801
|
Glover EI, Phillips SM. Resistance exercise and appropriate nutrition to counteract muscle wasting and promote muscle hypertrophy. Curr Opin Clin Nutr Metab Care 2010; 13:630-4. [PMID: 20829685 DOI: 10.1097/mco.0b013e32833f1ae5] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW Loss of skeletal muscle mass is a common feature of a number of clinical scenarios including limb casting, bed rest, and various disorders such as HIV-AIDS, sepsis, cancer cachexia, heart failure, and uremia. Commonly, muscle disuse (hypodynamia) is the sole reason, or a large part, of why muscle mass is lost. The reduction in strength, or dynapenia, that accompanies these conditions is also a function of the degree of hypodynamia and is related to muscle loss. RECENT FINDINGS The major and consistent finding in a number of human-based models of muscle wasting is a decline in the synthesis of new muscle proteins both in the postabsorptive and fed states. Thus, countermeasures are best suited to those that augment muscle protein synthesis and not those that attempt to counteract proteolysis. Our main thesis is that retention of muscle mass in wasting conditions will be achieved to the greatest extent by focussing on increased muscle use with moderate-to-high resistance loads as the primary countermeasure with a secondary countermeasure being to provide adequate nutritional support. Either intervention alone will alleviate some part of hypodynamia-induced muscle mass loss and dynapenia; however, together nutrition and muscular contraction will result in greater mitigation of muscle loss. SUMMARY Advances in our understanding of hypodynamia-induced muscle loss, a condition common to almost all syndromes of muscle wasting, has led to a focus on reduced basal and feeding-induced elevations in protein synthesis. Countermeasures for wasting should focus on stimulating anabolism rather than alleviating catabolism.
Collapse
Affiliation(s)
- Elisa I Glover
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
802
|
Gratacós FM, Brewer G. The role of AUF1 in regulated mRNA decay. WILEY INTERDISCIPLINARY REVIEWS. RNA 2010; 1:457-73. [PMID: 21956942 PMCID: PMC3608466 DOI: 10.1002/wrna.26] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Messenger ribonucleic acid (mRNA) turnover is a major control point in gene expression. In mammals, many mRNAs encoding inflammatory cytokines, oncoproteins, and G-protein-coupled receptors are destabilized by the presence of AU-rich elements (AREs) in their 3'-untranslated regions. Association of ARE-binding proteins (AUBPs) with these mRNAs promotes rapid mRNA degradation. ARE/poly(U)-binding/degradation factor 1 (AUF1), one of the best-characterized AUBPs, binds to many ARE-mRNAs and assembles other factors necessary to recruit the mRNA degradation machinery. These factors include translation initiation factor eIF4G, chaperones hsp27 and hsp70, heat-shock cognate protein hsc70, lactate dehydrogenase, poly(A)-binding protein, and other unidentified proteins. Numerous signaling pathways alter the composition of this AUF1 complex of proteins to effect changes in ARE-mRNA degradation rates. This review briefly describes the roles of mRNA decay in gene expression in general and ARE-mediated decay (AMD) in particular, with a focus on AUF1 and the different modes of regulation that govern AUF1 involvement in AMD.
Collapse
Affiliation(s)
- Frances M Gratacós
- Department of Molecular Genetics, Microbiology and Immunology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635, USA
| | | |
Collapse
|
803
|
Kanlaya R, Pattanakitsakul SN, Sinchaikul S, Chen ST, Thongboonkerd V. The ubiquitin-proteasome pathway is important for dengue virus infection in primary human endothelial cells. J Proteome Res 2010; 9:4960-71. [PMID: 20718508 DOI: 10.1021/pr100219y] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) are the most severe forms of dengue virus infection with hemorrhage and plasma leakage. However, pathogenic mechanisms of DHF and DSS remain poorly understood. We therefore investigated host responses as determined by changes in the cellular proteome of primary human endothelial cells upon infection with dengue virus serotype 2 (DEN-2) at a multiplicity of infection (MOI) of 10 for 24 h. Two-dimensional PAGE and quantitative intensity analysis revealed 38 significantly altered protein spots (16 upregulated and 22 downregulated) in DEN-2-infected cells compared to mock controls. These altered proteins were successfully identified by mass spectrometry, including those involved in oxidative stress response, transcription and translation, cytoskeleton assembly, protein degradation, cell growth regulation, apoptosis, cellular metabolism, and antiviral response. The proteomic data were validated by Western blot analyses [upregulated ubiquitin-activating enzyme E1 (UBE1) and downregulated annexin A2] and an immunofluorescence study (upregulated MxA). Interestingly, we found that MxA was colocalized with DEN-2 viral capsid protein, strengthening its role as an antiviral protein. Moreover, we also identified upregulation of a proteasome subunit. Our functional study revealed the significant role of ubiquitination in dengue infection and UBE1 inhibition by its specific inhibitor (UBEI-41) caused a significant reduction in the level of viral protein synthesis and its infectivity. Our findings suggest that various biological processes were triggered in response to dengue infection, particularly antiviral IFN and ubiquitin-proteasome pathways.
Collapse
Affiliation(s)
- Rattiyaporn Kanlaya
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | | | |
Collapse
|
804
|
Sixt SU, Jennissen HP, Winterhalter M, Laub M. Detection of ubiquityl-calmodulin conjugates with a novel high-molecular weight ubiquitylprotein-isopeptidase in rabbit tissues. Eur J Med Res 2010; 15:428-47. [PMID: 21156402 PMCID: PMC3352187 DOI: 10.1186/2047-783x-15-10-428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The selective degradation of many proteins in eukaryotic cells is carried out by the ubiquitin system. In this pathway, proteins are targeted for degradation by covalent ligation to ubiquitin, a highly conserved protein [1]. Ubiquitylated proteins were degraded by the 26S proteasome in an ATP-depended manner. The degradation of ubiquitylated proteins were controlled by isopeptidase cleavage. A well characterised system of ubiquitylation and deubiquitylation is the calmodulin system in vitro [2]. Detection of ubiquityl-calmodulin conjugtates in vivo have not been shown so far. In this article we discuss the detection of ubiquitin calmodulin conjugates in vivo by incubation with a novel high-molecular weight ubiquitylprotein-isopeptidase in rabbit tissues. Proteins with a molecular weight of ubiquityl-calmodulin conjugates could be detected in all organs tested. Incubation with ubiquitylprotein-isopeptidase showed clearly a decrease of ubiquitin calmodulin conjugates in vivo with an origination of unbounded ubiquitin. These results suggest that only few ubiquitin calmodulin conjugates exist in rabbit tissues.
Collapse
Affiliation(s)
- S U Sixt
- Klinik für Anästhesiologie, Universitätsklinikum Düsseldorf, Germany.
| | | | | | | |
Collapse
|
805
|
Altun M, Besche HC, Overkleeft HS, Piccirillo R, Edelmann MJ, Kessler BM, Goldberg AL, Ulfhake B. Muscle wasting in aged, sarcopenic rats is associated with enhanced activity of the ubiquitin proteasome pathway. J Biol Chem 2010; 285:39597-608. [PMID: 20940294 DOI: 10.1074/jbc.m110.129718] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Among the hallmarks of aged organisms are an accumulation of misfolded proteins and a reduction in skeletal muscle mass ("sarcopenia"). We have examined the effects of aging and dietary restriction (which retards many age-related changes) on components of the ubiquitin proteasome system (UPS) in muscle. The hindlimb muscles of aged (30 months old) rats showed a marked loss of muscle mass and contained 2-3-fold higher levels of 26S proteasomes than those of adult (4 months old) controls. 26S proteasomes purified from muscles of aged and adult rats showed a similar capacity to degrade peptides, proteins, and an ubiquitylated substrate, but differed in levels of proteasome-associated proteins (e.g. the ubiquitin ligase E6AP and deubiquitylating enzyme USP14). Also, the activities of many other deubiquitylating enzymes were greatly enhanced in the aged muscles. Nevertheless, their content of polyubiquitylated proteins was higher than in adult animals. The aged muscles contained higher levels of the ubiquitin ligase CHIP, involved in eliminating misfolded proteins, and MuRF1, which ubiquitylates myofibrillar proteins. These muscles differed from ones rapidly atrophying due to disease, fasting, or disuse in that Atrogin-1/MAFbx expression was low and not inducible by glucocorticoids. Thus, the muscles of aged rats showed many adaptations indicating enhanced proteolysis by the UPS, which may enhance their capacity to eliminate misfolded proteins and seems to contribute to the sarcopenia. Accordingly, dietary restriction decreased or prevented the aging-associated increases in proteasomes and other UPS components and reduced muscle wasting.
