851
|
BRCA1 185delAG Mutation Enhances Interleukin-1β Expression in Ovarian Surface Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:652017. [PMID: 26357657 PMCID: PMC4556869 DOI: 10.1155/2015/652017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 06/17/2015] [Indexed: 12/19/2022]
Abstract
Familial history remains the strongest risk factor for developing ovarian cancer (OC) and is associated with germline BRCA1 mutations, such as the 185delAG founder mutation. We sought to determine whether normal human ovarian surface epithelial (OSE) cells expressing the BRCA1 185delAG mutant, BRAT, could promote an inflammatory phenotype by investigating its impact on expression of the proinflammatory cytokine, Interleukin-1β (IL-1β). Cultured OSE cells with and without BRAT were analyzed for differential target gene expression by real-time PCR, western blot, ELISA, luciferase reporter, and siRNA assays. We found that BRAT cells expressed increased cellular and secreted levels of active IL-1β. BRAT-expressing OSE cells exhibited 3-fold enhanced IL-1β mRNA expression, transcriptionally regulated, in part, through CREB sites within the (−1800) to (−900) region of its promoter. In addition to transcriptional regulation, BRAT-mediated IL-1β expression appears dualistic through enhanced inflammasome-mediated caspase-1 cleavage and activation of IL-1β. Further investigation is warranted to elucidate the molecular mechanism(s) of BRAT-mediated IL-1β expression since increased IL-1β expression may represent an early step contributing to OC.
Collapse
|
852
|
Roche M, Wierinckx A, Croze S, Rey C, Legras-Lachuer C, Morel AP, Fusco A, Raverot G, Trouillas J, Lachuer J. Deregulation of miR-183 and KIAA0101 in Aggressive and Malignant Pituitary Tumors. Front Med (Lausanne) 2015; 2:54. [PMID: 26322309 PMCID: PMC4530307 DOI: 10.3389/fmed.2015.00054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/22/2015] [Indexed: 01/15/2023] Open
Abstract
Changes in microRNAs (miRNAs) expression in many types of cancer suggest that they may be involved in crucial steps during tumor progression. Indeed, miRNAs deregulation has been described in pituitary tumorigenesis, but few studies have described their role in pituitary tumor progression toward aggressiveness and malignancy. To assess the role of miRNAs within the hierarchical cascade of events in prolactin (PRL) tumors during progression, we used an integrative genomic approach to associate clinical-pathological features, global miRNA expression, and transcriptomic profiles of the same human tumors. We describe the specific down-regulation of one principal miRNA, miR-183, in the 8 aggressive (A, grade 2b) compared to the 18 non-aggressive (NA, grades 1a, 2a) PRL tumors. We demonstrate that it acts as an anti-proliferative gene by directly targeting KIAA0101, which is involved in cell cycle activation and inhibition of p53-p21-mediated cell cycle arrest. Moreover, we show that miR-183 and KIAA0101 expression significantly correlate with the main markers of pituitary tumors aggressiveness, Ki-67 and p53. These results confirm the activation of proliferation in aggressive and malignant PRL tumors compared to non-aggressive ones. Importantly, these data also demonstrate the ability of such an integrative genomic strategy, applied in the same human tumors, to identify the molecular mechanisms responsible for tumoral progression even from a small cohort of patients.
Collapse
Affiliation(s)
- Magali Roche
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052/CNRS UMR 5286 Centre Léon Bérard , Lyon , France ; Université Lyon 1, Université de Lyon , Lyon , France ; ViroScan3D , Trévoux , France
| | - Anne Wierinckx
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052/CNRS UMR 5286 Centre Léon Bérard , Lyon , France ; Université Lyon 1, Université de Lyon , Lyon , France ; ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7 , Lyon , France
| | - Séverine Croze
- Université Lyon 1, Université de Lyon , Lyon , France ; ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7 , Lyon , France
| | - Catherine Rey
- ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7 , Lyon , France
| | - Catherine Legras-Lachuer
- Université Lyon 1, Université de Lyon , Lyon , France ; ViroScan3D , Trévoux , France ; ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7 , Lyon , France ; UMR CNRS 5557 UCBL USC INRA 1193 ENVL, Dynamique Microbienne et Transmission Virale , Lyon , France
| | - Anne-Pierre Morel
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052/CNRS UMR 5286 Centre Léon Bérard , Lyon , France
| | - Alfredo Fusco
- Instituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli "Federico II" , Naples , Italy ; Instituto Nacional de Câncer (INCA) , Rio de Janeiro , Brazil
| | - Gérald Raverot
- Université Lyon 1, Université de Lyon , Lyon , France ; UMR 5292, Centre de Neurosciences de Lyon, CNRS, INSERM S1028 , Lyon , France ; Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon , Lyon , France
