801
|
Jiang Y, Liu C, Yan D, Wen X, Liu Y, Wang H, Dai J, Zhang Y, Liu Y, Zhou B, Ren X. MdHB1 down-regulation activates anthocyanin biosynthesis in the white-fleshed apple cultivar 'Granny Smith'. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1055-1069. [PMID: 28338881 DOI: 10.1093/jxb/erx029] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Coloration in apple (Malus×domestica) flesh is mainly caused by the accumulation of anthocyanin. Anthocyanin is biosynthesized through the flavonoid pathway and regulated by MYB, bHLH, and WD40 transcription factors (TFs). Here, we report that the HD-Zip I TF MdHB1 was also involved in the regulation of anthocyanin accumulation. MdHB1 silencing caused the accumulation of anthocyanin in 'Granny Smith' flesh, whereas its overexpression reduced the flesh content of anthocyanin in 'Ballerina' (red-fleshed apple). Moreover, flowers of transgenic tobacco (Nicotiana tabacum 'NC89') overexpressing MdHB1 showed a remarkable reduction in pigmentation. Transient promoter activation assays and yeast one-hybrid results indicated that MdHB1 indirectly inhibited expression of the anthocyanin biosynthetic genes encoding dihydroflavonol-4-reductase (DFR) and UDP-glucose:flavonoid 3-O-glycosyltransferase (UFGT). Yeast two-hybrid and bimolecular fluorescence complementation determined that MdHB1 acted as a homodimer and could interact with MYB, bHLH, and WD40 in the cytoplasm, consistent with its cytoplasmic localization by green fluorescent protein fluorescence observations. Together, these results suggest that MdHB1 constrains MdMYB10, MdbHLH3, and MdTTG1 to the cytoplasm, and then represses the transcription of MdDFR and MdUFGT indirectly. When MdHB1 is silenced, these TFs are released to activate the expression of MdDFR and MdUFGT and also anthocyanin biosynthesis, resulting in red flesh in 'Granny Smith'.
Collapse
Affiliation(s)
- Yonghua Jiang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cuihua Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dan Yan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaohong Wen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanli Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haojie Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jieyu Dai
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yujie Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanfei Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bin Zhou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaolin Ren
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
802
|
Chopra R, Burow G, Burke JJ, Gladman N, Xin Z. Genome-wide association analysis of seedling traits in diverse Sorghum germplasm under thermal stress. BMC PLANT BIOLOGY 2017; 17:12. [PMID: 28086798 PMCID: PMC5237230 DOI: 10.1186/s12870-016-0966-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/23/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Climate variability due to fluctuation in temperature is a worldwide concern that imperils crop production. The need to understand how the germplasm variation in major crops can be utilized to aid in discovering and developing breeding lines that can withstand and adapt to temperature fluctuations is more necessary than ever. Here, we analyzed the genetic variation associated with responses to thermal stresses in a sorghum association panel (SAP) representing major races and working groups to identify single nucleotide polymorphisms (SNPs) that are associated with resilience to temperature stress in a major cereal crop. RESULTS The SAP exhibited extensive variation for seedling traits under cold and heat stress. Genome-wide analyses identified 30 SNPs that were strongly associated with traits measured at seedling stage under cold stress and tagged genes that act as regulators of anthocyanin expression and soluble carbohydrate metabolism. Meanwhile, 12 SNPs were significantly associated with seedling traits under heat stress and these SNPs tagged genes that function in sugar metabolism, and ion transport pathways. Evaluation of co-expression networks for genes near the significantly associated SNPs indicated complex gene interactions for cold and heat stresses in sorghum. We focused and validated the expression of four genes in the network of Sb06g025040, a basic-helix-loop-helix (bHLH) transcription factor that was proposed to be involved in purple color pigmentation of leaf, and observed that genes in this network were upregulated during cold stress in a moderately tolerant line as compared to the more sensitive line. CONCLUSION This study facilitated the tagging of genome regions associated with variation in seedling traits of sorghum under cold and heat stress. These findings show the potential of genotype information for development of temperature resilient sorghum cultivars and further characterization of genes and their networks responsible for adaptation to thermal stresses. Knowledge on the gene networks from this research can be extended to the other cereal crops to better understand the genetic basis of resilience to temperature fluctuations during plant developmental stages.
Collapse
Affiliation(s)
- Ratan Chopra
- Plant Stress & Germplasm Development Unit, Cropping Systems Research Laboratory, USDA-ARS, Lubbock, TX, 79415, USA.
| | - Gloria Burow
- Plant Stress & Germplasm Development Unit, Cropping Systems Research Laboratory, USDA-ARS, Lubbock, TX, 79415, USA.
| | - John J Burke
- Plant Stress & Germplasm Development Unit, Cropping Systems Research Laboratory, USDA-ARS, Lubbock, TX, 79415, USA
| | - Nicholas Gladman
- Plant Stress & Germplasm Development Unit, Cropping Systems Research Laboratory, USDA-ARS, Lubbock, TX, 79415, USA
| | - Zhanguo Xin
- Plant Stress & Germplasm Development Unit, Cropping Systems Research Laboratory, USDA-ARS, Lubbock, TX, 79415, USA
| |
Collapse
|
803
|
Comparative Transcriptome Analysis Reveals Effects of Exogenous Hematin on Anthocyanin Biosynthesis during Strawberry Fruit Ripening. Int J Genomics 2017; 2016:6762731. [PMID: 28074176 PMCID: PMC5198259 DOI: 10.1155/2016/6762731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/30/2016] [Accepted: 10/25/2016] [Indexed: 11/21/2022] Open
Abstract
Anthocyanin in strawberries has a positive effect on fruit coloration. In this study, the role of exogenous hematin on anthocyanin biosynthesis was investigated. Our result showed that the white stage of strawberries treated with exogenous hematin had higher anthocyanin content, compared to the control group. Among all treatments, 5 μM of hematin was the optimal condition to promote color development. In order to explore the molecular mechanism of fruit coloring regulated by hematin, transcriptomes in the hematin- and non-hematin-treated fruit were analyzed. A large number of differentially expressed genes (DEGs) were identified in regulating anthocyanin synthesis, including the DEGs involved in anthocyanin biosynthesis, hormone signaling transduction, phytochrome signaling, starch and sucrose degradation, and transcriptional pathways. These regulatory networks may play an important role in regulating the color process of strawberries treated with hematin. In summary, exogenous hematin could promote fruit coloring by increasing anthocyanin content in the white stage of strawberries. Furthermore, transcriptome analysis suggests that hematin-promoted fruit coloring occurs through multiple related metabolic pathways, which provides valuable information for regulating fruit color via anthocyanin biosynthesis in strawberries.
Collapse
|
804
|
Liu R, Lai B, Hu B, Qin Y, Hu G, Zhao J. Identification of MicroRNAs and Their Target Genes Related to the Accumulation of Anthocyanins in Litchi chinensis by High-Throughput Sequencing and Degradome Analysis. FRONTIERS IN PLANT SCIENCE 2017; 7:2059. [PMID: 28119728 PMCID: PMC5223483 DOI: 10.3389/fpls.2016.02059] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/23/2016] [Indexed: 05/22/2023]
Abstract
Litchi (Litchi chinensis Sonn.) is an important subtropical fruit in southern China and the fruit pericarp has attractive red skin at maturity, which is provided by anthocyanins accumulation. To understand the anthocyanin biosynthesis at post-transcriptional level, we investigated the roles of microRNAs (miRNAs) during fruit coloring. In the present study, four small RNA libraries and a mixed degradome library from pericarps of 'Feizixiao' litchi at different developmental phases were constructed and sequenced by Solexa technology. A total of 78 conserved miRNAs belonging to 35 miRNA families and 41 novel miRNAs were identified via high-throughput sequencing, and 129 genes were identified as their targets by the recently developed degradome sequencing. miR156a and a novel microRNA (NEW41) were found to be differentially expressed during fruit coloring, indicating they might affect anthocyanin biosynthesis through their target genes in litchi. qRT-PCR analysis confirmed the expression changes of miR156a and the novel microRNA (NEW41) were inversely correlated with the expression profiles of their target genes LcSPL1/2 and LcCHI, respectively, suggesting regulatory roles of these miRNAs during anthocyanin biosynthesis. The target genes of miR156a, LcSPL1/2, encode transcription factors, as evidenced by a localization in the nucleus, that might play roles in the regulation of transcription. To further explore the relationship of LcSPL1/2 with the anthocyanin regulatory genes, yeast two-hybrid and BiFC analyses showed that LcSPL1 proteins could interact with LcMYB1, which is the key regulatory gene in anthocyanin biosynthesis in litchi. This study represents a comprehensive expression profiling of miRNAs in anthocyanin biosynthesis during litchi fruit maturity and confirmed that the miR156- SPLs module was conserved in anthocyanin biosynthesis in litchi.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China of Ministry of Agriculture, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Biao Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China of Ministry of Agriculture, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Bing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China of Ministry of Agriculture, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Yonghua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China of Ministry of Agriculture, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China of Ministry of Agriculture, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| | - Jietang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural UniversityGuangzhou, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China of Ministry of Agriculture, College of Horticulture, South China Agricultural UniversityGuangzhou, China
| |
Collapse
|
805
|
He X, Li Y, Lawson D, Xie DY. Metabolic engineering of anthocyanins in dark tobacco varieties. PHYSIOLOGIA PLANTARUM 2017; 159:2-12. [PMID: 27229540 DOI: 10.1111/ppl.12475] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/16/2016] [Indexed: 06/05/2023]
Abstract
In this study, we investigate the metabolic engineering of anthocyanins in two dark tobacco crops (Narrow Leaf Madole and KY171) and evaluate the effects on physiological features of plant photosynthesis. Arabidopsis PAP1 (production of anthocyanin pigment 1) gene (AtPAP1) encodes a R2R3-type MYB transcript factor that is a master component of regulatory complexes controlling anthocyanin biosynthesis. AtPAP1 was introduced to Narrow Leaf Madole and KY171 plants. Multiple transgenic plants developed red/purple pigmentation in different tissues. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that the expression levels of six pathway genes were increased two- to eight-fold in AtPAP1 transgenic plants compared with vector control plants. Dihydroflavonol reductase and anthocyanidin synthase genes that were not expressed in wild-type plants were activated. Spectrophotometric measurement showed that the amount of anthocyanins in AtPAP1 transgenic plants were 400-800 µg g-1 fresh weight (FW). High-performance liquid chromatography (HPLC) analysis showed that one main anthocyanin molecule accounted for approximately 98% of the total anthocyanins. Tandem MS/MS analysis using HPLC coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry identified the main anthocyanin as cyanidin 3-O-rutinoside, an important medicinal anthocyanin. Analysis of photosynthesis rate, chlorophylls and carotenoids contents showed no differences between red/purple transgenic and control plants, indicating that this metabolic engineering did not alter photosynthetic physiological traits. This study shows that AtPAP1 is of significance for metabolic engineering of anthocyanins in crop plants for value-added traits.
Collapse
Affiliation(s)
- Xianzhi He
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yong Li
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Darlene Lawson
- Department of Research and Development, R. J. Reynolds Tobacco Company, Winston-Salem, NC, 27102, USA
| | - De-Yu Xie
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
806
|
Kim S, Hwang G, Lee S, Zhu JY, Paik I, Nguyen TT, Kim J, Oh E. High Ambient Temperature Represses Anthocyanin Biosynthesis through Degradation of HY5. FRONTIERS IN PLANT SCIENCE 2017; 8:1787. [PMID: 29104579 PMCID: PMC5655971 DOI: 10.3389/fpls.2017.01787] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/02/2017] [Indexed: 05/03/2023]
Abstract
Anthocyanins are flavonoid compounds that protect plant tissues from many environmental stresses including high light irradiance, freezing temperatures, and pathogen infection. Regulation of anthocyanin biosynthesis is intimately associated with environmental changes to enhance plant survival under stressful environmental conditions. Various factors, such as UV, visible light, cold, osmotic stress, and pathogen infection, can induce anthocyanin biosynthesis. In contrast, high temperatures are known to reduce anthocyanin accumulation in many plant species, even drastically in the skin of fruits such as grape berries and apples. However, the mechanisms by which high temperatures regulate anthocyanin biosynthesis in Arabidopsis thaliana remain largely unknown. Here, we show that high ambient temperatures repress anthocyanin biosynthesis through the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) and the positive regulator of anthocyanin biosynthesis ELONGATED HYPOCOTYL5 (HY5). We show that an increase in ambient temperature decreases expression of genes required in both the early and late steps of the anthocyanin biosynthesis pathway in Arabidopsis seedlings. As a result, seedlings grown at a high temperature (28°C) accumulate less anthocyanin pigment than those grown at a low temperature (17°C). We further show that high temperature induces the degradation of the HY5 protein in a COP1 activity-dependent manner. In agreement with this finding, anthocyanin biosynthesis and accumulation do not respond to ambient temperature changes in cop1 and hy5 mutant plants. The degradation of HY5 derepresses the expression of MYBL2, which partially mediates the high temperature repression of anthocyanin biosynthesis. Overall, our study demonstrates that high ambient temperatures repress anthocyanin biosynthesis through a COP1-HY5 signaling module.
