801
|
Moreno-Cubero E, Larrubia JR. Specific CD8 + T cell response immunotherapy for hepatocellular carcinoma and viral hepatitis. World J Gastroenterol 2016; 22:6469-6483. [PMID: 27605882 PMCID: PMC4968127 DOI: 10.3748/wjg.v22.i28.6469] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/21/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), chronic hepatitis B (CHB) and chronic hepatitis C (CHC) are characterized by exhaustion of the specific CD8+ T cell response. This process involves enhancement of negative co-stimulatory molecules, such as programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte antigen-4 (CTLA-4), 2B4, Tim-3, CD160 and LAG-3, which is linked to intrahepatic overexpression of some of the cognate ligands, such as PD-L1, on antigen presenting cells and thereby favouring a tolerogenic environment. Therapies that disrupt these negative signalling mechanisms represent promising therapeutic tools with the potential to restore reactivity of the specific CD8+ T cell response. In this review we discuss the impressive in vitro and in vivo results that have been recently achieved in HCC, CHB and CHC by blocking these negative receptors with monoclonal antibodies against these immune checkpoint modulators. The article mainly focuses on the role of CTLA-4 and PD-1 blocking monoclonal antibodies, the first ones to have reached clinical practice. The humanized monoclonal antibodies against CTLA-4 (tremelimumab and ipilimumab) and PD-1 (nivolumab and pembrolizumab) have yielded good results in testing of HCC and chronic viral hepatitis patients. Trelimumab, in particular, has shown a significant increase in the time to progression in HCC, while nivolumab has shown a remarkable effect on hepatitis C viral load reduction. The research on the role of ipilimumab, nivolumab and pembrolizumab on HCC is currently underway.
Collapse
|
802
|
Utzschneider DT, Alfei F, Roelli P, Barras D, Chennupati V, Darbre S, Delorenzi M, Pinschewer DD, Zehn D. High antigen levels induce an exhausted phenotype in a chronic infection without impairing T cell expansion and survival. J Exp Med 2016; 213:1819-34. [PMID: 27455951 PMCID: PMC4995073 DOI: 10.1084/jem.20150598] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/13/2016] [Indexed: 02/01/2023] Open
Abstract
Using recombinant antigen variant-expressing chronic LCMV strains, Zehn and colleagues showed that amount rather than antigen strength is a key determinant of inducing a chronic infection phenotype in T cells. Chronic infections induce T cells showing impaired cytokine secretion and up-regulated expression of inhibitory receptors such as PD-1. What determines the acquisition of this chronic phenotype and how it impacts T cell function remain vaguely understood. Using newly generated recombinant antigen variant-expressing chronic lymphocytic choriomeningitis virus (LCMV) strains, we uncovered that T cell differentiation and acquisition of a chronic or exhausted phenotype depend critically on the frequency of T cell receptor (TCR) engagement and less significantly on the strength of TCR stimulation. In fact, we noted that low-level antigen exposure promotes the formation of T cells with an acute phenotype in chronic infections. Unexpectedly, we found that T cell populations with an acute or chronic phenotype are maintained equally well in chronic infections and undergo comparable primary and secondary expansion. Thus, our observations contrast with the view that T cells with a typical chronic infection phenotype are severely functionally impaired and rapidly transition into a terminal stage of differentiation. Instead, our data unravel that T cells primarily undergo a form of phenotypic and functional differentiation in the early phase of a chronic LCMV infection without inheriting a net survival or expansion deficit, and we demonstrate that the acquired chronic phenotype transitions into the memory T cell compartment.
Collapse
Affiliation(s)
- Daniel T Utzschneider
- Swiss Vaccine Research Institute, 1066 Epalinges, Switzerland Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Francesca Alfei
- Swiss Vaccine Research Institute, 1066 Epalinges, Switzerland Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Patrick Roelli
- Swiss Vaccine Research Institute, 1066 Epalinges, Switzerland Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - David Barras
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Vijaykumar Chennupati
- Swiss Vaccine Research Institute, 1066 Epalinges, Switzerland Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland Ludwig Center for Cancer Research, University of Lausanne, 1015 Lausanne, Switzerland
| | - Stephanie Darbre
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland World Health Organization Collaborating Center for Vaccine Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Mauro Delorenzi
- Ludwig Center for Cancer Research, University of Lausanne, 1015 Lausanne, Switzerland Faculty of Biology and Medicine, Department of Oncology, University of Lausanne, 1015 Lausanne, Switzerland Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Daniel D Pinschewer
- Division of Experimental Virology, Department of Biomedicine, University of Basel, 4003 Basel, Switzerland
| | - Dietmar Zehn
- Swiss Vaccine Research Institute, 1066 Epalinges, Switzerland Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland
| |
Collapse
|
803
|
Abstract
Some biological systems detect the rate of change in a stimulus rather than the stimulus itself only. We suggest that the immune system works in this way. According to the discontinuity theory of immunity, the immune system responds to sudden changes in antigenic stimulation and is rendered tolerant by slow or continuous stimulation. This basic principle, which is supported by recent data on immune checkpoints in viral infections, cancers, and allergies, can be seen as a unifying framework for diverse immune responses.
Collapse
Affiliation(s)
- Thomas Pradeu
- ImmunoConcept, UMR5164, CNRS & University of Bordeaux, 33076 Bordeaux, France
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Université Aix-Marseille UM2, INSERM, U1104, CNRS UMR 7258, 13288 Marseille, France; Immunologie, Hôpital de la Conception, Assistance Publique - Hôpitaux de Marseille, Aix-Marseille Université, 13005 Marseille, France
| |
Collapse
|
804
|
Sanchez-Fueyo A, Markmann JF. Immune Exhaustion and Transplantation. Am J Transplant 2016; 16:1953-7. [PMID: 26729653 DOI: 10.1111/ajt.13702] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 11/09/2015] [Accepted: 12/13/2015] [Indexed: 01/25/2023]
Abstract
Exhaustion of lymphocyte function through chronic exposure to a high load of foreign antigen is well established for chronic viral infection and antitumor immunity and has been found to be associated with a distinct molecular program and characteristic cell surface phenotype. Although exhaustion has most commonly been studied in the context of CD8 viral responses, recent studies indicate that chronic antigen exposure may affect B cells, NK cells and CD4 T cells in a parallel manner. Limited information is available regarding the extent of lymphocyte exhaustion development in the transplant setting and its impact on anti-graft alloreactivity. By analogy to the persistence of a foreign virus, the large mass of alloantigen presented by an allograft in chronic residence could provide an ideal setting for exhausting donor-reactive T cells. The extent of T cell exhaustion occurring with various allografts, the kinetics of its development, whether exhaustion is influenced positively or negatively by different immunosuppressants, and the impact of exhaustion on graft survival and tolerance development remains a fertile area for investigation. Harnessing or encouraging the natural processes of exhaustion may provide a novel means to promote graft survival and transplantation tolerance.
Collapse
Affiliation(s)
- A Sanchez-Fueyo
- Institute of Liver Studies, Division of Transplantation Immunology and Mucosal Biology, Medical Research Council Centre for Transplantation, Faculty of Life Sciences and Medicine, King's College London University, King's College Hospital, London, UK
| | - J F Markmann
- Division of Transplant Surgery, Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
805
|
Waugh KA, Leach SM, Moore BL, Bruno TC, Buhrman JD, Slansky JE. Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model. THE JOURNAL OF IMMUNOLOGY 2016; 197:1477-88. [PMID: 27371726 DOI: 10.4049/jimmunol.1600589] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022]
Abstract
Mechanisms of self-tolerance often result in CD8(+) tumor-infiltrating lymphocytes (TIL) with a hypofunctional phenotype incapable of tumor clearance. Using a transplantable colon carcinoma model, we found that CD8(+) T cells became tolerized in <24 h in an established tumor environment. To define the collective impact of pathways suppressing TIL function, we compared genome-wide mRNA expression of tumor-specific CD8(+) T cells from the tumor and periphery. Notably, gene expression induced during TIL hypofunction more closely resembled self-tolerance than viral exhaustion. Differential gene expression was refined to identify a core set of genes that defined hypofunctional TIL; these data comprise the first molecular profile of tumor-specific TIL that are naturally responding and represent a polyclonal repertoire. The molecular profile of TIL was further dissected to determine the extent of overlap and distinction between pathways that collectively restrict T cell functions. As suggested by the molecular profile of TIL, protein expression of inhibitory receptor LAG-3 was differentially regulated throughout prolonged late-G1/early-S phase of the cell cycle. Our data may accelerate efficient identification of combination therapies to boost anti-tumor function of TIL specifically against tumor cells.