Collapse
Affiliation(s)
- Mikael Altun
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
806
|
Boivin MA, Battah SI, Dominic EA, Kalantar-Zadeh K, Ferrando A, Tzamaloukas AH, Dwivedi R, Ma TA, Moseley P, Raj DSC. Activation of caspase-3 in the skeletal muscle during haemodialysis. Eur J Clin Invest 2010; 40:903-10. [PMID: 20636378 PMCID: PMC3744828 DOI: 10.1111/j.1365-2362.2010.02347.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Muscle atrophy in end-stage renal disease (ESRD) may be due to the activation of apoptotic and proteolytic pathways. We hypothesized that activation of caspase-3 in the skeletal muscle mediates apoptosis and proteolysis during haemodialysis (HD). MATERIALS AND METHODS Eight ESRD patients were studied before (pre-HD) and during HD and the findings were compared with those from six healthy volunteers. Protein kinetics was determined by primed constant infusion of L-(ring (13)C(6) ) Phenylalanine. RESULTS Caspase-3 activity in the skeletal muscle was higher in ESRD patients pre-HD than in controls (24966·0 ± 4023·9 vs. 15293·3 ± 2120·0 units, P<0·01) and increased further during HD (end-HD) (37666·6 ± 4208·3 units) (P<0·001). Actin fragments (14 kDa) generated by caspase-3 mediated cleavage of actomyosin was higher in the skeletal muscle pre-HD (68%) and during HD (164%) compared with controls. The abundance of ubiquitinized carboxy-terminal actin fragment was also significantly increased during HD. Skeletal muscle biopsies obtained at the end of HD exhibited augmented apoptosis, which was higher than that observed in pre-HD and control samples (P<0·001). IL-6 content in the soluble fraction of the muscle skeletal muscle was increased significantly during HD. Protein kinetic studies showed that catabolism was higher in ESRD patients during HD compared with pre-HD and control subjects. Muscle protein catabolism was positively associated with caspase-3 activity and skeletal muscle IL-6 content. CONCLUSION Muscle atrophy in ESRD may be due to IL-6 induced activation of caspase-3 resulting in apoptosis as well as muscle proteolysis during HD.
Collapse
Affiliation(s)
- Michel A Boivin
- Division of Pulmonary and Critical Care, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
807
|
Kim JA, Roy RR, Kim SJ, Zhong H, Haddad F, Baldwin KM, Edgerton VR. Electromechanical modulation of catabolic and anabolic pathways in chronically inactive, but neurally intact, muscles. Muscle Nerve 2010; 42:410-21. [PMID: 20658566 DOI: 10.1002/mus.21720] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The extent and mechanisms by which neural input regulates skeletal muscle mass remain largely unknown. Adult spinal cord isolated (SI) rats were implanted unilaterally with a microstimulator, whereas the contralateral limb served as SI control (SI-C). A 100-HZ, 1-s stimulus was delivered every 30 s for 5 min, followed by a 5-min rest. This was repeated six times consecutively (SI-Stim1) or with a 9-h interval after the third bout (SI-Stim2) for 30 days (1 min of daily activity). SI-Stim1 and SI-Stim2 paradigms attenuated plantaris atrophy by 20% and 38%, respectively, whereas only SI-Stim2 blunted soleus atrophy (24%) relative to SI-C. Muscle mass changes occurred independent of the IGF-1/PI3K/Akt pathway. No relationships between SI or electromechanical stimulation and expression of several atrophy markers were observed. These data suggest that regulatory mechanisms for maintaining muscle mass previously shown in acute states of atrophy differ substantially from those observed in chronic states.
Collapse
Affiliation(s)
- Jung A Kim
- Department of Physiological Science, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
808
|
Levine S, Biswas C, Dierov J, Barsotti R, Shrager JB, Nguyen T, Sonnad S, Kucharchzuk JC, Kaiser LR, Singhal S, Budak MT. Increased proteolysis, myosin depletion, and atrophic AKT-FOXO signaling in human diaphragm disuse. Am J Respir Crit Care Med 2010; 183:483-90. [PMID: 20833824 DOI: 10.1164/rccm.200910-1487oc] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Patients on mechanical ventilation who exhibit diaphragm inactivity for a prolonged time (case subjects) develop decreases in diaphragm force-generating capacity accompanied by diaphragm myofiber atrophy. OBJECTIVES Our objectives were to test the hypotheses that increased proteolysis by the ubiquitin-proteasome pathway, decreases in myosin heavy chain (MyHC) levels, and atrophic AKT-FOXO signaling play major roles in eliciting these pathological changes associated with diaphragm disuse. METHODS Biopsy specimens were obtained from the costal diaphragms of 18 case subjects before harvest (cases) and compared with intraoperative specimens from the diaphragms of 11 patients undergoing surgery for benign lesions or localized lung cancer (control subjects). Case subjects had diaphragm inactivity and underwent mechanical ventilation for 18 to 72 hours, whereas this state in controls was limited to 2 to 4 hours. MEASUREMENTS AND MAIN RESULTS With respect to proteolysis in cytoplasm fractions, case diaphragms exhibited greater levels of ubiquitinated-protein conjugates, increased activity of the 26S proteasome, and decreased levels of MyHCs and α-actin. With respect to atrophic signaling in nuclear fractions, case diaphragms exhibited decreases in phosphorylated AKT, phosphorylated FOXO1, increased binding to consensus DNA sequence for Atrogin-1 and MuRF-1, and increased supershift of DNA-FOXO1 complexes with specific antibodies against FOXO1, as well as increased Atrogin-1 and MuRF-1 transcripts in whole myofiber lysates. CONCLUSIONS Our findings suggest that increased activity of the ubiquitin-proteasome pathway, marked decreases in MyHCs, and atrophic AKT-FOXO signaling play important roles in eliciting the myofiber atrophy and decreases in diaphragm force generation associated with prolonged human diaphragm disuse.
Collapse
Affiliation(s)
- Sanford Levine
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
809
|
Doyle A, Zhang G, Abdel Fattah EA, Eissa NT, Li YP. Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways. FASEB J 2010; 25:99-110. [PMID: 20826541 DOI: 10.1096/fj.10-164152] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cachectic muscle wasting is a frequent complication of many inflammatory conditions, due primarily to excessive muscle catabolism. However, the pathogenesis and intervention strategies against it remain to be established. Here, we tested the hypothesis that Toll-like receptor 4 (TLR4) is a master regulator of inflammatory muscle catabolism. We demonstrate that TLR4 activation by lipopolysaccharide (LPS) induces C2C12 myotube atrophy via up-regulating autophagosome formation and the expression of ubiquitin ligase atrogin-1/MAFbx and MuRF1. TLR4-mediated activation of p38 MAPK is necessary and sufficient for the up-regulation of atrogin1/MAFbx and autophagosomes, resulting in myotube atrophy. Similarly, LPS up-regulates muscle autophagosome formation and ubiquitin ligase expression in mice. Importantly, autophagy inhibitor 3-methyladenine completely abolishes LPS-induced muscle proteolysis, while proteasome inhibitor lactacystin partially blocks it. Furthermore, TLR4 knockout or p38 MAPK inhibition abolishes LPS-induced muscle proteolysis. Thus, TLR4 mediates LPS-induced muscle catabolism via coordinate activation of the ubiquitin-proteasome and the autophagy-lysosomal pathways.
Collapse
Affiliation(s)
- Alexander Doyle
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
810
|
Wang H, Liu D, Cao P, Lecker S, Hu Z. Atrogin-1 affects muscle protein synthesis and degradation when energy metabolism is impaired by the antidiabetes drug berberine. Diabetes 2010; 59:1879-89. [PMID: 20522589 PMCID: PMC2911075 DOI: 10.2337/db10-0207] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Defects in insulin/IGF-1 signaling stimulate muscle protein loss by suppressing protein synthesis and increasing protein degradation. Since an herbal compound, berberine, lowers blood levels of glucose and lipids, we proposed that it would improve insulin/IGF-1 signaling, blocking muscle protein losses. RESEARCH DESIGN AND METHODS We evaluated whether berberine ameliorates muscle atrophy in db/db mice, a model of type 2 diabetes, by measuring protein synthesis and degradation in muscles of normal and db/db mice treated with or without berberine. We also examined mechanisms for berberine-induced changes in muscle protein metabolism. RESULTS Berberine administration decreased protein synthesis and increased degradation in muscles of normal and db/db mice. The protein catabolic mechanism depended on berberine-stimulated expression of the E3 ubiquitin ligase, atrogin-1. Atrogin-1 not only increased proteolysis but also reduced protein synthesis by mechanisms that were independent of decreased phosphorylation of Akt or forkhead transcription factors. Impaired protein synthesis was dependent on a reduction in eIF3-f, an essential regulator of protein synthesis. Berberine impaired energy metabolism, activating AMP-activated protein kinase and providing an alternative mechanism for the stimulation of atrogin-1 expression. When we increased mitochondrial biogenesis by expressing peroxisome proliferator-activated receptor gamma coactivator-1alpha, berberine-induced changes in muscle protein metabolism were prevented. CONCLUSIONS Berberine impairs muscle metabolism by two novel mechanisms. It impairs mitochonidrial function stimulating the expression of atrogin-1 without affecting phosphorylation of forkhead transcription factors. The increase in atrogin-1 not only stimulated protein degradation but also suppressed protein synthesis, causing muscle atrophy.