Collapse
Affiliation(s)
- Sara Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
| | - Geonhee Hwang
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
| | - Seulgi Lee
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
| | - Jia-Ying Zhu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
| | - Inyup Paik
- Department of Molecular Biosciences, The Institute for Cellular and Molecular Biology, University of Texas, Austin, TX, United States
| | - Thom Thi Nguyen
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
| | - Eunkyoo Oh
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
- *Correspondence: Eunkyoo Oh, ;
| |
Collapse
|
807
|
Li P, Li YJ, Zhang FJ, Zhang GZ, Jiang XY, Yu HM, Hou BK. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:85-103. [PMID: 27599367 DOI: 10.1111/tpj.13324] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/28/2016] [Accepted: 08/31/2016] [Indexed: 05/18/2023]
Abstract
The plant family 1 UDP-glycosyltransferases (UGTs) are the biggest GT family in plants, which are responsible for transferring sugar moieties onto a variety of small molecules, and control many metabolic processes; however, their physiological significance in planta is largely unknown. Here, we revealed that two Arabidopsis glycosyltransferase genes, UGT79B2 and UGT79B3, could be strongly induced by various abiotic stresses, including cold, salt and drought stresses. Overexpression of UGT79B2/B3 significantly enhanced plant tolerance to low temperatures as well as drought and salt stresses, whereas the ugt79b2/b3 double mutants generated by RNAi (RNA interference) and CRISPR-Cas9 strategies were more susceptible to adverse conditions. Interestingly, the expression of UGT79B2 and UGT79B3 is directly controlled by CBF1 (CRT/DRE-binding factor 1, also named DREB1B) in response to low temperatures. Furthermore, we identified the enzyme activities of UGT79B2/B3 in adding UDP-rhamnose to cyanidin and cyanidin 3-O-glucoside. Ectopic expression of UGT79B2/B3 significantly increased the anthocyanin accumulation, and enhanced the antioxidant activity in coping with abiotic stresses, whereas the ugt79b2/b3 double mutants showed reduced anthocyanin levels. When overexpressing UGT79B2/B3 in tt18 (transparent testa 18), a mutant that cannot synthesize anthocyanins, both genes fail to improve plant adaptation to stress. Taken together, we demonstrate that UGT79B2 and UGT79B3, identified as anthocyanin rhamnosyltransferases, are regulated by CBF1 and confer abiotic stress tolerance via modulating anthocyanin accumulation.
Collapse
Affiliation(s)
- Pan Li
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Yan-Jie Li
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Feng-Ju Zhang
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Gui-Zhi Zhang
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Xiao-Yi Jiang
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Hui-Min Yu
- School of Life Sciences, QiLu Normal University, Jinan, Shandong, 250013, China
| | - Bing-Kai Hou
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
808
|
Huang W, Lv H, Wang Y. Functional Characterization of a Novel R2R3-MYB Transcription Factor Modulating the Flavonoid Biosynthetic Pathway from Epimedium sagittatum. FRONTIERS IN PLANT SCIENCE 2017; 8:1274. [PMID: 28769969 PMCID: PMC5515856 DOI: 10.3389/fpls.2017.01274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/06/2017] [Indexed: 05/04/2023]
Abstract
Epimedium species have been widely used both as traditional Chinese medicinal plants and ornamental perennials. Both flavonols, acting as the major bioactive components (BCs) and anthocyanins, predominantly contributing to the color diversity of Epimedium flowers belong to different classes of flavonoids. It is well-acknowledged that flavonoid biosynthetic pathway is predominantly regulated by R2R3-MYB transcription factor (TF) as well as bHLH TF and WD40 protein at the transcriptional level. MYB TFs specifically regulating anthocyanin or flavonol biosynthetic pathway have been already isolated and functionally characterized from Epimedium sagittatum, but a R2R3-MYB TF involved in regulating both these two pathways has not been functionally characterized to date in Epimedium plants. In this study, we report the functional characterization of EsMYB9, a R2R3-MYB TF previously isolated from E. sagittatum. The previous study indicated that EsMYB9 belongs to a small subfamily of R2R3-MYB TFs containing grape VvMYB5a and VvMYB5b TFs, which regulate flavonoid biosynthetic pathway. The present studies show that overexpression of EsMYB9 in tobacco leads to increased transcript levels of flavonoid pathway genes and increased contents of anthocyanins and flavonols. Yeast two-hybrid assay indicates that the C-terminal region of EsMYB9 contributes to the autoactivation activity, and EsMYB9 interacts with EsTT8 or AtTT8 bHLH regulator. Transient reporter assay shows that EsMYB9 slightly activates the expression of EsCHS (chalcone synthase) promoter in transiently transformed leaves of Nicotiana benthamiana, but the addition of AtTT8 or EsTT8 bHLH regulator strongly enhances the transcriptional activation of EsMYB9 against five promoters of the flavonoid pathway genes except EsFLS (flavonol synthase). In addition, co-transformation of EsMYB9 and EsTT8 in transiently transfected tobacco leaves strongly induces the expressions of flavonoid biosynthetic genes. The potential role of EsMYB9 in modulating the biosynthesis and accumulation of sucrose-induced anthocyanin and flavonol-derived BCs is also discussed. These findings suggest that EsMYB9 is a novel R2R3-MYB TF, which regulates the flavonoid biosynthetic pathway in Epimedium, but distinctly different with the anthocyanin or flavonol-specific MYB regulators identified previously in Epimedium plants.
Collapse
Affiliation(s)
- Wenjun Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Haiyan Lv
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Ying Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- *Correspondence: Ying Wang,
| |
Collapse
|
809
|
Wang Z, Du H, Zhai R, Song L, Ma F, Xu L. Transcriptome Analysis Reveals Candidate Genes Related to Color Fading of 'Red Bartlett' ( Pyrus communis L.). FRONTIERS IN PLANT SCIENCE 2017; 8:455. [PMID: 28408914 PMCID: PMC5374147 DOI: 10.3389/fpls.2017.00455] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/15/2017] [Indexed: 05/22/2023]
Abstract
The red color of fruit is an attractive plant trait for consumers. Plants with color-faded fruit have a lower commercial value, such as 'Red Bartlett' pears (Pyrus communis L.) that have dark-red fruit in the early stages of fruit development that subsequently fade to red-green at maturity. To identify the reason for color fading, we first analyzed the anthocyanin content of peel from 'Red Bartlett,' which displays the color fading phenomenon, and 'Starkrimson,' which has no color fading. Results showed that the anthocyanin content of 'Red Bartlett' peel decreased significantly late in fruit development, while in 'Starkrimson' there was no significant decrease. Next, RNA-Sequencing was used to identify 947 differentially expressed genes (DEGs) between 'Red Bartlett' and 'Starkrimson.' Among them, 471 genes were upregulated and 476 genes were downregulated in 'Red Bartlett' at the late development stage relative to 'Starkrimson.' During 'Red Bartlett' color fading, the structural gene LDOX and six GST family genes were downregulated, while FLS, LAC, POD, and five light-responding genes were significantly upregulated. Additionally, 45 genes encoding transcription factors MYB, bHLH, WRKY, NAC, ERF, and zinc finger were identified among 947 DEGs. Changes in the expression of these genes may be responsible for the decrease in anthocyanin accumulation in 'Red Bartlett' fruit. Taken together, this study demonstrated that color fading of 'Red Bartlett' was closely linked to reduced anthocyanin biosynthesis, increased anthocyanin degradation and suppression of anthocyanin transport. It also provided novel evidence for the involvement of light signals in the color fading of red-skinned pears.
Collapse
|
810
|
Wang Z, Cui Y, Vainstein A, Chen S, Ma H. Regulation of Fig ( Ficus carica L.) Fruit Color: Metabolomic and Transcriptomic Analyses of the Flavonoid Biosynthetic Pathway. FRONTIERS IN PLANT SCIENCE 2017; 8:1990. [PMID: 29209349 PMCID: PMC5701927 DOI: 10.3389/fpls.2017.01990] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/06/2017] [Indexed: 05/19/2023]
Abstract
Combined metabolomic and transcriptomic analyses were carried out with fig cultivar Green Peel and its color mutant "Purple Peel." Five and twenty-two metabolites were identified as having significantly different contents between fruit peels of the two cultivars at young and mature stages, respectively. Cyanidin O-malonylhexoside demonstrated a 3,992-fold increase in the mature purple peel, the first identification of a major cyanidin in fig fruit; cyanidin 3-O-glucoside, cyanidin O-malonylhexoside O-hexoside and cyanidin-3,5-O-diglucoside were upregulated 100-fold, revealing the anthocyanins underlying the purple mutation. Beyond the visible differences, there was very significant accumulation of the colorless flavonoids procyanidin B1, luteolin-3',7-di-O-glucoside, epicatechin and quercetin-3-O-rhamnoside in the mature "Purple Peel" compared to "Green Peel." At the young stage, only cyanidin O-malonylhexoside, cyanidin O-malonylhexoside O-hexoside and esculetin were upregulated a few fold in the mutant. Transcriptome analysis revealed a downregulated expression trend of genes encoding phenylpropanoid and flavonoid biosynthetic pathway enzyme in the young "Purple Peel" compared to the young "Green Peel," whereas significant and simultaneous upregulation was revealed in almost all of the flavonoid and anthocyanin pathway components and relevant transcription factors in the mature-stage mutant. The role of R2R3-MYB transcription factors in the color morph mutation and its possible relation to the activity of retrotransposons are discussed. Moreover, large-scale upregulation of small heat-shock protein genes was found in the mature mutant. This is the first work to reveal comprehensive metabolome and transcriptome network changes underlying a fig mutation in a single horticultural attribute, and its profound effects on fruit nutrition and quality.
Collapse
Affiliation(s)
- Ziran Wang
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, China
| | - Yuanyuan Cui
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, China
| | - Alexander Vainstein
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shangwu Chen
- College of Food Science and Nutrition Engineering, China Agricultural University, Beijing, China
| | - Huiqin Ma
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, China
- *Correspondence: Huiqin Ma
| |
Collapse
|
811
|
Samad AFA, Sajad M, Nazaruddin N, Fauzi IA, Murad AMA, Zainal Z, Ismail I. MicroRNA and Transcription Factor: Key Players in Plant Regulatory Network. FRONTIERS IN PLANT SCIENCE 2017; 8:565. [PMID: 28446918 PMCID: PMC5388764 DOI: 10.3389/fpls.2017.00565] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/29/2017] [Indexed: 05/14/2023]
Abstract
Recent achievements in plant microRNA (miRNA), a large class of small and non-coding RNAs, are very exciting. A wide array of techniques involving forward genetic, molecular cloning, bioinformatic analysis, and the latest technology, deep sequencing have greatly advanced miRNA discovery. A tiny miRNA sequence has the ability to target single/multiple mRNA targets. Most of the miRNA targets are transcription factors (TFs) which have paramount importance in regulating the plant growth and development. Various families of TFs, which have regulated a range of regulatory networks, may assist plants to grow under normal and stress environmental conditions. This present review focuses on the regulatory relationships between miRNAs and different families of TFs like; NF-Y, MYB, AP2, TCP, WRKY, NAC, GRF, and SPL. For instance NF-Y play important role during drought tolerance and flower development, MYB are involved in signal transduction and biosynthesis of secondary metabolites, AP2 regulate the floral development and nodule formation, TCP direct leaf development and growth hormones signaling. WRKY have known roles in multiple stress tolerances, NAC regulate lateral root formation, GRF are involved in root growth, flower, and seed development, and SPL regulate plant transition from juvenile to adult. We also studied the relation between miRNAs and TFs by consolidating the research findings from different plant species which will help plant scientists in understanding the mechanism of action and interaction between these regulators in the plant growth and development under normal and stress environmental conditions.
Collapse
Affiliation(s)
- Abdul F. A. Samad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, National University of Malaysia, SelangorMalaysia
| | - Muhammad Sajad
- Department of Plant Breeding and Genetics, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, PunjabPakistan
- Centre of Plant Biotechnology, Institute of Systems Biology, National University of Malaysia, SelangorMalaysia
| | - Nazaruddin Nazaruddin
- School of Biosciences and Biotechnology, Faculty of Science and Technology, National University of Malaysia, SelangorMalaysia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda AcehIndonesia
| | - Izzat A. Fauzi
- School of Biosciences and Biotechnology, Faculty of Science and Technology, National University of Malaysia, SelangorMalaysia
| | - Abdul M. A. Murad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, National University of Malaysia, SelangorMalaysia
| | - Zamri Zainal
- School of Biosciences and Biotechnology, Faculty of Science and Technology, National University of Malaysia, SelangorMalaysia
- Centre of Plant Biotechnology, Institute of Systems Biology, National University of Malaysia, SelangorMalaysia
| | - Ismanizan Ismail
- School of Biosciences and Biotechnology, Faculty of Science and Technology, National University of Malaysia, SelangorMalaysia
- Centre of Plant Biotechnology, Institute of Systems Biology, National University of Malaysia, SelangorMalaysia
- *Correspondence: Ismanizan Ismail,
| |
Collapse
|
812
|
Kumar P, Jaiswal V, Pal T, Singh J, Chauhan RS. Comparative whole-transcriptome analysis in Podophyllum species identifies key transcription factors contributing to biosynthesis of podophyllotoxin in P. hexandrum. PROTOPLASMA 2017; 254:217-228. [PMID: 26733390 DOI: 10.1007/s00709-015-0938-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
Podophyllum species (Podophyllum hexandrum Royle and Podophyllum peltatum) are a major source of deriving anticancer drugs from their major chemical constituent, podophyllotoxin. However, information lacks on regulatory components of podophyllotoxin biosynthesis; therefore, different classes of transcription factors were identified through mining transcriptomes of Podophyllum species and validated through qRT-PCR analysis vis-à-vis podophyllotoxin contents in different tissues/organs of Podophyllum hexandrum. A total of 82, 278, 70, and 90 transcripts were identified in shoots and 89, 273, 72, and 91 transcripts in rhizomes of P. hexandrum transcriptome; 70, 268, 48, and 92 transcripts were in shoots and 58, 245, 41, and 85 transcripts in rhizomes of P. peltatum transcriptome corresponding to bZIP, MYB, WRKY, and bHLH families of transcription factors, which have been shown in regulating biosynthesis of secondary metabolites. Two unique transcripts encoding bHLH and MYB/SANT TFs in shoots of P. peltatum (medp_podpe_41091 and medp_podpe_2547) and bZIP and MYB TFs in rhizomes of P. hexandrum (medp_podhe_163581 and medp_podhe_147614) correlated with podophyllotoxin content. Quantification of podophyllotoxin and comparative expression analysis between high (2.51 %) versus low (0.59) podophyllotoxin content accessions revealed 0.04 to ~16-folds increase in transcripts of transcription factors, thereby further supporting the association of identified transcription factors with podophyllotoxin content. bZIP TF showed the highest transcript abundance (19.60-folds) in P. hexandrum rhizomes (2.51 % podophyllotoxin) compared to shoots (0.01 %). In silico analysis of putative promoter regions of pathway genes in other plant species revealed the presence of sequence elements for MYB and WRKY transcription factors, thereby suggesting their role in controlling the production of podophyllotoxin. A repertoire of additional transcription factors has been provided, which can be functionally validated and used in designing a suitable genetic intervention strategy towards enhanced production of podophyllotoxin.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, 173234, Solan, Himachal Pradesh, India
| | - Varun Jaiswal
- Department of Computer Science and Bioinformatics, Shoolini University, Solan, 173212, Himachal Pradesh, India
| | - Tarun Pal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, 173234, Solan, Himachal Pradesh, India
| | - Jagdish Singh
- Agroforestry and Extension Division, Himalayan Forest Research Institute, Panthaghati, 171009, Shimla, Himachal Pradesh, India
| | - Rajinder S Chauhan
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, 173234, Solan, Himachal Pradesh, India.