| | - Jacqueline Trouillas
- Université Lyon 1, Université de Lyon , Lyon , France ; UMR 5292, Centre de Neurosciences de Lyon, CNRS, INSERM S1028 , Lyon , France ; Centre de Pathologie Est, Groupement Hospitalier Est, Hospice Civils de Lyon , Bron , France
| | - Joel Lachuer
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052/CNRS UMR 5286 Centre Léon Bérard , Lyon , France ; Université Lyon 1, Université de Lyon , Lyon , France ; ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7 , Lyon , France
| |
Collapse
|
853
|
Hsiao JJ, Ng BH, Smits MM, Martinez HD, Jasavala RJ, Hinkson IV, Fermin D, Eng JK, Nesvizhskii AI, Wright ME. Research Resource: Androgen Receptor Activity Is Regulated Through the Mobilization of Cell Surface Receptor Networks. Mol Endocrinol 2015; 29:1195-218. [PMID: 26181434 DOI: 10.1210/me.2015-1021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The aberrant expression of androgen receptor (AR)-dependent transcriptional programs is a defining pathology of the development and progression of prostate cancers. Transcriptional cofactors that bind AR are critical determinants of prostate tumorigenesis. To gain a deeper understanding of the proteins linked to AR-dependent gene transcription, we performed a DNA-affinity chromatography-based proteomic screen designed to identify proteins involved in AR-mediated gene transcription in prostate tumor cells. Functional experiments validated the coregulator roles of known AR-binding proteins in AR-mediated transcription in prostate tumor cells. More importantly, novel coregulatory functions were detected in components of well-established cell surface receptor-dependent signal transduction pathways. Further experimentation demonstrated that components of the TNF, TGF-β, IL receptor, and epidermal growth factor signaling pathways modulated AR-dependent gene transcription and androgen-dependent proliferation in prostate tumor cells. Collectively, our proteomic dataset demonstrates that the cell surface receptor- and AR-dependent pathways are highly integrated, and provides a molecular framework for understanding how disparate signal-transduction pathways can influence AR-dependent transcriptional programs linked to the development and progression of human prostate cancers.
Collapse
Affiliation(s)
- Jordy J Hsiao
- Department of Molecular Physiology and Biophysics (J.J.H., B.H.N., M.M.S., H.D.M., M.E.W.), Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242; Department of Pharmacology (H.D.M., R.J.J., I.V.H., M.E.W.), School of Medicine and Genome Center, University of California, Davis, California 95616; Departments of Pathology and Computational Medicine and Bioinformatics (D.F., A.I.N.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Genome Sciences (J.K.E.), University of Washington, Seattle, Washington 98195
| | - Brandon H Ng
- Department of Molecular Physiology and Biophysics (J.J.H., B.H.N., M.M.S., H.D.M., M.E.W.), Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242; Department of Pharmacology (H.D.M., R.J.J., I.V.H., M.E.W.), School of Medicine and Genome Center, University of California, Davis, California 95616; Departments of Pathology and Computational Medicine and Bioinformatics (D.F., A.I.N.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Genome Sciences (J.K.E.), University of Washington, Seattle, Washington 98195
| | - Melinda M Smits
- Department of Molecular Physiology and Biophysics (J.J.H., B.H.N., M.M.S., H.D.M., M.E.W.), Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242; Department of Pharmacology (H.D.M., R.J.J., I.V.H., M.E.W.), School of Medicine and Genome Center, University of California, Davis, California 95616; Departments of Pathology and Computational Medicine and Bioinformatics (D.F., A.I.N.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Genome Sciences (J.K.E.), University of Washington, Seattle, Washington 98195
| | - Harryl D Martinez
- Department of Molecular Physiology and Biophysics (J.J.H., B.H.N., M.M.S., H.D.M., M.E.W.), Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242; Department of Pharmacology (H.D.M., R.J.J., I.V.H., M.E.W.), School of Medicine and Genome Center, University of California, Davis, California 95616; Departments of Pathology and Computational Medicine and Bioinformatics (D.F., A.I.N.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Genome Sciences (J.K.E.), University of Washington, Seattle, Washington 98195
| | - Rohini J Jasavala
- Department of Molecular Physiology and Biophysics (J.J.H., B.H.N., M.M.S., H.D.M., M.E.W.), Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242; Department of Pharmacology (H.D.M., R.J.J., I.V.H., M.E.W.), School of Medicine and Genome Center, University of California, Davis, California 95616; Departments of Pathology and Computational Medicine and Bioinformatics (D.F., A.I.N.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Genome Sciences (J.K.E.), University of Washington, Seattle, Washington 98195