Collapse
Affiliation(s)
- Huiling Wang
- Renal Division, Jimin Hospital, Shanghai, People's Republic of China
| | - Dajun Liu
- Renal Division, Shenjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Peirang Cao
- Renal Unit, Harvard Medical School, Boston, Massachusetts
| | - Stewart Lecker
- Renal Unit, Harvard Medical School, Boston, Massachusetts
- Department of Nephrology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Zhaoyong Hu
- Renal Division, Baylor College of Medicine, Houston, Texas
- Corresponding author: Zhaoyong Hu,
| |
Collapse
|
811
|
Lebid' I, Dosenko VI, Skybo HH. Expression of proteasome subunits PSMB5 and PSMB9 mRNA in hippocampal neurons in experimental diabetes mellitus: link with apoptosis and necrosis. ACTA ACUST UNITED AC 2010. [DOI: 10.15407/fz56.04.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
812
|
Effects of different dietary protein sources on expression of genes related to protein metabolism in growing rats. Br J Nutr 2010; 104:1421-8. [DOI: 10.1017/s000711451000231x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Protein metabolism is known to be affected by dietary proteins, but the fundamental mechanisms that underlie the changes in protein metabolism are unclear. The aim of the present study was to test the effects of feeding growing rats with balanced diets containing soya protein isolate, zein and casein as the sole protein source on the expression of genes related to protein metabolism responses in skeletal muscle. The results showed that feeding a zein protein diet to the growing rats induced changes in protein anabolic and catabolic metabolism in their gastrocnemius muscles when compared with those fed either the reference protein casein diet or the soya protein isolate diet. The zein protein diet increased not only the mRNA levels and phosphorylation of mammalian target of rapamycin (mTOR), but also the mRNA expression of muscle atrophy F-box (MAFbx)/atrogin-1 and muscle ring finger 1 (MuRF1), as well as the forkhead box-O (FoxO) transcription factors involved in the induction of the E3 ligases. The amino acid profile of proteins seems to control signalling pathways leading to changes in protein synthesis and proteolysis.
Collapse
|
813
|
Yamamoto D, Maki T, Herningtyas EH, Ikeshita N, Shibahara H, Sugiyama Y, Nakanishi S, Iida K, Iguchi G, Takahashi Y, Kaji H, Chihara K, Okimura Y. Branched-chain amino acids protect against dexamethasone-induced soleus muscle atrophy in rats. Muscle Nerve 2010; 41:819-27. [PMID: 20169591 DOI: 10.1002/mus.21621] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We investigated the utility of branched-chain amino acids (BCAA) in dexamethasone-induced muscle atrophy. Dexamethasone (600 microg/kg, intraperitoneally) and/or BCAA (600 mg/kg, orally) were administered for 5 days in rats, and the effect of BCAA on dexamethasone-induced muscle atrophy was evaluated. Dexamethasone decreased total protein concentration of rat soleus muscles. Concomitant administration of BCAA reversed the decrease. Dexamethasone decreased mean cross-sectional area of soleus muscle fibers, which was reversed by BCAA. Dexamethasone increased atrogin-1 expression, which has been reported to play a pivotal role in muscle atrophy. The increased expression of atrogin-1 mRNA was significantly attenuated by BCAA. Furthermore, dexamethasone-induced conversion from microtubule-associated protein 1 light chain 3 (LC3)-I to LC3-II, which is an indicator of autophagy, was blocked by BCAA. These findings suggest that BCAA decreased protein breakdown to prevent muscle atrophy. BCAA administration appears to be useful for prevention of steroid myopathy.
Collapse
Affiliation(s)
- Daisuke Yamamoto
- Department of Biophysics, Kobe University Graduate School of Health Science, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
814
|
Zanchi NE, Gerlinger-Romero F, Guimarães-Ferreira L, de Siqueira Filho MA, Felitti V, Lira FS, Seelaender M, Lancha AH. HMB supplementation: clinical and athletic performance-related effects and mechanisms of action. Amino Acids 2010; 40:1015-25. [DOI: 10.1007/s00726-010-0678-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/25/2010] [Indexed: 11/28/2022]
|
815
|
Hasselgren PO, Alamdari N, Aversa Z, Gonnella P, Smith IJ, Tizio S. Corticosteroids and muscle wasting: role of transcription factors, nuclear cofactors, and hyperacetylation. Curr Opin Clin Nutr Metab Care 2010; 13:423-8. [PMID: 20473154 PMCID: PMC2911625 DOI: 10.1097/mco.0b013e32833a5107] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss novel insight into mechanisms of glucocorticoid-regulated muscle wasting, in particular the role of transcription factors and nuclear cofactors. In addition, novel strategies that may become useful in the treatment or prevention of glucocorticoid-induced muscle wasting are reviewed. RECENT FINDINGS Studies suggest that glucocorticoid-induced upregulation of the transcription factors Forkhead box O 1 and CCAAT/enhancer-binding protein beta and downregulation of MyoD and myogenin are involved in glucocorticoid-induced muscle wasting. In addition, glucocorticoid-induced hyperacetylation caused by increased expression of the nuclear cofactor p300 and its histone acetyl transferase activity and decreased expression and activity of histone deacetylases plays an important role in glucocorticoid-induced muscle proteolysis and wasting. Other mechanisms may also be involved in glucocorticoid-induced muscle wasting, including insulin resistance and store-operated calcium entry. Novel potential strategies to prevent or treat glucocorticoid-induced muscle wasting include the use of small molecule histone deacetylase activators, dissociated glucocorticoid receptor agonists, and 11beta-hydroxysteroid dehydrogenase type 1 inhibitors. SUMMARY An increased understanding of molecular mechanisms regulating glucocorticoid-induced muscle wasting will help develop new strategies to prevent and treat this debilitating condition.
Collapse
Affiliation(s)
- Per-Olof Hasselgren
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | |
Collapse
|
816
|
Lang CH, Frost RA, Bronson SK, Lynch CJ, Vary TC. Skeletal muscle protein balance in mTOR heterozygous mice in response to inflammation and leucine. Am J Physiol Endocrinol Metab 2010; 298:E1283-94. [PMID: 20388826 PMCID: PMC2886531 DOI: 10.1152/ajpendo.00676.2009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sepsis and lipopolysaccharide (LPS) may decrease skeletal muscle protein synthesis by impairing mTOR (mammalian target of rapamycin) activity. The role of mTOR in regulating muscle protein synthesis was assessed in wild-type (WT) and mTOR heterozygous (+/-) mice under basal conditions and in response to LPS and/or leucine stimulation. No difference in body weight of mTOR(+/-) mice was observed compared with WT mice; whereas whole body lean body mass was reduced. Gastrocnemius weight was decreased in mTOR(+/-) mice, which was attributable in part to a reduced rate of basal protein synthesis. LPS decreased muscle protein synthesis in WT and mTOR(+/-) mice to the same extent. Reduced muscle protein synthesis in mTOR(+/-) mice under basal and LPS-stimulated conditions was associated with lower 4E-BP1 and S6K1 phosphorylation. LPS also decreased PRAS40 phosphorylation and increased phosphorylation of raptor and IRS-1 (Ser(307)) to the same extent in WT and mTOR(+/-) mice. Muscle atrogin-1 and MuRF1 mRNA content was elevated in mTOR(+/-) mice under basal conditions, implying increased ubiquitin-proteasome-mediated proteolysis, but the LPS-induced increase in these atrogenes was comparable between groups. Plasma insulin and IGF-I as well as tissue expression of TNFalpha, IL-6, or NOS2 did not differ between WT and mTOR(+/-) mice. Finally, whereas LPS impaired the ability of leucine to stimulate muscle protein synthesis and 4E-BP1 phosphorylation in WT mice, this inflammatory state rendered mTOR(+/-) mice leucine unresponsive. These data support the idea that the LPS-induced reduction in mTOR activity is relatively more important in regulating skeletal muscle mass in response to nutrient stimulation than under basal conditions.
Collapse
Affiliation(s)
- Charles H Lang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | | | | | | | |
Collapse
|
817
|
Sandri M. Autophagy in health and disease. 3. Involvement of autophagy in muscle atrophy. Am J Physiol Cell Physiol 2010; 298:C1291-7. [DOI: 10.1152/ajpcell.00531.2009] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Loss of muscle mass aggravates a variety of diseases, and understanding the molecular mechanisms that control muscle wasting is critical for developing new therapeutic approaches. Weakness is caused by loss of muscle proteins, and recent studies have underlined a major role for the autophagy-lysosome system in regulating muscle mass. Some key components of the autophagy machinery are transcriptionally upregulated during muscle wasting, and their induction precedes muscle loss. However, it is unclear whether autophagy is detrimental, causing atrophy, or beneficial, promoting survival during catabolic conditions. This review discusses recent findings on signaling pathways regulating autophagy.
Collapse
Affiliation(s)
- Marco Sandri
- Department of Biomedical Sciences, University of Padova,
- Dulbecco Telethon Institute, and
- Venetian Institute of Molecular Medicine, Padua, Italy
| |
Collapse
|
818
|
Abstract
OBJECTIVE Mechanisms impairing wound healing in diabetes are poorly understood. To identify mechanisms, we induced insulin resistance by chronically feeding mice a high-fat diet (HFD). We also examined the regulation of phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) during muscle regeneration because augmented IGF-1 signaling can improve muscle regeneration. RESEARCH DESIGN AND METHODS Muscle regeneration was induced by cardiotoxin injury, and we evaluated satellite cell activation and muscle maturation in HFD-fed mice. We also measured PIP(3) and the enzymes regulating its level, IRS-1-associated phosphatidylinositol 3-kinase (PI3K) and PTEN. Using primary cultures of muscle, we examined how fatty acids affect PTEN expression and how PTEN knockout influences muscle growth. Mice with muscle-specific PTEN knockout were used to examine how the HFD changes muscle regeneration. RESULTS The HFD raised circulating fatty acids and impaired the growth of regenerating myofibers while delaying myofiber maturation and increasing collagen deposition. These changes were independent of impaired proliferation of muscle progenitor or satellite cells but were principally related to increased expression of PTEN, which reduced PIP(3) in muscle. In cultured muscle cells, palmitate directly stimulated PTEN expression and reduced cell growth. Knocking out PTEN restored cell growth. In mice, muscle-specific PTEN knockout improved the defects in muscle repair induced by HFD. CONCLUSIONS Insulin resistance impairs muscle regeneration by preventing myofiber maturation. The mechanism involves fatty acid-stimulated PTEN expression, which lowers muscle PIP(3). If similar pathways occur in diabetic patients, therapeutic strategies directed at improving the repair of damaged muscle could include suppression of PTEN activity.