Collapse
Affiliation(s)
| | - Sonia M Leach
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206
| | - Brandon L Moore
- University of Colorado School of Medicine, Aurora, CO 80045; and
| | - Tullia C Bruno
- University of Colorado School of Medicine, Aurora, CO 80045; and
| | | | - Jill E Slansky
- University of Colorado School of Medicine, Aurora, CO 80045; and
| |
Collapse
|
806
|
Santarpia M, Giovannetti E, Rolfo C, Karachaliou N, González-Cao M, Altavilla G, Rosell R. Recent developments in the use of immunotherapy in non-small cell lung cancer. Expert Rev Respir Med 2016; 10:781-798. [PMID: 27148808 DOI: 10.1080/17476348.2016.1182866] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/22/2016] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Targeted therapies have significantly improved the prognosis of subsets of patients with advanced non-small-cell lung cancer (NSCLC) harboring somatically activated oncogenes, such as mutant EGFR and rearranged ALK. However, the efficacy of these agents is limited by the development of acquired resistance which occurs after variable periods of time. Therefore, there is an urgent need for novel therapeutic strategies to achieve long lasting disease control, as well as new therapies for those patients without targetable driver mutations. A deeper understanding of interactions between the immune system and tumor cells has led to the development of a number of immunotherapeutic agents. AREAS COVERED We review current data on immunotherapy for lung cancer treatment, with a focus on checkpoint inhibitors and therapeutic vaccines. References for this review were identified through searches of PubMed, congress proceedings and reference lists from key original and review papers. Expert commentary: While most vaccines have been unsuccessful, inhibitors of specific immune checkpoints, including CTLA-4 and PD-1/PD-L1 pathway, have shown significant clinical activity and manageable toxicities and recently, two anti-PD-1 monoclonal antibodies have been approved by the FDA for treatment of patients with advanced NSCLC. Identification of reliable predictive biomarkers for patient selection and novel rational combinations are currently active areas of research to further improve the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Mariacarmela Santarpia
- a Medical Oncology Unit, Department of Human Pathology 'G. Barresi' , University of Messina , Messina , Italy
| | - Elisa Giovannetti
- b Department of Medical Oncology , VU University Medical Center , Amsterdam , The Netherlands
- c Cancer Pharmacology Lab, AIRC Start-Up Unit , University of Pisa , Pisa , Italy
| | - Christian Rolfo
- d Phase I - Early Clinical Trials Unit, Oncology Department , Antwerp University Hospital & Center for Oncological Research (CORE) Antwerp University , Edegem , Belgium
| | - Niki Karachaliou
- e Dr Rosell Oncology Institute , Quirón Dexeus University Hospital , Barcelona , Spain
| | - Maria González-Cao
- e Dr Rosell Oncology Institute , Quirón Dexeus University Hospital , Barcelona , Spain
| | - Giuseppe Altavilla
- a Medical Oncology Unit, Department of Human Pathology 'G. Barresi' , University of Messina , Messina , Italy
| | - Rafael Rosell
- e Dr Rosell Oncology Institute , Quirón Dexeus University Hospital , Barcelona , Spain
- f Pangaea Biotech , Barcelona , Spain
- g Cancer Biology and Precision Medicine Program , Catalan Institute of Oncology, Hospital Germans Trias i Pujol , Badalona , Spain
- h Germans Trias i Pujol Health Sciences Institute and Hospital , Campus Can Ruti, Badalona , Spain
- i Molecular Oncology Research (MORe) Foundation , Barcelona , Spain
| |
Collapse
|
807
|
Harris SJ, Brown J, Lopez J, Yap TA. Immuno-oncology combinations: raising the tail of the survival curve. Cancer Biol Med 2016; 13:171-93. [PMID: 27458526 PMCID: PMC4944548 DOI: 10.20892/j.issn.2095-3941.2016.0015] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/11/2016] [Indexed: 12/13/2022] Open
Abstract
There have been exponential gains in immuno-oncology in recent times through the development of immune checkpoint inhibitors. Already approved by the U.S. Food and Drug Administration for advanced melanoma and non-small cell lung cancer, immune checkpoint inhibitors also appear to have significant antitumor activity in multiple other tumor types. An exciting component of immunotherapy is the durability of antitumor responses observed, with some patients achieving disease control for many years. Nevertheless, not all patients benefit, and efforts should thus now focus on improving the efficacy of immunotherapy through the use of combination approaches and predictive biomarkers of response and resistance. There are multiple potential rational combinations using an immunotherapy backbone, including existing treatments such as radiotherapy, chemotherapy or molecularly targeted agents, as well as other immunotherapeutics. The aim of such antitumor strategies will be to raise the tail on the survival curve by increasing the number of long term survivors, while managing any additive or synergistic toxicities that may arise with immunotherapy combinations. Rational trial designs based on a clear understanding of tumor biology and drug pharmacology remain paramount. This article reviews the biology underpinning immuno-oncology, discusses existing and novel immunotherapeutic combinations currently in development, the challenges of predictive biomarkers of response and resistance and the impact of immuno-oncology on early phase clinical trial design.
Collapse
Affiliation(s)
| | | | | | - Timothy A. Yap
- Drug Development Unit
- Lung Unit, Royal Marsden Hospital and The Institute of Cancer Research, London SM2 5PT, UK
| |
Collapse
|
808
|
Effector, Memory, and Dysfunctional CD8(+) T Cell Fates in the Antitumor Immune Response. J Immunol Res 2016; 2016:8941260. [PMID: 27314056 PMCID: PMC4893440 DOI: 10.1155/2016/8941260] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/28/2016] [Indexed: 12/31/2022] Open
Abstract
The adaptive immune system plays a pivotal role in the host's ability to mount an effective, antigen-specific immune response against tumors. CD8(+) tumor-infiltrating lymphocytes (TILs) mediate tumor rejection through recognition of tumor antigens and direct killing of transformed cells. In growing tumors, TILs are often functionally impaired as a result of interaction with, or signals from, transformed cells and the tumor microenvironment. These interactions and signals can lead to transcriptional, functional, and phenotypic changes in TILs that diminish the host's ability to eradicate the tumor. In addition to effector and memory CD8(+) T cells, populations described as exhausted, anergic, senescent, and regulatory CD8(+) T cells have been observed in clinical and basic studies of antitumor immune responses. In the context of antitumor immunity, these CD8(+) T cell subsets remain poorly characterized in terms of fate-specific biomarkers and transcription factor profiles. Here we discuss the current characterization of CD8(+) T cell fates in antitumor immune responses and discuss recent insights into how signals in the tumor microenvironment influence TIL transcriptional networks to promote CD8(+) T cell dysfunction.
Collapse
|
809
|
Targeted Therapy and Checkpoint Immunotherapy Combinations for the Treatment of Cancer. Trends Immunol 2016; 37:462-476. [PMID: 27216414 DOI: 10.1016/j.it.2016.04.010] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 12/11/2022]
Abstract
Many advances in the treatment of cancer have been driven by the development of targeted therapies that inhibit oncogenic signaling pathways and tumor-associated angiogenesis, as well as by the recent development of therapies that activate a patient's immune system to unleash antitumor immunity. Some targeted therapies can have effects on host immune responses, in addition to their effects on tumor biology. These immune-modulating effects, such as increasing tumor antigenicity or promoting intratumoral T cell infiltration, provide a rationale for combining these targeted therapies with immunotherapies. Here, we discuss the immune-modulating effects of targeted therapies against the MAPK and VEGF signaling pathways, and how they may synergize with immunomodulatory antibodies that target PD1/PDL1 and CTLA4. We critically examine the rationale in support of these combinations in light of the current understanding of the underlying mechanisms of action of these therapies. We also discuss the available preclinical and clinical data for these combination approaches and their implications regarding mechanisms of action. Insights from these studies provide a framework for considering additional combinations of targeted therapies and immunotherapies for the treatment of cancer.
Collapse
|
810
|
Flies DB, Higuchi T, Harris JC, Jha V, Gimotty PA, Adams SF. Immune checkpoint blockade reveals the stimulatory capacity of tumor-associated CD103(+) dendritic cells in late-stage ovarian cancer. Oncoimmunology 2016; 5:e1185583. [PMID: 27622059 DOI: 10.1080/2162402x.2016.1185583] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 12/24/2022] Open
Abstract
Although immune infiltrates in ovarian cancer are associated with improved survival, the ovarian tumor environment has been characterized as immunosuppressive, due in part to functional shifts among dendritic cells with disease progression. We hypothesized that flux in dendritic cell subpopulations with cancer progression were responsible for observed differences in antitumor immune responses in early and late-stage disease. Here we identify three dendritic cell subsets with disparate functions in the ovarian tumor environment. CD11c+CD11b(-)CD103(+) dendritic cells are absent in the peritoneal cavity of healthy mice but comprise up to 40% of dendritic cells in tumor-bearing mice and retain T cell stimulatory capacity in advanced disease. Among CD11c+CD11b+ cells, Lair-1 expression distinguishes stimulatory and immunoregulatory DC subsets, which are also enriched in the tumor environment. Notably, PD-L1 is expressed by Lair-1(hi) immunoregulatory dendritic cells, and may contribute to local tumor antigen-specific T cell dysfunction. Using an adoptive transfer model, we find that PD-1 blockade enables tumor-associated CD103(+) dendritic cells to promote disease clearance. These data demonstrate that antitumor immune capacity is maintained among local dendritic cell subpopulations in the tumor environment with cancer progression. Similar dendritic cell subsets are present in malignant ascites from women with ovarian cancer, supporting the translational relevance of these results.