| |
Collapse
|
813
|
Li Y, Liu X, Cai X, Shan X, Gao R, Yang S, Han T, Wang S, Wang L, Gao X. Dihydroflavonol 4-Reductase Genes from Freesia hybrida Play Important and Partially Overlapping Roles in the Biosynthesis of Flavonoids. FRONTIERS IN PLANT SCIENCE 2017; 8:428. [PMID: 28400785 PMCID: PMC5368250 DOI: 10.3389/fpls.2017.00428] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/13/2017] [Indexed: 05/07/2023]
Abstract
Dihydroflavonol-4-reductase (DFR) is a key enzyme in the reduction of dihydroflavonols to leucoanthocyanidins in both anthocyanin biosynthesis and proanthocyanidin accumulation. In many plant species, it is encoded by a gene family, however, how the different copies evolve either to function in different tissues or at different times or to specialize in the use of different but related substrates needs to be further investigated, especially in monocot plants. In this study, a total of eight putative DFR-like genes were firstly cloned from Freesia hybrida. Phylogenetic analysis showed that they were classified into different branches, and FhDFR1, FhDFR2, and FhDFR3 were clustered into DFR subgroup, whereas others fell into the group with cinnamoyl-CoA reductase (CCR) proteins. Then, the functions of the three FhDFR genes were further characterized. Different spatio-temporal transcription patterns and levels were observed, indicating that the duplicated FhDFR genes might function divergently. After introducing them into Arabidopsis dfr (tt3-1) mutant plants, partial complementation of the loss of cyanidin derivative synthesis was observed, implying that FhDFRs could convert dihydroquercetin to leucocyanidin in planta. Biochemical assays also showed that FhDFR1, FhDFR2, and FhDFR3 could utilize dihydromyricetin to generate leucodelphinidin, while FhDFR2 could also catalyze the formation of leucocyanidin from dihydrocyanidin. On the contrary, neither transgenic nor biochemical analysis demonstrated that FhDFR proteins could reduce dihydrokaempferol to leucopelargonidin. These results were consistent with the freesia flower anthocyanin profiles, among which delphinidin derivatives were predominant, with minor quantities of cyanidin derivatives and undetectable pelargonidin derivatives. Thus, it can be deduced that substrate specificities of DFRs were the determinant for the categories of anthocyanins aglycons accumulated in F. hybrida. Furthermore, we also found that the divergence of the expression patterns for FhDFR genes might be controlled at transcriptional level, as the expression of FhDFR1/FhDFR2 and FhDFR3 was controlled by a potential MBW regulatory complex with different activation efficiencies. Therefore, it can be concluded that the DFR-like genes from F. hybrida have diverged during evolution to play partially overlapping roles in the flavonoid biosynthesis, and the results will contribute to the study of evolution of DFR gene families in angiosperms, especially for monocot plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Li Wang
- *Correspondence: Xiang Gao, Li Wang,
| | - Xiang Gao
- *Correspondence: Xiang Gao, Li Wang,
| |
Collapse
|
814
|
Chen Q, Man C, Li D, Tan H, Xie Y, Huang J. Arogenate Dehydratase Isoforms Differentially Regulate Anthocyanin Biosynthesis in Arabidopsis thaliana. MOLECULAR PLANT 2016; 9:1609-1619. [PMID: 27720844 DOI: 10.1016/j.molp.2016.09.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/24/2016] [Accepted: 09/26/2016] [Indexed: 05/24/2023]
Abstract
Anthocyanins, a group of L-phenylalanine (Phe)-derived flavonoids, have been demonstrated to play important roles in plant stress resistance and interactions between plants and insects. Although the anthocyanin biosynthetic pathway and its regulatory mechanisms have been extensively studied, it remains unclear whether the level of Phe supply affects anthocyanin biosynthesis. Here, we investigated the roles of arogenate dehydratases (ADTs), the key enzymes that catalyze the conversion of arogenate into Phe, in sucrose-induced anthocyanin biosynthesis in Arabidopsis. Genetic analysis showed that all six ADT isoforms function redundantly in anthocyanin biosynthesis but have differential contributions. ADT2 contributes the most to anthocyanin accumulation, followed by ADT1 and ADT3, and ADT4-ADT6. We found that anthocyanin content is positively correlated with the levels of Phe and sucrose-induced ADT transcripts in seedlings. Consistently, addition of Phe to the medium could dramatically increase anthocyanin content in the wild-type plants and rescue the phenotype of the adt1 adt3 double mutant regarding the anthocyanin accumulation. Moreover, transgenic plants overexpressing ADT4, which appears to be less sensitive to Phe than overexpression of ADT2, hyperaccumulate Phe and produce elevated level of anthocyanins. Taken together, our results suggest that the level of Phe is an important regulatory factor for sustaining anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Qingbo Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Cong Man
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Danning Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Huijuan Tan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Ye Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Jirong Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
815
|
Ioannidi E, Rigas S, Tsitsekian D, Daras G, Alatzas A, Makris A, Tanou G, Argiriou A, Alexandrou D, Poethig S, Hatzopoulos P, Kanellis AK. Trichome patterning control involves TTG1 interaction with SPL transcription factors. PLANT MOLECULAR BIOLOGY 2016; 92:675-687. [PMID: 27631431 DOI: 10.1007/s11103-016-0538-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/29/2016] [Indexed: 05/10/2023]
Abstract
Epidermal cell differentiation is a paramount and conserved process among plants. In Arabidopsis, a ternary complex formed by MYB, bHLH transcription factors and TTG1 modulates unicellular trichome morphogenesis. The formation of multicellular glandular trichomes of the xerophytic shrub Cistus creticus that accumulate labdane-type diterpenes, has attained much attention renowned for its medicinal properties. Here, we show that C. creticus TTG1 (CcTTG1) interacts with the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPLA/B) proteins, putative homologs of AtSPL4/5 that in turn interact with AtTTG1. These interactions occur between proteins from evolutionarily distant species supporting the conserved function of TTG1-SPL complex. Overexpression of AtSPL4 and AtSPL5 decreased the expression of GLABRA2 (AtGL2), the major regulator of trichome morphogenesis, resulting in trichome reduction on the adaxial surface of cauline leaves, thereby illuminating the significance of TTG1-SPLs interactions in trichome formation control. AtGL2 and AtSPL4 have opposite expression patterns during early stages of leaf development. We postulate an antagonistic effect between SPLs and the heterogeneous MYB-bHLH factors binding to TTG1. Hence, the SPLs potentially rearrange the complex, attenuating its transcriptional activity to control trichome distribution.
Collapse
Affiliation(s)
- Eugenia Ioannidi
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stamatis Rigas
- Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - Dikran Tsitsekian
- Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - Gerasimos Daras
- Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - Anastasios Alatzas
- Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - Antonis Makris
- Institute of Applied Biosciences, CERTH, Thessaloniki, Greece
| | - Georgia Tanou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Agricultural Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | | | - Dimitrios Alexandrou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104-6313, USA
| | - Polydefkis Hatzopoulos
- Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece.
| | - Angelos K Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
816
|
Zhang N, Qi Y, Zhang HJ, Wang X, Li H, Shi Y, Guo YD. Genistein: A Novel Anthocyanin Synthesis Promoter that Directly Regulates Biosynthetic Genes in Red Cabbage in a Light-Dependent Way. FRONTIERS IN PLANT SCIENCE 2016; 7:1804. [PMID: 27990149 PMCID: PMC5130974 DOI: 10.3389/fpls.2016.01804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/15/2016] [Indexed: 06/06/2023]
Abstract
Genistein (GNT), an isoflavone, is used in the clinical treatment of various health disorders. GNT is found in primary food source plants and some medical plants. However, studies on the functions of GNT in plants are rarely reported. In this study, we demonstrated that GNT plays an important role in promoting anthocyanin accumulation in red cabbage. GNT solutions (10, 20, 30, 40, and 50 mg/L) as foliar fertilizers were applied to red cabbage. Consequently, anthocyanin accumulation in red cabbage increased in a light-dependent manner. GNT solution at 30 mg/L exhibited the optimal effect on anthocyanin accumulation, which was twice that of the control. Quantitative real-time PCR analysis indicated that GNT application upregulated the expression of all structural genes, contributing to anthocyanin biosynthesis under light conditions. Under dark conditions, GNT exerted no significant promotive effect on anthocyanin accumulation; only early biosynthetic genes of anthocyanin biosynthesis responded to GNT. The promotive effect of GNT on anthocyanin biosynthesis is directly attributable to the regulation of structural gene expression. Transcription factors exhibited no response to GNT. The levels of anthocyanin in red cabbage positively correlated with the enzyme activities of antioxidant systems. This finding correlation suggested that the promotive effect of GNT on anthocyanin levels was correlated with improved antioxidant activity in the red cabbage.
Collapse
Affiliation(s)
- Na Zhang
- College of Horticulture, China Agricultural UniversityBeijing, China
| | - Yan Qi
- College of Horticulture, China Agricultural UniversityBeijing, China
- Beijing Agriculture Technology Extension StationBeijing, China
| | - Hai-Jun Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Xiaoyun Wang
- College of Horticulture, China Agricultural UniversityBeijing, China
| | - Hongfei Li
- College of Horticulture, China Agricultural UniversityBeijing, China
| | - Yantong Shi
- Beijing Agriculture Technology Extension StationBeijing, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural UniversityBeijing, China
| |
Collapse
|
817
|
Sun Y, Qiu Y, Duan M, Wang J, Zhang X, Wang H, Song J, Li X. Identification of anthocyanin biosynthesis related microRNAs in a distinctive Chinese radish (Raphanus sativus L.) by high-throughput sequencing. Mol Genet Genomics 2016; 292:215-229. [PMID: 27817120 DOI: 10.1007/s00438-016-1268-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/28/2016] [Indexed: 11/28/2022]
Abstract
Anthocyanins are widely distributed water-soluble phytochemical pigments belonging to the flavonoid group. To date, limited knowledge is available about the regulatory roles of miRNAs in anthocyanin biosynthesis in plants. To identify the miRNAs associated with anthocyanin biosynthesis in radish, five small RNA (sRNA) libraries constructed from 'Xinlimei' radish roots at 11, 21, 44, 56 and 73 days (d) were examined using high-throughput sequencing technology. A total of 102.02 million (M) clean reads were generated, from which 483 known and 1415 novel miRNAs were identified. Combined with target prediction and annotation, 72 differentially expressed miRNAs (52 known and 20 novel miRNAs) were more likely to participate in anthocyanin biosynthesis. Several target genes for these miRNAs encode a few transcription factors, including Myb domain (MYB), basic helix-loop-helix (bHLH), WD40 repeat, squamosa promoter binding protein like (SPL), auxin response factor (ARF), ethylene insensitive 3 (EIN3), WRKY and MADS-box proteins. Furthermore, the expression patterns of some anthocyanin biosynthesis related miRNAs and their corresponding targets were validated by RT-qPCR. Based on the characterization of anthocyanin biosynthesis related miRNAs and their target genes, a putative miRNA-target module regulating anthocyanin biosynthesis was proposed. This study represents the first genome-wide identification of miRNAs associated with anthocyanin biosynthesis in radish, and provides insights into the molecular mechanisms underlying regulation of anthocyanin biosynthesis in radish and other crops.
Collapse
Affiliation(s)
- Yuyan Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yang Qiu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mengmeng Duan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinglei Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaohui Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haiping Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiangping Song
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xixiang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
818
|
Chezem WR, Clay NK. Regulation of plant secondary metabolism and associated specialized cell development by MYBs and bHLHs. PHYTOCHEMISTRY 2016; 131:26-43. [PMID: 27569707 PMCID: PMC5048601 DOI: 10.1016/j.phytochem.2016.08.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 08/10/2016] [Accepted: 08/15/2016] [Indexed: 05/20/2023]
Abstract
Plants are unrivaled in the natural world in both the number and complexity of secondary metabolites they produce, and the ubiquitous phenylpropanoids and the lineage-specific glucosinolates represent two such large and chemically diverse groups. Advances in genome-enabled biochemistry and metabolomic technologies have greatly increased the understanding of their metabolic networks in diverse plant species. There also has been some progress in elucidating the gene regulatory networks that are key to their synthesis, accumulation and function. This review highlights what is currently known about the gene regulatory networks and the stable sub-networks of transcription factors at their cores that regulate the production of these plant secondary metabolites and the differentiation of specialized cell types that are equally important to their defensive function. Remarkably, some of these core components are evolutionarily conserved between secondary metabolism and specialized cell development and across distantly related plant species. These findings suggest that the more ancient gene regulatory networks for the differentiation of fundamental cell types may have been recruited and remodeled for the generation of the vast majority of plant secondary metabolites and their specialized tissues.
