851
|
Liu M, Zhang C, Duan L, Luan Q, Li J, Yang A, Qi X, Ren Z. CsMYB60 is a key regulator of flavonols and proanthocyanidans that determine the colour of fruit spines in cucumber. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:69-84. [PMID: 30256979 PMCID: PMC6305189 DOI: 10.1093/jxb/ery336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/12/2018] [Indexed: 05/08/2023]
Abstract
Spine colour is an important fruit quality trait that influences the commercial value of cucumber (Cucumis sativus). However, little is known about the metabolites and the regulatory mechanisms of their biosynthesis in black spine varieties. In this study, we determined that the pigments of black spines are flavonoids, including flavonols and proanthocyanidins (PAs). We identified CsMYB60 as the best candidate for the previously identified B (Black spine) locus. Expression levels of CsMYB60 and the key genes involved in flavonoid biosynthesis were higher in black-spine inbred lines than that in white-spine lines at different developmental stages. The insertion of a Mutator-like element (CsMULE) in the second intron of CsMYB60 decreased its expression in a white-spine line. Transient overexpression assays indicated that CsMYB60 is a key regulatory gene and Cs4CL is a key structural gene in the pigmentation of black spines. In addition, the DNA methylation level in the CsMYB60 promoter was much lower in the black-spine line compared with white-spine line. The CsMULE insert may decrease the expression level of CsMYB60, causing hindered synthesis of flavonols and PAs in cucumber fruit spines.
Collapse
Affiliation(s)
- Mengyu Liu
- State Key Laboratory of Corp Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Cunjia Zhang
- State Key Laboratory of Corp Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Lixin Duan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qianqian Luan
- State Key Laboratory of Corp Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Jialin Li
- State Key Laboratory of Corp Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Aigang Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Xiaoquan Qi
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun, Xiangshan, Beijing, China
| | - Zhonghai Ren
- State Key Laboratory of Corp Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
852
|
Zhai R, Wang Z, Yang C, Lin-Wang K, Espley R, Liu J, Li X, Wu Z, Li P, Guan Q, Ma F, Xu L. PbGA2ox8 induces vascular-related anthocyanin accumulation and contributes to red stripe formation on pear fruit. HORTICULTURE RESEARCH 2019; 6:137. [PMID: 31814990 PMCID: PMC6885050 DOI: 10.1038/s41438-019-0220-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/18/2019] [Accepted: 10/27/2019] [Indexed: 05/06/2023]
Abstract
Fruit with stripes, which are generally longitudinal, can occur naturally, but the bioprocesses underlying this phenomenon are unclear. Previously, we observed an atypical anthocyanin distribution that caused red-striped fruit on the spontaneous pear bud sport "Red Zaosu" (Pyrus bretschneideri Rehd.). In this study, comparative transcriptome analysis of the sport and wild-type "Zaosu" revealed that this atypical anthocyanin accumulation was tightly correlated with abnormal overexpression of the gene-encoding gibberellin (GA) 2-beta-dioxygenase 8, PbGA2ox8. Consistently, decreased methylation was also observed in the promoter region of PbGA2ox8 from "Red Zaosu" compared with "Zaosu". Moreover, the GA levels in "Red Zaosu" seedlings were lower than those in "Zaosu" seedlings, and the application of exogenous GA4 reduced abnormal anthocyanin accumulation in "Red Zaosu". Transient overexpression of PbGA2ox8 reduced the GA4 level and caused anthocyanin accumulation in pear fruit skin. Moreover, the presence of red stripes indicated anthocyanin accumulation in the hypanthial epidermal layer near vascular branches (VBs) in "Red Zaosu". Transient overexpression of PbGA2ox8 resulting from vacuum infiltration induced anthocyanin accumulation preferentially in calcium-enriched areas near the vascular bundles in pear leaves. We propose a fruit-striping mechanism, in which the abnormal overexpression of PbGA2ox8 in "Red Zaosu" induces the formation of a longitudinal array of anthocyanin stripes near vascular bundles in fruit.
Collapse
Affiliation(s)
- Rui Zhai
- College of Horticulture, Northwest A&F University, Taicheng Road No. 3, Yangling, Shaanxi Province China
| | - Zhigang Wang
- College of Horticulture, Northwest A&F University, Taicheng Road No. 3, Yangling, Shaanxi Province China
| | - Chengquan Yang
- College of Horticulture, Northwest A&F University, Taicheng Road No. 3, Yangling, Shaanxi Province China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant & Food Research, Ltd., (Plant and Food Research), Mt. Albert Research Centre, Private Bag, 92169 Auckland, New Zealand
| | - Richard Espley
- The New Zealand Institute for Plant & Food Research, Ltd., (Plant and Food Research), Mt. Albert Research Centre, Private Bag, 92169 Auckland, New Zealand
| | - Jianlong Liu
- College of Horticulture, Northwest A&F University, Taicheng Road No. 3, Yangling, Shaanxi Province China
| | - Xieyu Li
- College of Horticulture, Northwest A&F University, Taicheng Road No. 3, Yangling, Shaanxi Province China
| | - Zhongying Wu
- Horticultural Research Institute, Henan Academy of Agricultural Sciences, Huayuan Road No. 116, Zhengzhou, Henan Province China
| | - Pengmin Li
- College of Horticulture, Northwest A&F University, Taicheng Road No. 3, Yangling, Shaanxi Province China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Taicheng Road No. 3, Yangling, Shaanxi Province China
| | - Qingmei Guan
- College of Horticulture, Northwest A&F University, Taicheng Road No. 3, Yangling, Shaanxi Province China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Taicheng Road No. 3, Yangling, Shaanxi Province China
| | - Fengwang Ma
- College of Horticulture, Northwest A&F University, Taicheng Road No. 3, Yangling, Shaanxi Province China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Taicheng Road No. 3, Yangling, Shaanxi Province China
| | - Lingfei Xu
- College of Horticulture, Northwest A&F University, Taicheng Road No. 3, Yangling, Shaanxi Province China
| |
Collapse
|
853
|
Tengkun N, Dongdong W, Xiaohui M, Yue C, Qin C. Analysis of Key Genes Involved in Potato Anthocyanin Biosynthesis Based on Genomics and Transcriptomics Data. FRONTIERS IN PLANT SCIENCE 2019; 10:603. [PMID: 31156673 PMCID: PMC6527903 DOI: 10.3389/fpls.2019.00603] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/24/2019] [Indexed: 05/18/2023]
Abstract
The accumulation of secondary metabolites, such as anthocyanins, in cells plays an important role in colored plants. The synthesis and accumulation of anthocyanins are regulated by multiple genes, of which the R2R3-MYB transcription factor gene family plays an important role. Based on the genomic data in the Potato Genome Sequencing Consortium database (PGSC) and the transcriptome data in the SRA, this study used potato as a model plant to comprehensively analyze the plant anthocyanin accumulation process. The results indicated that the most critical step in the synthesis of potato anthocyanins was the formation of p-coumaroyl-CoA to enter the flavonoid biosynthetic pathway. The up-regulated expression of the CHS gene and the down-regulated expression of HCT significantly promoted this process. At the same time, the anthocyanins in the potato were gradually synthesized during the process from leaf transport to tubers. New transcripts of stAN1 and PAL were cloned and named stAN1-like and PAL-like, respectively, but the functions of these two new transcripts still need further study. In addition, the sequence characteristics of amino acids in the R2-MYB and R3-MYB domains of potato were preliminarily identified. The aims of this study are to identify the crucial major genes that affect anthocyanin biosynthesis through multi-omics joint analysis and to transform quantitative traits into quality traits, which provides a basis and reference for the regulation of plant anthocyanin biosynthesis. Simultaneously, this study provides the basis for improving the anthocyanin content in potato tubers and the cultivation of new potato varieties with high anthocyanin content.
Collapse
Affiliation(s)
- Nie Tengkun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- *Correspondence: Nie Tengkun, Chen Yue, Chen Qin,
| | - Wang Dongdong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Ma Xiaohui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Chen Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- *Correspondence: Nie Tengkun, Chen Yue, Chen Qin,
| | - Chen Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Food Science and Engineering, Northwest A&F University, Yangling, China
- *Correspondence: Nie Tengkun, Chen Yue, Chen Qin,
| |
Collapse
|
854
|
Meng X, Li Y, Zhou T, Sun W, Shan X, Gao X, Wang L. Functional Differentiation of Duplicated Flavonoid 3- O-Glycosyltransferases in the Flavonol and Anthocyanin Biosynthesis of Freesia hybrida. FRONTIERS IN PLANT SCIENCE 2019; 10:1330. [PMID: 31681396 PMCID: PMC6813240 DOI: 10.3389/fpls.2019.01330] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/24/2019] [Indexed: 05/13/2023]
Abstract
Flavonols and anthocyanins are two widely distributed groups of flavonoids that occurred apart during plant evolution and biosynthesized by shared specific enzymes involved in flavonoid metabolism. UDP-glucose, flavonoid 3-O-glycosyltransferase (UF3GT), is one of the common enzymes which could catalyze the glycosylation of both flavonol and anthocyanidin aglycons simultaneously in vitro. However, whether and how UF3GT paralogous genes function diversely at the biochemical and transcriptional levels are largely unknown. Recently, Fh3GT1 was identified to be a member of UF3GTs in Freesia hybrida. However, its expression patterns and enzymatic characteristics could not coincide well with flavonol accumulation. In an attempt to characterize other flavonoids, especially flavonol glycosyltransferase genes in Freesia, three closest candidate UFGT genes-Fh3GT2, Fh3GT3, and Fh3GT4-were mined from the Freesia transcriptomic database and isolated from the flowers of the widely distributed Freesia cultivar, Red River®. Based on bioinformatic analysis and enzymatic assays, Fh3GT2 turned out to be another bona fide glycosyltransferase gene. Biochemical analysis further proved that Fh3GT2 preferentially glucosylated kaempferol while Fh3GT1 controlled the glucosylation of quercetin and anthocyanidins. In addition, transfection assays demonstrated that Fh3GT2 could be mainly activated by the flavonol regulator FhMYBF1 or the anthocyanin regulator FhPAP1, whereas Fh3GT1 could only be activated by FhPAP1. These findings suggested that Fh3GTs might have functionally diverged in flavonoid biosynthesis at both the biochemical and transcriptional levels.
Collapse
Affiliation(s)
- Xiangyu Meng
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Yueqing Li
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Tongtong Zhou
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Wei Sun
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
- Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Xiaotong Shan
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
- National Demonstration Center for Experimental Biology Education, Northeast Normal University, Changchun, China
- *Correspondence: Xiang Gao, ; Li Wang,
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
- *Correspondence: Xiang Gao, ; Li Wang,
| |
Collapse
|
855
|
Ni J, Bai S, Zhao Y, Qian M, Tao R, Yin L, Gao L, Teng Y. Ethylene response factors Pp4ERF24 and Pp12ERF96 regulate blue light-induced anthocyanin biosynthesis in 'Red Zaosu' pear fruits by interacting with MYB114. PLANT MOLECULAR BIOLOGY 2019; 99:67-78. [PMID: 30539403 DOI: 10.1007/s11103-018-0802-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/25/2018] [Indexed: 05/04/2023]
Abstract
Pp4ERF24 and Pp12ERF96 fine tune blue light-induced anthocyanin biosynthesis via interacting with PpMYB114 and promoting the interaction between PpMYB114 and PpbHLH3, which enhances the expression of PpMYB114-induced PpUFGT. The red coloration of pear fruit is attributed to anthocyanin accumulation, which is transcriptionally regulated by the MYB-bHLH-WD40 complex. A number of ethylene response factors (ERF) have been identified to regulate anthocyanin biosynthesis in different plants. In pear, several ERF transcription factor genes were identified to be potentially involved in the light-induced anthocyanin biosynthesis according to transcriptome data. But the molecular mechanism of these ERFs underlying the regulation of anthocyanin accumulation is unknown. In this study, exposure of 'Red Zaosu' pear, a mutant of 'Zaosu' pear, to blue light significantly induced the anthocyanin accumulation by increasing the expression levels of anthocyanin biosynthetic genes. Gene expression analysis confirmed that the expression of Pp4ERF24 and Pp12ERF96 genes were up-regulated in the process of blue light-induced anthocyanin biosynthesis. Yeast two-hybrid and bimolecular fluorescence complementation assay revealed that Pp4ERF24 and Pp12ERF96 interacted with PpMYB114, but not with PpMYB10. Bimolecular fluorescence complementation assay demonstrated that the interaction between these two ERFs and PpMYB114 enhanced the interaction between PpMYB114 and PpbHLH3. Further analysis by dual luciferase assay verified that these two ERFs increased the up-regulation of PpMYB114-mediated PpUFGT expression. Furthermore, co-transformation of Pp12ERF96 with PpMYB114 and PpbHLH3 in tobacco leaves led to enhanced anthocyanin accumulation. Transient overexpression of Pp4ERF24 or Pp12ERF96 alone in 'Red Zaosu' pear fruit also induced anthocyanin biosynthesis in pear peel. Our findings provide insights into a mechanism involving the synergistic interaction of ERFs with PpMYB114 to regulate light-dependent coloration and anthocyanin biosynthesis in pear fruits.