Collapse
Affiliation(s)
- Dallas B Flies
- Division of Gynecologic Oncology, University of New Mexico Comprehensive Cancer Center , Albuquerque, NM, USA
| | - Tomoe Higuchi
- Division of Gynecologic Oncology, University of New Mexico Comprehensive Cancer Center , Albuquerque, NM, USA
| | - Jaryse C Harris
- Division of Gynecologic Oncology, University of New Mexico Comprehensive Cancer Center , Albuquerque, NM, USA
| | - Vibha Jha
- Ovarian Cancer Research Center, The University of Pennsylvania , Philadelphia, PA, USA
| | - Phyllis A Gimotty
- Department of Biostatistics, The University of Pennsylvania , Philadelphia, PA, USA
| | - Sarah F Adams
- Division of Gynecologic Oncology, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA; Ovarian Cancer Research Center, The University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
811
|
Kirilovsky A, Marliot F, El Sissy C, Haicheur N, Galon J, Pagès F. Rational bases for the use of the Immunoscore in routine clinical settings as a prognostic and predictive biomarker in cancer patients. Int Immunol 2016; 28:373-82. [PMID: 27121213 DOI: 10.1093/intimm/dxw021] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/25/2016] [Indexed: 12/17/2022] Open
Abstract
The American Joint Committee on Cancer/Union Internationale Contre le Cancer (AJCC/UICC) tumor, nodes, metastasis (TNM) classification system based on tumor features is used for prognosis estimation and treatment recommendations in most cancers. However, the clinical outcome can vary significantly among patients within the same tumor stage and TNM classification does not predict response to therapy. Therefore, many efforts have been focused on the identification of new markers. Multiple tumor cell-based approaches have been proposed but very few have been translated into the clinic. The recent demonstration of the essential role of the immune system in tumor progression has allowed great advances in the understanding of this complex disease and in the design of novel therapies. The analysis of the immune infiltrate by imaging techniques in large patient cohorts highlighted the prognostic impact of the in situ immune cell infiltrate in tumors. Moreover, the characterization of the immune infiltrates (e.g. type, density, distribution within the tumor, phenotype, activation status) in patients treated with checkpoint-blockade strategies could provide information to predict the disease outcome. In colorectal cancer, we have developed a prognostic score ('Immunoscore') that takes into account the distribution of the density of both CD3(+) lymphocytes and CD8(+) cytotoxic T cells in the tumor core and the invasive margin that could outperform TNM staging. Currently, an international retrospective study is under way to validate the Immunoscore prognostic performance in patients with colon cancer. The use of Immunoscore in clinical practice could improve the patients' prognostic assessment and therapeutic management.
Collapse
Affiliation(s)
- Amos Kirilovsky
- Laboratory of Integrative Cancer Immunology, INSERM UMRS1138, Cordeliers Research Center, 15 Rue de l'Ecole de Medecine, 75006 Paris, France University Paris Descartes, 45 Rue Saints Pères, 75006 Paris, France Centre de Recherche des Cordeliers, University Pierre et Marie Curie Paris 6, 15 Rue de l'Ecole de Medecine, 75006 Paris, France Immunomonitoring Platform, Laboratory of Immunology, Georges Pompidou European Hospital, 20-40 Rue Leblanc, 75015 Paris, France
| | - Florence Marliot
- Laboratory of Integrative Cancer Immunology, INSERM UMRS1138, Cordeliers Research Center, 15 Rue de l'Ecole de Medecine, 75006 Paris, France University Paris Descartes, 45 Rue Saints Pères, 75006 Paris, France Centre de Recherche des Cordeliers, University Pierre et Marie Curie Paris 6, 15 Rue de l'Ecole de Medecine, 75006 Paris, France Immunomonitoring Platform, Laboratory of Immunology, Georges Pompidou European Hospital, 20-40 Rue Leblanc, 75015 Paris, France
| | - Carine El Sissy
- Laboratory of Integrative Cancer Immunology, INSERM UMRS1138, Cordeliers Research Center, 15 Rue de l'Ecole de Medecine, 75006 Paris, France University Paris Descartes, 45 Rue Saints Pères, 75006 Paris, France Centre de Recherche des Cordeliers, University Pierre et Marie Curie Paris 6, 15 Rue de l'Ecole de Medecine, 75006 Paris, France Immunomonitoring Platform, Laboratory of Immunology, Georges Pompidou European Hospital, 20-40 Rue Leblanc, 75015 Paris, France
| | - Nacilla Haicheur
- Laboratory of Integrative Cancer Immunology, INSERM UMRS1138, Cordeliers Research Center, 15 Rue de l'Ecole de Medecine, 75006 Paris, France Immunomonitoring Platform, Laboratory of Immunology, Georges Pompidou European Hospital, 20-40 Rue Leblanc, 75015 Paris, France
| | - Jérôme Galon
- Laboratory of Integrative Cancer Immunology, INSERM UMRS1138, Cordeliers Research Center, 15 Rue de l'Ecole de Medecine, 75006 Paris, France University Paris Descartes, 45 Rue Saints Pères, 75006 Paris, France Centre de Recherche des Cordeliers, University Pierre et Marie Curie Paris 6, 15 Rue de l'Ecole de Medecine, 75006 Paris, France
| | - Franck Pagès
- Laboratory of Integrative Cancer Immunology, INSERM UMRS1138, Cordeliers Research Center, 15 Rue de l'Ecole de Medecine, 75006 Paris, France University Paris Descartes, 45 Rue Saints Pères, 75006 Paris, France Centre de Recherche des Cordeliers, University Pierre et Marie Curie Paris 6, 15 Rue de l'Ecole de Medecine, 75006 Paris, France Immunomonitoring Platform, Laboratory of Immunology, Georges Pompidou European Hospital, 20-40 Rue Leblanc, 75015 Paris, France
| |
Collapse
|
812
|
Crystal structure of the prefusion surface glycoprotein of the prototypic arenavirus LCMV. Nat Struct Mol Biol 2016; 23:513-521. [PMID: 27111888 PMCID: PMC4945123 DOI: 10.1038/nsmb.3210] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/24/2016] [Indexed: 11/08/2022]
Abstract
Arenaviruses exist worldwide and can cause hemorrhagic fever and neurologic disease. A single glycoprotein expressed on the viral surface mediates entry into target cells. This glycoprotein, termed GPC, contains a membrane-associated signal peptide, a receptor-binding subunit termed GP1 and a fusion-mediating subunit termed GP2. Although GPC is a critical target of antibodies and vaccines, the structure of the metastable GP1-GP2 prefusion complex has remained elusive for all arenaviruses. Here we describe the crystal structure of the fully glycosylated prefusion GP1-GP2 complex of the prototypic arenavirus LCMV at 3.5 Å. This structure reveals the conformational changes that the arenavirus glycoprotein must undergo to cause fusion and illustrates the fusion regions and potential oligomeric states.
Collapse
|
813
|
Delgoffe GM, Powell JD. Feeding an army: The metabolism of T cells in activation, anergy, and exhaustion. Mol Immunol 2016; 68:492-6. [PMID: 26256793 DOI: 10.1016/j.molimm.2015.07.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/10/2015] [Accepted: 07/21/2015] [Indexed: 12/23/2022]
Abstract
Through the direct control of infection or by providing cytokine signals to other cellular players, T cells play a central role in the orchestration of the immune response. However, in many disease states, T cells are rendered dysfunctional, unable to carry out their effector functions. As T cell activation is bioenergetically demanding, some T cell dysfunction can have metabolic underpinnings. In this review, we will discuss how T cells are programmed to fuel their effector response, and how programmed or pathologic changes can disrupt their ability to generate the energy needed to proliferate and carry out their critical functions.