| | - Izumi V Hinkson
- Department of Molecular Physiology and Biophysics (J.J.H., B.H.N., M.M.S., H.D.M., M.E.W.), Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242; Department of Pharmacology (H.D.M., R.J.J., I.V.H., M.E.W.), School of Medicine and Genome Center, University of California, Davis, California 95616; Departments of Pathology and Computational Medicine and Bioinformatics (D.F., A.I.N.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Genome Sciences (J.K.E.), University of Washington, Seattle, Washington 98195
| | - Damian Fermin
- Department of Molecular Physiology and Biophysics (J.J.H., B.H.N., M.M.S., H.D.M., M.E.W.), Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242; Department of Pharmacology (H.D.M., R.J.J., I.V.H., M.E.W.), School of Medicine and Genome Center, University of California, Davis, California 95616; Departments of Pathology and Computational Medicine and Bioinformatics (D.F., A.I.N.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Genome Sciences (J.K.E.), University of Washington, Seattle, Washington 98195
| | - Jimmy K Eng
- Department of Molecular Physiology and Biophysics (J.J.H., B.H.N., M.M.S., H.D.M., M.E.W.), Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242; Department of Pharmacology (H.D.M., R.J.J., I.V.H., M.E.W.), School of Medicine and Genome Center, University of California, Davis, California 95616; Departments of Pathology and Computational Medicine and Bioinformatics (D.F., A.I.N.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Genome Sciences (J.K.E.), University of Washington, Seattle, Washington 98195
| | - Alexey I Nesvizhskii
- Department of Molecular Physiology and Biophysics (J.J.H., B.H.N., M.M.S., H.D.M., M.E.W.), Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242; Department of Pharmacology (H.D.M., R.J.J., I.V.H., M.E.W.), School of Medicine and Genome Center, University of California, Davis, California 95616; Departments of Pathology and Computational Medicine and Bioinformatics (D.F., A.I.N.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Genome Sciences (J.K.E.), University of Washington, Seattle, Washington 98195
| | - Michael E Wright
- Department of Molecular Physiology and Biophysics (J.J.H., B.H.N., M.M.S., H.D.M., M.E.W.), Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242; Department of Pharmacology (H.D.M., R.J.J., I.V.H., M.E.W.), School of Medicine and Genome Center, University of California, Davis, California 95616; Departments of Pathology and Computational Medicine and Bioinformatics (D.F., A.I.N.), University of Michigan, Ann Arbor, Michigan 48109; and Department of Genome Sciences (J.K.E.), University of Washington, Seattle, Washington 98195
| |
Collapse
|
854
|
Safari R, Tunca Z, Ozerdem A, Ceylan D, Yazicioglu CE, Sakizli M. New alterations at potentially regulated regions of the Glial Derived Neurotrophic Factor gene in bipolar disorder. J Affect Disord 2015; 167:244-50. [PMID: 24997227 DOI: 10.1016/j.jad.2014.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/02/2014] [Accepted: 06/04/2014] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Glial Derived Neurotrophic Factor (GDNF) plays an important role in the survival and differentiation of neurons. We examined 5'upstream and 3' untranslated region of the GDNF gene by PCR amplification and direct sequencing to explore the effect of alteration in the potentially regulated part of GDNF in bipolar disorder. MATERIALS AND METHODS Sixty-six patients with bipolar disorder, 27 first degree relatives of these patients and 56 healthy volunteers were screened for mutations and polymorphisms in GDNF gene. RESULTS Seven previously reported polymorphisms and additional three novel allele variants of GDNF were detected. Association test of rs2075680 C>A SNP showed significant difference between patients and healthy subjects with higher allele frequency in healthy subjects performing Chi-square test. However, there was no significant difference after multiple test corrections between groups. There were no significant differences in association test of rs2075680 C>A SNP between first degree relatives and healthy volunteers/patients. rs142426358 T>C SNP was seen only in one patient with an early age of illness onset. New T>A alterations were found in chromosome locations 5:37812784 and 5:37812782 in two male bipolar disorder patients with age of illness onset 12 and 24 years. LIMITATIONS The sample size was relatively small. DISCUSSION Our study proposes the suggestive association between polymorphisms in the potential regulatory sites of GDNF and bipolar disorder.
Collapse
Affiliation(s)
- Roghaiyeh Safari
- Department of Molecular Medicine, Dokuz Eylul University, Faculty of Medicine and Institute of Health Sciences, Inciralti, Izmir, Turkey.