Collapse
Affiliation(s)
- Junbei Ni
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, The Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Songling Bai
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, The Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Yuan Zhao
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, The Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Minjie Qian
- School of Science and Technology, Örebro University, Örebro, Sweden
| | - Ruiyan Tao
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, The Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Lei Yin
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, The Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Ling Gao
- ACON Biotech (Hangzhou) Co., Ltd., Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Yuanwen Teng
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, The Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, People's Republic of China.
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, People's Republic of China.
| |
Collapse
|
856
|
Zhao P, Li X, Jia J, Yuan G, Chen S, Qi D, Cheng L, Liu G. bHLH92 from sheepgrass acts as a negative regulator of anthocyanin/proanthocyandin accumulation and influences seed dormancy. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:269-284. [PMID: 30239820 PMCID: PMC6354636 DOI: 10.1093/jxb/ery335] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/06/2018] [Indexed: 05/20/2023]
Abstract
LcbHLH92, a pleiotropic gene from sheepgrass, negatively regulates anthocyanins/proanthocyandins and reduces seed dormancy in transgenic Arabidopsis.
Collapse
Affiliation(s)
- Pincang Zhao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of management science and engineering, Hebei University of Economics and Business, China
| | - Xiaoxia Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Junting Jia
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Guangxiao Yuan
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shuangyan Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Dongmei Qi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Liqin Cheng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Correspondence: or
| | - Gongshe Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Correspondence: or
| |
Collapse
|
857
|
Nida H, Girma G, Mekonen M, Lee S, Seyoum A, Dessalegn K, Tadesse T, Ayana G, Senbetay T, Tesso T, Ejeta G, Mengiste T. Identification of sorghum grain mold resistance loci through genome wide association mapping. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2018.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
858
|
Gao F, Robe K, Gaymard F, Izquierdo E, Dubos C. The Transcriptional Control of Iron Homeostasis in Plants: A Tale of bHLH Transcription Factors? FRONTIERS IN PLANT SCIENCE 2019; 10:6. [PMID: 30713541 PMCID: PMC6345679 DOI: 10.3389/fpls.2019.00006] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/07/2019] [Indexed: 05/19/2023]
Abstract
Iron is one of the most important micronutrients in plants as it is involved in many cellular functions (e.g., photosynthesis and respiration). Any defect in iron availability will affect plant growth and development as well as crop yield and plant product quality. Thus, iron homeostasis must be tightly controlled in order to ensure optimal absorption of this mineral element. Understanding mechanisms governing iron homeostasis in plants has been the focus of several studies during the past 10 years. These studies have greatly improved our understanding of the mechanisms involved, revealing a sophisticated iron-dependent transcriptional regulatory network. Strikingly, these studies have also highlighted that this regulatory web relies on the activity of numerous transcriptional regulators that belong to the same group of transcription factors (TF), the bHLH (basic helix-loop-helix) family. This is best exemplified in Arabidopsis where, to date, 16 bHLH TF have been characterized as involved in this process and acting in a complex regulatory cascade. Interestingly, among these bHLH TF some form specific clades, indicating that peculiar function dedicated to the maintenance of iron homeostasis, have emerged during the course of the evolution of the green lineage. Within this mini review, we present new insights on the control of iron homeostasis and the involvement of bHLH TF in this metabolic process.
Collapse
|
859
|
Girma G, Nida H, Seyoum A, Mekonen M, Nega A, Lule D, Dessalegn K, Bekele A, Gebreyohannes A, Adeyanju A, Tirfessa A, Ayana G, Taddese T, Mekbib F, Belete K, Tesso T, Ejeta G, Mengiste T. A Large-Scale Genome-Wide Association Analyses of Ethiopian Sorghum Landrace Collection Reveal Loci Associated With Important Traits. FRONTIERS IN PLANT SCIENCE 2019; 10:691. [PMID: 31191590 PMCID: PMC6549537 DOI: 10.3389/fpls.2019.00691] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/08/2019] [Indexed: 05/20/2023]
Abstract
The eastern Africa region, Ethiopia and its surroundings, is considered as the center of origin and diversity for sorghum, and has contributed to global sorghum genetic improvement. The germplasm from this region harbors enormous genetic variation for various traits but little is known regarding the genetic architecture of most traits. Here, 1425 Ethiopian landrace accessions were phenotyped under field conditions for presence or absence of awns, panicle compactness and shape, panicle exsertion, pericarp color, glume cover, plant height and smut resistance under diverse environmental conditions in Ethiopia. In addition, F1 hybrids obtained from a subset of 1341 accessions crossed to an A1 cytoplasmic male sterile line, ATx623, were scored for fertility/sterility reactions. Subsequently, genotyping-by-sequencing generated a total of 879,407 SNPs from which 72,190 robust SNP markers were selected after stringent quality control (QC). Pairwise distance-based hierarchical clustering identified 11 distinct groups. Of the genotypes assigned to either one of the 11 sub-populations, 65% had high ancestry membership coefficient with the likelihood of more than 0.60 and the remaining 35% represented highly admixed accessions. A genome-wide association study (GWAS) identified loci and SNPs associated with aforementioned traits. GWAS based on compressed mixed linear model (CMLM) identified SNPs with significant association (FDR ≤ 0.05) to the different traits studied. The percentage of total phenotypic variation explained with significant SNPs across traits ranged from 2 to 43%. Candidate genes showing significant association with different traits were identified. The sorghum bHLH transcription factor, ABORTED MICROSPORES was identified as a strong candidate gene conditioning male fertility. Notably, sorghum CLAVATA1 receptor like kinase, known for regulation of plant growth, and the ETHYLENE RESPONSIVE TRANSCRIPTION FACTOR gene RAP2-7, known to suppress transition to flowering, were significantly associated with plant height. In addition, the YELLOW SEED1 like MYB transcription factor and TANNIN1 showed strong association with pericarp color validating previous observations. Overall, the genetic architecture of natural variation representing the complex Ethiopian sorghum germplasm was established. The study contributes to the characterization of genes and alleles controlling agronomic traits, and will serve as a source of markers for molecular breeding.
Collapse
Affiliation(s)
- Gezahegn Girma
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Habte Nida
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Amare Seyoum
- Malkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research, Adama, Ethiopia
| | - Moges Mekonen
- Chiro Agricultural Research Center, Ethiopian Institute of Agricultural Research, Chiro, Ethiopia
| | - Amare Nega
- Malkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research, Adama, Ethiopia
| | - Dagnachew Lule
- Bako Agricultural Research Center, Oromia Agricultural Research Institute, Bako, Ethiopia
| | - Kebede Dessalegn
- Bako Agricultural Research Center, Oromia Agricultural Research Institute, Bako, Ethiopia
| | - Alemnesh Bekele
- School of Plant Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Adane Gebreyohannes
- Malkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research, Adama, Ethiopia
| | - Adedayo Adeyanju
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Alemu Tirfessa
- Malkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research, Adama, Ethiopia
| | - Getachew Ayana
- Malkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research, Adama, Ethiopia
| | - Taye Taddese
- Malkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research, Adama, Ethiopia
| | - Firew Mekbib
- School of Plant Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Ketema Belete
- School of Plant Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Tesfaye Tesso
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Gebisa Ejeta
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
- *Correspondence: Gebisa Ejeta,
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Tesfaye Mengiste,
| |
Collapse
|
860
|
Zhang Y, Li Y, Li W, Hu Z, Yu X, Tu Y, Zhang M, Huang J, Chen G. Metabolic and molecular analysis of nonuniform anthocyanin pigmentation in tomato fruit under high light. HORTICULTURE RESEARCH 2019; 6:56. [PMID: 31098031 PMCID: PMC6510810 DOI: 10.1038/s41438-019-0138-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 05/15/2023]
Abstract
Pigment intensity and patterns are important factors that determine the nutritional and market values of tomato fruits. The acropetal manner of light-dependent anthocyanin accumulation with the highest levels at the stem end of the fruit makes Pro35S:BrTT8 tomato plants an ideal system for investigating the effects of light intensity on anthocyanin biosynthesis. Extensive transcript analyses indicate that anthocyanin pigmentation in Pro35S:BrTT8 plants under high light might be coordinately regulated by the exogenous protein BrTT8 and endogenous proteins SlAN2 and SlMYBL2. Furthermore, yeast two-hybrid assays showed that BrTT8 could interact efficiently with SlAN2, SlMYBL2, and SlAN11. Moreover, the physical interaction between BrTT8 and SlAN2 was validated by FRET. Simultaneous overexpression of SlAN2 and BrTT8 activated significant anthocyanin biosynthesis in infiltrated tobacco leaves. In addition, the ability of SlMYBL2 to suppress anthocyanin accumulation was also demonstrated in infiltrated tobacco leaves. Altogether, these results prove that tissue-specific assemblage of the heterogeneous MYB-bHLH-WD40 complex consisting of SlAN2, BrTT8 and SlAN11 triggers nonuniform anthocyanin accumulation in tomato fruit under high light. Additionally, it is proposed that a negative-feedback loop fulfilled by SlMYBL2 also participates in the regulation of anthocyanin production.
Collapse
Affiliation(s)
- Yanjie Zhang
- Bioengineering College, Chongqing University, 400030 Chongqing, People’s Republic of China
- School of Agricultural Sciences, Zhengzhou University, 450001 Zhengzhou, People’s Republic of China
| | - Yan Li
- School of Agricultural Sciences, Zhengzhou University, 450001 Zhengzhou, People’s Republic of China
| | - Wanping Li
- School of Agricultural Sciences, Zhengzhou University, 450001 Zhengzhou, People’s Republic of China
| | - Zongli Hu
- Bioengineering College, Chongqing University, 400030 Chongqing, People’s Republic of China
| | - Xiaohui Yu
- Bioengineering College, Chongqing University, 400030 Chongqing, People’s Republic of China
| | - Yun Tu
- Bioengineering College, Chongqing University, 400030 Chongqing, People’s Republic of China
| | - Min Zhang
- School of Agricultural Sciences, Zhengzhou University, 450001 Zhengzhou, People’s Republic of China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, 450001 Zhengzhou, People’s Republic of China
| | - Guoping Chen
- Bioengineering College, Chongqing University, 400030 Chongqing, People’s Republic of China
| |
Collapse
|
861
|
Butelli E, Licciardello C, Ramadugu C, Durand-Hulak M, Celant A, Reforgiato Recupero G, Froelicher Y, Martin C. Noemi Controls Production of Flavonoid Pigments and Fruit Acidity and Illustrates the Domestication Routes of Modern Citrus Varieties. Curr Biol 2018; 29:158-164.e2. [PMID: 30581020 DOI: 10.1016/j.cub.2018.11.040] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 11/17/2022]
Abstract
In citrus, the production of anthocyanin pigments requires the activity of the transcriptional activator Ruby. Consequently, loss-of-function mutations in Ruby result in an anthocyaninless phenotype [1]. Several citrus accessions, however, have lost the ability to produce these pigments despite the presence of wild-type Ruby alleles. These specific mutants have captivated the interest of botanists and breeders for centuries because the lack of anthocyanins in young leaves and flowers is also associated with a lack of proanthocyanidins in seeds and, most notably, with an extreme reduction in fruit acidity (involving about a three-unit change in pH). These mutants have been defined collectively as "acidless" [2-4]. We have identified Noemi, which encodes a basic helix-loop-helix (bHLH) transcription factor and which controls these apparently unrelated processes. In accessions of Citron, limetta, sweet lime, lemon, and sweet orange, acidless phenotypes are associated with large deletions or insertions of retrotransposons in the Noemi gene. In two accessions of limetta, a change in the core promoter region of Noemi is associated with reduced expression and increased pH of juice, indicating that Noemi is a major determinant of fruit acidity. The characterization of the Noemi locus in a number of varieties of Citron indicates that one specific mutation is ancient. The presence of this allele in Chinese fingered Citrons and in those used in the Sukkot Jewish ritual [5] illuminates the path of domestication of Citron, the first citrus species to be cultivated in the Mediterranean. This allele has been inherited in Citron-derived hybrids with long histories of cultivation.