Collapse
Affiliation(s)
- Greg M Delgoffe
- Tumor Microenvironment Center, Department of Immunology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, United States.
| | - Jonathan D Powell
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21223, United States
| |
Collapse
|
814
|
Affiliation(s)
- Katherine A Waugh
- University of Colorado School of Medicine, 12800 East 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA
| | - Sonia M Leach
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA
| | - Jill E Slansky
- University of Colorado School of Medicine, 12800 East 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA
| |
Collapse
|
815
|
Martinov T, Fife BT. Fractionated radiotherapy combined with PD-1 pathway blockade promotes CD8 T cell-mediated tumor clearance for the treatment of advanced malignancies. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:82. [PMID: 27004229 DOI: 10.3978/j.issn.2305-5839.2016.01.13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Tijana Martinov
- Department of Medicine, Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brian T Fife
- Department of Medicine, Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
816
|
Webb JR, Milne K, Kroeger DR, Nelson BH. PD-L1 expression is associated with tumor-infiltrating T cells and favorable prognosis in high-grade serous ovarian cancer. Gynecol Oncol 2016; 141:293-302. [PMID: 26972336 DOI: 10.1016/j.ygyno.2016.03.008] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 02/08/2023]
Abstract
OBJECTIVE As a negative regulator of T cells, Programmed Death Ligand 1 (PD-L1) is both an indicator and inhibitor of anti-tumor immune responses, which has led to confusion about its prognostic significance. We investigated the primary source of PD-L1 expression in epithelial ovarian cancer and its relationship to tumor-infiltrating lymphocytes (TIL) and associated gene products. METHODS Tissue microarrays containing high-grade serous carcinomas (HGSC) and endometrioid, clear cell and mucinous ovarian cancers from optimally debulked patients were assessed by immunohistochemistry for expression of PD-L1 and other markers (CD68, CD3, CD8, PD-1, CD103, FoxP3 and CD25). The Cancer Genome Atlas was interrogated for associations between PD-L1 expression and immune-related transcriptional and genomic features of HGSC. RESULTS PD-L1 was primarily expressed by tumor-associated CD68(+) macrophages rather than tumor cells. PD-L1(+) cells frequently co-localized with CD8, CD4 and PD-1(+) TIL, CD25(+)FoxP3(+) Tregs, and other TIL subsets. PD-L1(+) cells were prognostically favorable in HGSC. Moreover, the presence of both PD-L1(+) cells and CD8 TIL was associated with better prognosis than CD8 TIL alone. PD-L1 gene expression was independent of BRCA status. At the transcriptional level, PD-L1 was associated with both cytolytic (granzyme B, T-bet and IFN-γ) and suppressive (PD-1, CTLA-4, LAG3 and IDO-1) gene products. CONCLUSIONS PD-L1 is primarily expressed by macrophages in ovarian cancer and is strongly associated with both cytolytic and regulatory TIL subsets, resulting in a net positive association with survival. Tumors containing PD-L1(+) macrophages appear caught in an immunological stalemate that may require multi-pronged immunotherapy to alleviate.
Collapse
Affiliation(s)
- John R Webb
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| | - Katy Milne
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, Canada
| | - David R Kroeger
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, Canada
| | - Brad H Nelson
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
817
|
Garcia-Bates TM, Kim E, Concha-Benavente F, Trivedi S, Mailliard RB, Gambotto A, Ferris RL. Enhanced Cytotoxic CD8 T Cell Priming Using Dendritic Cell-Expressing Human Papillomavirus-16 E6/E7-p16INK4 Fusion Protein with Sequenced Anti-Programmed Death-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:2870-8. [PMID: 26851223 PMCID: PMC4779745 DOI: 10.4049/jimmunol.1502027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/04/2016] [Indexed: 12/31/2022]
Abstract
The incidence of human papillomavirus (HPV)-related head and neck squamous cell carcinoma has increased in recent decades, though HPV prevention vaccines may reduce this rise in the future. HPV-related cancers express the viral oncoproteins E6 and E7. The latter inactivates the tumor suppressor protein retinoblastoma (Rb), which leads to the overexpression of p16(INK4) protein, providing unique Ags for therapeutic HPV-specific cancer vaccination. We developed potential adenoviral vaccines that express a fusion protein of HPV-16 E6 and E7 (Ad.E6E7) alone or fused with p16 (Ad.E6E7p16) and also encoding an anti-programmed death (PD)-1 Ab. Human monocyte-derived dendritic cells (DC) transduced with Ad.E6E7 or Ad.E6E7p16 with or without Ad.αPD1 were used to activate autologous CD8 CTL in vitro. CTL responses were tested against naturally HPV-infected head and neck squamous cell carcinoma cells using IFN-γ ELISPOT and [(51)Cr]release assay. Surprisingly, stimulation and antitumor activity of CTL were increased after incubation with Ad.E6E7p16-transduced DC (DC.E6E7p16) compared with Ad.E6E7 (DC.E6E7), a result that may be due to an effect of p16 on cyclin-dependent kinase 4 levels and IL-12 secretion by DC. Moreover, the beneficial effect was most prominent when anti-PD-1 was introduced during the second round of stimulation (after initial priming). These data suggest that careful sequencing of Ad.E6E7.p16 with Ad.αPD1 could improve antitumor immunity against HPV-related tumors and that p16 may enhance the immunogenicity of DC, through cyclin-dependent pathways, Th1 cytokine secretion, and by adding a nonviral Ag highly overexpressed in HPV-induced cancers.
Collapse
Affiliation(s)
- Tatiana M Garcia-Bates
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15232; Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15232
| | - Eun Kim
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15232
| | | | - Sumita Trivedi
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15232
| | - Robbie B Mailliard
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15232
| | - Andrea Gambotto
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15232
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15232; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15232; and Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213
| |
Collapse
|
818
|
See JX, Samudi C, Saeidi A, Menon N, Choh LC, Vadivelu J, Shankar EM. Experimental Persistent Infection of BALB/c Mice with Small-Colony Variants of Burkholderia pseudomallei Leads to Concurrent Upregulation of PD-1 on T Cells and Skewed Th1 and Th17 Responses. PLoS Negl Trop Dis 2016; 10:e0004503. [PMID: 26974441 PMCID: PMC4790896 DOI: 10.1371/journal.pntd.0004503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/09/2016] [Indexed: 02/06/2023] Open
Abstract
Background Burkholderia pseudomallei (B. pseudomallei), the causative agent of melioidosis, is a deadly pathogen endemic across parts of tropical South East Asia and Northern Australia. B. pseudomallei can remain latent within the intracellular compartment of the host cell over prolonged periods of time, and cause persistent disease leading to treatment difficulties. Understanding the immunological mechanisms behind persistent infection can result in improved treatment strategies in clinical melioidosis. Methods Ten-day LD50 was determined for the small-colony variant (SCV) and its parental wild-type (WT) via intranasal route in experimental BALB/c mice. Persistent B. pseudomallei infection was generated by administrating sub-lethal dose of the two strains based on previously determined LD50. After two months, peripheral blood mononuclear cells (PBMCs) and plasma were obtained to investigate host immune responses against persistent B. pseudomallei infection. Lungs, livers, and spleens were harvested and bacterial loads in these organs were determined. Results Based on the ten-day LD50, the SCV was ~20-fold less virulent than the WT. The SCV caused higher bacterial loads in spleens compared to its WT counterparts with persistent B. pseudomallei infection. We found that the CD4+ T-cell frequencies were decreased, and the expressions of PD-1, but not CTLA-4 were significantly increased on the CD4+ and CD8+ T cells of these mice. Notably, persistent infection with the SCV led to significantly higher levels of PD-1 than the WT B. pseudomallei. Plasma IFN-γ, IL-6, and IL-17A levels were elevated only in SCV-infected mice. In addition, skewed plasma Th1 and Th17 responses were observed in SCV-infected mice relative to WT-infected and uninfected mice. Conclusion B. pseudomallei appears to upregulate the expression of PD-1 on T cells to evade host immune responses, which likely facilitates bacterial persistence in the host. SCVs cause distinct pathology and immune responses in the host as compared to WT B. pseudomallei. Melioidosis is an endemic tropical disease in South East Asia and Northern Australia, which is caused by Burkholderia pseudomallei, an environmental bacterium found in the soils of paddy fields and muddy waters across these regions. The bacterium is known to reside within the host cell for prolonged periods of time and is capable of causing long-lasting disease. Recurrent disease is common even with appropriate antibiotic treatments. The mechanisms behind the persistence of B. pseudomallei in the host are still unclear. We investigated the host cell-mediated immune responses against persistent B. pseudomallei infection in BALB/c mice. We found a reduced CD4+ T-cell frequency in mice with persistent B. pseudomallei infection, suggestive of the key role of these cells in experimental melioidosis. Moreover, we also observed significant upregulation of PD-1 on both CD4+ and CD8+ T cells in mice with persistent B. pseudomallei infection, possibly indicating that the T cells were undergoing exhaustion. Based on our results, we postulated that B. pseudomallei is able to impair host immune responses, likely by facilitating the depletion of CD4+ T cells and upregulation of PD-1 on T cells, which potentially facilitates bacterial persistence in the host. Targeting T-cell responses could be an approach to develop vaccines or therapeutics against persistent B. pseudomallei infection.