Collapse
Affiliation(s)
- William R Chezem
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, USA.
| | - Nicole K Clay
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
819
|
Lee WJ, Jeong CY, Kwon J, Van Kien V, Lee D, Hong SW, Lee H. Drastic anthocyanin increase in response to PAP1 overexpression in fls1 knockout mutant confers enhanced osmotic stress tolerance in Arabidopsis thaliana. PLANT CELL REPORTS 2016; 35:2369-2379. [PMID: 27562381 DOI: 10.1007/s00299-016-2040-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/10/2016] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE : pap1 - D/fls1ko double mutant plants that produce substantial amounts of anthocyanin show tolerance to abiotic stress. Anthocyanins are flavonoids that are abundant in various plants and have beneficial effects on both plants and humans. Many genes in flavonoid biosynthetic pathways have been identified, including those in the MYB-bHLH-WD40 (MBW) complex. The MYB gene Production of Anthocyanin Pigment 1 (PAP1) plays a particularly important role in anthocyanin accumulation. PAP1 expression in many plant systems strongly increases anthocyanin levels, resulting in a dark purple color in many plant organs. In this study, we generated double mutant plants that harbor fls1ko in the pap1-D background (i.e., pap1-D/fls1ko plants), to examine whether anthocyanins can be further enhanced by blocking flavonol biosynthesis under PAP1 overexpression. We also wanted to examine whether the increased anthocyanin levels contribute to defense against osmotic stresses. The pap1-D/fls1ko mutants accumulated higher anthocyanin levels than pap1-D plants in both control and sucrose-treated conditions. However, flavonoid biosynthesis genes were slightly down-regulated in the pap1-D/fls1ko seedlings as compared to their expression in pap1-D seedlings. We also report the performance of pap1-D/fls1ko seedlings in response to plant osmotic stresses.
Collapse
Affiliation(s)
- Won Je Lee
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-713, Republic of Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul, 136-713, Republic of Korea
| | - Chan Young Jeong
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-713, Republic of Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul, 136-713, Republic of Korea
| | - Jaeyoung Kwon
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Vu Van Kien
- Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Bioenergy Research Center, Chonnam National University, Gwangju, Republic of Korea
| | - Dongho Lee
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Suk-Whan Hong
- Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Bioenergy Research Center, Chonnam National University, Gwangju, Republic of Korea.
| | - Hojoung Lee
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul, 136-713, Republic of Korea.
- Institute of Life Science and Natural Resources, Korea University, Seoul, 136-713, Republic of Korea.
| |
Collapse
|
820
|
Jin W, Wang H, Li M, Wang J, Yang Y, Zhang X, Yan G, Zhang H, Liu J, Zhang K. The R2R3 MYB transcription factor PavMYB10.1 involves in anthocyanin biosynthesis and determines fruit skin colour in sweet cherry (Prunus avium L.). PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2120-2133. [PMID: 27107393 PMCID: PMC5095807 DOI: 10.1111/pbi.12568] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/25/2016] [Accepted: 04/10/2016] [Indexed: 05/04/2023]
Abstract
Sweet cherry is a diploid tree species and its fruit skin has rich colours from yellow to blush to dark red. The colour is closely related to anthocyanin biosynthesis and is mainly regulated at the transcriptional level by transcription factors that regulate the expression of multiple structural genes. However, the genetic and molecular bases of how these genes ultimately determine the fruit skin colour traits remain poorly understood. Here, our genetic and molecular evidences identified the R2R3 MYB transcription factor PavMYB10.1 that is involved in anthocyanin biosynthesis pathway and determines fruit skin colour in sweet cherry. Interestingly, we identified three functional alleles of the gene causally leading to the different colours at mature stage. Meanwhile, our experimental results of yeast two-hybrid assays and chromatin immunoprecipitation assays revealed that PavMYB10.1 might interact with proteins PavbHLH and PavWD40, and bind to the promoter regions of the anthocyanin biosynthesis genes PavANS and PavUFGT; these findings provided to a certain extent mechanistic insight into the gene's functions. Additionally, genetic and molecular evidences confirmed that PavMYB10.1 is a reliable DNA molecular marker to select fruit skin colour in sweet cherry.
Collapse
Affiliation(s)
- Wanmei Jin
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Hua Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Maofu Li
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Jing Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Yuan Yang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Xiaoming Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Guohua Yan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Hong Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Jiashen Liu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Kaichun Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China.
| |
Collapse
|
821
|
Matsui K, Hisano T, Yasui Y, Mori M, Walker AR, Morishita T, Katsu K. Isolation and characterization of genes encoding leucoanthocyanidin reductase (FeLAR) and anthocyanidin reductase (FeANR) in buckwheat (Fagopyrum esculentum). JOURNAL OF PLANT PHYSIOLOGY 2016; 205:41-47. [PMID: 27607249 DOI: 10.1016/j.jplph.2016.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 05/06/2023]
Abstract
Proanthocyanidins (PAs) are a major group of flavonoids synthesized via the phenylpropanoid biosynthesis pathway, however the pathway has not been fully characterized in buckwheat. Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) are involved in the last steps of PA biosynthesis. To isolate the genes for these enzymes from buckwheat we performed PCR using degenerate primers and obtained cDNAs of ANR and LAR, which we designated FeANR and FeLAR1. A search for homologs in a buckwheat genome database with both sequences returned two more LAR sequences, designated FeLAR2 and FeLAR3. Linkage analysis with an F2 segregating population indicated that the three LAR loci were not genetically linked. We detected high levels of PAs in roots and cotyledons of buckwheat seedlings and in buds and flowers of mature plants. FeANR and FeLAR1-3 were expressed in most organs but had different expression patterns. Our findings would be useful for breeding and further analysis of PA synthesis and its regulation in buckwheat.
Collapse
Affiliation(s)
- Katsuhiro Matsui
- NARO Kyushu Okinawa Agricultural Research Center, 2421 Suya, Koshi, Kumamoto 861-1192, Japan.
| | - Tomomi Hisano
- NARO Kyushu Okinawa Agricultural Research Center, 2421 Suya, Koshi, Kumamoto 861-1192, Japan
| | - Yasuo Yasui
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyou-ku, Kyoto 606-8501, Japan
| | - Masashi Mori
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 308 Suematsu, Nonoichi, Ishikawa 912-8836, Japan
| | - Amanda R Walker
- CSIRO Agriculture & Food, Wine Innovation West, Waite Campus, Hartley Grove, SA 5064, Australia
| | - Toshikazu Morishita
- NARO Hokkaido Agricultural Research Center, Shinsei-minami 9-4, Memuro, Kasai, Hokkaido 082-0081, Japan
| | - Kenjiro Katsu
- NARO Kyushu Okinawa Agricultural Research Center, 2421 Suya, Koshi, Kumamoto 861-1192, Japan
| |
Collapse
|
822
|
Bond DM, Albert NW, Lee RH, Gillard GB, Brown CM, Hellens RP, Macknight RC. Infiltration-RNAseq: transcriptome profiling of Agrobacterium-mediated infiltration of transcription factors to discover gene function and expression networks in plants. PLANT METHODS 2016; 12:41. [PMID: 27777610 PMCID: PMC5069895 DOI: 10.1186/s13007-016-0141-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/04/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Transcription factors (TFs) coordinate precise gene expression patterns that give rise to distinct phenotypic outputs. The identification of genes and transcriptional networks regulated by a TF often requires stable transformation and expression changes in plant cells. However, the production of stable transformants can be slow and laborious with no guarantee of success. Furthermore, transgenic plants overexpressing a TF of interest can present pleiotropic phenotypes and/or result in a high number of indirect gene expression changes. Therefore, fast, efficient, high-throughput methods for assaying TF function are needed. RESULTS Agroinfiltration is a simple plant biology method that allows transient gene expression. It is a rapid and powerful tool for the functional characterisation of TF genes in planta. High throughput RNA sequencing is now a widely used method for analysing gene expression profiles (transcriptomes). By coupling TF agroinfiltration with RNA sequencing (named here as Infiltration-RNAseq), gene expression networks and gene function can be identified within a few weeks rather than many months. As a proof of concept, we agroinfiltrated Medicago truncatula leaves with M. truncatula LEGUME ANTHOCYANIN PRODUCITION 1 (MtLAP1), a MYB transcription factor involved in the regulation of the anthocyanin pathway, and assessed the resulting transcriptome. Leaves infiltrated with MtLAP1 turned red indicating the production of anthocyanin pigment. Consistent with this, genes encoding enzymes in the anthocyanin biosynthetic pathway, and known transcriptional activators and repressors of the anthocyanin biosynthetic pathway, were upregulated. A novel observation was the induction of a R3-MYB transcriptional repressor that likely provides transcriptional feedback inhibition to prevent the deleterious effects of excess anthocyanins on photosynthesis. CONCLUSIONS Infiltration-RNAseq is a fast and convenient method for profiling TF-mediated gene expression changes. We utilised this method to identify TF-mediated transcriptional changes and TF target genes in M. truncatula and Nicotiana benthamiana. This included the identification of target genes of a TF not normally expressed in leaves, and targets of TFs from other plant species. Infiltration-RNAseq can be easily adapted to other plant species where agroinfiltration protocols have been optimised. The ability to identify downstream genes, including positive and negative transcriptional regulators, will result in a greater understanding of TF function.
Collapse
Affiliation(s)
- Donna M. Bond
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin, 9054 New Zealand
| | - Nick W. Albert
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11-600, Palmerston North, New Zealand
| | - Robyn H. Lee
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin, 9054 New Zealand
| | - Gareth B. Gillard
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin, 9054 New Zealand
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Chris M. Brown
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin, 9054 New Zealand
| | - Roger P. Hellens
- Centre for Tropical Crops and Biocommodities, Institute for Future Environments, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001 Australia
| | - Richard C. Macknight
- Department of Biochemistry, University of Otago, PO Box 56, Dunedin, 9054 New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11-600, Palmerston North, New Zealand
| |
Collapse
|
823
|
Fulop D, Ranjan A, Ofner I, Covington MF, Chitwood DH, West D, Ichihashi Y, Headland L, Zamir D, Maloof JN, Sinha NR. A New Advanced Backcross Tomato Population Enables High Resolution Leaf QTL Mapping and Gene Identification. G3 (BETHESDA, MD.) 2016; 6:3169-3184. [PMID: 27510891 PMCID: PMC5068939 DOI: 10.1534/g3.116.030536] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/01/2016] [Indexed: 12/23/2022]
Abstract
Quantitative Trait Loci (QTL) mapping is a powerful technique for dissecting the genetic basis of traits and species differences. Established tomato mapping populations between domesticated tomato (Solanum lycopersicum) and its more distant interfertile relatives typically follow a near isogenic line (NIL) design, such as the S. pennellii Introgression Line (IL) population, with a single wild introgression per line in an otherwise domesticated genetic background. Here, we report on a new advanced backcross QTL mapping resource for tomato, derived from a cross between the M82 tomato cultivar and S. pennellii This so-called Backcrossed Inbred Line (BIL) population is comprised of a mix of BC2 and BC3 lines, with domesticated tomato as the recurrent parent. The BIL population is complementary to the existing S. pennellii IL population, with which it shares parents. Using the BILs, we mapped traits for leaf complexity, leaflet shape, and flowering time. We demonstrate the utility of the BILs for fine-mapping QTL, particularly QTL initially mapped in the ILs, by fine-mapping several QTL to single or few candidate genes. Moreover, we confirm the value of a backcrossed population with multiple introgressions per line, such as the BILs, for epistatic QTL mapping. Our work was further enabled by the development of our own statistical inference and visualization tools, namely a heterogeneous hidden Markov model for genotyping the lines, and by using state-of-the-art sparse regression techniques for QTL mapping.
Collapse
Affiliation(s)
- Daniel Fulop
- Department of Plant Biology, University of California at Davis, California 95616
| | - Aashish Ranjan
- Department of Plant Biology, University of California at Davis, California 95616
| | - Itai Ofner
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Michael F Covington
- Department of Plant Biology, University of California at Davis, California 95616
| | - Daniel H Chitwood
- Department of Plant Biology, University of California at Davis, California 95616
| | - Donelly West
- Department of Plant Biology, University of California at Davis, California 95616
| | - Yasunori Ichihashi
- Department of Plant Biology, University of California at Davis, California 95616
| | - Lauren Headland
- Department of Plant Biology, University of California at Davis, California 95616
| | - Daniel Zamir
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Julin N Maloof
- Department of Plant Biology, University of California at Davis, California 95616
| | - Neelima R Sinha
- Department of Plant Biology, University of California at Davis, California 95616
| |
Collapse
|
824
|
Wang Y, Wang Y, Song Z, Zhang H. Repression of MYBL2 by Both microRNA858a and HY5 Leads to the Activation of Anthocyanin Biosynthetic Pathway in Arabidopsis. MOLECULAR PLANT 2016; 9:1395-1405. [PMID: 27450422 DOI: 10.1016/j.molp.2016.07.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 05/19/2023]
Abstract
Extensive studies in various plants show that the anthocyanin biosynthetic process is affected by environmental factors and regulated by many transcription factors through sophisticated regulatory networks. However, it remains largely unclear about the roles of microRNA in this process. Here, we demonstrate that miR858a is a positive regulator of anthocyanin biosynthesis in Arabidopsis seedlings. Overexpression of miR858a enhances the accumulation of anthocyanins, whereas the reduced miR858a activity results in low levels of anthocyanins in STTM858 transgenic plants. We found that miR858a inhibits the expression of MYBL2, a key negative regulator of anthocyanin biosynthesis, by translational repression. In addition, ELONGATED HYPOCOTYL 5 (HY5) was shown to directly bind the MYBL2 promoter and represses its expression via specific histone modifications. Interestingly, we found that miR858a exhibits light-responsive expression in an HY5-dependent manner. Together, these results delineate the HY5-MIR858a-MYBL2 loop as a cellular mechanism for modulating anthocyanin biosynthesis, suggesting that integration of transcriptional and posttranscriptional regulation is critical for governing proper anthocyanin accumulation in response to light and other environmental factors.