Collapse
Affiliation(s)
- Zhaoyong Hu
- Nephrology Division, Baylor College of Medicine, Houston, Texas, USA.
| | | | | | | | | | | | | |
Collapse
|
819
|
Romanello V, Guadagnin E, Gomes L, Roder I, Sandri C, Petersen Y, Milan G, Masiero E, Del Piccolo P, Foretz M, Scorrano L, Rudolf R, Sandri M. Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J 2010; 29:1774-85. [PMID: 20400940 DOI: 10.1038/emboj.2010.60] [Citation(s) in RCA: 463] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 03/10/2010] [Indexed: 01/21/2023] Open
Abstract
Mitochondria are crucial organelles in the production of energy and in the control of signalling cascades. A machinery of pro-fusion and fission proteins regulates their morphology and subcellular localization. In muscle this results in an orderly pattern of intermyofibrillar and subsarcolemmal mitochondria. Muscular atrophy is a genetically controlled process involving the activation of the autophagy-lysosome and the ubiquitin-proteasome systems. Whether and how the mitochondria are involved in muscular atrophy is unknown. Here, we show that the mitochondria are removed through autophagy system and that changes in mitochondrial network occur in atrophying muscles. Expression of the fission machinery is per se sufficient to cause muscle wasting in adult animals, by triggering organelle dysfunction and AMPK activation. Conversely, inhibition of the mitochondrial fission inhibits muscle loss during fasting and after FoxO3 overexpression. Mitochondrial-dependent muscle atrophy requires AMPK activation as inhibition of AMPK restores muscle size in myofibres with altered mitochondria. Thus, disruption of the mitochondrial network is an essential amplificatory loop of the muscular atrophy programme.
Collapse
Affiliation(s)
- Vanina Romanello
- Dulbecco Telethon Institute at Venetian Institute of Molecular Medicine, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
820
|
Zanchi NE, Filho MADS, Felitti V, Nicastro H, Lorenzeti FM, Lancha AH. Glucocorticoids: Extensive physiological actions modulated through multiple mechanisms of gene regulation. J Cell Physiol 2010; 224:311-5. [DOI: 10.1002/jcp.22141] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
821
|
Besche HC, Haas W, Gygi SP, Goldberg AL. Isolation of mammalian 26S proteasomes and p97/VCP complexes using the ubiquitin-like domain from HHR23B reveals novel proteasome-associated proteins. Biochemistry 2010; 48:2538-49. [PMID: 19182904 DOI: 10.1021/bi802198q] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent studies, mainly in yeast, have identified various cofactors that associate with the 26S proteasome and appear to influence its function. To identify these proteins in different cells and physiological states, we developed a method to gently and rapidly isolate 26S proteasomes and associated proteins without the need for genetic modifications of the proteasome. This method is based on the affinity of this complex for the ubiquitin-like (UBL) domain of hHR23B and elution with a competing polypeptide containing a ubiquitin-interacting motif. Associated with 26S proteasomes from rat muscle were a variety of known proteasome-interacting proteins, activators, and ubiquitin conjugates. In addition, we identified over 40 proteins not previously known to associate with the 26S proteasome, some of which were tightly associated with the proteasome in a substoichiometric fashion, e.g., the deubiquitinating enzymes USP5/isopeptidase T and USP7/HAUSP and the ubiquitin ligases ARF-BP1/HUWE1 and p600/UBR4. By altering buffer conditions, we also purified by this approach complexes of the ATPase p97/VCP associated with its adaptor proteins Ufd1-Npl4, p47, SAKS1, and FAF1, all of which contain ubiquitin-binding motifs. These complexes were isolated with ubiquitin conjugates bound and were not previously known to bind to the UBL domain of hHR23B. These various UBL-interacting proteins, dubbed the UBL interactome, represent a network of proteins that function together in ubiquitin-dependent proteolysis, and the UBL method offers many advantages for studies of the diversity, functions, and regulation of 26S proteasomes and p97 complexes under different conditions.
Collapse
Affiliation(s)
- Henrike C Besche
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
822
|
Plant PJ, Brooks D, Faughnan M, Bayley T, Bain J, Singer L, Correa J, Pearce D, Binnie M, Batt J. Cellular Markers of Muscle Atrophy in Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2010; 42:461-71. [DOI: 10.1165/rcmb.2008-0382oc] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
823
|
Cheung WW, Paik KH, Mak RH. Inflammation and cachexia in chronic kidney disease. Pediatr Nephrol 2010; 25:711-24. [PMID: 20111974 DOI: 10.1007/s00467-009-1427-z] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 11/19/2009] [Accepted: 12/09/2009] [Indexed: 11/28/2022]
Abstract
Chronic inflammation is associated with cachexia and increased mortality risk in patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD). Inflammation suppresses appetite and causes the loss of protein stores. In CKD patients, increased serum levels of pro-inflammatory cytokines may be caused by reduced renal function, volume overload, oxidative or carbonyl stress, decreased levels of antioxidants, increased susceptibility to infection in uremia, and the presence of comorbid conditions. Cachexia is brought about by the synergistic combination of a dramatic decrease in appetite and an increase in the catabolism of fat and lean body mass. Pro-inflammatory cytokines act on the central nervous system to alter appetite and energy metabolism and to provide a signal-through the nuclear factor-kappaB and ATP-ubiquitin-dependent proteolytic pathways-that causes muscle wasting. Further research into the molecular pathways leading to inflammation and cachexia may lead to novel therapeutic therapies for this devastating and potentially fatal complication of chronic disease.
Collapse
Affiliation(s)
- Wai W Cheung
- Division of Pediatrics Nephrology, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093-0634, USA
| | | | | |
Collapse
|
824
|
Garibotto G, Sofia A, Saffioti S, Bonanni A, Mannucci I, Verzola D. Amino acid and protein metabolism in the human kidney and in patients with chronic kidney disease. Clin Nutr 2010; 29:424-33. [PMID: 20207454 DOI: 10.1016/j.clnu.2010.02.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 02/06/2010] [Accepted: 02/09/2010] [Indexed: 11/26/2022]
Abstract
The progressive loss of kidney function in patients with chronic kidney disease (CKD) is associated with a number of complications, including cardiovascular diseases, anemia, hyperparathyroidism, inflammation, metabolic acidosis, malnutrition and protein-energy wasting. The excess cardiovascular risk related to CKD is due in part to a higher prevalence of traditional atherosclerotic risk factors, in part to non-traditional, emerging risk factors peculiar to CKD. While even minor renal dysfunction is an independent predictor of adverse cardiovascular prognosis, nutritional changes are more often observed in an advanced setting. In addition, factors related to renal-replacement treatment may be implicated in the pathogenesis of heart disease and protein-energy wasting in dialysis-treated patients. Progressive alterations in kidney metabolism may cause progressive effects on cardiovascular status and nutrition. Altered kidney amino acid/protein metabolism and or excretion may be a key factor in the homeostasis of several vasoactive compounds and hormones in patients with more advanced disease. In this discussion recent research regarding the kidney handling of amino acids and protein turnover and their potential link with cardiovascular disease, progressive kidney dysfunction and nutritional status are reviewed.
Collapse
|
825
|
Noori N, Kopple JD. Effect of Diabetes Mellitus on Protein-Energy Wasting and Protein Wasting in End-Stage Renal Disease. Semin Dial 2010; 23:178-84. [DOI: 10.1111/j.1525-139x.2010.00705.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
826
|
Abstract
Sepsis is a major cause of morbidity and mortality in critically ill patients, and despite advances in management, mortality remains high. In survivors, sepsis increases the risk for the development of persistent acquired weakness syndromes affecting both the respiratory muscles and the limb muscles. This acquired weakness results in prolonged duration of mechanical ventilation, difficulty weaning, functional impairment, exercise limitation, and poor health-related quality of life. Abundant evidence indicates that sepsis induces a myopathy characterized by reductions in muscle force-generating capacity, atrophy (loss of muscle mass), and altered bioenergetics. Sepsis elicits derangements at multiple subcellular sites involved in excitation contraction coupling, such as decreasing membrane excitability, injuring sarcolemmal membranes, altering calcium homeostasis due to effects on the sarcoplasmic reticulum, and disrupting contractile protein interactions. Muscle wasting occurs later and results from increased proteolytic degradation as well as decreased protein synthesis. In addition, sepsis produces marked abnormalities in muscle mitochondrial functional capacity and when severe, these alterations correlate with increased death. The mechanisms leading to sepsis-induced changes in skeletal muscle are linked to excessive localized elaboration of proinflammatory cytokines, marked increases in free-radical generation, and activation of proteolytic pathways that are upstream of the proteasome including caspase and calpain. Emerging data suggest that targeted inhibition of these pathways may alter the evolution and progression of sepsis-induced myopathy and potentially reduce the occurrence of sepsis-mediated acquired weakness syndromes.