Collapse
Affiliation(s)
| | - Concetta Licciardello
- CREA-OFA, Research Centre for Olive, Citrus, and Tree Fruit, Corso Savoia 190, 95024 Acireale, Italy
| | | | - Marie Durand-Hulak
- INRA, Unité Mixte de Recherche AGAP, Station Institut National de la Recherche Agronomique, 20230 San Giuliano, France
| | - Alessandra Celant
- Laboratory of Palaeobotany and Palynology, Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | - Yann Froelicher
- CIRAD Unité Mixte de Recherche AGAP, Station Institut National de la Recherche Agronomique, 20230 San Giuliano, France
| | | |
Collapse
|
862
|
Pereira L, Ruggieri V, Pérez S, Alexiou KG, Fernández M, Jahrmann T, Pujol M, Garcia-Mas J. QTL mapping of melon fruit quality traits using a high-density GBS-based genetic map. BMC PLANT BIOLOGY 2018; 18:324. [PMID: 30509167 PMCID: PMC6278158 DOI: 10.1186/s12870-018-1537-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 11/19/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Melon shows a broad diversity in fruit morphology and quality, which is still underexploited in breeding programs. The knowledge of the genetic basis of fruit quality traits is important for identifying new alleles that may be introduced in elite material by highly efficient molecular breeding tools. RESULTS In order to identify QTLs controlling fruit quality, a recombinant inbred line population was developed using two commercial cultivars as parental lines: "Védrantais", from the cantalupensis group, and "Piel de Sapo", from the inodorus group. Both have desirable quality traits for the market, but their fruits differ in traits such as rind and flesh color, sugar content, ripening behavior, size and shape. We used a genotyping-by-sequencing strategy to construct a dense genetic map, which included around five thousand variants distributed in 824 bins. The RIL population was phenotyped for quality and morphology traits, and we mapped 33 stable QTLs involved in sugar and carotenoid content, fruit and seed morphology and major loci controlling external color of immature fruit and mottled rind. The median confidence interval of the QTLs was 942 kb, suggesting that the high density of the genetic map helped in increasing the mapping resolution. Some of these intervals contained less than a hundred annotated genes, and an integrative strategy combining gene expression and resequencing data enabled identification of candidate genes for some of these traits. CONCLUSION Several QTLs controlling fruit quality traits in melon were identified and delimited to narrow genomic intervals, using a RIL population and a GBS-based genetic map.
Collapse
Affiliation(s)
- L. Pereira
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Cerdanyola, Barcelona, Spain
| | - V. Ruggieri
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Cerdanyola, Barcelona, Spain
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Campus UAB, 08193 Cerdanyola, Barcelona, Spain
| | - S. Pérez
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Cerdanyola, Barcelona, Spain
| | - K. G. Alexiou
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Cerdanyola, Barcelona, Spain
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Campus UAB, 08193 Cerdanyola, Barcelona, Spain
| | - M. Fernández
- Semillas Fitó S.A., 08348 Cabrera de Mar, Barcelona, Spain
| | - T. Jahrmann
- Semillas Fitó S.A., 08348 Cabrera de Mar, Barcelona, Spain
| | - M. Pujol
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Cerdanyola, Barcelona, Spain
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Campus UAB, 08193 Cerdanyola, Barcelona, Spain
| | - J. Garcia-Mas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Cerdanyola, Barcelona, Spain
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Campus UAB, 08193 Cerdanyola, Barcelona, Spain
| |
Collapse
|
863
|
Fan ZQ, Ba LJ, Shan W, Xiao YY, Lu WJ, Kuang JF, Chen JY. A banana R2R3-MYB transcription factor MaMYB3 is involved in fruit ripening through modulation of starch degradation by repressing starch degradation-related genes and MabHLH6. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1191-1205. [PMID: 30242914 DOI: 10.1111/tpj.14099] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/03/2018] [Accepted: 09/13/2018] [Indexed: 05/28/2023]
Abstract
Starch degradation is a necessary process determining banana fruit quality during ripening. Many starch degradation-related genes are well studied. However, the transcriptional regulation of starch degradation during banana fruit ripening remains poorly understood. In this study, we identified a MYB transcription factor (TF) termed MaMYB3, as a putative protein binding the promoter of MaGWD1, a member of glucan water dikinase (GWD) family which has been demonstrated as an important enzyme of starch degradation. MaMYB3 was ripening- and ethylene-repressible, and its expression was negatively correlated with starch degradation. Acting as a nucleus-localized transcriptional repressor, MaMYB3 repressed the transcription of 10 starch degradation-related genes, including MaGWD1, MaSEX4, MaBAM7-MaBAM8, MaAMY2B, MaAMY3, MaAMY3A, MaAMY3C, MaMEX1, and MapGlcT2-1, by directly binding to their promoters. Interestingly, a previously identified activator of starch degradation-related genes, MabHLH6, was also suppressed by MaMYB3. The ectopic overexpression of MaMYB3 in tomato down-regulated the expression of starch degradation-related genes, inhibited starch degradation and delayed fruit ripening. Based on these findings, we conclude that MaMYB3 negatively impacts starch degradation by directly repressing starch degradation-related genes and MabHLH6, and thereby delays banana fruit ripening. Collectively, our study expands our understanding of the complex transcriptional regulatory hierarchy modulating starch degradation during fruit ripening.
Collapse
Affiliation(s)
- Zhong-Qi Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Liang-Jie Ba
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yun-Yi Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
864
|
Ma D, Reichelt M, Yoshida K, Gershenzon J, Constabel CP. Two R2R3-MYB proteins are broad repressors of flavonoid and phenylpropanoid metabolism in poplar. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:949-965. [PMID: 30176084 DOI: 10.1111/tpj.14081] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 05/18/2023]
Abstract
The phenylpropanoid pathway leads to the production of many important plant secondary metabolites including lignin, chlorogenic acids, flavonoids, and phenolic glycosides. Early studies have demonstrated that flavonoid biosynthesis is transcriptionally regulated, often by a MYB, bHLH, and WDR transcription factor complex. In poplar, several R2R3 MYB transcription factors are known to be involved in flavonoid biosynthesis. Previous work determined that poplar MYB134 and MYB115 are major activators of the proanthocyanidin pathway, and also induce the expression of repressor-like MYB transcription factors. Here we characterize two new repressor MYBs, poplar MYB165 and MYB194, paralogs which comprise a subgroup of R2R3-MYBs distinct from previously reported poplar repressors. Both MYB165 and MYB194 repressed the activation of flavonoid promoters by MYB134 in transient activation assays, and both interacted with a co-expressed bHLH transcription factor, bHLH131, in yeast two-hybrid assays. Overexpression of MYB165 and MYB194 in hybrid poplar resulted in greatly reduced accumulation of several phenylpropanoids including anthocyanins, proanthocyanidins, phenolic glycosides, and hydroxycinnamic acid esters. Transcriptome analysis of MYB165- and MYB194-overexpressing poplars confirmed repression of many phenylpropanoid enzyme genes. In addition, other MYB genes as well as several shikimate pathway enzyme genes were downregulated by MYB165-overexpression. By contrast, leaf aromatic amino acid concentrations were greater in MYB165-overexpressing poplars. Our findings indicate that MYB165 is a major repressor of the flavonoid and phenylpropanoid pathway in poplar, and may also affect the shikimate pathway. The coordinated action of repressor and activator MYBs could be important for the fine tuning of proanthocyanidin biosynthesis during development or following stress.
Collapse
Affiliation(s)
- Dawei Ma
- Centre for Forest Biology & Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Michael Reichelt
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Hans-Knöll Strasse 8, 07745, Jena, Germany
| | - Kazuko Yoshida
- Centre for Forest Biology & Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Jonathan Gershenzon
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Hans-Knöll Strasse 8, 07745, Jena, Germany
| | - C Peter Constabel
- Centre for Forest Biology & Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| |
Collapse
|
865
|
Wang H, Wang C, Fan W, Yang J, Appelhagen I, Wu Y, Zhang P. A novel glycosyltransferase catalyses the transfer of glucose to glucosylated anthocyanins in purple sweet potato. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5444-5459. [PMID: 30124996 PMCID: PMC6255700 DOI: 10.1093/jxb/ery305] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/13/2018] [Indexed: 05/23/2023]
Abstract
Glycosylation contributes to the diversity and stability of anthocyanins in plants. The process is catalysed by various glucosyltransferases using different anthocyanidin aglycones and glycosyl donors. In this study, we found that an anthocyanidin 3-O-glucoside-2″-O-glucosyltransferase (3GGT) from purple sweet potato (Ipomoea batatas) catalyses the conversion of anthocyanidin 3-O-glucoside into anthocyanidin 3-O-sophoroside, which is functionally different from the 3GGT ortholog of Arabidopsis. Phylogenetic analysis indicated regioselectivity of 3GGT using uridine-5'-diphosphate (UDP)-xylose or UDP-glucose as the glycosyl is divergent between Convolvulaceae and Arabidopsis. Homology-based protein modeling and site-directed mutagenesis of Ib3GGT and At3GGT suggested that the Thr-138 of Ib3GGT is a key amino acid residue for UDP-glucose recognition and that it plays a major role in sugar-donor selectivity. Wild-type and ugt79b1 mutants (defective in UDP carbohydrate-dependent glycosyltransferases, UGTs) of Arabidopsis plants overexpressing Ib3GGT produced the new component cyanidin 3-O-sophoroside. Moreover, Ib3GGT expression was associated with anthocyanin accumulation in different tissues during I. batatas plant development and was regulated by the transcription factor IbMYB1. Localization assays for Ib3GGT showed that glycosyl extension occurs in the cytosol and not in the endoplasmic reticulum. This study therefore reveals the function of Ib3GGT in glycosyl extension of anthocyanins and demonstrates that Thr-138 is the key amino acid residue for UDP-glucose recognition.
Collapse
Affiliation(s)
- Hongxia Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, China
| | - Chengyuan Wang
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Weijuan Fan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Science, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Science, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Ingo Appelhagen
- John Innes Centre, Norwich Research Park, Colney, Norwich, UK
| | - Yinliang Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
866
|
Wu Y, Zhang Y, Li L, Guo X, Wang B, Cao X, Wang Z. AtPAP1 Interacts With and Activates SmbHLH51, a Positive Regulator to Phenolic Acids Biosynthesis in Salvia miltiorrhiza. FRONTIERS IN PLANT SCIENCE 2018; 9:1687. [PMID: 30515184 PMCID: PMC6255977 DOI: 10.3389/fpls.2018.01687] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 10/30/2018] [Indexed: 05/30/2023]
Abstract
Phenolic acids from Salvia miltiorrhiza have drawn considerable attention in recent years because of their remarkable pharmacological activities. We previously reported that Arabidopsis thaliana transcription factor production of anthocyanin pigment 1 (AtPAP1) has strong capability to promote the production of phenolic acids in S. miltiorrhiza. However, the responsible molecular mechanism is unclear. Here, we analyzed the transcriptome of transgenic S. miltiorrhiza that over-expressed AtPAP1. Transcriptome analysis revealed 4,152 genes that were differentially expressed due to ectopic AtPAP1 overexpression. SmbHLH51, a novel bHLH gene significantly up-regulated by constitutive expression of AtPAP1, was isolated from S. miltiorrhiza for detailed functional characterization. SmbHLH51 localizes in the nuclei and interacts with AtPAP1, indicating that they probably comprise a regulatory transcription complex. Enhanced or reduced expression of SmbHLH51 was achieved in S. miltiorrhiza by gain- or loss-of-function assays, respectively, revealing that SmbHLH51 is a positive transcriptional regulator of the pathway for phenolic acid biosynthesis. We propose that applying this functional genomics approach through the transcriptomic analyses is an efficient means for identifying novel genes involved in plant secondary metabolism.
Collapse
Affiliation(s)
- Yucui Wu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi’an, China
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi’an, China
| | - Lin Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi’an, China
| | - Xiaorong Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi’an, China
| | - Bin Wang
- College of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang, China
| | - Xiaoyan Cao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi’an, China
| | - Zhezhi Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
867
|
Watanabe S, Sato M, Sawada Y, Tanaka M, Matsui A, Kanno Y, Hirai MY, Seki M, Sakamoto A, Seo M. Arabidopsis molybdenum cofactor sulfurase ABA3 contributes to anthocyanin accumulation and oxidative stress tolerance in ABA-dependent and independent ways. Sci Rep 2018; 8:16592. [PMID: 30413758 PMCID: PMC6226459 DOI: 10.1038/s41598-018-34862-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/18/2018] [Indexed: 01/05/2023] Open
Abstract
Arabidopsis ABA3 is an enzyme involved in the synthesis of the sulfurated form of the molybdenum (Mo) cofactor (MoCo), which is required for the enzymatic activity of so-called Mo enzymes such as aldehyde oxidase (AO) and xanthine dehydrogenase (XDH). It has been reported that AO and XDH are essential for the biosynthesis of the bioactive compounds, ABA and allantoin, respectively. However, aba3 mutants often exhibit pleiotropic phenotypes that are not explained by defects in ABA and/or allantoin biosynthesis, leading us to hypothesize that ABA3 regulates additional metabolic pathways. To reveal the currently unidentified functions of ABA3 we compared transcriptome and metabolome of the Arabidopsis aba3 mutant with those of wild type and a typical ABA-deficient mutant aba2. We found that endogenous levels of anthocyanins, members of the flavonoid group, were significantly lower in the aba3 mutant than in the wild type or the aba2 mutant under oxidative stress. In contrast, mutants defective in the AO and XDH holoenzymes accumulated significantly higher levels of anthocyanins when compared with aba3 mutant under the same conditions. Our findings shed light on a key role of ABA3 in the ABA- and allantoin-independent accumulation of anthocyanins during stress responses.