Collapse
Affiliation(s)
- Yulong Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Yiqing Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhaoqing Song
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Huiyong Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
825
|
Pucker B, Holtgräwe D, Rosleff Sörensen T, Stracke R, Viehöver P, Weisshaar B. A De Novo Genome Sequence Assembly of the Arabidopsis thaliana Accession Niederzenz-1 Displays Presence/Absence Variation and Strong Synteny. PLoS One 2016; 11:e0164321. [PMID: 27711162 PMCID: PMC5053417 DOI: 10.1371/journal.pone.0164321] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 09/22/2016] [Indexed: 11/23/2022] Open
Abstract
Arabidopsis thaliana is the most important model organism for fundamental plant biology. The genome diversity of different accessions of this species has been intensively studied, for example in the 1001 genome project which led to the identification of many small nucleotide polymorphisms (SNPs) and small insertions and deletions (InDels). In addition, presence/absence variation (PAV), copy number variation (CNV) and mobile genetic elements contribute to genomic differences between A. thaliana accessions. To address larger genome rearrangements between the A. thaliana reference accession Columbia-0 (Col-0) and another accession of about average distance to Col-0, we created a de novo next generation sequencing (NGS)-based assembly from the accession Niederzenz-1 (Nd-1). The result was evaluated with respect to assembly strategy and synteny to Col-0. We provide a high quality genome sequence of the A. thaliana accession (Nd-1, LXSY01000000). The assembly displays an N50 of 0.590 Mbp and covers 99% of the Col-0 reference sequence. Scaffolds from the de novo assembly were positioned on the basis of sequence similarity to the reference. Errors in this automatic scaffold anchoring were manually corrected based on analyzing reciprocal best BLAST hits (RBHs) of genes. Comparison of the final Nd-1 assembly to the reference revealed duplications and deletions (PAV). We identified 826 insertions and 746 deletions in Nd-1. Randomly selected candidates of PAV were experimentally validated. Our Nd-1 de novo assembly allowed reliable identification of larger genic and intergenic variants, which was difficult or error-prone by short read mapping approaches alone. While overall sequence similarity as well as synteny is very high, we detected short and larger (affecting more than 100 bp) differences between Col-0 and Nd-1 based on bi-directional comparisons. The de novo assembly provided here and additional assemblies that will certainly be published in the future will allow to describe the pan-genome of A. thaliana.
Collapse
Affiliation(s)
- Boas Pucker
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Daniela Holtgräwe
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Thomas Rosleff Sörensen
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Ralf Stracke
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Prisca Viehöver
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Bernd Weisshaar
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
- * E-mail:
| |
Collapse
|
826
|
Wei K, Zhang Y, Wu L, Li H, Ruan L, Bai P, Zhang C, Zhang F, Xu L, Wang L, Cheng H. Gene expression analysis of bud and leaf color in tea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 107:310-318. [PMID: 27362295 DOI: 10.1016/j.plaphy.2016.06.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/16/2016] [Accepted: 06/16/2016] [Indexed: 05/22/2023]
Abstract
Purple shoot tea attributing to the high anthocyanin accumulation is of great interest for its wide health benefits. To better understand potential mechanisms involved in purple buds and leaves formation in tea plants, we performed transcriptome analysis of six green or purple shoot tea individuals from a F1 population using the Illumina sequencing method. Totally 292 million RNA-Seq reads were obtained and assembled into 112,233 unigenes, with an average length of 759 bp and an N50 of 1081 bp. Moreover, totally 2193 unigenes showed significant differences in expression levels between green and purple tea samples, with 1143 up- and 1050 down-regulated in the purple teas. Further real time PCR analysis confirmed RNA-Seq results. Our study identified 28 differentially expressed transcriptional factors and A CsMYB gene was found to be highly similar to AtPAP1 in Arabidopsis. Further analysis of differentially expressed genes involved in anthocyanin biosynthesis and transportation showed that the late biosynthetic genes and genes involved in anthocyanin transportation were largely affected but the early biosynthetic genes were less or none affected. Overall, the identification of a large number of differentially expressed genes offers a global view of the potential mechanisms associated with purple buds and leaves formation, which will facilitate molecular breeding in tea plants.
Collapse
Affiliation(s)
- Kang Wei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Yazhen Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Liyun Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Hailin Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Li Ruan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Peixian Bai
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Chengcai Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Fen Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Liyi Xu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China
| | - Liyuan Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China.
| | - Hao Cheng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences (TRICAAS), 9 Meiling South Road, Hangzhou, Zhejiang 310008, PR China.
| |
Collapse
|
827
|
Purple foliage coloration in tea (Camellia sinensis L.) arises from activation of the R2R3-MYB transcription factor CsAN1. Sci Rep 2016; 6:32534. [PMID: 27581206 PMCID: PMC5007479 DOI: 10.1038/srep32534] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/10/2016] [Indexed: 01/24/2023] Open
Abstract
Purple foliage always appears in Camellia sinensis families; however, the transcriptional regulation of anthocyanin biosynthesis is unknown. The tea bud sport cultivar ‘Zijuan’ confers an abnormal pattern of anthocyanin accumulation, resulting in a mutant phenotype that has a striking purple color in young foliage and in the stem. In this study, we aimed to unravel the underlying molecular mechanism of anthocyanin biosynthetic regulation in C. sinensis. Our results revealed that activation of the R2R3-MYB transcription factor (TF) anthocyanin1 (CsAN1) specifically upregulated the bHLH TF CsGL3 and anthocyanin late biosynthetic genes (LBGs) to confer ectopic accumulation of pigment in purple tea. We found CsAN1 interacts with bHLH TFs (CsGL3 and CsEGL3) and recruits a WD-repeat protein CsTTG1 to form the MYB-bHLH-WDR (MBW) complex that regulates anthocyanin accumulation. We determined that the hypomethylation of a CpG island in the CsAN1 promoter is associated with the purple phenotype. Furthermore, we demonstrated that low temperature and long illumination induced CsAN1 promoter demethylation, resulting in upregulated expression to promote anthocyanin accumulation in the foliage. The successful isolation of CsAN1 provides important information on the regulatory control of anthocyanin biosynthesis in C. sinensis and offers a genetic resource for the development of new varieties with enhanced anthocyanin content.
Collapse
|
828
|
Cho JS, Nguyen VP, Jeon HW, Kim MH, Eom SH, Lim YJ, Kim WC, Park EJ, Choi YI, Ko JH. Overexpression of PtrMYB119, a R2R3-MYB transcription factor from Populus trichocarpa, promotes anthocyanin production in hybrid poplar. TREE PHYSIOLOGY 2016; 36:1162-76. [PMID: 27259636 DOI: 10.1093/treephys/tpw046] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 04/26/2016] [Indexed: 05/12/2023]
Abstract
Anthocyanins are a group of colorful and bioactive natural pigments with important physiological and ecological functions in plants. We found an MYB transcription factor (PtrMYB119) from Populus trichocarpa that positively regulates anthocyanin production when expressed under the control of the CaMV 35S promoter in transgenic Arabidopsis Amino acid sequence analysis revealed that PtrMYB119 is highly homologous to Arabidopsis PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT1), a well-known transcriptional activator of anthocyanin biosynthesis. Independently produced transgenic poplars overexpressing PtrMYB119 or PtrMYB120 (a paralogous gene to PtrMYB119) (i.e., 35S::PtrMYB119 and 35S::PtrMYB120, respectively) showed elevated accumulation of anthocyanins in the whole plants, including leaf, stem and even root tissues. Using a reverse-phase high-performance liquid chromatography, we confirmed that the majority of the accumulated anthocyanin in our transgenic poplar is cyanidin-3-O-glucoside. Gene expression analyses revealed that most of the genes involved in the anthocyanin biosynthetic pathway were highly upregulated in 35S::PtrMYB119 poplars compared with the nontransformed control poplar. Among these genes, expression of PtrCHS1 (Chalcone Synthase1) and PtrANS2 (Anthocyanin Synthase2), which catalyze the initial and last steps of anthocyanin biosynthesis, respectively, was upregulated by up to 350-fold. Subsequent transient activation assays confirmed that PtrMYB119 activated the transcription of both PtrCHS1 and PtrANS2 Interestingly, expression of MYB182, a repressor of both anthocyanin and proanthocyanidin (PA) biosynthesis, was largely suppressed in 35S::PtrMYB119 poplars, while expression of MYB134, an activator of PA biosynthesis, was not changed significantly. More interestingly, high-level accumulation of anthocyanins in 35S::PtrMYB119 poplars did not have an adverse effect on plant growth. Taken together, our results demonstrate that PtrMYB119 and PtrMYB120 function as transcriptional activators of anthocyanin accumulation in both Arabidopsis and poplar.
Collapse
Affiliation(s)
- Jin-Seong Cho
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 446-701, Yongin 17104, Republic of Korea Division of Forest Biotechnology, Korea Forest Research Institute, Suwon 16631, Republic of Korea
| | - Van Phap Nguyen
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 446-701, Yongin 17104, Republic of Korea
| | - Hyung-Woo Jeon
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 446-701, Yongin 17104, Republic of Korea
| | - Min-Ha Kim
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 446-701, Yongin 17104, Republic of Korea
| | - Seok Hyun Eom
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - You Jin Lim
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Won-Chan Kim
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eung-Jun Park
- Division of Forest Biotechnology, Korea Forest Research Institute, Suwon 16631, Republic of Korea
| | - Young-Im Choi
- Division of Forest Biotechnology, Korea Forest Research Institute, Suwon 16631, Republic of Korea
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 446-701, Yongin 17104, Republic of Korea
| |
Collapse
|
829
|
Jaegle B, Uroic MK, Holtkotte X, Lucas C, Termath AO, Schmalz HG, Bucher M, Hoecker U, Hülskamp M, Schrader A. A fast and simple LC-MS-based characterization of the flavonoid biosynthesis pathway for few seed(ling)s. BMC PLANT BIOLOGY 2016; 16:190. [PMID: 27586417 PMCID: PMC5007998 DOI: 10.1186/s12870-016-0880-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/23/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND (Pro)anthocyanidins are synthesized by the flavonoid biosynthesis pathway with multi-layered regulatory control. Methods for the analysis of the flavonoid composition in plants are well established for different purposes. However, they typically compromise either on speed or on depth of analysis. RESULTS In this work we combined and optimized different protocols to enable the analysis of the flavonoid biosynthesis pathway with as little as possible biological material. We chose core substances of this metabolic pathway that serve as a fingerprint to recognize alterations in the main branches of the pathway. We used a simplified sample preparation, two deuterated internal standards, a short and efficient LC separation, highly sensitive detection with tandem MS in multiple reaction monitoring (MRM) mode and hydrolytic release of the core substances to reduce complexity. The method was optimized for Arabidopsis thaliana seeds and seedlings. We demonstrate that one Col-0 seed/seedling is sufficient to obtain a fingerprint of the core substances of the flavonoid biosynthesis pathway. For comparative analysis of different genotypes, we suggest the use of 10 seed(lings). The analysis of Arabidopsis thaliana mutants affecting steps in the pathway revealed foreseen and unexpected alterations of the pathway. For example, HY5 was found to differentially regulate kaempferol in seeds vs. seedlings. Furthermore, our results suggest that COP1 is a master regulator of flavonoid biosynthesis in seedlings but not of flavonoid deposition in seeds. CONCLUSIONS When sample numbers are high and the plant material is limited, this method effectively facilitates metabolic fingerprinting with one seed(ling), revealing shifts and differences in the pathway. Moreover the combination of extracted non-hydrolysed, extracted hydrolysed and non-extracted hydrolysed samples proved useful to deduce the class of derivative from which the individual flavonoids have been released.
Collapse
Affiliation(s)
- Benjamin Jaegle
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne Biocenter, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Miran Kalle Uroic
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne Biocenter, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Xu Holtkotte
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne Biocenter, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Christina Lucas
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne Biocenter, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Andreas Ole Termath
- Department of Chemistry, University of Cologne, Greinstr. 4, 50939 Cologne, Germany
| | - Hans-Günther Schmalz
- Department of Chemistry, University of Cologne, Greinstr. 4, 50939 Cologne, Germany
| | - Marcel Bucher
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne Biocenter, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Ute Hoecker
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne Biocenter, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Martin Hülskamp
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne Biocenter, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Andrea Schrader
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne Biocenter, Zülpicher Str. 47b, 50674 Cologne, Germany
| |
Collapse
|
830
|
Xie L, Li F, Zhang S, Zhang H, Qian W, Li P, Zhang S, Sun R. Mining for Candidate Genes in an Introgression Line by Using RNA Sequencing: The Anthocyanin Overaccumulation Phenotype in Brassica. FRONTIERS IN PLANT SCIENCE 2016; 7:1245. [PMID: 27597857 PMCID: PMC4992693 DOI: 10.3389/fpls.2016.01245] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/05/2016] [Indexed: 05/22/2023]
Abstract
Introgression breeding is a widely used method for the genetic improvement of crop plants; however, the mechanism underlying candidate gene flow patterns during hybridization is poorly understood. In this study, we used a powerful pipeline to investigate a Chinese cabbage (Brassica rapa L. ssp. pekinensis) introgression line with the anthocyanin overaccumulation phenotype. Our purpose was to analyze the gene flow patterns during hybridization and elucidate the genetic factors responsible for the accumulation of this important pigment compound. We performed RNA-seq analysis by using two pipelines, one with and one without a reference sequence, to obtain transcriptome data. We identified 930 significantly differentially expressed genes (DEGs) between the purple-leaf introgression line and B. rapa green cultivar, namely, 389 up-regulated and 541 down-regulated DEGs that mapped to the B. rapa reference genome. Since only one anthocyanin pathway regulatory gene was identified, i.e., Bra037887 (bHLH), we mined unmapped reads, revealing 2031 de novo assembled unigenes, including c3563g1i2. Phylogenetic analysis suggested that c3563g1i2, which was transferred from the Brassica B genome of the donor parental line Brassica juncea, may represent an R2R3-MYB transcription factor that participates in the ternary transcriptional activation complex responsible for the anthocyanin overaccumulation phenotype of the B. rapa introgression line. We also identified genes involved in cold and light reaction pathways that were highly upregulated in the introgression line, as confirmed using quantitative real-time PCR analysis. The results of this study shed light on the mechanisms underlying the purple leaf trait in Brassica plants and may facilitate the use of introgressive hybridization for many traits of interest.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shujiang Zhang
- Department of Chinese Cabbage, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Rifei Sun
- Department of Chinese Cabbage, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
831
|
Goossens J, Fernández-Calvo P, Schweizer F, Goossens A. Jasmonates: signal transduction components and their roles in environmental stress responses. PLANT MOLECULAR BIOLOGY 2016; 68:1333-1347. [PMID: 27927998 DOI: 10.1093/jxb/erw440] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Jasmonates, oxylipin-type plant hormones, are implicated in diverse aspects of plant growth development and interaction with the environment. Following diverse developmental and environmental cues, jasmonate is produced, conjugated to the amino acid isoleucine and perceived by a co-receptor complex composed of the Jasmonate ZIM-domain (JAZ) repressor proteins and an E3 ubiquitin ligase complex containing the F-box CORONATINE INSENSITIVE 1 (COI1). This event triggers the degradation of the JAZ proteins and the release of numerous transcription factors, including MYC2 and its homologues, which are otherwise bound and inhibited by the JAZ repressors. Here, we will review the role of the COI1, JAZ and MYC2 proteins in the interaction of the plant with its environment, illustrating the significance of jasmonate signalling, and of the proteins involved, for responses to both biotic stresses caused by insects and numerous microbial pathogens and abiotic stresses caused by adverse climatic conditions. It has also become evident that crosstalk with other hormone signals, as well as light and clock signals, plays an important role in the control and fine-tuning of these stress responses. Finally, we will discuss how several pathogens exploit the jasmonate perception and early signalling machinery to decoy the plants defence systems.