| | - Zeliha Tunca
- Department of Psychiatry, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Aysegul Ozerdem
- Department of Psychiatry, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey; Department of Neuroscience, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Deniz Ceylan
- Department of Psychiatry, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Cigdem Eresen Yazicioglu
- Department of Medical Biology and Genetics, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| | - Meral Sakizli
- Department of Medical Biology and Genetics, Dokuz Eylul University, Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
855
|
Philip AM, Vijayan MM. Stress-Immune-Growth Interactions: Cortisol Modulates Suppressors of Cytokine Signaling and JAK/STAT Pathway in Rainbow Trout Liver. PLoS One 2015; 10:e0129299. [PMID: 26083490 PMCID: PMC4470514 DOI: 10.1371/journal.pone.0129299] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/08/2015] [Indexed: 11/19/2022] Open
Abstract
Chronic stress is a major factor in the poor growth and immune performance of salmonids in aquaculture. However, the molecular mechanisms linking stress effects to growth and immune dysfunction is poorly understood. The suppressors of cytokine signaling (SOCS), a family of genes involved in the inhibition of JAK/STAT pathway, negatively regulates growth hormone and cytokine signaling, but their role in fish is unclear. Here we tested the hypothesis that cortisol modulation of SOCS gene expression is a key molecular mechanism leading to growth and immune suppression in response to stress in fish. Exposure of rainbow trout (Oncorhynchus mykiss) liver slices to cortisol, mimicking stress level, upregulated SOCS-1 and SOCS-2 mRNA abundance and this response was abolished by the glucocorticoid receptor antagonist mifepristone. Bioinformatics analysis confirmed the presence of putative glucocorticoid response elements in rainbow trout SOCS-1 and SOCS-2 promoters. Prior cortisol treatment suppressed acute growth hormone (GH)-stimulated IGF-1 mRNA abundance in trout liver and this involved a reduction in STAT5 phosphorylation and lower total JAK2 protein expression. Prior cortisol treatment also suppressed lipopolysaccharide (LPS)-induced IL-6 but not IL-8 transcript levels; the former but not the latter cytokine expression is via JAK/STAT phosphorylation. LPS treatment reduced GH signaling, but this was associated with the downregulation of GH receptors and not due to the upregulation of SOCS transcript levels by this endotoxin. Collectively, our results suggest that upregulation of SOCS-1 and SOCS-2 transcript levels by cortisol, and the associated reduction in JAK/STAT signaling pathway, may be a novel mechanism leading to growth reduction and immune suppression during stress in trout.
Collapse
Affiliation(s)
- Anju M. Philip
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
856
|
Felip A, Espigares F, Zanuy S, Gómez A. Differential activation of kiss receptors by Kiss1 and Kiss2 peptides in the sea bass. Reproduction 2015; 150:227-43. [PMID: 26047834 DOI: 10.1530/rep-15-0204] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/05/2015] [Indexed: 12/16/2022]
Abstract
Two forms of kiss gene (kiss1 and kiss2) have been described in the teleost sea bass. This study assesses the cloning and characterization of two Kiss receptor genes, namely kissr2 and kissr3 (known as gpr54-1b and gpr54-2b, respectively), and their signal transduction pathways in response to Kiss1 and Kiss2 peptides. Phylogenetic and synteny analyses indicate that these paralogs originated by duplication of an ancestral gene before teleost specific duplication. The kissr2 and kissr3 mRNAs encode proteins of 368 and 378 amino acids, respectively, and share 53.1% similarity in amino acid sequences. In silico analysis of the putative promoter regions of the sea bass Kiss receptor genes revealed conserved flanking regulatory sequences among teleosts. Both kissr2 and kissr3 are predominantly expressed in brain and gonads of sea bass, medaka and zebrafish. In the testis, the expression levels of sea bass kisspeptins and Kiss receptors point to a significant variation during the reproductive cycle. In vitro functional analyses revealed that sea bass Kiss receptor signals are transduced both via the protein kinase C and protein kinase A pathway. Synthetic sea bass Kiss1-15 and Kiss2-12 peptides activated Kiss receptors with different potencies, indicating a differential ligand selectivity. Our data suggest that Kissr2 and Kissr3 have a preference for Kiss1 and Kiss2 peptides, respectively, thus providing the basis for future studies aimed at establishing their physiologic roles in sea bass.
Collapse
Affiliation(s)
- Alicia Felip
- Consejo Superior de Investigaciones Científicas (CSIC)Instituto de Acuicultura de Torre de la Sal (IATS), Ribera de Cabanes s/n Torre la Sal, 12595 Castellón, Spain
| | - Felipe Espigares
- Consejo Superior de Investigaciones Científicas (CSIC)Instituto de Acuicultura de Torre de la Sal (IATS), Ribera de Cabanes s/n Torre la Sal, 12595 Castellón, Spain
| | - Silvia Zanuy
- Consejo Superior de Investigaciones Científicas (CSIC)Instituto de Acuicultura de Torre de la Sal (IATS), Ribera de Cabanes s/n Torre la Sal, 12595 Castellón, Spain
| | - Ana Gómez
- Consejo Superior de Investigaciones Científicas (CSIC)Instituto de Acuicultura de Torre de la Sal (IATS), Ribera de Cabanes s/n Torre la Sal, 12595 Castellón, Spain
| |
Collapse
|
857
|
Thulasitha WS, Umasuthan N, Revathy KS, Whang I, Lee J. Molecular characterization, genomic structure and expressional profiles of a CXC chemokine receptor 4 (CXCR4) from rock bream Oplegnathus fasciatus. FISH & SHELLFISH IMMUNOLOGY 2015; 44:471-477. [PMID: 25795219 DOI: 10.1016/j.fsi.2015.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 06/04/2023]
Abstract
The CXC chemokine receptor 4 (CXCR4) is the cognate receptor of the CXC chemokine ligand 12 (CXCL12) and plays a pivotal role under immune-pathophysiological conditions. In the current study, the CXCR4 homolog of Oplegnathus fasciatus (OfCXCR4) was sequenced and the mRNA expression levels were characterized. The genomic structure of the cloned OfCXCR4 coding region (2094 bp) revealed a bi-exonic element, where the open reading frame (ORF) appears split by a single intron. Analysis of the ORF (1134 bp) of OfCXCR4 revealed a predicted protein of 42.1 kDa with typical seven transmembrane (TM) domain architecture and several conserved structural features, including two cysteine residues forming a predicted disulfide bond, a characteristic CXC motif (containing CYC) and a G-protein-coupled receptor (GPCR) family 1 signature. Furthermore, based on comparative analysis, the structure OfCXCR4 appears well conserved at both the genomic DNA and the amino acid levels. Phylogenic analysis of OfCXCR4 revealed that the greatest homology was with its teleostean relatives. Expression studies showed ubiquitous OfCXCR4 transcription, mainly in immune organs, with the highest levels in the head kidney. Examination of OfCXCR4 transcriptional regulation post injection to different stimuli or pathogens revealed a significant modulation of mRNA expression as detected by reverse transcription-quantitative real-time PCR. Evidence of various transcription factor binding sites present in the 5'-flanking region of OfCXCR4 coupled with its observed regulated mRNA expression suggest that it may have an important role in immune surveillance in rock bream.