Collapse
|
827
|
Sandri M. Autophagy in skeletal muscle. FEBS Lett 2010; 584:1411-6. [PMID: 20132819 DOI: 10.1016/j.febslet.2010.01.056] [Citation(s) in RCA: 343] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 01/27/2010] [Accepted: 01/28/2010] [Indexed: 01/23/2023]
|
828
|
Pires-Oliveira M, Maragno ALGC, Parreiras-e-Silva LT, Chiavegatti T, Gomes MD, Godinho RO. Testosterone represses ubiquitin ligases atrogin-1 and Murf-1 expression in an androgen-sensitive rat skeletal muscle in vivo. J Appl Physiol (1985) 2010; 108:266-73. [DOI: 10.1152/japplphysiol.00490.2009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Skeletal muscle atrophy induced by denervation and metabolic diseases has been associated with increased ubiquitin ligase expression. In the present study, we evaluate the influence of androgens on muscle ubiquitin ligases atrogin-1/MAFbx/FBXO32 and Murf-1/Trim63 expression and its correlation with maintenance of muscle mass by using the testosterone-dependent fast-twitch levator ani muscle (LA) from normal or castrated adult male Wistar rats. Gene expression was determined by qRT-PCR and/or immunoblotting. Castration induced progressive loss of LA mass (30% of control, 90 days) and an exponential decrease of LA cytoplasm-to-nucleus ratio (nuclear domain; 22% of control after 60 days). Testosterone deprivation induced a 31-fold increase in LA atrogin-1 mRNA and an 18-fold increase in Murf-1 mRNA detected after 2 and 7 days of castration, respectively. Acute (24 h) testosterone administration fully repressed atrogin-1 and Murf-1 mRNA expression to control levels. Atrogin-1 protein was also increased by castration up to 170% after 30 days. Testosterone administration for 7 days restored atrogin-1 protein to control levels. In addition to the well known stimulus of protein synthesis, our results show that testosterone maintains muscle mass by repressing ubiquitin ligases, indicating that inhibition of ubiquitin-proteasome catabolic system is critical for trophic action of androgens in skeletal muscle. Besides, since neither castration nor androgen treatment had any effect on weight or ubiquitin ligases mRNA levels of extensor digitorum longus muscle, a fast-twitch muscle with low androgen sensitivity, our study shows that perineal muscle LA is a suitable in vivo model to evaluate regulation of muscle proteolysis, closely resembling human muscle responsiveness to androgens.
Collapse
Affiliation(s)
| | - Ana Leticia G. C. Maragno
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lucas T. Parreiras-e-Silva
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Tiago Chiavegatti
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo; and
| | - Marcelo D. Gomes
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Rosely O. Godinho
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo; and
| |
Collapse
|
829
|
Friedman AN, Fadem SZ. Reassessment of albumin as a nutritional marker in kidney disease. J Am Soc Nephrol 2010; 21:223-30. [PMID: 20075063 DOI: 10.1681/asn.2009020213] [Citation(s) in RCA: 242] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The decision by nephrologists, renal dietitians, federal agencies, health care payers, large dialysis organizations, and the research community to embrace serum albumin as an important index of nutrition and clinical performance is based on numerous misconceptions. Patients with analbuminemia are not malnourished and individuals with simple malnutrition are rarely hypoalbuminemic. With the possible exception of kwashiorkor, a rare nutritional state, serum albumin is an unreliable marker of nutritional status. Furthermore, nutritional supplementation has not been clearly shown to raise levels of serum albumin. The use of serum albumin as a quality care index is also problematic. It has encouraged a reflexive reliance on expensive and unproven interventions such as dietary supplements and may lead to adverse selection of healthier patients by health care providers. The authors offer a rationale for considering albumin as a marker of illness rather than nutrition. Viewed in this manner, hypoalbuminemia may offer an opportunity to improve patient well-being by identifying and treating the underlying disorder.
Collapse
|
830
|
Polge C, Jaquinod M, Holzer F, Bourguignon J, Walling L, Brouquisse R. Evidence for the Existence in Arabidopsis thaliana of the Proteasome Proteolytic Pathway: ACTIVATION IN RESPONSE TO CADMIUM. J Biol Chem 2009; 284:35412-24. [PMID: 19822524 PMCID: PMC2790970 DOI: 10.1074/jbc.m109.035394] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 10/09/2009] [Indexed: 11/06/2022] Open
Abstract
Heavy metals are known to generate reactive oxygen species that lead to the oxidation and fragmentation of proteins, which become toxic when accumulated in the cell. In this study, we investigated the role of the proteasome during cadmium stress in the leaves of Arabidopsis thaliana plants. Using biochemical and proteomics approaches, we present the first evidence of an active proteasome pathway in plants. We identified and characterized the peptidases acting sequentially downstream from the proteasome in animal cells as follows: tripeptidyl-peptidase II, thimet oligopeptidase, and leucine aminopeptidase. We investigated the proteasome proteolytic pathway response in the leaves of 6-week-old A. thaliana plants grown hydroponically for 24, 48, and 144 h in the presence or absence of 50 mum cadmium. The gene expression and proteolytic activity of the proteasome and the different proteases of the pathway were found to be up-regulated in response to cadmium. In an in vitro assay, oxidized bovine serum albumin and lysozyme were more readily degraded in the presence of 20 S proteasome and tripeptidyl-peptidase II than their nonoxidized form, suggesting that oxidized proteins are preferentially degraded by the Arabidopsis 20 S proteasome pathway. These results show that, in response to cadmium, the 20 S proteasome proteolytic pathway is up-regulated at both RNA and activity levels in Arabidopsis leaves and may play a role in degrading oxidized proteins generated by the stress.
Collapse
Affiliation(s)
- Cécile Polge
- From the Laboratoires de Physiologie Cellulaire Végétale, CEA, IRTSV, UMR5168 CNRS/CEA/INRA, Université Joseph Fourier and
| | - Michel Jaquinod
- Etude de la Dynamique des Protéomes, F-38054 Grenoble, France and
| | - Frances Holzer
- the Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521-0124
| | - Jacques Bourguignon
- From the Laboratoires de Physiologie Cellulaire Végétale, CEA, IRTSV, UMR5168 CNRS/CEA/INRA, Université Joseph Fourier and
| | - Linda Walling
- the Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521-0124
| | - Renaud Brouquisse
- From the Laboratoires de Physiologie Cellulaire Végétale, CEA, IRTSV, UMR5168 CNRS/CEA/INRA, Université Joseph Fourier and
| |
Collapse
|
831
|
Tong JF, Yan X, Zhu MJ, Du M. AMP-activated protein kinase enhances the expression of muscle-specific ubiquitin ligases despite its activation of IGF-1/Akt signaling in C2C12 myotubes. J Cell Biochem 2009; 108:458-68. [PMID: 19639604 DOI: 10.1002/jcb.22272] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two muscle-specific ubiquitin ligases (UL), muscle atrophy F box (MAFbx) and muscle RING finger 1 (MuRF1), are crucial for myofibrillar protein breakdown. The insulin like growth factor-1 (IGF-1) pathway inhibits muscle UL expression through Akt-mediated inhibition of FoxO transcription factors, while AMP-activated protein kinase (AMPK) promotes UL expression. The underlying cellular mechanism, however, remains obscure. In this study, the effect of AMPK and its interaction with IGF-1 on ubiquitin ligases expression was investigated. C2C12 myotubes were treated with 0, 0.1, 0.3, and 1.0 mM 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) in the presence or absence of 50 ng/ml IGF-1. IGF-1 activated Akt, which enhanced phosphorlytion of FoxO3a at Thr 318/321 and reduced the expression of UL. Intriguingly, though activation of AMPK by 0.3 and 1.0 mM AICAR synergized IGF-1-induced Akt activation, the expression of UL was not attenuated, but strengthened by AMPK activation. AICAR treatment decreased FoxO3a phosphorylation at 318/321 in the cytoplasm and induced FoxO3 nuclear relocation. mTOR inhibition increased basal MAFbx expression and reversed the inhibitory effect of IGF-1 on UL expression. In conclusion, our data show that AMPK activation by AICAR stimulates UL expression despite the activation of Akt signaling, which may be due to the possible antagonistic effect of FoxO phosphorylation by AMPK on phosphorylation by Akt. In addition, AMPK inhibition of mTOR may provide an additional explanation for the enhancement of UL expression by AMPK.