Collapse
Affiliation(s)
- Jia-Xiang See
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Chandramathi Samudi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Alireza Saeidi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Nivedita Menon
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Leang-Chung Choh
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
- * E-mail: (EMS); (JV)
| | - Esaki M. Shankar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
- Tropical Infectious Disease Research and Education Center (TIDREC), University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
- Centre of Excellence for Research in AIDS (CERiA), Wisma R & D, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
- * E-mail: (EMS); (JV)
| |
Collapse
|
819
|
Martinov T, Spanier JA, Pauken KE, Fife BT. PD-1 pathway-mediated regulation of islet-specific CD4 + T cell subsets in autoimmune diabetes. ACTA ACUST UNITED AC 2016; 3. [PMID: 27656680 PMCID: PMC5027981 DOI: 10.14800/ie.1164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes (T1D) is a CD4+ T cell-driven autoimmune disease resulting from the destruction of insulin-producing pancreatic beta cells. Clinical evidence and studies in non-obese diabetic (NOD) mice suggest that insulin is a major autoantigen. With this in mind, we developed insulin B10-23:IAg7 tetramer reagents to track insulin-specific CD4+ T cells in mice and interrogated the role of Programmed death-1 (PD-1) for peripheral tolerance. PD-1 is a T cell inhibitory receptor necessary to maintain tolerance and prevent T1D in NOD mice. PD-1 pathway inhibitors are increasingly used in the clinic for treating malignancies, and while many patients benefit, some develop adverse autoimmune events, including T1D. We therefore sought to understand the role of PD-1 in maintaining islet-specific tolerance in diabetes-resistant strains. B6.g7 mice express the same MHC Class II allele as NOD mice, have predominantly naïve insulin-specific CD4+ T cells in the periphery, and remain diabetes-free even after PD-1 pathway blockade. Here, we examined the trafficking potential of insulin-specific CD4+ T cells in NOD and B6.g7 mice with or without anti-PD-L1 treatment, and found that PD-L1 blockade preferentially increased the number of CD44highCXCR3+ insulin-specific cells in NOD but not B6.g7 mice. Additionally, we investigated whether pancreatic islets in NOD and B6.g7 mice expressed CXCL10, a lymphocyte homing chemokine and ligand for CXCR3. Anti-PD-L1 treated and control NOD mice had detectable CXCL10 expression in the islets, while B6.g7 islets did not. These data suggest that islet tolerance may be in part attributed to the pancreatic environment and in the absence of pancreas inflammation, chemotactic cytokines may be missing. This, together with our previous data showing that PD-1 pathway blockade preferentially affects effector but not anergic self-specific T cells has implications for the use of checkpoint blockade in treating tumor patients. Our work suggests that determining tumor- and self-specific CD4+ T cell activation status (naïve, effector or anergic) prior to initiation of immunotherapy would likely help to stratify individuals who would benefit from this therapy versus those who might have adverse effects or incomplete tumor control.
Collapse
Affiliation(s)
- Tijana Martinov
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Justin A Spanier
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Kristen E Pauken
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Brian T Fife
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
820
|
The role of immune system exhaustion on cancer cell escape and anti-tumor immune induction after irradiation. Biochim Biophys Acta Rev Cancer 2016; 1865:168-75. [PMID: 26868867 DOI: 10.1016/j.bbcan.2016.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 12/14/2022]
Abstract
Immune surveillance seems to represent an effective tumor suppressor mechanism. However, some cancer cells survive and become variants, being poorly immunogenic and able to enter a steady-state phase. These cells become functionally dormant or remain hidden clinically throughout. Neoplastic cells seem to be able to instruct immune cells to undergo changes promoting malignancy. Radiotherapy may act as a trigger of the immune response. After radiotherapy a sequence of reactions occurs, starting in the damage of oncogenic cells by multiple mechanisms, leading to the immune system positive feedback against the tumor. The link between radiotherapy and the immune system is evident. T cells, macrophages, Natural Killer cells and other immune cells seem to have a key role in controlling the tumor. T cells may be dysfunctional and remain in a state of T cell exhaustion, nonetheless, they often retain a high potential for successful defense against cancer, being able to be mobilized to become highly functional. The lack of clinical trials on a large scale makes data a little robust, in spite of promising information, there are still many variables in the studies relating to radiation and immune system. The clarification of the mechanisms underlying immune response to radiation exposure may contribute to treatment improvement, gain of life quality and span of patients.
Collapse
|
821
|
Karagiannis P, Iriguchi S, Kaneko S. Reprogramming away from the exhausted T cell state. Semin Immunol 2016; 28:35-44. [DOI: 10.1016/j.smim.2015.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/23/2015] [Accepted: 10/29/2015] [Indexed: 02/07/2023]
|
822
|
Bremnes RM, Busund LT, Kilvær TL, Andersen S, Richardsen E, Paulsen EE, Hald S, Khanehkenari MR, Cooper WA, Kao SC, Dønnem T. The Role of Tumor-Infiltrating Lymphocytes in Development, Progression, and Prognosis of Non-Small Cell Lung Cancer. J Thorac Oncol 2016; 11:789-800. [PMID: 26845192 DOI: 10.1016/j.jtho.2016.01.015] [Citation(s) in RCA: 336] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/24/2016] [Accepted: 01/26/2016] [Indexed: 12/25/2022]
Abstract
A malignant tumor is not merely an accumulation of neoplastic cells, but constitutes a microenvironment containing endothelial cells, fibroblasts, structural components, and infiltrating immune cells that impact tumor development, invasion, metastasis, and outcome. Hence, the evolution of cancers reflects intricate cellular and molecular interactions between tumor cells and constituents of the tumor microenvironment. Recent studies have shed new light on this complex interaction between tumor and host immune cells and the resulting immune response. The composition of the immune microenvironment differs across patients as well as in cancers of the same type, including various populations of T cells, B cells, dendritic cells, natural killer cells, myeloid-derived suppressor cells, neutrophils, and macrophages. The type, density, location, and organization of immune cells within solid tumors define the immune contexture, which has proved to be a major determinant of tumor characteristics and patient outcome. Lung cancer consists mostly of non-small cell lung cancer (85%); it is our most deadly malignant disease, with the 5-year survival rate being merely 15%. This review focuses on the immune contexture; the tumor-suppressing roles of tumor-infiltrating lymphocytes; and the relevance of this immune contexture for cancer diagnostics, prognostication, and treatment allocation, with an emphasis on non-small cell lung cancer.
Collapse
Affiliation(s)
- Roy M Bremnes
- Institute of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway; Department of Oncology, University Hospital of Northern Norway, Tromsø, Norway.
| | - Lill-Tove Busund
- Institute of Medical Biology, The Arctic University of Norway, Tromsø, Norway; Department of Pathology, University Hospital of Northern Norway, Tromsø, Norway
| | - Thomas L Kilvær
- Institute of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway; Department of Oncology, University Hospital of Northern Norway, Tromsø, Norway
| | - Sigve Andersen
- Institute of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway; Department of Oncology, University Hospital of Northern Norway, Tromsø, Norway
| | - Elin Richardsen
- Institute of Medical Biology, The Arctic University of Norway, Tromsø, Norway; Department of Pathology, University Hospital of Northern Norway, Tromsø, Norway
| | - Erna Elise Paulsen
- Institute of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway; Department of Oncology, University Hospital of Northern Norway, Tromsø, Norway
| | - Sigurd Hald
- Institute of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway; Department of Oncology, University Hospital of Northern Norway, Tromsø, Norway
| | | | - Wendy A Cooper
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia; School of Medicine, University of Western Sydney, New South Wales, Australia; Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Steven C Kao
- Chris O'Brien Lifehouse, Sydney, New South Wales, Australia; Asbestos Diseases Research Institute, Sydney, New South Wales, Australia; University of Sydney, Sydney, New South Wales, Australia
| | - Tom Dønnem
- Institute of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway; Department of Oncology, University Hospital of Northern Norway, Tromsø, Norway
| |
Collapse
|
823
|
Cunningham CR, Champhekar A, Tullius MV, Dillon BJ, Zhen A, de la Fuente JR, Herskovitz J, Elsaesser H, Snell LM, Wilson EB, de la Torre JC, Kitchen SG, Horwitz MA, Bensinger SJ, Smale ST, Brooks DG. Type I and Type II Interferon Coordinately Regulate Suppressive Dendritic Cell Fate and Function during Viral Persistence. PLoS Pathog 2016; 12:e1005356. [PMID: 26808628 PMCID: PMC4726812 DOI: 10.1371/journal.ppat.1005356] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/01/2015] [Indexed: 12/21/2022] Open
Abstract
Persistent viral infections are simultaneously associated with chronic inflammation and highly potent immunosuppressive programs mediated by IL-10 and PDL1 that attenuate antiviral T cell responses. Inhibiting these suppressive signals enhances T cell function to control persistent infection; yet, the underlying signals and mechanisms that program immunosuppressive cell fates and functions are not well understood. Herein, we use lymphocytic choriomeningitis virus infection (LCMV) to demonstrate that the induction and functional programming of immunosuppressive dendritic cells (DCs) during viral persistence are separable mechanisms programmed by factors primarily considered pro-inflammatory. IFNγ first induces the de novo development of naive monocytes into DCs with immunosuppressive potential. Type I interferon (IFN-I) then directly targets these newly generated DCs to program their potent T cell immunosuppressive functions while simultaneously inhibiting conventional DCs with T cell stimulating capacity. These mechanisms of monocyte conversion are constant throughout persistent infection, establishing a system to continuously interpret and shape the immunologic environment. MyD88 signaling was required for the differentiation of suppressive DCs, whereas inhibition of stimulatory DCs was dependent on MAVS signaling, demonstrating a bifurcation in the pathogen recognition pathways that promote distinct elements of IFN-I mediated immunosuppression. Further, a similar suppressive DC origin and differentiation was also observed in Mycobacterium tuberculosis infection, HIV infection and cancer. Ultimately, targeting the underlying mechanisms that induce immunosuppression could simultaneously prevent multiple suppressive signals to further restore T cell function and control persistent infections. Persistent virus infections induce host derived immunosuppressive factors that attenuate the immune response and prevent control of infection. Although the mechanisms of T cell exhaustion are being defined, we know surprisingly little about the underlying mechanisms that induce the immunosuppressive state and the origin and functional programming of the cells that deliver these signals to the T cells. We recently demonstrated that type I interferon (IFN-I) signaling was responsible for many of the immune dysfunctions associated with persistent virus infection and in particular the induced expression of the suppressive factors IL-10 and PDL1 by dendritic cells (DCs). Yet, mechanistically how IFN-I signaling specifically generates and programs cells to become immunosuppressive is still unknown. Herein, we define the underlying mechanisms of IFN-I mediated immunosuppression and establish that the induction of factors and the generation of the DCs that express them are separable events integrally reliant on additional inflammatory factors. Further, we demonstrate a similar derivation of the suppressive DCs that emerge in other diseases associated with prolonged inflammation and immunosuppression, specifically in HIV infection, Mycobacterium tuberculosis, and cancer, indicating a conserved origin of immunosuppression and suggesting that targeting the pathways that underlie expression of immunosuppressive cells and factors could be beneficial to treat multiple chronic diseases.