Collapse
Affiliation(s)
- William Shanthakumar Thulasitha
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Kasthuri Saranya Revathy
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Ilson Whang
- Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Development Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
858
|
Merhi A, De Mees C, Abdo R, Victoria Alberola J, Marini AM. Wnt/β-Catenin Signaling Regulates the Expression of the Ammonium Permease Gene RHBG in Human Cancer Cells. PLoS One 2015; 10:e0128683. [PMID: 26029888 PMCID: PMC4452261 DOI: 10.1371/journal.pone.0128683] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/29/2015] [Indexed: 11/18/2022] Open
Abstract
Ammonium is a metabolic waste product mainly detoxified by the liver. Hepatic dysfunction can lead to cytotoxic accumulation of circulating ammonium and to subsequent encephalopathy. Transmembrane ammonium transport is a widely spread process ensured by the highly conserved proteins of the Mep-Amt-Rh superfamily, including the mammalian Rhesus (Rh) factors. The regulatory mechanisms involved in the control of RH genes expression remain poorly studied. Here we addressed the expression regulation of one of these factors, RHBG. We identify HepG2 hepatocellular carcinoma cells and SW480 colon adenocarcinoma cells as expressing RHBG and show that its expression relies on β-catenin signaling. siRNA-mediated β-catenin knockdown resulted in significant reduction of RHBG mRNA in both cell lines. Pharmaceutical inhibition of the TCF4/β-catenin interaction or knockdown of the transcription factor TCF4 also downregulated RHBG expression. We identify a minimal RHBG regulatory sequence displaying a promoter activity and show that β-catenin and TCF4 bind to this fragment in vivo. We finally characterize the role of potential TCF4 binding sites in RHBG regulation. Taken together, our results indicate RHBG expression as a direct target of β-catenin regulation, a pathway frequently deregulated in many cancers and associated with tumorigenesis.
Collapse
Affiliation(s)
- Ahmad Merhi
- Biology of Membrane Transport Laboratory, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Christelle De Mees
- Biology of Membrane Transport Laboratory, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Rami Abdo
- Biology of Membrane Transport Laboratory, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | | | - Anna Maria Marini
- Biology of Membrane Transport Laboratory, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
- * E-mail:
| |
Collapse
|
859
|
Kim BK, Yoon SK. Hairless Up-RegulatesTgf-β2Expression via Down-Regulation of miR-31 in the Skin of “Hairpoor” (HrHp) Mice. J Cell Physiol 2015; 230:2075-85. [DOI: 10.1002/jcp.24935] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/16/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Bong-Kyu Kim
- Department of Medical Life Science; The Catholic University of Korea; Seoul Korea
| | - Sungjoo Kim Yoon
- Department of Medical Life Science; The Catholic University of Korea; Seoul Korea
| |
Collapse
|
860
|
Duman EA, Canli T. Influence of life stress, 5-HTTLPR genotype, and SLC6A4 methylation on gene expression and stress response in healthy Caucasian males. BIOLOGY OF MOOD & ANXIETY DISORDERS 2015; 5:2. [PMID: 25995833 PMCID: PMC4438516 DOI: 10.1186/s13587-015-0017-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 04/27/2015] [Indexed: 12/14/2022]
Abstract
Background Previous research reported that individual differences in the stress response were moderated by an interaction between individuals’ life stress experience and the serotonin transporter-linked polymorphic region (5-HTTLPR), a common polymorphism located in the promoter region of the serotonin transporter gene (SLC6A4). Furthermore, this work suggested that individual differences in SLC6A4 DNA methylation could be one underlying mechanism by which stressful life events might regulate gene expression. The aim of this study was to understand the relation between early and recent life stress experiences, 5-HTTLPR genotype, and SLC6A4 methylation. In addition, we aimed to address how these factors influence gene expression and