-24 nucleotide long non-coding RNAs responsible for regulating the expression of associated genes mainly by cleavage or translational inhibition of the target transcripts. With this characteristic of silencing, miRs act as an important component in regulation of plant responses in various stress conditions. In recent years, with drastic change in environmental and soil conditions different type of stresses have emerged as a major challenge for plants growth and productivity. The identification and profiling of miRs has itself been a challenge for research workers given their small size and large number of many probable sequences in the genome. Application of computational approaches has expedited the process of identification of miRs and their expression profiling in different conditions. The development of High-Throughput Sequencing (HTS) techniques has facilitated to gain access to the global profiles of the miRs for understanding their mode of action in plants. Introduction of various bioinformatics databases and tools have revolutionized the study of miRs and other small RNAs. This review focuses the role of bioinformatics approaches in the identification and study of the regulatory roles of plant miRs in the adaptive response to stresses.
Collapse
Affiliation(s)
- Anita Tripathi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Kavita Goswami
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Neeti Sanan-Mishra
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| |
Collapse
|
796
|
Sun Z, Guo T, Liu Y, Liu Q, Fang Y. The Roles of Arabidopsis CDF2 in Transcriptional and Posttranscriptional Regulation of Primary MicroRNAs. PLoS Genet 2015; 11:e1005598. [PMID: 26473486 PMCID: PMC4608766 DOI: 10.1371/journal.pgen.1005598] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 09/21/2015] [Indexed: 01/24/2023] Open
Abstract
The precise regulation of microRNA (miRNA) transcription and processing is important for eukaryotic development. Plant miRNAs are first transcribed as stem-loop primary miRNAs (pri-miRNAs) by RNA polymerase II,then cleaved in the nucleus into mature miRNAs by Dicer-like 1 (DCL1). We identified a cycling DOF transcription factor, CDF2, which interacts with DCL1 and regulates the accumulation of a population of miRNAs. CDF2 binds directly to the promoters of some miRNAs and works as a transcription activator or repressor for these miRNA genes. CDF2 binds preferentially to the pri-miRNAs regulated by itself and affects DCL1-mediated processing of these pri-miRNAs. Genetically, CDF2 works in the same pathway as miR156 or miR172 to control flowering. We conclude that CDF2 regulates a group of pri-miRNAs at both the transcriptional and posttranscriptional levels to maintain proper levels of their mature miRNAs to control plant development. CDFs were identified to play roles in the blue light signaling. This study reveals that CDF2 acts as a transcriptional activator or repressor of a group of microRNA (miRNA) genes and binds to the pri-miRNA transcripts. This study demonstrates that CDF2 interacts with the Dicer-like 1 (DCL1) complex and suppresses the processing of primary miRNAs. Genetic analysis shows that CDF2 works in the same pathway as miR156 or miR172 to control flowering. The finding that the miRNA accumulation is regulated by a factor at both the transcriptional and posttranscriptional levels may have a broad impact on the miRNA biogenesis field. The regulation of miRNA abundance by CDF2 sheds light on the roles of miRNAs in the light signaling pathways.
Collapse
Affiliation(s)
- Zhenfei Sun
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tongtong Guo
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yin Liu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qi Liu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuda Fang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
797
|
Coevolution Pattern and Functional Conservation or Divergence of miR167s and their targets across Diverse Plant Species. Sci Rep 2015; 5:14611. [PMID: 26459056 PMCID: PMC4602222 DOI: 10.1038/srep14611] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/02/2015] [Indexed: 01/21/2023] Open
Abstract
microRNAs (miRNAs), a class of endogenously produced small non-coding RNAs of 20–21 nt length, processed from precursor miRNAs, regulate many developmental processes by negatively regulating the target genes in both animals and plants. The coevolutionary pattern of a miRNA family and their targets underscores its functional conservation or diversification. The miR167 regulates various aspects of plant development in Arabidopsis by targeting ARF6 and ARF8. The evolutionary conservation or divergence of miR167s and their target genes are poorly understood till now. Here we show the evolutionary relationship among 153 MIR167 genes obtained from 33 diverse plant species. We found that out of the 153 of miR167 sequences retrieved from the “miRBase”, 27 have been annotated to be processed from the 3′ end, and have diverged distinctively from the other miR167s produced from 5′ end. Our analysis reveals that gma-miR167h/i and mdm-miR167a are processed from 3′ end and have evolved separately, diverged most resulting in novel targets other than their known ones, and thus led to functional diversification, especially in apple and soybean. We also show that mostly conserved miR167 sequences and their target AUXIN RESPONSE FACTORS (ARFs) have gone through parallel evolution leading to functional diversification among diverse plant species.