Collapse
Affiliation(s)
- Jun F Tong
- Department of Animal Science and Interdepartmental Molecular and Cellular Life Sciences Program, University of Wyoming, Laramie, Wyoming 82071, USA
| | | | | | | |
Collapse
|
832
|
Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, Sandri M. Autophagy is required to maintain muscle mass. Cell Metab 2009; 10:507-15. [PMID: 19945408 DOI: 10.1016/j.cmet.2009.10.008] [Citation(s) in RCA: 950] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 08/09/2009] [Accepted: 10/06/2009] [Indexed: 01/17/2023]
Abstract
The ubiquitin-proteasome and autophagy-lysosome pathways are the two major routes for protein and organelle clearance. In skeletal muscle, both systems are under FoxO regulation and their excessive activation induces severe muscle loss. Although altered autophagy has been observed in various myopathies, the specific role of autophagy in skeletal muscle has not been determined by loss-of-function approaches. Here, we report that muscle-specific deletion of a crucial autophagy gene, Atg7, resulted in profound muscle atrophy and age-dependent decrease in force. Atg7 null muscles showed accumulation of abnormal mitochondria, sarcoplasmic reticulum distension, disorganization of sarcomere, and formation of aberrant concentric membranous structures. Autophagy inhibition exacerbated muscle loss during denervation and fasting. Thus, autophagy flux is important to preserve muscle mass and to maintain myofiber integrity. Our results suggest that inhibition/alteration of autophagy can contribute to myofiber degeneration and weakness in muscle disorders characterized by accumulation of abnormal mitochondria and inclusions.
Collapse
Affiliation(s)
- Eva Masiero
- Dulbecco Telethon Institute, 35129 Padova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
833
|
Gonçalves DAP, Lira EC, Baviera AM, Cao P, Zanon NM, Arany Z, Bedard N, Tanksale P, Wing SS, Lecker SH, Kettelhut IC, Navegantes LCC. Mechanisms involved in 3',5'-cyclic adenosine monophosphate-mediated inhibition of the ubiquitin-proteasome system in skeletal muscle. Endocrinology 2009; 150:5395-404. [PMID: 19837877 DOI: 10.1210/en.2009-0428] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although it is well known that catecholamines inhibit skeletal muscle protein degradation, the molecular underlying mechanism remains unclear. This study was undertaken to investigate the role of beta(2)-adrenoceptors (AR) and cAMP in regulating the ubiquitin-proteasome system (UPS) in skeletal muscle. We report that increased levels of cAMP in isolated muscles, promoted by the cAMP phosphodiesterase inhibitor isobutylmethylxanthine was accompanied by decreased activity of the UPS, levels of ubiquitin-protein conjugates, and expression of atrogin-1, a key ubiquitin-protein ligase involved in muscle atrophy. In cultured myotubes, atrogin-1 induction after dexamethasone treatment was completely prevented by isobutylmethylxanthine. Furthermore, administration of clenbuterol, a selective beta(2)-agonist, to mice increased muscle cAMP levels and suppressed the fasting-induced expression of atrogin-1 and MuRF-1, atrogin-1 mRNA being much more responsive to clenbuterol. Moreover, clenbuterol increased the phosphorylation of muscle Akt and Foxo3a in fasted rats. Similar responses were observed in muscles exposed to dibutyryl-cAMP. The stimulatory effect of clenbuterol on cAMP and Akt was abolished in muscles from beta(2)-AR knockout mice. The suppressive effect of beta(2)-agonist on atrogin-1 was not mediated by PGC-1alpha (peroxisome proliferator-activated receptor-gamma coactivator 1alpha known to be induced by beta(2)-agonists and previously shown to inhibit atrogin-1 expression), because food-deprived PGC-1alpha knockout mice were still sensitive to clenbuterol. These findings suggest that the cAMP increase induced by stimulation of beta(2)-AR in skeletal muscles from fasted mice is possibly the mechanism by which catecholamines suppress atrogin-1 and the UPS, this effect being mediated via phosphorylation of Akt and thus inactivation of Foxo3.
Collapse
MESH Headings
- 1-Methyl-3-isobutylxanthine/pharmacology
- Adrenergic beta-2 Receptor Agonists
- Animals
- Blotting, Western
- Cell Line
- Clenbuterol/pharmacology
- Cyclic AMP/metabolism
- Dexamethasone/pharmacology
- Forkhead Box Protein O3
- Forkhead Transcription Factors/metabolism
- In Vitro Techniques
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
- Phosphodiesterase Inhibitors/pharmacology
- Phosphorylation/drug effects
- Proteasome Endopeptidase Complex/genetics
- Proteasome Endopeptidase Complex/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Rats
- Rats, Wistar
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- SKP Cullin F-Box Protein Ligases/genetics
- SKP Cullin F-Box Protein Ligases/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors
- Tripartite Motif Proteins
- Ubiquitin/genetics
- Ubiquitin/metabolism
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- Dawit A P Gonçalves
- Departments of Physiology and Biochemistry & Immunology, School of Medicine, University of São Paulo, 14049-900 Ribeirão Preto, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
834
|
Backman JT, Honkalammi J, Neuvonen M, Kurkinen KJ, Tornio A, Niemi M, Neuvonen PJ. CYP2C8 activity recovers within 96 hours after gemfibrozil dosing: estimation of CYP2C8 half-life using repaglinide as an in vivo probe. Drug Metab Dispos 2009; 37:2359-66. [PMID: 19773535 DOI: 10.1124/dmd.109.029728] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Gemfibrozil 1-O-beta-glucuronide is a mechanism-based inhibitor of cytochrome P450 2C8. We studied the recovery of CYP2C8 activity after discontinuation of gemfibrozil treatment using repaglinide as a probe drug, to estimate the in vivo turnover half-life of CYP2C8. In a randomized five-phase crossover study, nine healthy volunteers ingested 0.25 mg of repaglinide alone or after different time intervals after a 3-day treatment with 600 mg of gemfibrozil twice daily. The area under the plasma concentration-time curve (AUC) from time 0 to infinity of repaglinide was 7.6-, 2.9-, 1.4- and 1.0-fold compared with the control phase when it was administered 1, 24, 48, or 96 h after the last gemfibrozil dose, respectively (P < 0.001 versus control for 1, 24, and 48 h after gemfibrozil). Thus, a strong CYP2C8 inhibitory effect persisted even after gemfibrozil and gemfibrozil 1-O-beta-glucuronide concentrations had decreased to less than 1% of their maximum (24-h dosing interval). In addition, the metabolite to repaglinide AUC ratios indicated that significant (P < 0.05) inhibition of repaglinide metabolism continued up to 48 h after gemfibrozil administration. Based on the recovery of repaglinide oral clearance, the in vivo turnover half-life of CYP2C8 was estimated to average 22 +/- 6 h (mean +/- S.D.). In summary, CYP2C8 activity is recovered gradually during days 1 to 4 after gemfibrozil discontinuation, which should be considered when CYP2C8 substrate dosing is planned. The estimated CYP2C8 half-life will be useful for in vitro-in vivo extrapolations of drug-drug interactions involving induction or mechanism-based inhibition of CYP2C8.
Collapse
Affiliation(s)
- Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Central Hospital, Helsinki,
| | | | | | | | | | | | | |
Collapse
|
835
|
Soeters MR, Lammers NM, Dubbelhuis PF, Ackermans M, Jonkers-Schuitema CF, Fliers E, Sauerwein HP, Aerts JM, Serlie MJ. Intermittent fasting does not affect whole-body glucose, lipid, or protein metabolism. Am J Clin Nutr 2009; 90:1244-51. [PMID: 19776143 DOI: 10.3945/ajcn.2008.27327] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Intermittent fasting (IF) was shown to increase whole-body insulin sensitivity, but it is uncertain whether IF selectively influences intermediary metabolism. Such selectivity might be advantageous when adapting to periods of food abundance and food shortage. OBJECTIVE The objective was to assess effects of IF on intermediary metabolism and energy expenditure. DESIGN Glucose, glycerol, and valine fluxes were measured after 2 wk of IF and a standard diet (SD) in 8 lean healthy volunteers in a crossover design, in the basal state and during a 2-step hyperinsulinemic euglycemic clamp, with assessment of energy expenditure and phosphorylation of muscle protein kinase B (AKT), glycogen synthase kinase (GSK), and mammalian target of rapamycine (mTOR). We hypothesized that IF selectively increases peripheral glucose uptake and lowers proteolysis, thereby protecting protein stores. RESULTS No differences in body weight were observed between the IF and SD groups. Peripheral glucose uptake and hepatic insulin sensitivity during the clamp did not significantly differ between the IF and SD groups. Likewise, lipolysis and proteolysis were not different between the IF and SD groups. IF decreased resting energy expenditure. IF had no effect on the phosphorylation of AKT but significantly increased the phosphorylation of glycogen synthase kinase. Phosphorylation of mTOR was significantly lower after IF than after the SD. CONCLUSIONS IF does not affect whole-body glucose, lipid, or protein metabolism in healthy lean men despite changes in muscle phosphorylation of GSK and mTOR. The decrease in resting energy expenditure after IF indicates the possibility of an increase in weight during IF when caloric intake is not adjusted. This study was registered at www.trialregister.nl as NTR1841.
Collapse
Affiliation(s)
- Maarten R Soeters
- Department of Endocrinology and Metabolism, University of Amsterdam, Amsterdam, Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
836
|
Affiliation(s)
- Luigi Ferrucci
- Longitudinal Studies Section, Clinical Research Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | | |
Collapse
|
837
|
Abstract
Muscle wasting is a prominent feature of end-stage renal disease and is associated with muscle weakness and poor physical functioning. Potential reasons for muscle wasting include advancing age, sedentary behavior, inflammation, poor nutritional intake, androgen deficiency, oxidative stress, metabolic acidosis, and insulin resistance. Each of these conditions can be associated with decreased protein synthesis, increased protein degradation, or both. The primary muscle protein synthesis pathway is the insulin insulin-like growth factor-1/phosphatidyl inositol-3 kinase/Akt pathway, which results in the phosphorylation of the mammalian target of rapamycin and subsequent increased protein synthesis. The major protein degradation pathway is the ubiquitin-proteasome system. This review discusses the ways in which end-stage renal disease tips the balance of protein turnover towards catabolism and the mechanisms by which various interventions may work to mitigate wasting or even cause anabolism.