Collapse
Affiliation(s)
- Jonas Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Patricia Fernández-Calvo
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Fabian Schweizer
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
832
|
Jiang M, Ren L, Lian H, Liu Y, Chen H. Novel insight into the mechanism underlying light-controlled anthocyanin accumulation in eggplant (Solanum melongena L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 249:46-58. [PMID: 27297989 DOI: 10.1016/j.plantsci.2016.04.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 05/19/2023]
Abstract
Eggplant is rich in anthocyanins, which are the major secondary metabolites and beneficial to human health. We discovered that the anthocyanin biosynthesis of eggplant cultivar 'Lanshan Hexian' was regulated by light. In this study, we isolated two blue light receptor genes, SmCRY1 and SmCRY2, and negative/positive anthocyanin regulatory factors SmCOP1 and SmHY5 from eggplant. In terms of transcript levels, SmCRY1, SmCRY2 and SmHY5 were up-regulated by light, while SmCOP1 was down-regulated. Subsequently, the four genes were functionally complemented in phenotype of corresponding mutants, indicating that they act as counterparts of Arabidopsis genes. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that SmCRY1 and SmCRY2 interact with SmCOP1 in a blue-light-dependent manner. It also obtained the result that SmCOP1 interacts with SmHY5 and SmMYB1. Furthermore, using yeast one-hybrid assay, we found that SmHY5 and SmMYB1 both bind the promoters of anthocyanin biosynthesis structural genes (SmCHS and SmDFR). Taken together, blue-light-triggered CRY1/CRY2-COP1 interaction creates the condition that HY5 and MYB1 combine with the downstream anthocyanin synthesis genes (CHS and DFR) in eggplant. Our finding provides a new working model by which light controls anthocyanin accumulation in eggplant.
Collapse
Affiliation(s)
- Mingmin Jiang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Ren
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongli Lian
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huoying Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
833
|
Li Y, Shan X, Gao R, Yang S, Wang S, Gao X, Wang L. Two IIIf Clade-bHLHs from Freesia hybrida Play Divergent Roles in Flavonoid Biosynthesis and Trichome Formation when Ectopically Expressed in Arabidopsis. Sci Rep 2016; 6:30514. [PMID: 27465838 PMCID: PMC4964595 DOI: 10.1038/srep30514] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/06/2016] [Indexed: 11/09/2022] Open
Abstract
The MBW complex, comprised by R2R3-MYB, basic helix-loop-helix (bHLH) and WD40, is a single regulatory protein complex that drives the evolution of multiple traits such as flavonoid biosynthesis and epidermal cell differentiation in plants. In this study, two IIIf Clade-bHLH regulator genes, FhGL3L and FhTT8L, were isolated and functionally characterized from Freesia hybrida. Different spatio-temporal transcription patterns were observed showing diverse correlation with anthocyanin and proanthocyanidin accumulation. When overexpressed in Arabidopsis, FhGL3L could enhance the anthocyanin accumulation through up-regulating endogenous regulators and late structural genes. Unexpectedly, trichome formation was inhibited associating with the down-regulation of AtGL2. Comparably, only the accumulation of anthocyanins and proanthocyanidins was strengthened in FhTT8L transgenic lines. Furthermore, transient expression assays demonstrated that FhGL3L interacted with AtPAP1, AtTT2 and AtGL1, while FhTT8L only showed interaction with AtPAP1 and AtTT2. In addition, similar activation of the AtDFR promoter was found between AtPAP1-FhGL3L/FhTT8L and AtPAP1- AtGL3/AtTT8 combinations. When FhGL3L was fused with a strong activation domain VP16, it could activate the AtGL2 promoter when co-transfected with AtGL1. Therefore, it can be concluded that the functionality of bHLH factors may have diverged, and a sophisticated interaction and hierarchical network might exist in the regulation of flavonoid biosynthesis and trichome formation.
Collapse
Affiliation(s)
- Yueqing Li
- Key Laboratory of Molecular Epigenetics of MOE, Changchun, China
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiaotong Shan
- Key Laboratory of Molecular Epigenetics of MOE, Changchun, China
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Ruifang Gao
- Key Laboratory of Molecular Epigenetics of MOE, Changchun, China
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Song Yang
- Key Laboratory of Molecular Epigenetics of MOE, Changchun, China
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Changchun, China
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE, Changchun, China
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE, Changchun, China
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| |
Collapse
|
834
|
Brkljacic J, Grotewold E. Combinatorial control of plant gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:31-40. [PMID: 27427484 DOI: 10.1016/j.bbagrm.2016.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 01/02/2023]
Abstract
Combinatorial gene regulation provides a mechanism by which relatively small numbers of transcription factors can control the expression of a much larger number of genes with finely tuned temporal and spatial patterns. This is achieved by transcription factors assembling into complexes in a combinatorial fashion, exponentially increasing the number of genes that they can target. Such an arrangement also increases the specificity and affinity for the cis-regulatory sequences required for accurate target gene expression. Superimposed on this transcription factor combinatorial arrangement is the increasing realization that histone modification marks expand the regulatory information, which is interpreted by histone readers and writers that are part of the regulatory apparatus. Here, we review the progress in these areas from the perspective of plant combinatorial gene regulation, providing examples of different regulatory solutions and comparing them to other metazoans. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- Jelena Brkljacic
- Center for Applied Plant Sciences (CAPS),The Ohio State University, Columbus, OH 43210, USA
| | - Erich Grotewold
- Center for Applied Plant Sciences (CAPS),The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
835
|
Hydrogen peroxide, nitric oxide and UV RESISTANCE LOCUS8 interact to mediate UV-B-induced anthocyanin biosynthesis in radish sprouts. Sci Rep 2016; 6:29164. [PMID: 27404993 PMCID: PMC4941517 DOI: 10.1038/srep29164] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/16/2016] [Indexed: 01/19/2023] Open
Abstract
The cross talk among hydrogen peroxide (H2O2), nitric oxide (NO) and UV RESISTANCE LOCUS8 (UVR8) in UV-B-induced anthocyanin accumulation in the hypocotyls of radish sprouts was investigated. The results showed that UV-B irradiation significantly increased the anthocyanin accumulation and the expression of UVR8, and a similar trend appeared in radish sprouts subjected to cadmium, chilling and salt stresses regardless of light source. However, these responses disappeared under dark exposure. These results suggest that abiotic stress-induced anthocyanin accumulation and UVR8 expression were light-dependent. Moreover, abiotic stresses all enhanced the production of H2O2 and exogenous H2O2 addition significantly increased the anthocyanin concentration and UVR8 transcription, while these increases were severely inhibited by addition of dimethylthiourea (DMTU, a chemical trap for H2O2). It seems to suggest that H2O2 played an important role in the anthocyanin biosynthesis. Furthermore, addition of 0.5 mM sodium nitroprusside (SNP, a NO-releasing compound) substantially induced the anthocyanin accumulation, and H2O2-induced anthocyanin accumulation and UVR8 expression were significantly suppressed by co-treatment with 2-phenyl-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl (PTIO, a NO scavenger), which was parallel with the expression of anthocyanin biosynthesis-related transcription factors and structural genes. All these results demonstrate that both H2O2 and NO are involved in UV-B-induced anthocyanin accumulation, and there is a crosstalk between them as well as a classical UVR8 pathway.
Collapse
|
836
|
Dwivedi SL, Upadhyaya HD, Chung IM, De Vita P, García-Lara S, Guajardo-Flores D, Gutiérrez-Uribe JA, Serna-Saldívar SO, Rajakumar G, Sahrawat KL, Kumar J, Ortiz R. Exploiting Phenylpropanoid Derivatives to Enhance the Nutraceutical Values of Cereals and Legumes. FRONTIERS IN PLANT SCIENCE 2016; 7:763. [PMID: 27375635 PMCID: PMC4891577 DOI: 10.3389/fpls.2016.00763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/17/2016] [Indexed: 05/29/2023]
Abstract
Phenylpropanoids are a diverse chemical class with immense health benefits that are biosynthesized from the aromatic amino acid L-phenylalanine. This article reviews the progress for accessing variation in phenylpropanoids in germplasm collections, the genetic and molecular basis of phenylpropanoid biosynthesis, and the development of cultivars dense in seed-phenylpropanoids. Progress is also reviewed on high-throughput assays, factors that influence phenylpropanoids, the site of phenylpropanoids accumulation in seed, Genotype × Environment interactions, and on consumer attitudes for the acceptance of staple foods rich in phenylpropanoids. A paradigm shift was noted in barley, maize, rice, sorghum, soybean, and wheat, wherein cultivars rich in phenylpropanoids are grown in Europe and North and Central America. Studies have highlighted some biological constraints that need to be addressed for development of high-yielding cultivars that are rich in phenylpropanoids. Genomics-assisted breeding is expected to facilitate rapid introgression into improved genetic backgrounds by minimizing linkage drag. More research is needed to systematically characterize germplasm pools for assessing variation to support crop genetic enhancement, and assess consumer attitudes to foods rich in phenylpropanoids.
Collapse
Affiliation(s)
- Sangam L. Dwivedi
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Hari D. Upadhyaya
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
- Department of Agronomy, Kansas State UniversityManhattan, KS, USA
- UWA Institute of Agriculture, University of Western AustraliaCrawley, WA, Australia
| | - Ill-Min Chung
- Department of Applied Life Science, College of Life and Environmental Science, Konkuk UniversitySeoul, Korea
| | - Pasquale De Vita
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la CerealicolturaFoggia, Italy
| | - Silverio García-Lara
- Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y CienciasMonterrey, Mexico
| | - Daniel Guajardo-Flores
- Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y CienciasMonterrey, Mexico
| | - Janet A. Gutiérrez-Uribe
- Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y CienciasMonterrey, Mexico
| | - Sergio O. Serna-Saldívar
- Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Escuela de Ingeniería y CienciasMonterrey, Mexico
| | - Govindasamy Rajakumar
- Department of Applied Life Science, College of Life and Environmental Science, Konkuk UniversitySeoul, Korea
| | - Kanwar L. Sahrawat
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | | | - Rodomiro Ortiz
- Swedish University of Agricultural SciencesAlnarp, Sweden
| |
Collapse
|
837
|
Intronic Sequence Regulates Sugar-Dependent Expression of Arabidopsis thaliana Production of Anthocyanin Pigment-1/MYB75. PLoS One 2016; 11:e0156673. [PMID: 27248141 PMCID: PMC4889055 DOI: 10.1371/journal.pone.0156673] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 05/18/2016] [Indexed: 01/12/2023] Open
Abstract
Sucrose-specific regulation of gene expression is recognized as an important signaling response, distinct from glucose, which serves to modulate plant growth, metabolism, and physiology. The Arabidopsis MYB transcription factor Production of Anthocyanin Pigment-1 (PAP1) plays a key role in anthocyanin biosynthesis and expression of PAP1 is known to be regulated by sucrose. Sucrose treatment of Arabidopsis seedlings led to a 20-fold induction of PAP1 transcript, which represented a 6-fold increase over levels in glucose-treated seedlings. The PAP1 promoter was not sufficient for conferring a sucrose response to a reporter gene and did not correctly report expression of PAP1 in plants. Although we identified 3 putative sucrose response elements in the PAP1 gene, none were found to be necessary for this response. Using deletion analysis, we identified a 90 bp sequence within intron 1 of PAP1 that is necessary for the sucrose response. This sequence was sufficient for conferring a sucrose response to a minimal promoter: luciferase reporter when present in multiple copies upstream of the promoter. This work lays the foundation for dissecting the sucrose signaling pathway of PAP1 and contributes to understanding the interplay between sucrose signaling, anthocyanin biosynthesis, and stress responses.
Collapse
|
838
|
Xie Y, Tan H, Ma Z, Huang J. DELLA Proteins Promote Anthocyanin Biosynthesis via Sequestering MYBL2 and JAZ Suppressors of the MYB/bHLH/WD40 Complex in Arabidopsis thaliana. MOLECULAR PLANT 2016; 9:711-721. [PMID: 26854848 DOI: 10.1016/j.molp.2016.01.014] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/28/2015] [Accepted: 01/31/2016] [Indexed: 05/20/2023]
Abstract
Anthocyanin accumulation is recognized as a visible biomarker of plants that have suffered from environmental stresses. However, the molecular mechanisms underlying stress-induced anthocyanin biosynthesis remain unclear. Expression of anthocyanin-specific genes is regulated by the conserved MBW complex, which is composed of the MYB, bHLH, and WD40 subunits in higher plants. MBW activity is repressed by MYBL2 and the JAZ family proteins, which bind competitively to bHLH and MYB/bHLH, respectively. Here, we found that MYBL2 and JAZs mediate gibberellic acid-inhibited anthocyanin biosynthesis in Arabidopsis. Competitive pull-down and dual-luciferase assays showed that DELLA proteins directly sequester MYBL2 and JAZ repressors, leading to the release of bHLH/MYB subunits and subsequently to the formation of active MBW complex, which then activates the anthocyanin biosynthetic pathway. The JAZ-DELLA-MYBL2 module also plays an important role in abiotic stress-induced anthocyanin biosynthesis. Furthermore, we found that the DELLA protein RGA accumulates upon plant exposure to abiotic stresses. Altogether, our data reveal that DELLA-promoted anthocyanin biosynthesis is mediated at least in part by MYBL2 and JAZ regulatory proteins, providing new insights into the coordinated regulation of plant growth and defense through metabolic pathway regulation.