cortisol response to an acute psychosocial stressor, operationalized as the Trier Social Stress Test (TSST). In a sample of 105 Caucasian males, we collected early and recent life stress measures and blood samples to determine 5-HTTLPR genotype and SLC6A4 methylation. Furthermore, 71 of these participants provided blood and saliva samples before and after the TSST to measure changes in SLC6A4 and NR3C1 gene expression and cortisol response. Results Compared to S-group individuals, LL individuals responded with increased SLC6A4 mRNA levels to the TSST (t(66) = 3.71, P < .001) and also showed increased global methylation as a function of ELS (r (32) = .45, P = .008) and chronic stress (r (32) = .44, P = .010). Compared to LL individuals, S-group individuals showed reduced SLC6A4 mRNA levels (r (41) = −.31, P = .042) and increased F3 methylation (r (67) = .30, P = .015) as a function of ELS; as well as increased F1 methylation as a function of chronic stress and recent depressive symptoms (r = .41, P < .01), which correlated positively with NR3C1 expression (r (42) = .31, P = .040). Conclusions Both early and recent life stress alter DNA methylation as a function of 5-HTTLPR genotype. Some of these changes are also reflected in gene expression and cortisol response, differentially affecting individuals’ stress response in a manner that may confer susceptibility or resilience for psychopathology upon experiencing stressful life events. Electronic supplementary material The online version of this article (doi:10.1186/s13587-015-0017-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elif A Duman
- Integrative Neuroscience, Department of Psychology, Stony Brook University, Stony Brook, NY 11794-2500 USA ; Department of Psychology, Bogazici University, Bebek, 34342 Istanbul, Turkey ; Center for Life Sciences and Technologies, Bogazici University, Bebek, 34342 Istanbul, Turkey
| | - Turhan Canli
- Integrative Neuroscience, Department of Psychology, Stony Brook University, Stony Brook, NY 11794-2500 USA ; Department of Radiology, Stony Brook University, Stony Brook, NY 11794 USA ; Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794 USA ; Program in Genetics, Stony Brook University, Stony Brook, NY 11794 USA
| |
Collapse
|
861
|
Seo BJ, Son JW, Kim HR, Hong SH, Song H. Identification of egr1 direct target genes in the uterus by in silico analyses with expression profiles from mRNA microarray data. Dev Reprod 2015; 18:1-11. [PMID: 25949166 PMCID: PMC4282262 DOI: 10.12717/dr.2014.18.1.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 01/21/2014] [Accepted: 02/01/2014] [Indexed: 11/29/2022]
Abstract
Early growth response 1 (Egr1) is a zinc-finger transcription factor to direct second-wave gene expression leading to cell growth, differentiation and/or apoptosis. While it is well-known that Egr1 controls transcription of an array of targets in various cell types, downstream target gene(s) whose transcription is regulated by Egr1 in the uterus has not been identified yet. Thus, we have tried to identify a list of potential target genes of Egr1 in the uterus by performing multi-step in silico promoter analyses. Analyses of mRNA microarray data provided a cohort of genes (102 genes) which were differentially expressed (DEGs) in the uterus between Egr1(+/+) and Egr1(–/–) mice. In mice, the frequency of putative EGR1 binding sites (EBS) in the promoter of DEGs is significantly higher than that of randomly selected non-DEGs, although it is not correlated with expression levels of DEGs. Furthermore, EBS are considerably enriched within –500 bp of DEG’s promoters. Comparative analyses for EBS of DEGs with the promoters of other species provided power to distinguish DEGs with higher probability as EGR1 direct target genes. Eleven EBS in the promoters of 9 genes among analyzed DEGs are conserved between various species including human. In conclusion, this study provides evidence that analyses of mRNA expression profiles followed by two-step in silico analyses could provide a list of putative Egr1 direct target genes in the uterus where any known direct target genes are yet reported for further functional studies.