Collapse
Affiliation(s)
- Shunsuke Watanabe
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Muneo Sato
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuji Sawada
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Maho Tanaka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Akihiro Matsui
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Atsushi Sakamoto
- Department of Mathematics and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
868
|
de Camargo AC, Schwember AR, Parada R, Garcia S, Maróstica MR, Franchin M, Regitano-d'Arce MAB, Shahidi F. Opinion on the Hurdles and Potential Health Benefits in Value-Added Use of Plant Food Processing By-Products as Sources of Phenolic Compounds. Int J Mol Sci 2018; 19:E3498. [PMID: 30404239 PMCID: PMC6275048 DOI: 10.3390/ijms19113498] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/23/2022] Open
Abstract
Plant foods, their products and processing by-products are well recognized as important sources of phenolic compounds. Recent studies in this field have demonstrated that food processing by-products are often richer sources of bioactive compounds as compared with their original feedstock. However, their final application as a source of nutraceuticals and bioactives requires addressing certain hurdles and challenges. This review discusses recent knowledge advances in the use of plant food processing by-products as sources of phenolic compounds with special attention to the role of genetics on the distribution and biosynthesis of plant phenolics, as well as their profiling and screening, potential health benefits, and safety issues. The potentialities in health improvement from food phenolics in animal models and in humans is well substantiated, however, considering the emerging market of plant food by-products as potential sources of phenolic bioactives, more research in humans is deemed necessary.
Collapse
Affiliation(s)
- Adriano Costa de Camargo
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
- Department of Food Science and Technology, Londrina State University, Londrina 86051-990, Parana State, Brazil.
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba 13418-900, São Paulo State, Brazil.
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Andrés R Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| | - Roberto Parada
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| | - Sandra Garcia
- Department of Food Science and Technology, Londrina State University, Londrina 86051-990, Parana State, Brazil.
| | - Mário Roberto Maróstica
- Department of Food and Nutrition, University of Campinas-UNICAMP, Campinas 13083-862, São Paulo State, Brazil.
| | - Marcelo Franchin
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, São Paulo State, Brazil.
| | - Marisa Aparecida Bismara Regitano-d'Arce
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba 13418-900, São Paulo State, Brazil.
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
869
|
Brassica yellows virus' movement protein upregulates anthocyanin accumulation, leading to the development of purple leaf symptoms on Arabidopsis thaliana. Sci Rep 2018; 8:16273. [PMID: 30389981 PMCID: PMC6215002 DOI: 10.1038/s41598-018-34591-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/15/2018] [Indexed: 11/08/2022] Open
Abstract
Poleroviruses are widely distributed and often of great economic importance because they cause a variety of symptoms, such as the rolling of young leaves, leaf color changes, and plant decline, in infected plants. However, the molecular mechanism behind these viral-induced symptoms is still unknown. Here, we verified the pathogenicity of the polerovirus Brassica yellows virus (BrYV) by transforming its full-length amplicon into Arabidopsis thaliana, which resulted in many abnormal phenotypes. To better understand the interactions between BrYV and its host, global transcriptome profiles of the transgenic plants were compared with that of non-transgenic Arabidopsis plants. An association between the BrYV- induced purple leaf symptoms and the activation of anthocyanin biosynthesis was noted. Using the transgenic approach, we found that movement protein of BrYV was responsible for the induction of these coloration symptoms. Collectively, our findings demonstrate the BrYV’ pathogenicity and show that the BrYV-induced purple leaf symptom resulted from its movement protein stimulating anthocyanin accumulation.
Collapse
|
870
|
An JP, Yao JF, Xu RR, You CX, Wang XF, Hao YJ. Apple bZIP transcription factor MdbZIP44 regulates abscisic acid-promoted anthocyanin accumulation. PLANT, CELL & ENVIRONMENT 2018; 41:2678-2692. [PMID: 29940702 DOI: 10.1111/pce.13393] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/08/2018] [Accepted: 06/21/2018] [Indexed: 05/23/2023]
Abstract
Phytohormone abscisic acid (ABA) induces anthocyanin biosynthesis; however, the underlying molecular mechanism is less known. In this study, we found that the apple MYB transcription factor MdMYB1 activated anthocyanin biosynthesis in response to ABA. Using a yeast screening technique, we isolated MdbZIP44, an ABA-induced bZIP transcription factor in apple, as a co-partner with MdMYB1. MdbZIP44 promoted anthocyanin accumulation in response to ABA by enhancing the binding of MdMYB1 to the promoters of downstream target genes. Furthermore, we identified MdBT2, a BTB protein, as an MdbZIP44-interacting protein. A series of molecular, biochemical, and genetic analysis suggested that MdBT2 degraded MdbZIP44 protein through the Ubiquitin-26S proteasome system, thus inhibiting MdbZIP44-modulated anthocyanin biosynthesis. Taken together, we reveal a novel working mechanism of MdbZIP44-mediated anthocyanin biosynthesis in response to ABA.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Ji-Fang Yao
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Rui-Rui Xu
- College of Biological and Agricultural Engineering, Weifang University, Weifang, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| |
Collapse
|
871
|
Huang D, Wang X, Tang Z, Yuan Y, Xu Y, He J, Jiang X, Peng SA, Li L, Butelli E, Deng X, Xu Q. Subfunctionalization of the Ruby2-Ruby1 gene cluster during the domestication of citrus. NATURE PLANTS 2018; 4:930-941. [PMID: 30374094 DOI: 10.1038/s41477-018-0287-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 09/21/2018] [Indexed: 05/03/2023]
Abstract
The evolution of fruit colour in plants is intriguing. Citrus fruit has repeatedly gained or lost the ability to synthesize anthocyanins. Chinese box orange, a primitive citrus, can accumulate anthocyanins both in its fruits and its leaves. Wild citrus can accumulate anthocyanins in its leaves. In contrast, most cultivated citrus have lost the ability to accumulate anthocyanins. We characterized a novel MYB regulatory gene, Ruby2, which is adjacent to Ruby1, a known anthocyanin activator of citrus. Different Ruby2 alleles can have opposite effects on the regulation of anthocyanin biosynthesis. AbRuby2Full encodes an anthocyanin activator that mainly functions in the pigmented leaves of Chinese box orange. CgRuby2Short was identified in purple pummelo and encodes an anthocyanin repressor. CgRuby2Short has lost the ability to activate anthocyanin biosynthesis. However, it retains the ability to interact with the same partner, CgbHLH1, as CgRuby1, thus acting as a passive competitor in the regulatory complex. Further investigation in different citrus species indicated that the Ruby2-Ruby1 cluster exhibits subfunctionalization among primitive, wild and cultivated citrus. Our study elucidates the regulatory mechanism and evolutionary history of the Ruby2-Ruby1 cluster in citrus, which are unique and different from that found in Arabidopsis, grape or petunia.
Collapse
Affiliation(s)
- Ding Huang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xia Wang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhouzhou Tang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yue Yuan
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yuantao Xu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jiaxian He
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xiaolin Jiang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Shu-Ang Peng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, USA
| | | | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
872
|
Liu L, Li Y, She G, Zhang X, Jordan B, Chen Q, Zhao J, Wan X. Metabolite profiling and transcriptomic analyses reveal an essential role of UVR8-mediated signal transduction pathway in regulating flavonoid biosynthesis in tea plants (Camellia sinensis) in response to shading. BMC PLANT BIOLOGY 2018; 18:233. [PMID: 30314466 PMCID: PMC6186127 DOI: 10.1186/s12870-018-1440-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 09/24/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Tea is the most popular nonalcoholic beverage worldwide for its pleasant characteristics and healthful properties. Catechins, theanine and caffeine are the major natural products in tea buds and leaves that determine tea qualities such as infusion colors, tastes and fragrances, as well as their health benefits. Shading is a traditional and effective practice to modify natural product accumulation and to enhance the tea quality in tea plantation. However, the mechanism underlying the shading effects is not fully understood. This study aims to explore the regulation of flavonoid biosynthesis in Camellia sinensis under shading by using both metabolomic and transcriptional analyses. RESULTS While shading enhanced chlorophyll accumulation, major catechins, including C, EC, GC and EGC, decreased significantly in tea buds throughout the whole shading period. The reduction of catechins and flavonols were consistent with the simultaneous down-regulation of biosynthetic genes and TFs associated with flavonoid biosynthesis. Of 16 genes involved in the flavonoid biosynthetic pathway, F3'H and FLS significantly decreased throughout shading while the others (PAL, CHSs, DFR, ANS, ANR and LAR, etc.) temporally decreased in early or late shading stages. Gene co-expression cluster analysis suggested that a number of photoreceptors and potential genes involved in UV-B signal transductions (UVR8_L, HY5, COP1 and RUP1/2) showed decreasing expression patterns consistent with structural genes (F3'H, FLS, ANS, ANR, LAR, DFR and CHSs) and potential TFs (MYB4, MYB12, MYB14 and MYB111) involved in flavonoid biosynthesis, when compared with genes in the UV-A/blue and red/far-red light signal transductions. The KEGG enrichment and matrix correlation analyses also attributed the regulation of catechin biosynthesis to the UVR8-mediated signal transduction pathway. Further UV-B treatment in the controlled environment confirmed UV-B induction on flavonols and EGCG accumulation in tea leaves. CONCLUSIONS We proposed that catechin biosynthesis in C. sinensis leaves is predominantly regulated by UV through the UVR8-mediated signal transduction pathway to MYB12/MYB4 downstream effectors, to modulate flavonoid accumulation. Our study provides new insights into our understanding of regulatory mechanisms for shading-enhanced tea quality.
Collapse
Affiliation(s)
- Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Yingying Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Guangbiao She
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Xianchen Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Brian Jordan
- Centre for Viticulture and Oenology, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, 7647 New Zealand
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 Anhui China
| |
Collapse
|
873
|
Petric T, Kiferle C, Perata P, Gonzali S. Optimizing shelf life conditions for anthocyanin-rich tomatoes. PLoS One 2018; 13:e0205650. [PMID: 30308054 PMCID: PMC6181405 DOI: 10.1371/journal.pone.0205650] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/30/2018] [Indexed: 11/18/2022] Open
Abstract
Shelf life is the time a product can be stored without losing its qualitative characteristics. It represents one of the most critical quality traits for food products, particularly for fleshy fruits, including tomatoes. Tomatoes' shelf life is usually shortened due to fast over-ripening caused by several different factors, among which changes in temperature, respiration and pathogen exposure. Although tomatoes usually do not contain anthocyanins, varieties enriched in these antioxidant compounds have been recently developed. The anthocyanin-rich tomatoes have been shown to possess a significantly extended shelf life by delayed over-ripening and reduction of the susceptibility to certain pathogens. In the present work, we compared different conditions of postharvest storage of anthocyanin-rich tomato fruits with the aim to understand if the added value represented by the presence of the anthocyanins in the fruit peel can be affected in postharvest. For this purpose we used an anthocyanin-enriched tomato line derived from conventional breeding and took into consideration different light and temperature conditions, known to affect fruit physiology during postharvest as well as anthocyanin production. Several quality traits related to the fruit ripening were measured, including anthocyanin and carotenoid content, pH, titratable acidity and total soluble solids. In this way we identified that the most suitable fruit storage and postharvest anthocyanin accumulation were obtained through exposure to cool temperature (12° C), particularly in the presence of light. Under these parameters, tomato fruits showed increased anthocyanin content and unchanged flavour-related features up to three weeks after harvesting.
Collapse
Affiliation(s)
- Tina Petric
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Claudia Kiferle
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Pierdomenico Perata
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Silvia Gonzali
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| |
Collapse
|
874
|
Constabel CP. Molecular Controls of Proanthocyanidin Synthesis and Structure: Prospects for Genetic Engineering in Crop Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9882-9888. [PMID: 30139248 DOI: 10.1021/acs.jafc.8b02950] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Proanthocyanidins (PAs) are widespread oligomeric and polymeric flavan-3-ols with significant benefits to human and animal health. As products of the general flavonoid pathway, the biosynthesis of the flavan-3-ols is well-understood and the major enzyme-encoding genes that determine PA structure have been identified. However, the mechanism of PA polymerization remains unknown. The most important transcription factors regulating PA biosynthesis are the MYB factors, potent tools for enhancing PA biosynthesis in plants. In some species, simple overexpression of these transcription factors has led to spectacular successes in upregulating PA synthesis. However, targeted metabolic engineering of the PA structure has not yet been achieved.