Collapse
Affiliation(s)
- Cameron R. Cunningham
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Ameya Champhekar
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Michael V. Tullius
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Barbara Jane Dillon
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Anjie Zhen
- Division of Hematology and Oncology, Department of Medicine, UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Justin Rafael de la Fuente
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Jonathan Herskovitz
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Heidi Elsaesser
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Princess Margaret Cancer Center, Immune Therapy Program, University Health Network, Toronto, Ontario
| | - Laura M. Snell
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Princess Margaret Cancer Center, Immune Therapy Program, University Health Network, Toronto, Ontario
| | - Elizabeth B. Wilson
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Juan Carlos de la Torre
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Scott G. Kitchen
- Division of Hematology and Oncology, Department of Medicine, UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Marcus A. Horwitz
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Steven J. Bensinger
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Stephen T. Smale
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - David G. Brooks
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Princess Margaret Cancer Center, Immune Therapy Program, University Health Network, Toronto, Ontario
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
824
|
Tamkus D, Joginpally T. Therapeutic strategies to reverse immunosuppressive breast cancer microenvironment. ACTA ACUST UNITED AC 2016. [DOI: 10.7243/2052-6199-4-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
825
|
Abstract
This year's Lasker∼DeBakey Clinical Research Award goes to James Allison for discovering that antibody blockade of the T cell molecule CTLA-4 unleashes the body's immune response against malignant tumors. This has led to development of multiple "immune checkpoint therapies" that are prolonging and saving the lives of thousands of cancer patients.
Collapse
Affiliation(s)
- Dan R Littman
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA; The Howard Hughes Medical Institute.
| |
Collapse
|
826
|
Boer MC, van Meijgaarden KE, Goletti D, Vanini V, Prins C, Ottenhoff THM, Joosten SA. KLRG1 and PD-1 expression are increased on T-cells following tuberculosis-treatment and identify cells with different proliferative capacities in BCG-vaccinated adults. Tuberculosis (Edinb) 2015; 97:163-71. [PMID: 26750180 DOI: 10.1016/j.tube.2015.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 02/07/2023]
Abstract
In cancer and chronic infectious diseases, immune checkpoint-blockade of inhibitory receptors can enhance T-cell immunity. In tuberculosis (TB), a chronic infectious disease, prolonged antigen exposure can potentially drive terminal T-cell differentiation towards functional 'exhaustion': in human TB T-cells express PD-1 (programmed cell death protein-1) and CTLA-4 (cytotoxic T-lymphocyte-associated protein-4). However, in murine TB not PD-1 but rather killer cell lectin-like receptor subfamily-G1 (KLRG1) was a superior indicator of terminal T-cell differentiation. We therefore compared expression of KLRG1, PD-1 and CTLA-4 on T-cells in different stages of human TB, and also analysed their induction following BCG-vaccination. KLRG1, PD-1 and CTLA-4-expression were highest on in vitro BCG-stimulated CD4(+) T-cells following recent TB-treatment; KLRG1 and PD-1-expression on CD4(+) T-cells in active--but not latent--TB were only slightly increased compared to healthy donors. BCG-vaccination induced KLRG1-expression on BCG-stimulated CD8(+) but not CD4(+) T-cells, while neither PD-1 nor CTLA-4-expression increased. KLRG1-expressing CD8(+) T-cells exhibited markedly decreased proliferation, whereas PD-1(+) T-cells proliferated after in vitro BCG-stimulation. Thus, we demonstrate the presence of increased KLRG1-expressing T-cells in TB-treated individuals, and present KLRG1 as a marker of decreased human T-cell proliferation following BCG-vaccination. These results expand our understanding of cell-mediated immune control of mycobacterial infections.
Collapse
Affiliation(s)
- Mardi C Boer
- Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Krista E van Meijgaarden
- Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Delia Goletti
- Istituto Nazionale per le Malattie Infettive "L. Spallanzani", Via Portuense 292, Rome 00149, Italy
| | - Valentina Vanini
- Istituto Nazionale per le Malattie Infettive "L. Spallanzani", Via Portuense 292, Rome 00149, Italy
| | - Corine Prins
- Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
827
|
Peligero C, Argilaguet J, Güerri-Fernandez R, Torres B, Ligero C, Colomer P, Plana M, Knobel H, García F, Meyerhans A. PD-L1 Blockade Differentially Impacts Regulatory T Cells from HIV-Infected Individuals Depending on Plasma Viremia. PLoS Pathog 2015; 11:e1005270. [PMID: 26633181 PMCID: PMC4669187 DOI: 10.1371/journal.ppat.1005270] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/20/2015] [Indexed: 12/28/2022] Open
Abstract
Blocking the PD-1/PD-L1 pathway has emerged as a potential therapy to restore impaired immune responses in human immunodeficiency virus (HIV)-infected individuals. Most reports have studied the impact of the PD-L1 blockade on effector cells and neglected possible effects on regulatory T cells (Treg cells), which play an essential role in balancing immunopathology and antiviral effector responses. The aim of this study was to define the consequences of ex vivo PD-L1 blockade on Treg cells from HIV-infected individuals. We observed that HIV infection led to an increase in PD-1+ and PD-L1+ Treg cells. This upregulation correlated with disease progression and decreased under antiretroviral treatment. Treg cells from viremic individuals had a particularly high PD-1 expression and impaired proliferative capacity in comparison with Treg cells from individuals under antiretroviral treatment. PD-L1 blockade restored the proliferative capacity of Treg cells from viremic individuals but had no effect on its suppressive capacity. Moreover, it increased the viral production in cell cultures from viremic individuals. This increase in viral production correlated with an increase in Treg cell percentage and a reduction in the CD4/Treg and CD8/Treg cell ratios. In contrast to the effect of the PD-L1 blockade on Treg cells from viremic individuals, we did not observe a significant effect on the proliferative capacity of Treg cells from individuals in whom viremia was controlled (either spontaneously or by antiretroviral treatment). However, PD-L1 blockade resulted in an increased proliferative capacity of HIV-specific-CD8 T cells in all subjects. Taken together, our findings suggest that manipulating PD-L1 in vivo can be expected to influence the net gain of effector function depending on the subject’s plasma viremia. HIV infection causes a progressive impairment of effector immune responses, contributing to virus persistence. The restoration of these responses is essential to achieve a drug-free control over HIV. One strategy that could restore effector immune responses is the relief of the inhibitory signal displayed by the PD-1/PD-L1 pathway on effector cells. However, the PD-1/PD-L1 pathway also plays a role in the biology of regulatory T cells, which in turn suppress effector responses. Here we show that ex vivo PD-L1 blockade on peripheral blood mononuclear cells from HIV-infected individuals differentially increases the proliferative capacity of regulatory- and effector- T cells depending on the subject’s plasma viremia. Our results suggest that PD-L1 blockade will skew the effector-to-regulatory T cell ratio in favour of effector cells only in patients in whom viremia is controlled. In patients with uncontrolled viremia, PD-L1 blockade will not favour effector- T cells over regulatory- T cells, and might also boost virus reactivation. Our findings support the rationale to combine a PD-L1 blockade with antiretroviral treatment to restore effector responses in HIV-infected individuals.