Collapse
Affiliation(s)
- Ye Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Huijuan Tan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoxue Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jirong Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
839
|
Li P, Chen B, Zhang G, Chen L, Dong Q, Wen J, Mysore KS, Zhao J. Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8. THE NEW PHYTOLOGIST 2016; 210:905-21. [PMID: 26725247 DOI: 10.1111/nph.13816] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 11/22/2015] [Indexed: 05/20/2023]
Abstract
The MYB- basic helix-loop-helix (bHLH)-WD40 complexes regulating anthocyanin and proanthocyanidin (PA) biosynthesis in plants are not fully understood. Here Medicago truncatula bHLH MtTT8 was characterized as a central component of these ternary complexes that control anthocyanin and PA biosynthesis. Mttt8 mutant seeds have a transparent testa phenotype with reduced PAs and anthocyanins. MtTT8 restores PA and anthocyanin productions in Arabidopsis tt8 mutant. Ectopic expression of MtTT8 restores anthocyanins and PAs in mttt8 plant and hairy roots and further enhances both productions in wild-type hairy roots. Transcriptomic analyses and metabolite profiling of mttt8 mutant seeds and M. truncatula hairy roots (mttt8 mutant, mttt8 mutant complemented with MtTT8, or MtTT8 overexpression lines) indicate that MtTT8 regulates a subset of genes involved in PA and anthocyanin biosynthesis. MtTT8 is genetically regulated by MtLAP1, MtPAR and MtWD40-1. Combinations of MtPAR, MtLAP1, MtTT8 and MtWD40-1 activate MtTT8 promoter in yeast assay. MtTT8 interacts with these transcription factors to form regulatory complexes. MtTT8, MtWD40-1 and an MYB factor, MtPAR or MtLAP1, interacted and activated promoters of anthocyanidin reductase and anthocyanidin synthase to regulate PA and anthocyanin biosynthesis, respectively. Our results provide new insights into the complex regulation of PA and anthocyanin biosynthesis in M. truncatula.
Collapse
Affiliation(s)
- Penghui Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430075, China
| | - Beibei Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430075, China
| | - Gaoyang Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430075, China
| | - Longxiang Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430075, China
| | - Qiang Dong
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430075, China
| | - Jiangqi Wen
- Plant Biology Division, the Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Plant Biology Division, the Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Jian Zhao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430075, China
- Plant Biology Division, the Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| |
Collapse
|
840
|
Yasui Y, Hirakawa H, Ueno M, Matsui K, Katsube-Tanaka T, Yang SJ, Aii J, Sato S, Mori M. Assembly of the draft genome of buckwheat and its applications in identifying agronomically useful genes. DNA Res 2016; 23:215-24. [PMID: 27037832 PMCID: PMC4909311 DOI: 10.1093/dnares/dsw012] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/20/2016] [Indexed: 01/14/2023] Open
Abstract
Buckwheat (Fagopyrum esculentum Moench; 2n = 2x = 16) is a nutritionally dense annual crop widely grown in temperate zones. To accelerate molecular breeding programmes of this important crop, we generated a draft assembly of the buckwheat genome using short reads obtained by next-generation sequencing (NGS), and constructed the Buckwheat Genome DataBase. After assembling short reads, we determined 387,594 scaffolds as the draft genome sequence (FES_r1.0). The total length of FES_r1.0 was 1,177,687,305 bp, and the N50 of the scaffolds was 25,109 bp. Gene prediction analysis revealed 286,768 coding sequences (CDSs; FES_r1.0_cds) including those related to transposable elements. The total length of FES_r1.0_cds was 212,917,911 bp, and the N50 was 1,101 bp. Of these, the functions of 35,816 CDSs excluding those for transposable elements were annotated by BLAST analysis. To demonstrate the utility of the database, we conducted several test analyses using BLAST and keyword searches. Furthermore, we used the draft genome as a reference sequence for NGS-based markers, and successfully identified novel candidate genes controlling heteromorphic self-incompatibility of buckwheat. The database and draft genome sequence provide a valuable resource that can be used in efforts to develop buckwheat cultivars with superior agronomic traits.
Collapse
Affiliation(s)
- Yasuo Yasui
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyou-ku, Kyoto 606-8502, Japan
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Mariko Ueno
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyou-ku, Kyoto 606-8502, Japan
| | - Katsuhiro Matsui
- NARO Kyushu Okinawa Agricultural Research Center, 2421 Suya, Koshi, Kumamoto 861-1192, Japan
| | - Tomoyuki Katsube-Tanaka
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyou-ku, Kyoto 606-8502, Japan
| | - Soo Jung Yang
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyou-ku, Kyoto 606-8502, Japan
| | - Jotaro Aii
- Faculty of Applied Life Science, Niigata University of Pharmacy and Applied Life Science, Akiha-ku, Niigata 956-8603, Japan
| | - Shingo Sato
- Faculty of Applied Life Science, Niigata University of Pharmacy and Applied Life Science, Akiha-ku, Niigata 956-8603, Japan
| | - Masashi Mori
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 308 Suematsu, Nonoichi, Ishikawa 912-8836, Japan
| |
Collapse
|
841
|
Liu Y, Lin-Wang K, Espley RV, Wang L, Yang H, Yu B, Dare A, Varkonyi-Gasic E, Wang J, Zhang J, Wang D, Allan AC. Functional diversification of the potato R2R3 MYB anthocyanin activators AN1, MYBA1, and MYB113 and their interaction with basic helix-loop-helix cofactors. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2159-76. [PMID: 26884602 PMCID: PMC4809278 DOI: 10.1093/jxb/erw014] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In potato (Solanum tuberosum L.), R2R3 MYBs are involved in the regulation of anthocyanin biosynthesis. We examined sequences of these MYBs in cultivated potatoes, which are more complex than diploid potato due to ploidy and heterozygosity. We found amino acid variants in the C-terminus of the MYB StAN1, termed R0, R1, and R3, due to the presence of a repeated 10-amino acid motif. These variant MYBs showed some expression in both white and pigmented tubers. We found several new alleles or gene family members of R2R3 MYBs,StMYBA1 and StMYB113, which were also expressed in white potato tubers. From functional analysis in tobacco, we showed that the presence of a C-terminal 10-amino acid motif is optimal for activating anthocyanin accumulation. Engineering a motif back into a MYB lacking this sequence enhanced its activating ability. Versions of StMYBA1 and StMYB113 can also activate anthocyanin accumulation in tobacco leaves, with the exception of StMYB113-3, which has a partial R2R3 domain. We isolated five family members of potato StbHLH1, and one StJAF13, to test their ability to interact with MYB variants. The results showed that two alleles of StbHLH1 from white skin and red skin are non-functional, while three other StbHLH1s have different co-regulating abilities, and need to be activated by StJAF13. Combined with expression analysis in potato tuber, results suggest that StbHLH1 and StJAF13a re key co-regulators of anthocyanin biosynthesis, while the transcripts of MYB variants StAN1,StMYBA1, and StMYB113 are well expressed, even in the absence of pigmentation.
Collapse
Affiliation(s)
- Yuhui Liu
- Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China
| | - Kui Lin-Wang
- Plant & Food Research Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Richard V Espley
- Plant & Food Research Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Li Wang
- Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Hongyu Yang
- Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Bin Yu
- Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China
| | - Andrew Dare
- Plant & Food Research Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Erika Varkonyi-Gasic
- Plant & Food Research Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Jing Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Junlian Zhang
- Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Di Wang
- Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China
| | - Andrew C Allan
- Plant & Food Research Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
842
|
Gonzalez A, Brown M, Hatlestad G, Akhavan N, Smith T, Hembd A, Moore J, Montes D, Mosley T, Resendez J, Nguyen H, Wilson L, Campbell A, Sudarshan D, Lloyd A. TTG2 controls the developmental regulation of seed coat tannins in Arabidopsis by regulating vacuolar transport steps in the proanthocyanidin pathway. Dev Biol 2016; 419:54-63. [PMID: 27046632 DOI: 10.1016/j.ydbio.2016.03.031] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 03/24/2016] [Accepted: 03/31/2016] [Indexed: 12/15/2022]
Abstract
The brown color of Arabidopsis seeds is caused by the deposition of proanthocyanidins (PAs or condensed tannins) in their inner testa layer. A transcription factor complex consisting of TT2, TT8 and TTG1 controls expression of PA biosynthetic genes, just as similar TTG1-dependent complexes have been shown to control flavonoid pigment pathway gene expression in general. However, PA synthesis is controlled by at least one other gene. TTG2 mutants lack the pigmentation found in wild-type seeds, but produce other flavonoid compounds, such as anthocyanins in the shoot, suggesting that TTG2 regulates genes in the PA biosynthetic branch of the flavonoid pathway. We analyzed the expression of PA biosynthetic genes within the developing seeds of ttg2-1 and wild-type plants for potential TTG2 regulatory targets. We found that expression of TT12, encoding a MATE type transporter, is dependent on TTG2 and that TTG2 can bind to the upstream regulatory region of TT12 suggesting that TTG2 directly regulates TT12. Ectopic expression of TT12 in ttg2-1 plants partially restores seed coat pigmentation. Moreover, we show that TTG2 regulation of TT12 is dependent on TTG1 and that TTG1 and TTG2 physically interact. The observation that TTG1 interacts with TTG2, a WRKY type transcription factor, proposes the existence of a novel TTG1-containing complex, and an addendum to the existing paradigm of flavonoid pathway regulation.
Collapse
Affiliation(s)
- Antonio Gonzalez
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA; The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Matthew Brown
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Greg Hatlestad
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Neda Akhavan
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Tyler Smith
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Austin Hembd
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Joshua Moore
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - David Montes
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Trenell Mosley
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA; The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Juan Resendez
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Huy Nguyen
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lyndsey Wilson
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Annabelle Campbell
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Duncan Sudarshan
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX 78712, USA
| | - Alan Lloyd
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| |
Collapse
|
843
|
Huang W, Khaldun ABM, Lv H, Du L, Zhang C, Wang Y. Isolation and functional characterization of a R2R3-MYB regulator of the anthocyanin biosynthetic pathway from Epimedium sagittatum. PLANT CELL REPORTS 2016; 35:883-94. [PMID: 26849670 DOI: 10.1007/s00299-015-1929-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/18/2015] [Accepted: 12/29/2015] [Indexed: 05/08/2023]
Abstract
KEY MESSAGE A R2R3-MYB transcription factor EsAN2 was isolated from Epimedium sagittatum and functionally characterized to regulate the anthocyanin biosynthetic pathway. Epimedium plants are used widely both as traditional Chinese medicinal herbs and ornamental perennials. Anthocyanins, acting as major contributors to plant color diversity, their biosynthesis are regulated by a series of transcription factors, including MYB, bHLH and WD40 protein. Previously, a MYB transcription factor involved in regulation of the anthocyanin pathway from Epimedium sagittatum, EsMYBA1 has been isolated, but was found to be expressed mostly in leaves. In this research, another MYB transcription factor, designated as EsAN2, was isolated from flowers by the screening of E. sagittatum EST database. Preferential expression of EsAN2 in flowers and flower buds was found. Ectopic expression of EsAN2 in tobacco significantly enhanced the anthocyanin biosynthesis and accumulation, both in leaves and flowers. Most structural genes of the anthocyanin biosynthetic pathway were strongly upregulated, as well as two bHLH regulators (NtAn1a and NtAn1b) in old leaves of tobacco overexpressing EsAN2, compared to the control plants. While only three structural genes, chalcone synthase (CHS), chalcone isomerase (CHI) and anthocyanidin synthase (ANS), were upregulated by EsAN2 ectopic expression in tobacco flowers. Yeast two-hybrid assay showed that EsAN2 was capable of interacting with four bHLH regulators of the anthocyanin biosynthetic pathway. These results suggest that EsAN2 is involved in regulation of the anthocyanin biosynthesis in Epimedium flowers. Identification and characterization of EsAN2 provide insight into the coloration of Epimedium flowers and a potential candidate gene for metabolic engineering of flavonoids in the future.
Collapse
Affiliation(s)
- Wenjun Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, 430074, Wuhan, Hubei, China
| | - A B M Khaldun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, 430074, Wuhan, Hubei, China
| | - Haiyan Lv
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, 430074, Wuhan, Hubei, China
| | - Liuwen Du
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, 430074, Wuhan, Hubei, China
- University of the Chinese Academy of Sciences, 100039, Beijing, China
| | - Chanjuan Zhang
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agriculture Sciences, 430062, Wuhan, Hubei, China
| | - Ying Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, 430074, Wuhan, Hubei, China.
| |
Collapse
|
844
|
Li X, Xue C, Li J, Qiao X, Li L, Yu L, Huang Y, Wu J. Genome-Wide Identification, Evolution and Functional Divergence of MYB Transcription Factors in Chinese White Pear (Pyrus bretschneideri). PLANT & CELL PHYSIOLOGY 2016; 57:824-47. [PMID: 26872835 DOI: 10.1093/pcp/pcw029] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 02/02/2016] [Indexed: 05/18/2023]
Abstract
The MYB superfamily is large and functionally diverse in plants. To date, MYB family genes have not yet been identified in Chinese white pear (Pyrus bretschneideri), and their functions remain unclear. In this study, we identified 231 genes as candidate MYB genes and divided them into four subfamilies. The R2R3-MYB (PbrMYB) family shared an R2R3 domain with 104 amino acid residues, including five conserved tryptophan residues. The Pbr MYB family was divided into 37 functional subgroups including 33 subgroups which contained both MYB genes of Rosaceae plants and AtMYB genes, and four subgroups which included only Rosaceae MYB genes or AtMYB genes. PbrMYB genes with similar functions clustered into the same subgroup, indicating functional conservation. We also found that whole-genome duplication (WGD) and dispersed duplications played critical roles in the expansion of the MYB family. The 87 Pbr MYB duplicated gene pairs dated back to the two WGD events. Purifying selection was the primary force driving Pbr MYB gene evolution. The 15 gene pairs presented 1-7 codon sites under positive selection. A total of 147 expressed genes were identified from RNA-sequencing data of fruit, and six Pbr MYB members in subgroup C1 were identified as important candidate genes in the regulation of lignin synthesis by quantitative real-time PCR analysis. Further correlation analysis revealed that six PbrMYBs were significantly correlated with five structural gene families (F5H, HCT, CCR, POD and C3'H) in the lignin pathway. The phylogenetic, evolution and expression analyses of the MYB gene family in Chinese white pear establish a solid foundation for future comprehensive functional analysis of Pbr MYB genes.