Collapse
Affiliation(s)
- C Peter Constabel
- Centre for Forest Biology and Department of Biology , University of Victoria , Post Office Box 3020, Victoria , British Columbia V8W 3N5 , Canada
| |
Collapse
|
875
|
Soto-Cerda BJ, Cloutier S, Quian R, Gajardo HA, Olivos M, You FM. Genome-Wide Association Analysis of Mucilage and Hull Content in Flax ( Linum usitatissimum L.) Seeds. Int J Mol Sci 2018; 19:ijms19102870. [PMID: 30248911 PMCID: PMC6213135 DOI: 10.3390/ijms19102870] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 01/20/2023] Open
Abstract
New flaxseed cultivars differing in seed mucilage content (MC) with low hull content (HC) represent an attractive option to simultaneously target the food and feed markets. Here, a genome-wide association study (GWAS) was conducted for MC and HC in 200 diverse flaxseed accessions genotyped with 1.7 million single nucleotide polymorphism (SNP) markers. The data obtained for MC and HC indicated a broad phenotypic variation and high (~70%) and a moderate (~49%) narrow sense heritability, respectively. MC and HC did not differ statistically between fiber and oil morphotypes, but yellow-seeded accessions had 2.7% less HC than brown-seeded ones. The genome-wide linkage disequilibrium (LD) decayed to r2 = 0.1 at a physical distance of ~100 kb. Seven and four quantitative trait loci (QTL) were identified for MC and HC, respectively. Promising candidate genes identified include Linum usitatissimum orthologs of the Arabidopsis thaliana genes TRANSPARENT TESTA 8, SUBTILISIN-LIKE SERINE PROTEASE, GALACTUROSYL TRANSFERASE-LIKE 5, MUCILAGE-MODIFIED 4, AGAMOUS-LIKE MADS-BOX PROTEIN AGL62, GLYCOSYL HYDROLASE FAMILY 17, and UDP-GLUCOSE FLAVONOL 3-O-GLUCOSYLTRANSFERASE. These genes have been shown to play a role in mucilage synthesis and release, seed coat development and anthocyanin biosynthesis in A. thaliana. The favorable alleles will be useful in flaxseed breeding towards the goal of achieving the ideal MC and HC composition for food and feed by genomic-based breeding.
Collapse
Affiliation(s)
- Braulio J Soto-Cerda
- Agriaquaculture Nutritional Genomic Center (CGNA), Las Heras 350, Temuco 4781158, Chile.
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Rocío Quian
- Agriaquaculture Nutritional Genomic Center (CGNA), Las Heras 350, Temuco 4781158, Chile.
| | - Humberto A Gajardo
- Agriaquaculture Nutritional Genomic Center (CGNA), Las Heras 350, Temuco 4781158, Chile.
| | - Marcos Olivos
- Agriaquaculture Nutritional Genomic Center (CGNA), Las Heras 350, Temuco 4781158, Chile.
| | - Frank M You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| |
Collapse
|
876
|
Gallego AM, Rojas LF, Parra O, Rodriguez HA, Mazo Rivas JC, Urrea AI, Atehortúa L, Fister AS, Guiltinan MJ, Maximova SN, Pabón-Mora N. Transcriptomic analyses of cacao cell suspensions in light and dark provide target genes for controlled flavonoid production. Sci Rep 2018; 8:13575. [PMID: 30206304 PMCID: PMC6134037 DOI: 10.1038/s41598-018-31965-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/03/2018] [Indexed: 12/16/2022] Open
Abstract
Catechins, including catechin (C) and epicatechin (E), are the main type of flavonoids in cacao seeds. They play important roles in plant defense and have been associated with human health benefits. Although flavonoid biosynthesis has been extensively studied using in vitro and in vivo models, the regulatory mechanisms controlling their accumulation under light/dark conditions remain poorly understood. To identify differences in flavonoid biosynthesis (particularly catechins) under different light treatments, we used cacao cell suspensions exposed to white-blue light and darkness during 14 days. RNA-Seq was applied to evaluate differential gene expression. Our results indicate that light can effectively regulate flavonoid profiles, inducing a faster accumulation of phenolic compounds and shifting E/C ratios, in particular as a response to switching from white to blue light. The results demonstrated that HY5, MYB12, ANR and LAR were differentially regulated under light/dark conditions and could be targeted by overexpression aiming to improve catechin synthesis in cell cultures. In conclusion, our RNA-Seq analysis of cacao cells cultured under different light conditions provides a platform to dissect key aspects into the genetic regulatory network of flavonoids. These light-responsive candidate genes can be used further to modulate the flavonoid production in in vitro systems with value-added characteristics.
Collapse
Affiliation(s)
- Adriana M Gallego
- Universidad de Antioquia, Grupo de Biotecnología, Medellín, Colombia
| | - Luisa F Rojas
- Universidad de Antioquia, Grupo de Biotecnología-Escuela de Microbiología, Medellín, Colombia
| | - Oriana Parra
- Universidad de Antioquia, Grupo de Biotecnología, Medellín, Colombia
| | - Héctor A Rodriguez
- Corporación para Investigaciones Biológicas and Departamento de Ciencias Agronómicas, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, UNALMED-CIB, Medellín, Colombia
| | | | - Aura Inés Urrea
- Universidad de Antioquia, Grupo de Biotecnología, Medellín, Colombia
| | - Lucía Atehortúa
- Universidad de Antioquia, Grupo de Biotecnología, Medellín, Colombia
| | - Andrew S Fister
- Department of Plant Science and Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Mark J Guiltinan
- Department of Plant Science and Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Siela N Maximova
- Department of Plant Science and Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA, United States.
| | - Natalia Pabón-Mora
- Universidad de Antioquia, Instituto de Biología, Grupo Evo-Devo en Plantas, Medellín, Colombia.
| |
Collapse
|
877
|
Transcriptome analysis of differentially expressed unigenes involved in flavonoid biosynthesis during flower development of Chrysanthemum morifolium 'Chuju'. Sci Rep 2018; 8:13414. [PMID: 30194355 PMCID: PMC6128863 DOI: 10.1038/s41598-018-31831-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/28/2018] [Indexed: 11/08/2022] Open
Abstract
Chrysanthemum morifolium is an ornamentally and medicinally important plant species. Up to date, molecular and genetic investigations have largely focused on determination of flowering time in the ornamental species. However, little is known about gene regulatory networks for the biosynthesis of flavonoids in the medicinal species. In the current study, we employed the high-throughput sequencing technology to profile the genome-wide transcriptome of C. morifolium 'Chuju', a famous medicinal species in traditional Chinese medicine. A total of 63,854 unigenes with an average length of 741 bp were obtained. Bioinformatic analysis has identified a great number of structural and regulatory unigenes potentially participating in the flavonoid biosynthetic pathway. According to the comparison of digital gene expression, 8,370 (3,026 up-regulated and 5,344 down-regulated), 1,348 (717 up-regulated and 631 down-regulated) and 944 (206 up-regulated and 738 down-regulated) differentially expressed unigenes (DEUs) were detected in the early, middle and mature growth phases, respectively. Among them, many DEUs were implicated in controlling the biosynthesis and composition of flavonoids from the budding to full blooming stages during flower development. Furthermore, the expression patterns of 12 unigenes involved in flavonoid biosynthesis were generally validated by using quantitative real time PCR. These findings could shed light on the molecular basis of flavonoid biosynthesis in C. morifolium 'Chuju' and provide a genetic resource for breeding varieties with improved nutritional quality.
Collapse
|
878
|
Jones MA. Using light to improve commercial value. HORTICULTURE RESEARCH 2018; 5:47. [PMID: 30181887 PMCID: PMC6119199 DOI: 10.1038/s41438-018-0049-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/24/2018] [Accepted: 05/02/2018] [Indexed: 05/20/2023]
Abstract
The plasticity of plant morphology has evolved to maximize reproductive fitness in response to prevailing environmental conditions. Leaf architecture elaborates to maximize light harvesting, while the transition to flowering can either be accelerated or delayed to improve an individual's fitness. One of the most important environmental signals is light, with plants using light for both photosynthesis and as an environmental signal. Plants perceive different wavelengths of light using distinct photoreceptors. Recent advances in LED technology now enable light quality to be manipulated at a commercial scale, and as such opportunities now exist to take advantage of plants' developmental plasticity to enhance crop yield and quality through precise manipulation of a crops' lighting regime. This review will discuss how plants perceive and respond to light, and consider how these specific signaling pathways can be manipulated to improve crop yield and quality.
Collapse
Affiliation(s)
- Matthew Alan Jones
- School of Biological Sciences, University of Essex, Wivenhoe Park, Essex, Colchester, CO4 3SQ UK
| |
Collapse
|
879
|
Lin Y, Jiang L, Chen Q, Li Y, Zhang Y, Luo Y, Zhang Y, Sun B, Wang X, Tang H. Comparative Transcriptome Profiling Analysis of Red- and White-Fleshed Strawberry (Fragaria�ananassa) Provides New Insight into the Regulation of the Anthocyanin Pathway. PLANT & CELL PHYSIOLOGY 2018; 59:1844-1859. [PMID: 29800352 DOI: 10.1093/pcp/pcy098] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/14/2018] [Indexed: 05/07/2023]
Abstract
Anthocyanins are water-soluble pigments in plants. They confer both economic and healthy profits for humans. To gain a deeper insight into the regulation of anthocyanin biosynthesis in octoploid strawberry (Fragaria�ananassa; Fa), a widely consumed economically important fruit, we performed comparative transcriptomic analysis of red- and white-fleshed strawberry cultivars in two ripening stages. In total, 365,455 non-redundant transcripts were assembled from the RNA sequencing (RNAseq) data. Of this collection, 377 were annotated as putative anthocyanin-related transcripts. Differential expression analysis revealed that 57 anthocyanin biosynthesis transcripts were down-regulated, and 89 transcription factors (TFs) were either down- or up-regulated under anthocyanin deficiency. Additionally, amongst the 50,601 putative long non-coding RNAs (lncRNAs) identified here, 68 lncRNAs were differentially expressed and co-expressed with differentially expressed anthocyanin-related mRNAs; 2,070 co-expressing lncRNA-mRNA pairs were generated. Expression profile analysis revealed that it was the limited expression of FaF3'H (flavonoid 3'-hydroxylase) that blocked the cyanidin 3-glucoside accumulation in the two investigated strawberry cultivars. This was further supported by a transient overexpression experiment with FaMYB10. The down-regulated lncRNAs might participate in anthocyanin regulation by acting as targets for microRNAs (miRNAs). The level of competitive intensity in miRNA and lncRNA for the same mRNA targets was probably lower in the white-fleshed strawberries, which can release the repression effect of the mRNAs in red-fleshed strawberry as a result. This study for the first time presents lncRNAs related to anthocyanins in strawberries, provides new insights into the anthocyanin regulatory network and also lays the foundation for identifying new anthocyanin regulators in strawberry.
Collapse
Affiliation(s)
- Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Leiyu Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yali Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
880
|
Li J, Zong J, Chen J, Wang Y, Li D, Li L, Wang J, Guo H, Liu J. De novo assembly and comparative transcriptome analysis reveals genes potentially involved in tissue-color changes in centipedegrass (Eremochloa ophiuroides [Munro] Hack.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:345-355. [PMID: 30053740 DOI: 10.1016/j.plaphy.2018.06.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/05/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
Turf color is the most important characteristics of visual quality for a turfgrass species with high ornamental value and wide application prospects. Centipedegrass is a well-adapted warm-season turfgrass species in tropical, subtropical and temperate regions, possessing many outstanding properties including uniform green color. However, quite a few centipedegrass accessions or cultivars produce stolons and spike tissues with red-purple color, thereby decreasing their aesthetic value. A research focus in centipedegrass is to develop high-quality cultivars with uniform green color. To explore the major genes associated with the color changes in certain organs/tissues contributes to understand the molecular mechanisms of the same tissues having different phenotypic characteristics. In the present study, two phenotypically distinct centipedegrass accessions, E092 being a wild-type (WT) with red-purple stolons and spike tissues and E092-1 being a mutant (MT) with uniform green stolons and spike tissues, were used. Using the Illumina sequencing platform, approximately 401.7 million high-quality paired-end reads were obtained. After de novo assembly and quantitative assessment, 352,513 transcript sequences corresponding to 293,033 unigenes were generated with an average length of 735 bp. A total of 145,032 (49.49%) unigenes were annotated by alignment with public protein databases. Of these unigenes, 329 differentially expressed genes (DEGs) were identified between WT and MT stolons, with 156 up-regulated and 173 down-regulated; and 829 DEGs were detected between WT and MT spike tissues, including 497 up-regulated and 332 down-regulated. The expression profile of 10 randomly selected DEGs was confirmed with RT-qPCR. Candidate genes involved in the flavonoid biosynthesis were identified showing significant transcript changes between WT and MT organs/tissues. And transcript abundances of these flavonoid biosynthetic pathway-related genes were positively correlated with the accumulation of total anthocyanin in respective organs/tissues. This assembled transcriptome of centipedegrass can be served as a global description of expressed genes of above-ground organs/tissues and provide more molecular resources for future functional characterization analysis of genomics in warm-season turfgrass. Identified genes related to centipedegrass organ/tissue changes will contribute to molecular improvement of turf quality through genetic manipulation.