Collapse
Affiliation(s)
- Cristina Peligero
- Infection Biology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jordi Argilaguet
- Infection Biology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail: (JA); (AM)
| | | | - Berta Torres
- Infectious Diseases Unit, Hospital Clínic, Barcelona, Spain
| | - Carmen Ligero
- Infectious Diseases Unit, Hospital Clínic, Barcelona, Spain
| | - Pilar Colomer
- Infectious Diseases Unit, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montserrat Plana
- Retrovirology and Viral Immunopathology Laboratory, AIDS Research Group, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Hernando Knobel
- Infectious Diseases Unit, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Felipe García
- Infectious Diseases Unit, Hospital Clínic, Barcelona, Spain
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail: (JA); (AM)
| |
Collapse
|
828
|
Abstract
In chronic infections and cancer, T cells are exposed to persistent antigen and/or inflammatory signals. This scenario is often associated with the deterioration of T cell function: a state called 'exhaustion'. Exhausted T cells lose robust effector functions, express multiple inhibitory receptors and are defined by an altered transcriptional programme. T cell exhaustion is often associated with inefficient control of persisting infections and tumours, but revitalization of exhausted T cells can reinvigorate immunity. Here, we review recent advances that provide a clearer molecular understanding of T cell exhaustion and reveal new therapeutic targets for persisting infections and cancer.
Collapse
Affiliation(s)
- E John Wherry
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Makoto Kurachi
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
829
|
Gorosito Serrán M, Fiocca Vernengo F, Beccaria CG, Acosta Rodriguez EV, Montes CL, Gruppi A. The regulatory role of B cells in autoimmunity, infections and cancer: Perspectives beyond IL10 production. FEBS Lett 2015; 589:3362-9. [PMID: 26424657 DOI: 10.1016/j.febslet.2015.08.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/24/2015] [Accepted: 08/31/2015] [Indexed: 12/23/2022]
Abstract
The term regulatory B cells (B regs) is ascribed to a heterogeneous population of B cells with the function of suppressing inflammatory responses. They have been described mainly during the last decade in the context of different immune-mediated diseases. Most of the work on B regs has been focused on IL-10-producing B cells. However, B cells can exert regulatory functions independently of IL-10 production. Here we discuss the phenotypes, development and effector mechanisms of B regs and advances in their role in autoimmunity, infections and cancer.
Collapse
Affiliation(s)
- Melisa Gorosito Serrán
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Facundo Fiocca Vernengo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cristian G Beccaria
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Eva V Acosta Rodriguez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Carolina L Montes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Adriana Gruppi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
830
|
Frey AB. Suppression of T cell responses in the tumor microenvironment. Vaccine 2015; 33:7393-7400. [PMID: 26403368 DOI: 10.1016/j.vaccine.2015.08.096] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/06/2015] [Accepted: 08/05/2015] [Indexed: 12/29/2022]
Abstract
The immune system recognizes protein antigens expressed in transformed cells evidenced by accumulation of antigen-specific T cells in tumor and tumor draining lymph nodes. However, despite demonstrable immune response, cancers grow progressively suggesting that priming of antitumor immunity is insufficiently vigorous or that antitumor immunity is suppressed, or both. Compared to virus infection, antitumor T cells are low abundance that likely contributes to tumor escape and enhancement of priming is a long-sought goal of experimental vaccination therapy. Furthermore, patient treatment with antigen-specific T cells can in some cases overcome deficient priming and cause tumor regression supporting the notion that low numbers of T cells permits tumor outgrowth. However, tumor-induced suppression of antitumor immune response is now recognized as a significant factor contributing to cancer growth and reversal of the inhibitory influences within the tumor microenvironment is a major research objective. Multiple cell types and factors can inhibit T cell functions in tumors and may be grouped in two general classes: T cell intrinsic and T cell extrinsic. T cell intrinsic factors are exemplified by T cell expression of cell surface inhibitory signaling receptors that, after contact with cells expressing a cognate ligand, inactivate proximal T Cell Receptor-mediated signal transduction therein rendering T cells dysfunctional. T cell extrinsic factors are more diverse in nature and are produced by tumors and various non-tumor cells in the tumor microenvironment. These include proteins secreted by tumor or stromal cells, highly reactive soluble oxygen and nitrogen species, cytokines, chemokines, gangliosides, and toxic metabolites. These factors may restrict T cell entrance into the tumor parenchyma, cause inactivation of effector phase T cell functions, or induce T cell apoptosis ultimately causing diminished cancer elimination. Here, we review the contributions of inhibitory factors to tumor T cell dysfunction leading to tumor escape.
Collapse
Affiliation(s)
- Alan B Frey
- Department of Cell Biology, Perlmutter Cancer Center, New York University Langone School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
831
|
Waugh KA, Leach SM, Slansky JE. Targeting Transcriptional Regulators of CD8+ T Cell Dysfunction to Boost Anti-Tumor Immunity. Vaccines (Basel) 2015; 3:771-802. [PMID: 26393659 PMCID: PMC4586477 DOI: 10.3390/vaccines3030771] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 02/07/2023] Open
Abstract
Transcription is a dynamic process influenced by the cellular environment: healthy, transformed, and otherwise. Genome-wide mRNA expression profiles reflect the collective impact of pathways modulating cell function under different conditions. In this review we focus on the transcriptional pathways that control tumor infiltrating CD8+ T cell (TIL) function. Simultaneous restraint of overlapping inhibitory pathways may confer TIL resistance to multiple mechanisms of suppression traditionally referred to as exhaustion, tolerance, or anergy. Although decades of work have laid a solid foundation of altered transcriptional networks underlying various subsets of hypofunctional or “dysfunctional” CD8+ T cells, an understanding of the relevance in TIL has just begun. With recent technological advances, it is now feasible to further elucidate and utilize these pathways in immunotherapy platforms that seek to increase TIL function.
Collapse
Affiliation(s)
- Katherine A Waugh
- University of Colorado School of Medicine, 12800 East 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA.
| | - Sonia M Leach
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA.
| | - Jill E Slansky
- University of Colorado School of Medicine, 12800 East 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA.
| |
Collapse
|
832
|
Chronic Activation of Innate Immunity Correlates With Poor Prognosis in Cancer Patients Treated With Oncolytic Adenovirus. Mol Ther 2015; 24:175-83. [PMID: 26310629 DOI: 10.1038/mt.2015.143] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/23/2015] [Indexed: 12/17/2022] Open
Abstract
Despite many clinical trials conducted with oncolytic viruses, the exact tumor-level mechanisms affecting therapeutic efficacy have not been established. Currently there are no biomarkers available that would predict the clinical outcome to any oncolytic virus. To assess the baseline immunological phenotype and find potential prognostic biomarkers, we monitored mRNA expression levels in 31 tumor biopsy or fluid samples from 27 patients treated with oncolytic adenovirus. Additionally, protein expression was studied from 19 biopsies using immunohistochemical staining. We found highly significant changes in several signaling pathways and genes associated with immune responses, such as B-cell receptor signaling (P < 0.001), granulocyte macrophage colony-stimulating factor (GM-CSF) signaling (P < 0.001), and leukocyte extravasation signaling (P < 0.001), in patients surviving a shorter time than their controls. In immunohistochemical analysis, markers CD4 and CD163 were significantly elevated (P = 0.020 and P = 0.016 respectively), in patients with shorter than expected survival. Interestingly, T-cell exhaustion marker TIM-3 was also found to be significantly upregulated (P = 0.006) in patients with poor prognosis. Collectively, these data suggest that activation of several functions of the innate immunity before treatment is associated with inferior survival in patients treated with oncolytic adenovirus. Conversely, lack of chronic innate inflammation at baseline may predict improved treatment outcome, as suggested by good overall prognosis.
Collapse
|
833
|
Feng C, Cao LJ, Song HF, Xu P, Chen H, Xu JC, Zhu XY, Zhang XG, Wang XF. Expression of PD-L1 on CD4+CD25+Foxp3+ Regulatory T Cells of Patients with Chronic HBV Infection and Its Correlation with Clinical Parameters. Viral Immunol 2015; 28:418-24. [PMID: 26266813 DOI: 10.1089/vim.2015.0062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells (Tregs) play a pivotal role in suppressing specific antiviral immune responses during the progression of chronic hepatitis B virus infection (CHB) as well as tumorigenesis. Programmed death-1 ligand-1 (PD-L1) expressed on Tregs can transduce an inhibitory signal into effector T cells through interacting with programmed death-1 (PD-1). However, in CHB patients, the clinical significance of PD-L1 expression on Tregs has not been clearly described. This study investigated the frequency of circulating Tregs and PD-L1 expression on Tregs and analyzed their correlations with clinical parameters. The data show that both the frequency of CD4+CD25+FoxP3+ Tregs and PD-L1 expression on Tregs in the peripheral blood increased significantly in CHB patients when compared with healthy controls. At the same time, it is shown that PD-L1 expression on Tregs was positively correlated with the percentage of Tregs in CHB patients. Moreover, the results demonstrated that both Treg frequency and PD-L1 expression on Tregs positively correlated with the levels of alanine aminotransaminase (ALT) and aspartate aminotransferase (AST), both of which are indicators of the extent of liver injury. Taken together, these findings suggest that PD-L1 on Tregs might contribute to progression of hepatitis B virus infection through mediating the inhibitory function of Tregs. Thereby, blockade of interaction between Treg-expressing PD-L1 and PD-1 on effector T cells may be adopted as a potential therapeutic approach in CHB.