Collapse
Affiliation(s)
- Xiaolong Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Xue
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaming Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Qiao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Leiting Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Li'ang Yu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuhua Huang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
845
|
Sun W, Liang L, Meng X, Li Y, Gao F, Liu X, Wang S, Gao X, Wang L. Biochemical and Molecular Characterization of a Flavonoid 3-O-glycosyltransferase Responsible for Anthocyanins and Flavonols Biosynthesis in Freesia hybrida. FRONTIERS IN PLANT SCIENCE 2016; 7:410. [PMID: 27064818 PMCID: PMC4815329 DOI: 10.3389/fpls.2016.00410] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/17/2016] [Indexed: 05/20/2023]
Abstract
The glycosylation of flavonoids increases their solubility and stability in plants. Flowers accumulate anthocyanidin and flavonol glycosides which are synthesized by UDP-sugar flavonoid glycosyltransferases (UFGTs). In our previous study, a cDNA clone (Fh3GT1) encoding UFGT was isolated from Freesia hybrida, which was preliminarily proved to be invovled in cyanidin 3-O-glucoside biosynthesis. Here, a variety of anthocyanin and flavonol glycosides were detected in flowers and other tissues of F. hybrida, implying the versatile roles of Fh3GT1 in flavonoids biosynthesis. To further unravel its multi-functional roles, integrative analysis between gene expression and metabolites was investigated. The results showed expression of Fh3GT1 was positively related to the accumulation of anthocyanins and flavonol glycosides, suggesting its potential roles in the biosynthesis of both flavonoid glycosides. Subsequently, biochemical analysis results revealed that a broad range of flavonoid substrates including flavonoid not naturally occurred in F. hybrida could be recognized by the recombinant Fh3GT1. Both UDP-glucose and UDP-galactose could be used as sugar donors by recombinant Fh3GT1, although UDP-galactose was transferred with relatively low activity. Furthermore, regiospecificity analysis demonstrated that Fh3GT1 was able to glycosylate delphinidin at the 3-, 4-', and 7- positions in a sugar-dependent manner. And the introduction of Fh3GT1 into Arabidopsis UGT78D2 mutant successfully restored the anthocyanins and flavonols phenotypes caused by lost-of-function of the 3GT, indicating that Fh3GT1 functions as a flavonoid 3-O-glucosyltransferase in vivo. In summary, these results demonstrate that Fh3GT1 is a flavonoid 3-O-glycosyltransferase using UDP-glucose as the preferred sugar donor and may involve in flavonoid glycosylation in F. hybrida.
Collapse
Affiliation(s)
- Wei Sun
- Institute of Genetics and Cytology, Northeast Normal UniversityChangchun, China
- College of Life Science, Guizhou Normal UniversityGuiyang, China
| | - Lingjie Liang
- Institute of Genetics and Cytology, Northeast Normal UniversityChangchun, China
| | - Xiangyu Meng
- Institute of Genetics and Cytology, Northeast Normal UniversityChangchun, China
| | - Yueqing Li
- Institute of Genetics and Cytology, Northeast Normal UniversityChangchun, China
| | - Fengzhan Gao
- Institute of Genetics and Cytology, Northeast Normal UniversityChangchun, China
| | - Xingxue Liu
- Institute of Genetics and Cytology, Northeast Normal UniversityChangchun, China
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal UniversityChangchun, China
| | - Xiang Gao
- Institute of Genetics and Cytology, Northeast Normal UniversityChangchun, China
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal UniversityChangchun, China
| | - Li Wang
- Institute of Genetics and Cytology, Northeast Normal UniversityChangchun, China
| |
Collapse
|
846
|
Zhang N, Sun Q, Li H, Li X, Cao Y, Zhang H, Li S, Zhang L, Qi Y, Ren S, Zhao B, Guo YD. Melatonin Improved Anthocyanin Accumulation by Regulating Gene Expressions and Resulted in High Reactive Oxygen Species Scavenging Capacity in Cabbage. FRONTIERS IN PLANT SCIENCE 2016; 7:197. [PMID: 27047496 PMCID: PMC4804130 DOI: 10.3389/fpls.2016.00197] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/04/2016] [Indexed: 05/18/2023]
|
847
|
Mushtaq MA, Pan Q, Chen D, Zhang Q, Ge X, Li Z. Comparative Leaves Transcriptome Analysis Emphasizing on Accumulation of Anthocyanins in Brassica: Molecular Regulation and Potential Interaction with Photosynthesis. FRONTIERS IN PLANT SCIENCE 2016; 7:311. [PMID: 27047501 PMCID: PMC4796009 DOI: 10.3389/fpls.2016.00311] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/29/2016] [Indexed: 05/04/2023]
Abstract
The purple leaf pigmentation mainly associated with anthocyanins accumulation is common in Brassica but the mechanisms of its production and its potential physiological functions are poorly understood. Here, we performed the phenotypic, cytological, physiological, and comparative leaves transcriptome analyses of 11 different varieties belonging to five Brassica species with purple or green leaves. We observed that the anthocyanin was accumulated in most of vegetative tissues in all species and also in reproduction organs of B. carinata. Anthocyanin accumulated in different part of purple leaves including adaxial and abaxial epidermal cells as well as palisade and spongy mesophyll cells. Leave transcriptome analysis showed that almost all late biosynthetic genes (LBGs) of anthocyanin, especially Dihydroflavonol 4-Reductase (DFR), Anthocyanidin Synthase (ANS) and Transparent Testa 19 (TT19), were highly up-regulated in all purple leaves. However, only one of transcript factors in anthocyanin biosynthesis pathway, Transparent Testa 8 (TT8), was up regulated along with those genes in all purple leaves, indicating its pivotal role for anthocyanin production in Brassica. Interestingly, with the up-regulation of genes for anthocyanin synthesis, Cytosolic 6-phosphogluconolactonase (PLG5) which involved in the oxidative pentose-phosphate pathway was up-regulated in all purple leaves and three genes FTSH PROTEASE 8 (FTS8), GLYCOLATE OXIDASE 1 (GOX1), and GLUTAMINE SYNTHETASE 1;4 (GLN1;4) related to degradation of photo-damaged proteins in photosystem II and light respiration were down-regulated. These results highlighted the potential physiological functions of anthocyanin accumulation related to photosynthesis which might be of great worth in future.
Collapse
Affiliation(s)
| | | | | | | | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | | |
Collapse
|
848
|
Palma-Silva C, Ferro M, Bacci M, Turchetto-Zolet AC. De novo assembly and characterization of leaf and floral transcriptomes of the hybridizing bromeliad species (Pitcairnia spp.) adapted to Neotropical Inselbergs. Mol Ecol Resour 2016; 16:1012-22. [PMID: 26849180 DOI: 10.1111/1755-0998.12504] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 02/06/2023]
Abstract
We present the leaf and floral transcriptomes of two hybridizing bromeliad species that differ in their major pollinator systems. Here we identified candidate genes responsible for pollinator attraction and reproductive isolation in these two species. We searched for candidate genes involved in floral traits, such as colour. Approximately 34 Gbp of cDNA sequence data were produced from both tissues and species, resulting in a total of 424 506 914 raw reads. The de novo-assembled transcriptomes consisted of a total of 263 955 contigs, further clustered into 110 977 unigenes. Over 58% of the unigenes were functionally annotated and assigned to one or more Gene Ontology terms. The transcriptomes revealed 144 unique transcripts that encode key enzymes in the flavonoid and anthocyanin biosynthesis pathways. The domain/family annotation and phylogenetic analysis allowed us to infer, by homology, potential functions of the genes encoding MYB, HD-ZIP and bZIP-HY5 transcription factors, as well as WD40 protein, which may be involved in anthocyanin and flavonoid regulation in these species. These candidate genes are associated with natural regulation in flower colour in other plant species and will facilitate future studies aimed at elucidating the molecular basis of adaptive differentiation and the evolution of mechanisms of pollinator-mediated reproductive isolation in these two bromeliads. In addition, we identified a total of 49 439 microsatellite loci. These resources will assist future research into adaptation and speciation events in bromeliad species, thus providing a starting point for investigation of the molecular mechanisms of the traits responsible for their reproductive isolation.
Collapse
Affiliation(s)
- C Palma-Silva
- Departamento de Ecologia, Programa de Pós-graduação em Ecologia e Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista Julio Mesquita Filho, 13506-900, Rio Claro, SP, Brazil
| | - M Ferro
- Centro de Estudos de Insetos Sociais, Instituto de Biociências, Universidade Estadual Paulista Julio Mesquita Filho, 13506-900, Rio Claro, SP, Brazil
| | - M Bacci
- Centro de Estudos de Insetos Sociais, Instituto de Biociências, Universidade Estadual Paulista Julio Mesquita Filho, 13506-900, Rio Claro, SP, Brazil
| | - A C Turchetto-Zolet
- Departamento de Genética, Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
849
|
Domingos S, Fino J, Paulo OS, Oliveira CM, Goulao LF. Molecular candidates for early-stage flower-to-fruit transition in stenospermocarpic table grape (Vitis vinifera L.) inflorescences ascribed by differential transcriptome and metabolome profiles. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 244:40-56. [PMID: 26810452 DOI: 10.1016/j.plantsci.2015.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 12/08/2015] [Accepted: 12/18/2015] [Indexed: 05/23/2023]
Abstract
Flower-to-fruit transition depends of nutrient availability and regulation at the molecular level by sugar and hormone signalling crosstalk. However, in most species, the identities of fruit initiation regulators and their targets are largely unknown. To ascertain the main pathways involved in stenospermocarpic table grape fruit set, comprehensive transcriptional and metabolomic analyses were conducted specifically targeting the early phase of this developmental stage in 'Thompson Seedless'. The high-throughput analyses performed disclosed the involvement of 496 differentially expressed genes and 28 differently accumulated metabolites in the sampled inflorescences. Our data show broad transcriptome reprogramming of molecule transporters, globally down-regulating gene expression, and suggest that regulation of sugar- and hormone-mediated pathways determines the downstream activation of berry development. The most affected gene was the SWEET14 sugar transporter. Hormone-related transcription changes were observed associated with increased indole-3-acetic acid, stimulation of ethylene and gibberellin metabolisms and cytokinin degradation, and regulation of MADS-box and AP2-like ethylene-responsive transcription factor expression. Secondary metabolism, the most representative biological process at transcriptome level, was predominantly repressed. The results add to the knowledge of molecular events occurring in grapevine inflorescence fruit set and provide a list of candidates, paving the way for genetic manipulation aimed at model research and plant breeding.
Collapse
Affiliation(s)
- Sara Domingos
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisbon, Portugal; BioTrop, Instituto de Investigação Científica Tropical I.P. (IICT), Lisbon, Portugal
| | - Joana Fino
- Computational Biology and Population Genomics Group, cE3c-Centre for Ecology, Evolution, and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Octávio S Paulo
- Computational Biology and Population Genomics Group, cE3c-Centre for Ecology, Evolution, and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Cristina M Oliveira
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisbon, Portugal
| | - Luis F Goulao
- BioTrop, Instituto de Investigação Científica Tropical I.P. (IICT), Lisbon, Portugal.
| |
Collapse
|
850
|
Zhai R, Wang Z, Zhang S, Meng G, Song L, Wang Z, Li P, Ma F, Xu L. Two MYB transcription factors regulate flavonoid biosynthesis in pear fruit (Pyrus bretschneideri Rehd.). JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1275-84. [PMID: 26687179 DOI: 10.1093/jxb/erv524] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Flavonoid compounds play important roles in the modern diet, and pear fruits are an excellent dietary source of these metabolites. However, information on the regulatory network of flavonoid biosynthesis in pear fruits is rare. In this work, 18 putative flavonoid-related MYB transcription factors (TFs) were screened by phylogenetic analysis and four of them were correlated with flavonoid biosynthesis patterns in pear fruits. Among these MYB-like genes, the specific functions of two novel MYB TFs, designated as PbMYB10b and PbMYB9, were further verified by both overexpression and RNAi transient assays. PbMYB10b, a PAP-type MYB TF with atypical motifs in its conserved region, regulated the anthocyanin and proanthocyanidin pathways by inducing the expression of PbDFR, but its function could be complemented by other MYB TFs. PbMYB9, a TT2-type MYB, not only acted as the specific activator of the proanthocyanidin pathway by activating the PbANR promoter, but also induced the synthesis of anthocyanins and flavonols by binding the PbUFGT1 promoter in pear fruits. The MYBCORE-like element has been identified in both the PbUFGT1 promoter and ANR promoters in most species, but it was not found in UFGT promoters isolated from other species. This finding was also supported by a yeast one-hybrid assay and thus enhanced the likelihood of the interaction between PbMYB9 and the PbUFGT1 promoter.
Collapse
Affiliation(s)
- Rui Zhai
- College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province, China
| | - Zhimin Wang
- College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province, China
| | - Shiwei Zhang
- College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province, China
| | - Geng Meng
- College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province, China
| | - Linyan Song
- College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province, China
| | - Zhigang Wang
- College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province, China
| | - Pengmin Li
- College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province, China
| | - Fengwang Ma
- College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province, China
| | - Lingfei Xu
- College of Horticulture, Northwest A&F University, Taicheng Road NO.3, Yangling, Shaanxi Province, China
| |
Collapse
|