Collapse
Affiliation(s)
- Jianjian Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, Jiangsu, PR China
| | - Junqin Zong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, Jiangsu, PR China
| | - Jingbo Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, Jiangsu, PR China
| | - Yi Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, Jiangsu, PR China
| | - Dandan Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, Jiangsu, PR China
| | - Ling Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, Jiangsu, PR China
| | - Jingjing Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, Jiangsu, PR China
| | - Hailin Guo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, Jiangsu, PR China
| | - Jianxiu Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, Jiangsu, PR China.
| |
Collapse
|
881
|
Bai C, Xu J, Cao B, Li X, Li G. Transcriptomic analysis and dynamic expression of genes reveal flavonoid synthesis in Scutellaria viscidula. ACTA PHYSIOLOGIAE PLANTARUM 2018; 40:161. [DOI: 10.1007/s11738-018-2733-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/11/2018] [Accepted: 07/25/2018] [Indexed: 01/20/2025]
|
882
|
Li Y, Yu G, Lv Y, Long T, Li P, Hu Y, Liu H, Zhang J, Liu Y, Li WC, Huang Y. Combinatorial interaction of two adjacent cis-active promoter regions mediates the synergistic induction of Bt2 gene by sucrose and ABA in maize endosperm. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:332-340. [PMID: 30080620 DOI: 10.1016/j.plantsci.2018.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 05/23/2023]
Abstract
The accumulation of starch in cereal endosperm is a key process that determines crop yield and quality. Research has reported that sucrose and abscisic acid (ABA) synergistically regulate the synthesis of crop starch. However, little is known about the molecular mechanisms behind this synergistic effect. In this study, the effect of sucrose and ABA on starch synthesis in maize endosperm was investigated. The starch content, the ADP-Glc pyrophosphorylase (AGPase) concentration, and the expression of AGPase-encoding genes were found to be enhanced slightly by sucrose or ABA alone, but were elevated significantly by the co-treatment of sucrose and ABA. Truncation analysis of the Bt2 promoter via transient expression in maize endosperm showed that the promoter region (-370/-186) is involved in sucrose response, and that an adjacent region (-186/-43) responds to ABA. The synergistic induction of sucrose and ABA on Bt2 promoter activity requires interaction with both of these regions. Interestingly, removal of the sucrose-responsive region (-370 to -186) abolishes ABA responsiveness in the Bt2 promoter, even in the presence of ABA-responsive region (-186 to -43). This study provides novel insights into the regulatory mechanisms that underlie the synergistic regulation of starch synthesis and grain filling from sucrose and ABA in cereal endosperm.
Collapse
Affiliation(s)
- Yangping Li
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Guowu Yu
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Yanan Lv
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Tiandan Long
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Ping Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Yufeng Hu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Hanmei Liu
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - Yinghong Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Wan-Chen Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Yubi Huang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
883
|
Francoz E, Lepiniec L, North HM. Seed coats as an alternative molecular factory: thinking outside the box. PLANT REPRODUCTION 2018; 31:327-342. [PMID: 30056618 DOI: 10.1007/s00497-018-0345-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/13/2018] [Indexed: 05/15/2023]
Abstract
Seed coats as commodities. Seed coats play important roles in the protection of the embryo from biological attack and physical damage by the environment as well as dispersion strategies. A significant part of the energy devoted by the mother plant to seed production is channeled into the production of the cell layers and metabolites that surround the embryo. Nevertheless, in crop species these are often discarded post-harvest and are a wasted resource that could be processed to yield co-products. The production of novel compounds from existing metabolites is also a possibility. A number of macromolecules are already accumulated in these maternal layers that could be exploited in industrial applications either directly or via green chemistry, notably flavonoids, lignin, lignan, polysaccharides, lipid polyesters and waxes. Here, we summarize our knowledge of the in planta biosynthesis pathways of these macromolecules and their molecular regulation as well as potential applications. We also outline recent work aimed at providing further tools for increasing yields of existing molecules or the development of novel biotech approaches, as well as trial studies aimed at exploiting this underused resource.
Collapse
Affiliation(s)
- Edith Francoz
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Helen M North
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France.
| |
Collapse
|
884
|
Yamagishi M, Uchiyama H, Handa T. Floral pigmentation pattern in Oriental hybrid lily (Lilium spp.) cultivar 'Dizzy' is caused by transcriptional regulation of anthocyanin biosynthesis genes. JOURNAL OF PLANT PHYSIOLOGY 2018; 228:85-91. [PMID: 29879604 DOI: 10.1016/j.jplph.2018.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/19/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
Flower color patterns are the result of spatially and temporally restricted pigment deposition, and clarifying the mechanisms responsible for restricted pigment deposition is a topic of broad interest for both theoretical and practical reasons. The Oriental hybrid lily cultivar 'Dizzy' develops red stripes along the tepal midribs; in order to clarify the genetic basis of these stripes, we isolated most of the genes related to anthocyanin accumulation from 'Dizzy' tepals and compared their expression levels between the red stripe region and the white marginal region of the tepals. RNA-seq revealed a complete set of genes necessary for anthocyanin biosynthesis and transport, including anthocyanidin 3-O-glucosyltransferase and glutathione S-transferase. Most of these genes were expressed at higher rates in the red stripe region than in the white region, suggesting that transcriptional regulation of these genes is primarily responsible for the spatially restricted anthocyanin deposition in 'Dizzy' tepals. Subgroup 6 R2R3-MYB is a major factor regulating anthocyanin biosynthesis: RNA-seq clarified three subgroup 6 R2R3-MYB genes expressed in 'Dizzy' tepals, of which MYB12 was predominantly expressed. Expression of MYB12 was six-fold higher in the red-pigmented region than in the white region. Thus, MYB12 is more likely to be involved in the regulation of the restricted anthocyanin deposition in 'Dizzy', even though MYB12 is expressed in the entire tepal region of many Oriental hybrid lily cultivars. Diversity of the expression profiles of MYB12 among lily cultivars and species is also discussed.
Collapse
Affiliation(s)
- Masumi Yamagishi
- Research Faculty of Agriculture, Hokkaido University, N9W9, Kita-ku, Sapporo 060-8589, Japan.
| | - Hirohide Uchiyama
- Graduate School of Agriculture, Hokkaido University, N9W9, Kita-ku, Sapporo 060-8589, Japan
| | - Takashi Handa
- School of Agriculture, Meiji University, Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| |
Collapse
|
885
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 19:ijms19092506. [PMID: 30149541 PMCID: PMC6165531 DOI: 10.3390/ijms19092506] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/07/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
886
|
Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R. The Sugar-Signaling Hub: Overview of Regulators and Interaction with the Hormonal and Metabolic Network. Int J Mol Sci 2018; 57:2367-2379. [PMID: 30149541 DOI: 10.1093/pcp/pcw157] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/07/2018] [Accepted: 09/05/2016] [Indexed: 05/25/2023] Open
Abstract
Plant growth and development has to be continuously adjusted to the available resources. Their optimization requires the integration of signals conveying the plant metabolic status, its hormonal balance, and its developmental stage. Many investigations have recently been conducted to provide insights into sugar signaling and its interplay with hormones and nitrogen in the fine-tuning of plant growth, development, and survival. The present review emphasizes the diversity of sugar signaling integrators, the main molecular and biochemical mechanisms related to the sugar-signaling dependent regulations, and to the regulatory hubs acting in the interplay of the sugar-hormone and sugar-nitrogen networks. It also contributes to compiling evidence likely to fill a few knowledge gaps, and raises new questions for the future.
Collapse
Affiliation(s)
- Soulaiman Sakr
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Ming Wang
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Fabienne Dédaldéchamp
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Maria-Dolores Perez-Garcia
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Laurent Ogé
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Latifa Hamama
- Institut de Recherche en Horticulture et Semences, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, F-49045 Angers, France.
| | - Rossitza Atanassova
- Equipe "Sucres & Echanges Végétaux-Environnement", Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267 EBI, Bâtiment B31, 3 rue Jacques Fort, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|
887
|
Tai Y, Liu C, Yu S, Yang H, Sun J, Guo C, Huang B, Liu Z, Yuan Y, Xia E, Wei C, Wan X. Gene co-expression network analysis reveals coordinated regulation of three characteristic secondary biosynthetic pathways in tea plant (Camellia sinensis). BMC Genomics 2018; 19:616. [PMID: 30111282 PMCID: PMC6094456 DOI: 10.1186/s12864-018-4999-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 08/08/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The leaves of tea plants (Camellia sinensis) are used to produce tea, which is one of the most popular beverages consumed worldwide. The nutritional value and health benefits of tea are mainly related to three abundant characteristic metabolites; catechins, theanine and caffeine. Weighted gene co-expression network analysis (WGCNA) is a powerful system for investigating correlations between genes, identifying modules among highly correlated genes, and relating modules to phenotypic traits based on gene expression profiling. Currently, relatively little is known about the regulatory mechanisms and correlations between these three secondary metabolic pathways at the omics level in tea. RESULTS In this study, levels of the three secondary metabolites in ten different tissues of tea plants were determined, 87,319 high-quality unigenes were assembled, and 55,607 differentially expressed genes (DEGs) were identified by pairwise comparison. The resultant co-expression network included 35 co-expression modules, of which 20 modules were significantly associated with the biosynthesis of catechins, theanine and caffeine. Furthermore, we identified several hub genes related to these three metabolic pathways, and analysed their regulatory relationships using RNA-Seq data. The results showed that these hub genes are regulated by genes involved in all three metabolic pathways, and they regulate the biosynthesis of all three metabolites. It is notable that light was identified as an important regulator for the biosynthesis of catechins. CONCLUSION Our integrated omics-level WGCNA analysis provides novel insights into the potential regulatory mechanisms of catechins, theanine and caffeine metabolism, and the identified hub genes provide an important reference for further research on the molecular biology of tea plants.
Collapse
Affiliation(s)
- Yuling Tai
- School of Life Science, Anhui Agricultural University, Hefei, 230036 China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Chun Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083 China
| | - Shuwei Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Hua Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Jiameng Sun
- School of Life Science, Anhui Agricultural University, Hefei, 230036 China
| | - Chunxiao Guo
- School of Life Science, Anhui Agricultural University, Hefei, 230036 China
| | - Bei Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Zhaoye Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Yi Yuan
- School of Life Science, Anhui Agricultural University, Hefei, 230036 China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036 China
| |
Collapse
|
888
|
McClean PE, Bett KE, Stonehouse R, Lee R, Pflieger S, Moghaddam SM, Geffroy V, Miklas P, Mamidi S. White seed color in common bean (Phaseolus vulgaris) results from convergent evolution in the P (pigment) gene. THE NEW PHYTOLOGIST 2018; 219:1112-1123. [PMID: 29897103 DOI: 10.1111/nph.15259] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/20/2018] [Indexed: 05/10/2023]
Abstract
The presence of seed color in common bean (Phaseolus vulgaris) requires the dominant-acting P (pigment) gene, and white seed is a recessive phenotype in all domesticated races of the species. P was classically associated with seed size, thus describing it as the first genetic marker for a quantitative trait. The molecular structure of P was characterized to understand the selection of white seeds during bean diversification and the relationship of P to seed weight. P was identified by homology searches, a genome-wide association study (GWAS) and gene remodeling, and confirmed by gene silencing. Allelic variation was assessed by a combination of resequencing and marker development, and the relationship between P and seed weight was assessed by a GWAS study. P is a member of clade B of subclass IIIf of plant basic helix-loop-helix (bHLH) proteins. Ten race-specific P alleles conditioned the white seed phenotype, and each causative mutation affected at least one bHLH domain required for color expression. GWAS analysis confirmed the classic association of P with seed weight. In common bean, white seeds are the result of convergent evolution and, among plant species, orthologous convergence on a single transcription factor gene was observed.