Collapse
|
838
|
da Costa JAC, Alp Ikizler T. Inflammation and Insulin Resistance as Novel Mechanisms of Wasting in Chronic Dialysis Patients. Semin Dial 2009; 22:652-7. [DOI: 10.1111/j.1525-139x.2009.00664.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
839
|
Abstract
Ca2+-ATPases (pumps) are key actors in the regulation of Ca2+ in eukaryotic cells and are thus essential to the correct functioning of the cell machinery. They have high affinity for Ca2+ and can efficiently regulate it down to very low concentration levels. Two of the pumps have been known for decades (the SERCA and PMCA pumps); one (the SPCA pump) has only become known recently. Each pump is the product of a multigene family, the number of isoforms being further increased by alternative splicing of the primary transcripts. The three pumps share the basic features of the catalytic mechanism but differ in a number of properties related to tissue distribution, regulation, and role in the cellular homeostasis of Ca2+. The molecular understanding of the function of the pumps has received great impetus from the solution of the three-dimensional structure of one of them, the SERCA pump. These spectacular advances in the structure and molecular mechanism of the pumps have been accompanied by the emergence and rapid expansion of the topic of pump malfunction, which has paralleled the rapid expansion of knowledge in the topic of Ca2+-signaling dysfunction. Most of the pump defects described so far are genetic: when they are very severe, they produce gross and global disturbances of Ca2+ homeostasis that are incompatible with cell life. However, pump defects may also be of a type that produce subtler, often tissue-specific disturbances that affect individual components of the Ca2+-controlling and/or processing machinery. They do not bring cells to immediate death but seriously compromise their normal functioning.
Collapse
|
840
|
Saini A, Faulkner S, Al-Shanti N, Stewart C. Powerful signals for weak muscles. Ageing Res Rev 2009; 8:251-67. [PMID: 19716529 DOI: 10.1016/j.arr.2009.02.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 02/10/2009] [Indexed: 12/19/2022]
Abstract
The aim of the present review is to summarise, evaluate and critique the different mechanisms involved in anabolic growth of skeletal muscle and the catabolic processes involved in cancer cachexia and sarcopenia of ageing. This is highly relevant, since they represent targets for future promising clinical investigations. Sarcopenia is an inevitable process associated with a gradual reduction in muscle mass and strength, associated with a reduction in motor unit number and atrophy of muscle fibres, especially the fast type IIa fibres. The loss of muscle mass with ageing is clinically important because it leads to diminished functional ability and associated complications. Cachexia is widely recognised as severe and rapid wasting accompanying disease states such as cancer or immunodeficiency disease. One of the main characteristics of cancer cachexia is asthenia or lack of strength, which is directly related to the muscle loss. Indeed, apart from the speed of loss, muscle wasting during cancer and ageing share many common metabolic pathways and mediators. In healthy young individuals, muscles maintain their mass and function because of a balance between protein synthesis and protein degradation associated with rates of anabolic and catabolic processes, respectively. Muscles grow (hypertrophy) when protein synthesis exceeds protein degradation. Conversely, muscles shrink (atrophy) when protein degradation dominates. These processes are not occurring independently of each other, but are finely coordinated by a web of intricate signalling networks. Such signalling networks are in charge of executing environmental and cellular cues that ultimately determine whether muscle proteins are synthesised or degraded. Increasing our understanding for the pathways involved in hypertrophy and atrophy and particularly the interaction of these pathways is essential in designing therapeutic strategies for both prevention and treatment of muscle wasting conditions with age and with disease.
Collapse
Affiliation(s)
- Amarjit Saini
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Manchester, United Kingdom.
| | | | | | | |
Collapse
|
841
|
Hu Z, Wang H, Lee IH, Du J, Mitch WE. Endogenous glucocorticoids and impaired insulin signaling are both required to stimulate muscle wasting under pathophysiological conditions in mice. J Clin Invest 2009; 119:3059-69. [PMID: 19759515 DOI: 10.1172/jci38770] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 07/22/2009] [Indexed: 11/17/2022] Open
Abstract
Muscle wasting is associated with a number of pathophysiologic conditions, including metabolic acidosis, diabetes, sepsis, and high angiotensin II levels. Under these conditions, activation of muscle protein degradation requires endogenous glucocorticoids. As the mechanism(s) underlying this dependence on glucocorticoids have not been identified, we analyzed the effects of glucocorticoids on muscle wasting in a mouse model of acute diabetes. Adrenalectomized, acutely diabetic mice given a physiologic dose of glucocorticoids exhibited decreased IRS-1-associated PI3K activity in muscle and progressive muscle atrophy. These responses were related to increased association of PI3K with the glucocorticoid receptor (GR). In mice with muscle-specific GR deletion (referred to as MGRKO mice), acute diabetes minimally suppressed IRS-1-associated PI3K activity in muscle and did not cause muscle atrophy. However, when a physiologic dose of glucocorticoids was given to mice with muscle-specific IR deletion, muscle protein degradation was accelerated. Fluorescence resonance energy transfer and an in vitro competition assay revealed that activated GRs competed for PI3K, reducing its association with IRS-1. Reexpression of WT GRs or those with a mutation in the nuclear localization signal in the muscle of MGRKO mice indicated that competition for PI3K was a prominent mechanism underlying reduced IRS-1-associated PI3K activity. This nongenomic influence of the GR contributes to activation of muscle protein degradation. We therefore conclude that stimulation of muscle proteolysis requires 2 events, increased glucocorticoid levels and impaired insulin signaling.
Collapse
Affiliation(s)
- Zhaoyong Hu
- Nephrology Division, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
842
|
Wu Y, Zhang L, Jin H, Zhou J, Xie Z. The role of calpain-calpastatin system in the development of stress urinary incontinence. Int Urogynecol J 2009; 21:63-8. [PMID: 19756344 DOI: 10.1007/s00192-009-0988-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 08/19/2009] [Indexed: 11/26/2022]
Abstract
INTRODUCTION AND HYPOTHESIS The objective of this study is to investigate the expression of calpain-1, calpain-2, and calpastatin in the human periurethral vaginal tissues and to show the potential link between calpain system and stress urinary incontinence (SUI). METHODS The periurethral vaginal tissues of 39 women with SUI and 31 women without SUI were collected to detect the expressions of calpains and calpastatin by using semi-quantitative competitive reverse transcription-polymerase chain reaction and Western blotting. RESULTS There were no significant differences on the expressions of calpain-1 at the levels of messenger RNA (mRNA) and protein in both groups (P > 0.05), but the patients with SUI had significantly higher levels of calpain-2 mRNA and protein than the control (P < 0.05); and the mRNA expressions of calpastatin in women with SUI were significantly higher than the control (P < 0.05), while the protein expressions were significantly lower when compared to the control (P < 0.01). CONCLUSIONS Overexpression of calpain-2 and low expression of calpastatin may involve in the pathological development of SUI.
Collapse
Affiliation(s)
- Yuzhong Wu
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, 2 Xueshi Road, Hangzhou, 310006, China
| | | | | | | | | |
Collapse
|
843
|
Xu J, Wang S, Wu Y, Song P, Zou MH. Tyrosine nitration of PA700 activates the 26S proteasome to induce endothelial dysfunction in mice with angiotensin II-induced hypertension. Hypertension 2009; 54:625-32. [PMID: 19597039 PMCID: PMC2910588 DOI: 10.1161/hypertensionaha.109.133736] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ubiquitin-proteasome system has been implicated in oxidative stress-induced endothelial dysfunction in cardiovascular diseases. However, the mechanism by which oxidative stress alters the ubiquitin-proteasome system is poorly defined. The present study was conducted to determine whether oxidative modifications of PA700, a 26S proteasome regulatory subunit, contributes to angiotensin II (Ang II)-induced endothelial dysfunction. Exposure of human umbilical vein endothelial cells to low concentrations of Ang II, but not vehicle, for 6 hours significantly decreased the levels of tetrahydro-l-biopterin (BH4), an essential cofactor of endothelial NO synthase, which was accompanied by a decrease in GTP cyclohydrolase I, the rate-limiting enzyme for de novo BH4 synthesis. In addition, Ang II increased both tyrosine nitration of PA700 and the 26S proteasome activity, which were paralleled by increased coimmunoprecipitation of PA700 and the 20S proteasome. Genetic inhibition of NAD(P)H oxidase or administration of uric acid (a peroxynitrite scavenger) or N(G)-nitro-l-arginine methyl ester (nonselective NO synthase inhibitor) significantly attenuated Ang II-induced PA700 nitration, 26S proteasome activation, and reduction of GTP cyclohydrolase I and BH4. Finally, Ang II infusion in mice decreased the levels of both BH4 and GTP cyclohydrolase I and impaired endothelial-dependent relaxation in isolated aortas, and all of these effects were prevented by the administration of MG132, a potent inhibitor for 26S proteasome. We conclude that Ang II increases tyrosine nitration of PA700 resulting in accelerated GTP cyclohydrolase I degradation, BH4 deficiency, and consequent endothelial dysfunction in hypertension.