Collapse
Affiliation(s)
- Bong-Jong Seo
- Department of Biomedical Science, CHA University, Seoul 135-081, Republic of Korea
| | - Ji Won Son
- Department of Biomedical Science, CHA University, Seoul 135-081, Republic of Korea
| | - Hye-Ryun Kim
- Department of Biomedical Science, CHA University, Seoul 135-081, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Haengseok Song
- Department of Biomedical Science, CHA University, Seoul 135-081, Republic of Korea
| |
Collapse
|
862
|
Lillycrop KA, Costello PM, Teh AL, Murray RJ, Clarke-Harris R, Barton SJ, Garratt ES, Ngo S, Sheppard AM, Wong J, Dogra S, Burdge GC, Cooper C, Inskip HM, Gale CR, Gluckman PD, Harvey NC, Chong YS, Yap F, Meaney MJ, Rifkin-Graboi A, Holbrook JD, Godfrey KM. Association between perinatal methylation of the neuronal differentiation regulator HES1 and later childhood neurocognitive function and behaviour. Int J Epidemiol 2015; 44:1263-76. [PMID: 25906782 PMCID: PMC4588869 DOI: 10.1093/ije/dyv052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background Early life environments induce long-term changes in neurocognitive development and behaviour. In animal models, early environmental cues affect neuropsychological phenotypes via epigenetic processes but, as yet, there is little direct evidence for such mechanisms in humans. Method We examined the relation between DNA methylation at birth and child neuropsychological outcomes in two culturally diverse populations using a genome-wide methylation analysis and validation by pyrosequencing. Results Within the UK Southampton Women’s Survey (SWS) we first identified 41 differentially methylated regions of interest (DMROI) at birth associated with child’s full-scale IQ at age 4 years. Associations between HES1 DMROI methylation and later cognitive function were confirmed by pyrosequencing in 175 SWS children. Consistent with these findings, higher HES1 methylation was associated with higher executive memory function in a second independent group of 200 SWS 7-year-olds. Finally, we examined a pathway for this relationship within a Singaporean cohort (n = 108). Here, HES1 DMROI methylation predicted differences in early infant behaviour, known to be associated with academic success. In vitro, methylation of HES1 inhibited ETS transcription factor binding, suggesting a functional role of this site. Conclusions Thus, our findings suggest that perinatal epigenetic processes mark later neurocognitive function and behaviour, providing support for a role of epigenetic processes in mediating the long-term consequences of early life environment on cognitive development.
Collapse
Affiliation(s)
- Karen A Lillycrop
- Centre for Biological Sciences, and NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK,
| | - Paula M Costello
- Academic Unit of Human Development and Health, University of Southampton, Southampton, UK
| | - Ai Ling Teh
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore
| | - Robert J Murray
- Academic Unit of Human Development and Health, University of Southampton, Southampton, UK
| | - Rebecca Clarke-Harris
- Academic Unit of Human Development and Health, University of Southampton, Southampton, UK
| | - Sheila J Barton
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Emma S Garratt
- Academic Unit of Human Development and Health, University of Southampton, Southampton, UK
| | - Sherry Ngo
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Allan M Sheppard
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Johnny Wong
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore
| | - Shaillay Dogra
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore
| | - Graham C Burdge
- Academic Unit of Human Development and Health, University of Southampton, Southampton, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK, NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK, NIHR Musculoskeletal Biomedical Research Unit, University of Oxford, Oxford, UK
| | - Hazel M Inskip
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Catharine R Gale
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Yap-Seng Chong
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Fabian Yap
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Duke NUS Graduate School of Medicine, National University of Singapore, Singapore, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore and
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, Canada
| | - Anne Rifkin-Graboi
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore
| | - Joanna D Holbrook
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore
| | | | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK, NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| |
Collapse
|
863
|
Janmaat VT, Van De Winkel A, Peppelenbosch MP, Spaander MCW, Uitterlinden AG, Pourfarzad F, Tilanus HW, Rygiel AM, Moons LMG, Arp PP, Krishnadath KK, Kuipers EJ, Van Der Laan LJW. Vitamin D Receptor Polymorphisms Are Associated with Reduced Esophageal Vitamin D Receptor Expression and Reduced Esophageal Adenocarcinoma Risk. Mol Med 2015; 21:346-54. [PMID: 25910066 DOI: 10.2119/molmed.2012.00336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 04/21/2015] [Indexed: 12/22/2022] Open
Abstract
Epidemiological studies indicate that vitamin D exerts a protective effect on the development of various solid cancers. However, concerns have been raised regarding the potential deleterious role of high vitamin D levels in the development of esophageal adenocarcinoma (EAC). This study investigated genetic variation in the vitamin D receptor (VDR) in relation to its expression and risk of Barrett esophagus (BE) and EAC. VDR gene regulation was investigated by immunohistochemistry, reverse transcriptase-polymerase chain reaction (RT-PCR) and gel shift assays. Fifteen haplotype tagging single-nucleotide polymorphisms (SNPs) of the VDR gene were analyzed in 858 patients with reflux esophagitis (RE), BE or EAC and 202 healthy controls. VDR mRNA expression was higher in BE compared with squamous epithelium. VDR protein was located in the nucleus in BE. An rs1989969T/rs2238135G haplotype was identified in the 5' regulatory region of the VDR gene. It was associated with an approximately two-fold reduced risk of RE, BE and EAC. Analysis of a replication cohort was done for BE that confirmed this. The rs1989969T allele causes a GATA-1 transcription factor binding site to appear. The signaling of GATA-1, which is regarded as a negative transcriptional regulator, could explain the findings for rs1989969. The rs2238135G allele was associated with a significantly reduced VDR expression in BE; for the rs1989969T allele, a trend in reduced VDR expression was observed. We identified a VDR haplotype associated with reduced esophageal VDR expression and a reduced incidence of RE, BE and EAC. This VDR haplotype could be useful in identifying individuals who benefit most from vitamin D chemoprevention.