Collapse
|
798
|
Yi F, Chen J, Yu J. Global analysis of uncapped mRNA changes under drought stress and microRNA-dependent endonucleolytic cleavages in foxtail millet. BMC PLANT BIOLOGY 2015; 15:241. [PMID: 26444665 PMCID: PMC4594888 DOI: 10.1186/s12870-015-0632-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/30/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND mRNA degradation plays an important role in the determination of mRNA abundance and can quickly regulate gene expression. The production of uncapped mRNAs, an important mechanism of mRNA degradation, can be initiated by decapping enzymes, endonucleases or small RNAs such as microRNAs (miRNAs). Little is known, however, about the role of uncapped mRNAs in plants under environmental stress. RESULTS Using a novel approach called parallel analysis of RNA ends (PARE), we performed a global study of uncapped mRNAs under drought stress in foxtail millet (Setaria italica [L.] P. Beauv.). When both gene degradation (PARE) and gene transcription (RNA-sequencing) data were considered, four types of mRNA decay patterns were identified under drought stress. In addition, 385 miRNA-target interactions were identified in the PARE data using PAREsnip. The PARE analysis also suggested that two miRNA hairpin processing mechanisms--loop-last and loop-first processing--operate in foxtail millet, with both miR319 and miR156 gene families undergoing precise processing via the unusual loop-first mechanism. Finally, we found 11 C4 photosynthesis-related enzymes encoded by drought-responsive genes. CONCLUSIONS We performed a global analysis of mRNA degradation under drought stress and uncovered diverse drought-response mechanisms in foxtail millet. This information will deepen our understanding of mRNA expression under stressful environmental conditions in gramineous plants. In addition, PARE analysis identified many miRNA targets and revealed miRNA-precursor processing modes in foxtail millet.
Collapse
Affiliation(s)
- Fei Yi
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Jian Chen
- State Key Laboratory of Agrobiotechnology, College of Agriculture and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Jingjuan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
799
|
MicroRNAs-mRNAs Expression Profile and Their Potential Role in Malignant Transformation of Human Bronchial Epithelial Cells Induced by Cadmium. BIOMED RESEARCH INTERNATIONAL 2015; 2015:902025. [PMID: 26504844 PMCID: PMC4609416 DOI: 10.1155/2015/902025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/01/2015] [Accepted: 06/09/2015] [Indexed: 11/17/2022]
Abstract
Background. Our study was designed to elucidate whether there were
miRNA and mRNA aberrantly expression profiles and potential role in malignant transformation of
16HBE induced by Cd. Methods. mRNA and miRNA expression profiles were determined
in 35th Cd-induced 16HBE and untreated 16HBE by microarray. A series of bioinformatics analyses
such as predicting targets, GO, KEGG were performed to find DEGs, coexpressing networks between
miRNAs and mRNAs and its functions. Results. 498 DEGs were found. 8 Cd-responsive
novel miRNAs predicted previously were identified, and 5 of them were downregulated. 214 target
genes were predicted for the Cd-responsive miRNAs, many of which appeared to regulate gene networks.
Target gene CCM2 was showed reciprocal effect by miRNAs. According to the combination analysis,
hsa-miR-27b-3p regulated most of the mRNAs, especially upregulated expression genes. The differentially
expressed miRNAs are involved in the biological processes and channels, and these GO and KEGG
enrichment analyses result were significantly enriched in the Cd-responsive. Discussion. These
results provided a tight link for the miRNA-mRNA integrated network and implied the role of novel miRNAs
in malignant transformation of 16HBE induced by Cadmium. It is better to understand the novel
molecular mechanism of cadmium-induced tumorigenesis.
Collapse
|
800
|
Li T, Ma L, Geng Y, Hao C, Chen X, Zhang X. Small RNA and Degradome Sequencing Reveal Complex Roles of miRNAs and Their Targets in Developing Wheat Grains. PLoS One 2015; 10:e0139658. [PMID: 26426440 PMCID: PMC4591353 DOI: 10.1371/journal.pone.0139658] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 09/16/2015] [Indexed: 11/19/2022] Open
Abstract
Plant microRNAs (miRNAs) have been shown to play critical roles in plant development. In this study, we employed small RNA combined with degradome sequencing to survey development-related miRNAs and their validated targets during wheat grain development. A total of 186 known miRNAs and 37 novel miRNAs were identified in four small RNA libraries. Moreover, a miRNA-like long hairpin locus was first identified to produce 21~22-nt phased siRNAs that act in trans to cleave target mRNAs. A comparison of the miRNAomes revealed that 55 miRNA families were differentially expressed during the grain development. Predicted and validated targets of these development-related miRNAs are involved in different cellular responses and metabolic processes including cell proliferation, auxin signaling, nutrient metabolism and gene expression. This study provides insight into the complex roles of miRNAs and their targets in regulating wheat grain development.
Collapse
Affiliation(s)
- Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Ma
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Yuke Geng
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinhong Chen
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A & F University, Yangling, Shaanxi, China
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|