Collapse
Affiliation(s)
- Phillip E McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND, 58108, USA
| | - Kirstin E Bett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Robert Stonehouse
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Rian Lee
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Stephanie Pflieger
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
| | | | - Valerie Geffroy
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
| | - Phil Miklas
- USDA-ARS, Grain Legumes Genetics and Physiology Research Unit, Prosser, WA, 99350, USA
| | - Sujan Mamidi
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| |
Collapse
|
889
|
Li S, Wu Y, Kuang J, Wang H, Du T, Huang Y, Zhang Y, Cao X, Wang Z. SmMYB111 Is a Key Factor to Phenolic Acid Biosynthesis and Interacts with Both SmTTG1 and SmbHLH51 in Salvia miltiorrhiza. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8069-8078. [PMID: 30001627 DOI: 10.1021/acs.jafc.8b02548] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Transcription factors that include myeloblastosis (MYB), basic helix-loop-helix (bHLH), and tryptophan-aspartic acid (WD)-repeat protein often form a ternary complex to regulate the phenylpropanoid pathway. However, only a few MYB and bHLH members involved in the biosynthesis of salvianolic acid B (Sal B) have been reported, and little is known about Sal B pathway regulation by the WD40 protein transparent testa glabra 1 (TTG1)-dependent transcriptional complexes in Salvia miltiorrhiza. We isolated SmTTG1 from that species for detailed functional characterization. Enhanced or reduced expression of SmTTG1 was achieved by gain- or loss-of-function assays, respectively, revealing that SmTTG1 is necessary for Sal B biosynthesis. Interaction partners of the SmTTG1 protein were screened by yeast two-hybrid (Y2H) assays with the cDNA library of S. miltiorrhiza. A new R2R3-MYB transcription factor, SmMYB111, was found through this screening. Transgenic plants overexpressing or showing reduced expression of SmMYB111 upregulated or deregulated, respectively, the yields of Sal B. Both Y2H and bimolecular fluorescent complementation experiments demonstrated that SmMYB111 interacts with SmTTG1 and SmbHLH51, a positive regulator of the phenolic acid pathway. Our data verified the function of SmTTG1 and SmMYB111 in regulating phenolic acid biosynthesis in S. miltiorrhiza. Furthermore, ours is the first report of the potential ternary transcription complex SmTTG1-SmMYB111-SmbHLH51, which is involved in the production of Sal B in that species.
Collapse
Affiliation(s)
- Shasha Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry , Shaanxi Normal University , Xi'an , Shaanxi 710062 , People's Republic of China
| | - Yucui Wu
- School of Landscape and Ecological Engineering , Hebei University of Engineering , Handan , Hebei 056038 , People's Republic of China
| | - Jing Kuang
- Ningxia Polytechnic , Yinchuan , Ningxia 750001 , People's Republic of China
| | - Huaiqin Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry , Shaanxi Normal University , Xi'an , Shaanxi 710062 , People's Republic of China
| | - Tangzhi Du
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry , Shaanxi Normal University , Xi'an , Shaanxi 710062 , People's Republic of China
| | - Yaya Huang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry , Shaanxi Normal University , Xi'an , Shaanxi 710062 , People's Republic of China
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry , Shaanxi Normal University , Xi'an , Shaanxi 710062 , People's Republic of China
| | - Xiaoyan Cao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry , Shaanxi Normal University , Xi'an , Shaanxi 710062 , People's Republic of China
| | - Zhezhi Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry , Shaanxi Normal University , Xi'an , Shaanxi 710062 , People's Republic of China
| |
Collapse
|
890
|
Hao N, Du Y, Li H, Wang C, Wang C, Gong S, Zhou S, Wu T. CsMYB36 is involved in the formation of yellow green peel in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1659-1669. [PMID: 29740668 DOI: 10.1007/s00122-018-3105-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/02/2018] [Indexed: 05/23/2023]
Abstract
A yellow green peel mutant (ygp) in cucumber was caused by a mutation in Csa2G352940 encoding MYB36 transcription factor. Peel color is one of the important agronomic traits of cucumber (Cucumis sativus L.). However, studies on the molecular regulation mechanism of peel color in cucumber are few. In this study, a cucumber yellow green peel mutant (ygp) of cucumber mutagenized with ethylmethylsulfone by using a wild type cucumber with dark green peel was identified. Pigment measurements indicated that the chlorophyll content of the ygp mutant was less than that of the wild type. Genetic analysis revealed that the phenotype of the ygp mutant was monogenic recessive inheritance. MutMap and genotyping results demonstrated that Csa2G352940 (CsMYB36), encoding the transcription factor MYB36, was the causal gene of the ygp mutant in cucumber. CsMYB36 was downregulated in the fruit of the ygp mutant. Transcriptome profile analysis of the fruit peel of the ygp mutant identified 92 candidate genes including genes that encode Casparian strip (CsCASP1) and pigment synthesis protein (CsMYC2) involved in peel color development in cucumber. CsMYB36 may regulate yellow green coloration in cucumber by interacting with these genes. Overall, these results showed that CsMYB36 can regulate the yellow green peel coloration in cucumber.
Collapse
Affiliation(s)
- Ning Hao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Yalin Du
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Huiyuan Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Chao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Chen Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Siyu Gong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Shengmao Zhou
- Guangxi Academy of Agricultural Science, 174 Daxuedong Road, Nanning, 530007, China
| | - Tao Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China.
| |
Collapse
|
891
|
Zhang Y, Hu W, Peng X, Sun B, Wang X, Tang H. Characterization of anthocyanin and proanthocyanidin biosynthesis in two strawberry genotypes during fruit development in response to different light qualities. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 186:225-231. [PMID: 30092558 DOI: 10.1016/j.jphotobiol.2018.07.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022]
Abstract
LED-based light sources that can provide narrowly-centered spectrum have been frequently applied to manipulate the plant growth, development and metabolism in recent years. This study aimed to find out the effect of different light qualities on the production of anthocyanins and proanthocyanidins. The results showed RL (red light), BL (blue light), RBL (red light: blue light = 1:1) induced the strawberry fruit coloration earlier by increasing the content of total anthocyanins as a result of high expression of related genes, which was also concluded from a⁎, C⁎, h° values in 'Tokun' at 28 DAF, and RBL significantly promoted anthocyanin and proanthocyanidin biosynthesis in these two strawberry genotypes during fruit development. Simultaneously, the contents of anthocyanins and proanthocyanidins in 'Toyonaka' were also remarkably upregulated by BL and RL, respectively, indicating different strawberry genotypes to some extent probably had a distinct response to light quality. Hence, genotype factor should be taken into consideration when supplement of light quality was used as practical application in strawberry cultivation. Taken together, this study provided an insight into a further understanding of roles of light quality in the color formation for strawberry and a potential means to increase the health-related values of strawberry through altering the anthocyanin and proanthocyanidin contents of the fruit.
Collapse
Affiliation(s)
- Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenjie Hu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaorui Peng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
892
|
Kim DH, Park S, Lee JY, Ha SH, Lee JG, Lim SH. A Rice B-Box Protein, OsBBX14, Finely Regulates Anthocyanin Biosynthesis in Rice. Int J Mol Sci 2018; 19:ijms19082190. [PMID: 30060460 PMCID: PMC6121638 DOI: 10.3390/ijms19082190] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/22/2018] [Accepted: 07/24/2018] [Indexed: 11/16/2022] Open
Abstract
Anthocyanins are responsible pigments for giving attractive colors of plant organs and nutraceutical benefits of grains. Anthocyanin biosynthesis is known to be regulated by transcription factors and other regulatory proteins. In rice (Oryza sativa), the R2R3 MYB transcription factor (TF) OsC1 and a bHLH TF, OsB2, were previously reported to control anthocyanin biosynthesis in vegetative tissues and seeds, respectively; however, the regulatory mechanisms of the anthocyanin biosynthesis by TFs remain largely unknown. In this study, we identified OsBBX14, a homolog of Arabidopsis thaliana B-box domain protein 22 (AtBBX22), and investigated its function. The transcript level of OsBBX14 was high in pigmented rice seeds and gradually increased as the seeds matured. The ectopic expression of OsBBX14 in Arabidopsis resulted in a dramatic increase in anthocyanin accumulation in its seedlings. Using a steroid receptor-based inducible activation system, OsBBX14 and OsHY5 were found to directly activate OsC1 or OsB2 in an independent or collaborative manner. Yeast two hybrid revealed that the second B-box domain of OsBBX14 physically interacts with the bZIP domain of OsHY5. These results suggest that the anthocyanin biosynthesis in rice is induced and finely tuned by OsBBX14 in collaboration with OsHY5.
Collapse
Affiliation(s)
- Da-Hye Kim
- National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea.
| | - Sangkyu Park
- National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea.
| | - Jong-Yeol Lee
- National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea.
| | - Sun-Hwa Ha
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea.
| | - Jun-Gu Lee
- Department of Horticulture, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju 54896, Korea.
| | - Sun-Hyung Lim
- National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea.
| |
Collapse
|
893
|
Zhang YL, Fang ZZ, Ye XF, Pan SL. Identification of candidate genes involved in anthocyanin accumulation in the peel of jaboticaba (Myrciaria cauliflora) fruits by transcriptomic analysis. Gene 2018; 676:202-213. [PMID: 30030201 DOI: 10.1016/j.gene.2018.07.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 05/25/2018] [Accepted: 07/13/2018] [Indexed: 11/18/2022]
Abstract
Jaboticaba is a grape-like fruit that accumulates high levels of anthocyanins in the peel and is proposed as a good source of functional pigments. However, the molecular mechanisms underlying anthocyanin accumulation in jaboticaba peel remains to be elucidated. In this study, we employed RNA-seq technique to compare the transcriptomic differences between green-colored and black-colored jaboticaba peels. Over 5 million high-quality reads were assembled into 62,190 unigenes with an average length of 737 bp, 29,320 (47.15%) of them were annotated by public databases. 2152 unigenes were found to be differentially expressed (830 upregulated and 1322 downregulated). Gene ontology analysis and pathway enrichment annotation revealed that 18 differentially expressed genes encode phenylalanine ammonialyase, 4-coumaroyl:CoA-ligase, chalcone synthase, flavanone 3-hydroxylase, flavonoid 3'-hydroxylase, anthocyanidin synthase, UDP-glucose: flavonoid 3-O-glucosyltransferase, glutathione S-transferase, Cytochrome b5 were associated with anthocyanin biosynthesis. Additionally, 54 differentially expressed transcription factors were identified. Furthermore, the expression of genes involved in biosynthesis and signal transduction of ethylene and abscisic acid were negatively and positively correlated with that of anthocyanin pathway genes and anthocyanin accumulation, respectively. Quantitative reverse transcription PCR analysis of candidate genes showed trends similar to those in the RNA-seq analysis. McMYB, a homolog of AtMYB113, induced anthocyanin accumulation in tobacco leaves when co-infiltrated PsbHLH3. These results will contribute to further understanding of the molecular mechanisms regulating anthocyanin accumulation in jaboticaba peel.
Collapse
Affiliation(s)
- Ya-Ling Zhang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, China
| | - Zhi-Zhen Fang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, China.
| | - Xin-Fu Ye
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, China
| | - Shao-Lin Pan
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, China
| |
Collapse
|
894
|
Zhang X, Wei J, Huang Y, Shen W, Chen X, Lu C, Su N, Cui J. Increased Cytosolic Calcium Contributes to Hydrogen-Rich Water-Promoted Anthocyanin Biosynthesis Under UV-A Irradiation in Radish Sprouts Hypocotyls. FRONTIERS IN PLANT SCIENCE 2018; 9:1020. [PMID: 30061912 PMCID: PMC6055044 DOI: 10.3389/fpls.2018.01020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/22/2018] [Indexed: 05/14/2023]
Abstract
Our previous studies showed that hydrogen-rich water (HRW) promoted the biosynthesis of anthocyanin under UV-A in radish. However, molecular mechanism involved in the regulation of the anthocyanin biosynthesis is still unclear. In this study, the role of calcium (Ca2+) in HRW-promoted anthocyanin biosynthesis in radish sprouts hypocotyls under UV-A was investigated. The results showed that a positive effect of HRW on the content of cytosolic calcium and anthocyanin accumulation, mimicking the effects of induced CaCl2. Exogenous addition of Ca2+ chelator bis (β-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and inositol 1,4,5-trisphosphate (IP3) synthesis inhibitor neomycin partially reversed the facilitated effect of HRW. The positive effects of HRW on activity of anthocyanin biosynthetic-enzymes (L-phenylalanine ammonia-lyase, PAL; chalcone isomerase, CHI; dihydroflavonol 4-reductase, DFR and UDP glc-flavonoid 3-O-glucosyl transferase, UFGT) were reversed by EGTA and neomycin. Further tests confirmed that the upregulation of anthocyanin biosynthetic related genes induced by HRW was substantially inhibited by calcium antagonists. The possible involvement of CaM in HRW-regulated anthocyanin biosynthesis was also preliminarily investigated in this study. Taken together, our results indicate that IP3-dependent calcium signaling pathway might be involved in HRW-regulated anthocyanin biosynthesis under UV-A irradiation.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Junyu Wei
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yifan Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wenbiao Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Chungui Lu
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
895
|
Sun MY, Li JY, Li D, Huang FJ, Wang D, Li H, Xing Q, Zhu HB, Shi L. Full-Length Transcriptome Sequencing and Modular Organization Analysis of the Naringin/Neoeriocitrin-Related Gene Expression Pattern in Drynaria roosii. PLANT & CELL PHYSIOLOGY 2018; 59:1398-1414. [PMID: 29660070 DOI: 10.1093/pcp/pcy072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/31/2018] [Indexed: 05/28/2023]
Abstract
Drynaria roosii (Nakaike) is a traditional Chinese medicinal fern, known as 'GuSuiBu'. The effective components, naringin and neoeriocitrin, share a highly similar chemical structure and medicinal function. Our HPLC-tandem mass spectrometry (MS/MS) results showed that the accumulation of naringin/neoeriocitrin depended on specific tissues or ages. However, little was known about the expression patterns of naringin/neoeriocitrin-related genes involved in their regulatory pathways. Due to a lack of basic genetic information, we applied a combination of single molecule real-time (SMRT) sequencing and second-generation sequencing (SGS) to generate the complete and full-length transcriptome of D. roosii. According to the SGS data, the differentially expressed gene (DEG)-based heat map analysis revealed that naringin/neoeriocitrin-related gene expression exhibited obvious tissue- and time-specific transcriptomic differences. Using the systems biology method of modular organization analysis, we clustered 16,472 DEGs into 17 gene modules and studied the relationships between modules and tissue/time point samples, as well as modules and naringin/neoeriocitrin contents. We found that naringin/neoeriocitrin-related DEGs distributed in nine distinct modules, and DEGs in these modules showed significantly different patterns of transcript abundance to be linked to specific tissues or ages. Moreover, weighted gene co-expression network analysis (WGCNA) results further identified that PAL, 4CL and C4H, and C3H and HCT acted as the major hub genes involved in naringin and neoeriocitrin synthesis, respectively, and exhibited high co-expression with MYB- and basic helix-leucine-helix (bHLH)-regulated genes. In this work, modular organization and co-expression networks elucidated the tissue and time specificity of the gene expression pattern, as well as hub genes associated with naringin/neoeriocitrin synthesis in D. roosii. Simultaneously, the comprehensive transcriptome data set provided important genetic information for further research on D. roosii.