Collapse
Affiliation(s)
- Jian Xu
- Division of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA.
| | | | | | | | | |
Collapse
|
844
|
Franch HA, Mitch WE. Navigating Between the Scylla and Charybdis of Prescribing Dietary Protein for Chronic Kidney Diseases. Annu Rev Nutr 2009; 29:341-64. [DOI: 10.1146/annurev-nutr-080508-141051] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Harold A. Franch
- Research Service, Atlanta Veterans Affairs Medical Center, Decatur, Georgia 30033, and Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322;
| | - William E. Mitch
- Division of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
845
|
Exercise ameliorates chronic kidney disease-induced defects in muscle protein metabolism and progenitor cell function. Kidney Int 2009; 76:751-9. [PMID: 19641484 DOI: 10.1038/ki.2009.260] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chronic kidney disease (CKD) impairs muscle protein metabolism leading to muscle atrophy, and exercise can counteract this muscle wasting. Here we evaluated how resistance exercise (muscle overload) and endurance training (treadmill running) affect CKD-induced abnormalities in muscle protein metabolism and progenitor cell function using mouse plantaris muscle. Both exercise models blunted the increase in disease-induced muscle proteolysis and improved phosphorylation of Akt and the forkhead transcription factor FoxO1. Muscle overloading, but not treadmill running, corrected protein synthesis and levels of mediators of protein synthesis such as phosphorylated mTOR and p70S6K in the muscles of mice with CKD. In these mice, muscle overload, but not treadmill, running, increased muscle progenitor cell number and activity as measured by the amounts of MyoD, myogenin, and eMyHC mRNAs. Muscle overload not only increased plantaris weight and reduced muscle proteolysis but also corrected intracellular signals regulating protein and progenitor cell function in mice with CKD. Treadmill running corrects muscle proteolysis but not protein synthesis or progenitor cell function. Our results provide a basis for evaluating different types of exercise on muscle atrophy in patients with chronic kidney disease.
Collapse
|
846
|
Phillips SM, Glover EI, Rennie MJ. Alterations of protein turnover underlying disuse atrophy in human skeletal muscle. J Appl Physiol (1985) 2009; 107:645-54. [PMID: 19608931 DOI: 10.1152/japplphysiol.00452.2009] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Unloading-induced atrophy is a relatively uncomplicated form of muscle loss, dependent almost solely on the loss of mechanical input, whereas in disease states associated with inflammation (cancer cachexia, AIDS, burns, sepsis, and uremia), there is a procatabolic hormonal and cytokine environment. It is therefore predictable that muscle loss mainly due to disuse alone would be governed by mechanisms somewhat differently from those in inflammatory states. We suggest that in vivo measurements made in human subjects using arterial-venous balance, tracer dilution, and tracer incorporation are dynamic and thus robust by comparison with static measurements of mRNA abundance and protein expression and/or phosphorylation in human muscle. In addition, measurements made with cultured cells or in animal models, all of which have often been used to infer alterations of protein turnover, appear to be different from results obtained in immobilized human muscle in vivo. In vivo measurements of human muscle protein turnover in disuse show that the primary variable that changes facilitating the loss of muscle mass is protein synthesis, which is reduced in both the postabsorptive and postprandial states; muscle proteolysis itself appears not to be elevated. The depressed postprandial protein synthetic response (a phenomenon we term "anabolic resistance") may even be accompanied by a diminished suppression of proteolysis. We therefore propose that most of the loss of muscle mass during disuse atrophy can be accounted for by a depression in the rate of protein synthesis. Thus the normal diurnal fasted-to-fed cycle of protein balance is disrupted and, by default, proteolysis becomes dominant but is not enhanced.
Collapse
Affiliation(s)
- S M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada L8S 4K1.
| | | | | |
Collapse
|
847
|
Abstract
PURPOSE OF REVIEW Malnutrition and accelerated catabolism frequently complicate chronic kidney disease and end-stage renal disease. This review provides an update on the recent advances in the understanding of the mechanisms underlying protein-energy wasting, both in experimental and human models, and on the currently available therapeutic approaches. RECENT FINDINGS Increased levels of circulating cytokines, metabolic acidosis, oxidative stress and insulin resistance all appear to be variably implicated in muscle protein breakdown during end-stage renal disease and dialysis. The individual role of each component in the pathogenesis of chronic kidney disease-related wasting is still unclear, but recent clinical data show a positive relationship between inflammation and muscle protein catabolism as a major contributing factor. SUMMARY The basis for appropriate therapeutic approaches to protein-energy wasting in chronic kidney disease and end-stage renal disease relies entirely on the understanding of its pathophysiology. Our knowledge of the pathogenesis of malnutrition and hypercatabolism in renal disease is still limited and mostly based on experimental data, but the currently available evidence suggests that multimodal preventive and therapeutic strategies should be entertained.
Collapse
|
848
|
Chi Y, Hong Y, Zong H, Wang Y, Zou W, Yang J, Kong X, Yun X, Gu J. CDK11p58 represses vitamin D receptor-mediated transcriptional activation through promoting its ubiquitin-proteasome degradation. Biochem Biophys Res Commun 2009; 386:493-8. [PMID: 19538938 DOI: 10.1016/j.bbrc.2009.06.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 06/11/2009] [Indexed: 10/20/2022]
Abstract
Vitamin D receptor (VDR) is a member of the nuclear receptor superfamily and regulates transcription of target genes. In this study, we identified CDK11(p58) as a novel protein involved in the regulation of VDR. CDK11(p58), a member of the large family of p34cdc2-related kinases, is associated with cell cycle progression, tumorigenesis, and apoptotic signaling. Our study demonstrated that CDK11(p58) interacted with VDR and repressed VDR-dependent transcriptional activation. Furthermore, overexpression of CDK11(p58) decreased the stability of VDR through promoting its ubiquitin-proteasome-mediated degradation. Taken together, these results suggest that CDK11(p58) is involved in the negative regulation of VDR.
Collapse
Affiliation(s)
- Yayun Chi
- Gene Research Center, Shanghai Medical College and Institutes of Biomedical, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
849
|
Argadine HM, Hellyer NJ, Mantilla CB, Zhan WZ, Sieck GC. The effect of denervation on protein synthesis and degradation in adult rat diaphragm muscle. J Appl Physiol (1985) 2009; 107:438-44. [PMID: 19520837 DOI: 10.1152/japplphysiol.91247.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies showed that unilateral denervation (DNV) of the rat diaphragm muscle (DIAm) results in loss of myosin heavy chain protein by 1 day after DNV. We hypothesize that DNV decreases net protein balance as a result of activation of the ubiquitin-proteasome pathway. In DIAm strips, protein synthesis was measured by incorporation of 3H-Tyr, and protein degradation was measured by Tyr release at 1, 3, 5, 7, and 14 days after DNV. Total protein ubiquitination, caspase-3 expression/activity, and actin fragmentation were analyzed by Western analysis. We found that, at 3 days after DNV, protein synthesis increased by 77% relative to sham controls. Protein synthesis remained elevated at 5 (85%), 7 (53%), and 14 days (123%) after DNV. At 5 days after DNV, protein degradation increased by 43% relative to sham controls and remained elevated at 7 (49%) and 14 days (74%) after DNV. Thus, by 5 days after DNV, net protein balance decreased by 43% compared with sham controls and was decreased compared with sham at 7 (49%) and 14 days (72%) after DNV. Protein ubiquitination increased at 5 days after DNV and remained elevated. DNV had no effect on caspase-3 activity or actin fragmentation, suggesting that the ubiquitin-proteasome pathway rather than caspase-3 activation is important in the DIAm response to DNV. Early loss of contractile proteins, such as myosin heavy chain, is likely the result of selective protein degradation rather than generalized protein breakdown. Future studies should evaluate this selective effect of DNV.
Collapse
Affiliation(s)
- Heather M Argadine
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
850
|
Cohen S, Brault JJ, Gygi SP, Glass DJ, Valenzuela DM, Gartner C, Latres E, Goldberg AL. During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. ACTA ACUST UNITED AC 2009; 185:1083-95. [PMID: 19506036 PMCID: PMC2711608 DOI: 10.1083/jcb.200901052] [Citation(s) in RCA: 456] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Loss of myofibrillar proteins is a hallmark of atrophying muscle. Expression of muscle RING-finger 1 (MuRF1), a ubiquitin ligase, is markedly induced during atrophy, and MuRF1 deletion attenuates muscle wasting. We generated mice expressing a Ring-deletion mutant MuRF1, which binds but cannot ubiquitylate substrates. Mass spectrometry of the bound proteins in denervated muscle identified many myofibrillar components. Upon denervation or fasting, atrophying muscles show a loss of myosin-binding protein C (MyBP-C) and myosin light chains 1 and 2 (MyLC1 and MyLC2) from the myofibril, before any measurable decrease in myosin heavy chain (MyHC). Their selective loss requires MuRF1. MyHC is protected from ubiquitylation in myofibrils by associated proteins, but eventually undergoes MuRF1-dependent degradation. In contrast, MuRF1 ubiquitylates MyBP-C, MyLC1, and MyLC2, even in myofibrils. Because these proteins stabilize the thick filament, their selective ubiquitylation may facilitate thick filament disassembly. However, the thin filament components decreased by a mechanism not requiring MuRF1.
Collapse
Affiliation(s)
- Shenhav Cohen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|