Collapse
Affiliation(s)
- Chao Feng
- 1 Department of Biochemistry and Molecular Biology, School of Biology and Basic Medical Sciences, Soochow University , Suzhou, China
| | - Li-Juan Cao
- 1 Department of Biochemistry and Molecular Biology, School of Biology and Basic Medical Sciences, Soochow University , Suzhou, China
| | - Hua-Feng Song
- 1 Department of Biochemistry and Molecular Biology, School of Biology and Basic Medical Sciences, Soochow University , Suzhou, China .,2 Central Laboratory, The Affiliated Infectious Hospital of Soochow University , Suzhou, China .,3 Key Laboratory of Infection and Immunity of Suzhou City , Suzhou, China
| | - Ping Xu
- 2 Central Laboratory, The Affiliated Infectious Hospital of Soochow University , Suzhou, China .,3 Key Laboratory of Infection and Immunity of Suzhou City , Suzhou, China
| | - Hui Chen
- 2 Central Laboratory, The Affiliated Infectious Hospital of Soochow University , Suzhou, China .,3 Key Laboratory of Infection and Immunity of Suzhou City , Suzhou, China
| | - Jun-Chi Xu
- 2 Central Laboratory, The Affiliated Infectious Hospital of Soochow University , Suzhou, China .,3 Key Laboratory of Infection and Immunity of Suzhou City , Suzhou, China
| | - Xiao-Yan Zhu
- 2 Central Laboratory, The Affiliated Infectious Hospital of Soochow University , Suzhou, China .,3 Key Laboratory of Infection and Immunity of Suzhou City , Suzhou, China
| | - Xue-Guang Zhang
- 1 Department of Biochemistry and Molecular Biology, School of Biology and Basic Medical Sciences, Soochow University , Suzhou, China .,4 The First Affiliated Hospital of Soochow University , Suzhou, China
| | - Xue-Feng Wang
- 1 Department of Biochemistry and Molecular Biology, School of Biology and Basic Medical Sciences, Soochow University , Suzhou, China
| |
Collapse
|
834
|
Molecular and cellular insights into T cell exhaustion. NATURE REVIEWS. IMMUNOLOGY 2015. [PMID: 26205583 DOI: 10.1038/nri3862.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In chronic infections and cancer, T cells are exposed to persistent antigen and/or inflammatory signals. This scenario is often associated with the deterioration of T cell function: a state called 'exhaustion'. Exhausted T cells lose robust effector functions, express multiple inhibitory receptors and are defined by an altered transcriptional programme. T cell exhaustion is often associated with inefficient control of persisting infections and tumours, but revitalization of exhausted T cells can reinvigorate immunity. Here, we review recent advances that provide a clearer molecular understanding of T cell exhaustion and reveal new therapeutic targets for persisting infections and cancer.
Collapse
|
835
|
Srivastava S, Riddell SR. Engineering CAR-T cells: Design concepts. Trends Immunol 2015; 36:494-502. [PMID: 26169254 DOI: 10.1016/j.it.2015.06.004] [Citation(s) in RCA: 335] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/19/2015] [Accepted: 06/19/2015] [Indexed: 12/31/2022]
Abstract
Despite being empirically designed based on a simple understanding of TCR signaling, T cells engineered with chimeric antigen receptors (CARs) have been remarkably successful in treating patients with advanced refractory B cell malignancies. However, many challenges remain in improving the safety and efficacy of this therapy and extending it toward the treatment of epithelial cancers. Other aspects of TCR signaling beyond those directly provided by CD3ζ and CD28 phosphorylation strongly influence a T cell's ability to differentiate and acquire full effector functions. Here, we discuss how the principles of TCR recognition, including spatial constraints, Kon/Koff rates, and synapse formation, along with in-depth analysis of CAR signaling might be applied to develop safer and more effective synthetic tumor targeting receptors.
Collapse
Affiliation(s)
- Shivani Srivastava
- Program in Immunology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA
| | - Stanley R Riddell
- Program in Immunology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA.
| |
Collapse
|
836
|
Chinai JM, Janakiram M, Chen F, Chen W, Kaplan M, Zang X. New immunotherapies targeting the PD-1 pathway. Trends Pharmacol Sci 2015; 36:587-95. [PMID: 26162965 DOI: 10.1016/j.tips.2015.06.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 12/22/2022]
Abstract
Ligands from the B7 family bind to receptors of the CD28 family, which regulate early T cell activation in lymphoid organs and control inflammation and autoimmunity in peripheral tissues. Programmed death-1 (PD-1), a member of the CD28 family, is an inhibitory receptor on T cells and is responsible for their dysfunction in infectious diseases and cancers. The complex mechanisms controlling the expression and signaling of PD-1 and programmed death ligand 1 (PD-L1) are emerging. Recently completed and ongoing clinical trials that target these molecules have shown remarkable success by generating durable clinical responses in some cancer patients. In chronic viral infections, preclinical data reveal that targeting PD-1 and its ligands can improve T cell responses and virus clearance. There is also promise in stimulating this pathway for the treatment of autoimmune and inflammatory disorders.
Collapse
Affiliation(s)
- Jordan M Chinai
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Murali Janakiram
- Department of Oncology, Montefiore Medical Center, New York, NY 10467, USA
| | - Fuxiang Chen
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wantao Chen
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Mark Kaplan
- Centers for Therapeutic Innovation, Pfizer Inc., New York, NY 10016, USA
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA; Department of Oncology, Montefiore Medical Center, New York, NY 10467, USA.
| |
Collapse
|
837
|
Jiang Y, Li Y, Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis 2015; 6:e1792. [PMID: 26086965 PMCID: PMC4669840 DOI: 10.1038/cddis.2015.162] [Citation(s) in RCA: 751] [Impact Index Per Article: 75.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/27/2015] [Accepted: 04/30/2015] [Indexed: 12/24/2022]
Abstract
T-cell exhaustion was originally identified during chronic infection in mice, and was subsequently observed in humans with cancer. The exhausted T cells in the tumor microenvironment show overexpressed inhibitory receptors, decreased effector cytokine production and cytolytic activity, leading to the failure of cancer elimination. Restoring exhausted T cells represents an inspiring strategy for cancer treatment, which has yielded promising results and become a significant breakthrough in the cancer immunotherapy. In this review, we overview the updated understanding on the exhausted T cells in cancer and their potential regulatory mechanisms and discuss current therapeutic interventions targeting exhausted T cells in clinical trials.
Collapse
Affiliation(s)
- Y Jiang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Y Li
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
- Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - B Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
838
|
T cell metabolic fitness in antitumor immunity. Trends Immunol 2015; 36:257-64. [PMID: 25773310 DOI: 10.1016/j.it.2015.02.007] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 01/08/2023]
Abstract
T cell metabolism has a central role in supporting and shaping immune responses and may have a key role in antitumor immunity. T cell metabolism is normally held under tight regulation in an immune response of glycolysis to promote effector T cell expansion and function. However, tumors may deplete nutrients, generate toxic products, or stimulate conserved negative feedback mechanisms, such as through Programmed Cell Death 1 (PD-1), to impair effector T cell nutrient uptake and metabolic fitness. In addition, regulatory T cells are favored in low glucose conditions and may inhibit antitumor immune responses. Here, we review how the tumor microenvironment modifies metabolic and functional pathways in T cells and how these changes may uncover new targets and challenges for cancer immunotherapy and treatment.
Collapse
|
839
|
Zehn D, Wherry EJ. Immune Memory and Exhaustion: Clinically Relevant Lessons from the LCMV Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 850:137-52. [PMID: 26324351 DOI: 10.1007/978-3-319-15774-0_10] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of dysfunctional or exhausted T cells is characteristic of immune responses to chronic viral infections and cancer. Exhausted T cells are defined by reduced effector function, sustained upregulation of multiple inhibitory receptors, an altered transcriptional program and perturbations of normal memory development and homeostasis. This review focuses on (a) illustrating milestone discoveries that led to our present understanding of T cell exhaustion, (b) summarizing recent developments in the field, and (c) identifying new challenges for translational research. Exhausted T cells are now recognized as key therapeutic targets in human infections and cancer. Much of our knowledge of the clinically relevant process of exhaustion derives from studies in the mouse model of Lymphocytic choriomeningitis virus (LCMV) infection. Studies using this model have formed the foundation for our understanding of human T cell memory and exhaustion. We will use this example to discuss recent advances in our understanding of T cell exhaustion and illustrate the value of integrated mouse and human studies and will emphasize the benefits of bi-directional mouse-to-human and human-to-mouse research approaches.
Collapse
Affiliation(s)
- D Zehn
- Division of Immunology and Allergy, Lausanne University Hospital, Lausanne, Switzerland,
| | | |
Collapse
|