Collapse
Affiliation(s)
- Mei-Yu Sun
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jing-Yi Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dong Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Feng-Jie Huang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Di Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hui Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Quan Xing
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hui-Bin Zhu
- Hangzhou1gene Technology Co., Ltd., HangZhou, China
| | - Lei Shi
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
896
|
Tao R, Bai S, Ni J, Yang Q, Zhao Y, Teng Y. The blue light signal transduction pathway is involved in anthocyanin accumulation in 'Red Zaosu' pear. PLANTA 2018; 248:37-48. [PMID: 29546452 DOI: 10.1007/s00425-018-2877-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 03/02/2018] [Indexed: 05/04/2023]
Abstract
MAIN CONCLUSION A conserved blue light sensing and transduction pathway contributes to blue light-induced anthocyanin accumulation in the peel of red pear. Peel color is an economically important characteristic that influences the appearance quality of red pear, whose red color is due to anthocyanin accumulation. The process of coloration in the fruit peel is strongly influenced by light. However, how light quality influences color development remains unclear. In this study, we analyzed the effects of different light qualities on color development in the red pear 'Red Zaosu', a mutant of the hybrid cultivar 'Zaosu' of Pyrus pyrifolia and P. communis. The results showed that blue light increased anthocyanin accumulation after 72 h of light treatment, while red light had almost no effect. The expression of anthocyanin biosynthesis-related genes showed a similar trend to the anthocyanin accumulation. To clarify the mechanism of blue-light induced coloration, PpCRYs, PpCOP1 and PpHY5 genes were cloned. Gene expression analysis showed that their transcript abundance did not correlate with the expression of anthocyanin-related genes or anthocyanin content, but the yeast two-hybrid system revealed conserved physical interactions among these proteins. In addition, PpHY5 directly bound to the promoters of the anthocyanin biosynthesis genes PpCHS, PpDFR, PpANS and PpMYB10, and activated the transcription of PpCHS in a Nicotiana benthamiana-based dual-luciferase assay. In summary, our results preliminarily revealed that the conserved blue light signal transduction module CRY-COP1-HY5 contributed to the anthocyanin biosynthesis induced by blue light in red pear. However, our results did not provide evidence for why red light had no effect on anthocyanin accumulation, which needs further study.
Collapse
Affiliation(s)
- Ruiyan Tao
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Songling Bai
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Junbei Ni
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Qinsong Yang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Yuan Zhao
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, People's Republic of China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Yuanwen Teng
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058, Zhejiang, People's Republic of China.
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, People's Republic of China.
| |
Collapse
|
897
|
Golz JF, Allen PJ, Li SF, Parish RW, Jayawardana NU, Bacic A, Doblin MS. Layers of regulation - Insights into the role of transcription factors controlling mucilage production in the Arabidopsis seed coat. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:179-192. [PMID: 29807590 DOI: 10.1016/j.plantsci.2018.04.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/22/2018] [Accepted: 04/24/2018] [Indexed: 05/12/2023]
Abstract
A polysaccharide-rich mucilage is released from the seed coat epidermis of numerous plant species and has been intensively studied in the model plant Arabidopsis. This has led to the identification of a large number of genes involved in the synthesis, secretion and modification of cell wall polysaccharides such as pectin, hemicellulose and cellulose being identified. These genes include a small network of transcription factors (TFs) and transcriptional co-regulators, that not only regulate mucilage production, but epidermal cell differentiation and in some cases flavonoid biosynthesis in the internal endothelial layer of the seed coat. Here we focus on the function of these regulators and propose a simplified model where they are assigned to a hierarchical gene network with three regulatory levels (tiers) as a means of assisting in the interpretation of the complexity. We discuss limitations of current methodologies and highlight some of the problems associated with defining the function of TFs, particularly those that perform different functions in adjacent layers of the seed coat. We suggest approaches that should provide a more accurate picture of the function of transcription factors involved with mucilage production and release.
Collapse
Affiliation(s)
- John F Golz
- School of BioSciences, University of Melbourne, Royal Parade, Parkville, VIC 3010, Australia.
| | - Patrick J Allen
- Department of Animal, Plant and Soil Sciences, AgriBio Centre, School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Song F Li
- Department of Animal, Plant and Soil Sciences, AgriBio Centre, School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Roger W Parish
- Department of Animal, Plant and Soil Sciences, AgriBio Centre, School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Nadeeka U Jayawardana
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Monika S Doblin
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
898
|
Chu Y, Xiao S, Su H, Liao B, Zhang J, Xu J, Chen S. Genome-wide characterization and analysis of bHLH transcription factors in Panax ginseng. Acta Pharm Sin B 2018; 8:666-677. [PMID: 30109190 PMCID: PMC6089850 DOI: 10.1016/j.apsb.2018.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/24/2018] [Accepted: 03/14/2018] [Indexed: 11/24/2022] Open
Abstract
Ginseng (Panax ginseng C.A. Meyer) is one of the best-selling herbal medicines, with ginsenosides as its main pharmacologically active constituents. Although extensive chemical and pharmaceutical studies of these compounds have been performed, genome-wide studies of the basic helix-loop-helix (bHLH) transcription factors of ginseng are still limited. The bHLH transcription factor family is one of the largest transcription factor families found in eukaryotic organisms, and these proteins are involved in a myriad of regulatory processes. In our study, 169 bHLH transcription factor genes were identified in the genome of P. ginseng, and phylogenetic analysis indicated that these PGbHLHs could be classified into 24 subfamilies. A total of 21 RNA-seq data sets, including two sequencing libraries for jasmonate (JA)-responsive and 19 reported libraries for organ-specific expression analyses were constructed. Through a combination of gene-specific expression patterns and chemical contents, 6 PGbHLH genes from 4 subfamilies were revealed to be potentially involved in the regulation of ginsenoside biosynthesis. These 6 PGbHLHs, which had distinct target genes, were further divided into two groups depending on the absence of MYC-N structure. Our results would provide a foundation for understanding the molecular basis and regulatory mechanisms of bHLH transcription factor action in P. ginseng.
Collapse
Affiliation(s)
- Yang Chu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shuiming Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - He Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Corresponding authors.
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Corresponding authors.
| |
Collapse
|
899
|
Wei S, Li X, Gruber MY, Feyissa BA, Amyot L, Hannoufa A. COP9 signalosome subunit 5A affects phenylpropanoid metabolism, trichome formation and transcription of key genes of a regulatory tri-protein complex in Arabidopsis. BMC PLANT BIOLOGY 2018; 18:134. [PMID: 29940863 PMCID: PMC6020244 DOI: 10.1186/s12870-018-1347-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/07/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND Trichomes and phenylpropanoid-derived phenolics are structural and chemical protection against many adverse conditions. Their production is regulated by a network that includes a TTG1/bHLH/MYB tri-protein complex in Arabidopsis. CSN5a, encoding COP9 signalosome subunit 5a, has also been implicated in trichome and anthocyanin production; however, the regulatory roles of CSN5a in the processes through interaction with the tri-protein complex has yet to be investigated. RESULTS In this study, a new csn5a mutant, sk372, was recovered based on its altered morphological and chemical phenotypes compared to wild-type control. Mutant characterization was conducted with an emphasis on trichome and phenylpropanoid production and possible involvement of the tri-protein complex using metabolite and gene transcription profiling and scanning electron microscopy. Seed metabolite analysis revealed that defective CSN5a led to an enhanced production of many compounds in addition to anthocyanin, most notably phenylpropanoids and carotenoids as well as a glycoside of zeatin. Consistent changes in carotenoids and anthocyanin were also found in the sk372 leaves. In addition, 370 genes were differentially expressed in 10-day old seedlings of sk372 compared to its wild type control. Real-time transcript quantitative analysis showed that in sk372, GL2 and tri-protein complex gene TT2 was significantly suppressed (p < 0.05) while complex genes EGL3 and GL3 slightly decreased (p > 0.05). Complex genes MYB75, GL1 and flavonoid biosynthetic genes TT3 and TT18 in sk372 were all significantly enhanced. Overexpression of GL3 driven by cauliflower mosaic virus 35S promotor increased the number of single pointed trichomes only, no other phenotypic recovery in sk372. CONCLUSIONS Our results indicated clearly that COP9 signalosome subunit CSN5a affects trichome production and the metabolism of a wide range of phenylpropanoid and carotenoid compounds. Enhanced anthocyanin accumulation and reduced trichome production were related to the enhanced MYB75 and suppressed GL2 and some other differentially expressed genes associated with the TTG1/bHLH/MYB complexes.
Collapse
Affiliation(s)
- Shu Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui China
- Agriculture and Agri-Food Canada, Saskatoon Research Center, Saskatoon, SK Canada
| | - Xiang Li
- Agriculture and Agri-Food Canada, Saskatoon Research Center, Saskatoon, SK Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON Canada
| | - Margaret Y. Gruber
- Agriculture and Agri-Food Canada, Saskatoon Research Center, Saskatoon, SK Canada
| | - Biruk A. Feyissa
- Agriculture and Agri-Food Canada and Department of Biology, University of Western Ontario, London, ON Canada
| | - Lisa Amyot
- Agriculture and Agri-Food Canada and Department of Biology, University of Western Ontario, London, ON Canada
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada and Department of Biology, University of Western Ontario, London, ON Canada
| |
Collapse
|
900
|
Chen R, Chen X, Zhu T, Liu J, Xiang X, Yu J, Tan H, Gao S, Li Q, Fang Y, Chen W, Zhang L, Huang B. Integrated Transcript and Metabolite Profiles Reveal That EbCHI Plays an Important Role in Scutellarin Accumulation in Erigeron breviscapus Hairy Roots. FRONTIERS IN PLANT SCIENCE 2018; 9:789. [PMID: 30013578 PMCID: PMC6036287 DOI: 10.3389/fpls.2018.00789] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/24/2018] [Indexed: 05/27/2023]
Abstract
Scutellarin, a flavonoid 7-O-glucuronide, is an essential bioactive compound of Erigeron breviscapus (Vaniot) Hand.-Mazz. used for the treatment of cerebrovascular diseases. However, due to overexploitation and overuse, E. breviscapus is facing the problems of extinction and habitat degradation. In this study, a correlation analysis between the transcript and metabolite profiles of methyl jasmonate (MeJA)-treated E. breviscapus at different time points indicated that chalcone isomerase (EbCHI) was the primary contributor to scutellarin accumulation during flavonoid biosynthesis. EbCHI was then further characterized as a chalcone isomerase that efficiently converted chalcone to naringenin in vitro. Optimal parameters derived by comparing different culture conditions were successfully used to establish hairy root cultures of E. breviscapus with a maximum transformation rate of 60% in B5 medium. Furthermore, overexpression of EbCHI significantly enhanced scutellarin accumulation in E. breviscapus hairy roots with a maximum content of 2.21 mg g-1 (dw), 10-fold higher than that of natural roots (0.21 mg g-1 dw). This study sheds new light on a method of effective gene-based metabolic engineering by accurate and appropriate strategies and provides a protocol for hairy root cultures that accumulate high levels of scutellarin, providing a promising prospect for relieving the overexploitation and unavailability of E. breviscapus in the future.
Collapse
Affiliation(s)
- Ruibing Chen
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai, China
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xianghui Chen
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Tingting Zhu
- Development and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jianghua Liu
- School of Forestry, Southwest Forestry University, Kunming, China
| | - Xing Xiang
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jian Yu
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hexin Tan
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Shouhong Gao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Qing Li
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yichao Fang
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Baokang Huang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|