Collapse
Affiliation(s)
- Vincent T Janmaat
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Anouk Van De Winkel
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Manon C W Spaander
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Epidemiology and Clinical Chemistry, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Farzin Pourfarzad
- Department of Cell Biology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Hugo W Tilanus
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Agnieszka M Rygiel
- Center for Experimental Molecular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Leon M G Moons
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Pascal P Arp
- Department of Internal Medicine, Epidemiology and Clinical Chemistry, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Kausilia K Krishnadath
- Center for Experimental Molecular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Ernst J Kuipers
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands.,Department of Internal Medicine, Epidemiology and Clinical Chemistry, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Luc J W Van Der Laan
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
864
|
Transcriptional regulation of chemokine expression in ovarian cancer. Biomolecules 2015; 5:223-43. [PMID: 25790431 PMCID: PMC4384120 DOI: 10.3390/biom5010223] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/04/2015] [Accepted: 03/09/2015] [Indexed: 12/14/2022] Open
Abstract
The increased expression of pro-inflammatory and pro-angiogenic chemokines contributes to ovarian cancer progression through the induction of tumor cell proliferation, survival, angiogenesis, and metastasis. The substantial potential of these chemokines to facilitate the progression and metastasis of ovarian cancer underscores the need for their stringent transcriptional regulation. In this Review, we highlight the key mechanisms that regulate the transcription of pro-inflammatory chemokines in ovarian cancer cells, and that have important roles in controlling ovarian cancer progression. We further discuss the potential mechanisms underlying the increased chemokine expression in drug resistance, along with our perspective for future studies.
Collapse
|
865
|
Anderson D, Cordell HJ, Fakiola M, Francis RW, Syn G, Scaman ESH, Davis E, Miles SJ, McLeay T, Jamieson SE, Blackwell JM. First genome-wide association study in an Australian aboriginal population provides insights into genetic risk factors for body mass index and type 2 diabetes. PLoS One 2015; 10:e0119333. [PMID: 25760438 PMCID: PMC4356593 DOI: 10.1371/journal.pone.0119333] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 01/28/2015] [Indexed: 12/15/2022] Open
Abstract
A body mass index (BMI) >22kg/m2 is a risk factor for type 2 diabetes (T2D) in Aboriginal Australians. To identify loci associated with BMI and T2D we undertook a genome-wide association study using 1,075,436 quality-controlled single nucleotide polymorphisms (SNPs) genotyped (Illumina 2.5M Duo Beadchip) in 402 individuals in extended pedigrees from a Western Australian Aboriginal community. Imputation using the thousand genomes (1000G) reference panel extended the analysis to 6,724,284 post quality-control autosomal SNPs. No associations achieved genome-wide significance, commonly accepted as P<5x10-8. Nevertheless, genes/pathways in common with other ethnicities were identified despite the arrival of Aboriginal people in Australia >45,000 years ago. The top hit (rs10868204 Pgenotyped = 1.50x10-6; rs11140653 Pimputed_1000G = 2.90x10-7) for BMI lies 5' of NTRK2, the type 2 neurotrophic tyrosine kinase receptor for brain-derived neurotrophic factor (BDNF) that regulates energy balance downstream of melanocortin-4 receptor (MC4R). PIK3C2G (rs12816270 Pgenotyped = 8.06x10-6; rs10841048 Pimputed_1000G = 6.28x10-7) was associated with BMI, but not with T2D as reported elsewhere. BMI also associated with CNTNAP2 (rs6960319 Pgenotyped = 4.65x10-5; rs13225016 Pimputed_1000G = 6.57x10-5), previously identified as the strongest gene-by-environment interaction for BMI in African-Americans. The top hit (rs11240074 Pgenotyped = 5.59x10-6, Pimputed_1000G = 5.73x10-6) for T2D lies 5' of BCL9 that, along with TCF7L2, promotes beta-catenin's transcriptional activity in the WNT signaling pathway. Additional hits occurred in genes affecting pancreatic (KCNJ6, KCNA1) and/or GABA (GABRR1, KCNA1) functions. Notable associations observed for genes previously identified at genome-wide significance in other populations included MC4R (Pgenotyped = 4.49x10-4) for BMI and IGF2BP2 Pimputed_1000G = 2.55x10-6) for T2D. Our results may provide novel functional leads in understanding disease pathogenesis in this Australian Aboriginal population.
Collapse
Affiliation(s)
- Denise Anderson
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Heather J. Cordell
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, United Kingdom
| | - Michaela Fakiola
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
- Cambridge Institute for Medical Research, Department of Medicine, and Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Richard W. Francis
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Genevieve Syn
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Elizabeth S. H. Scaman
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Elizabeth Davis
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
- Department of Endocrinology and Diabetes, Princess Margaret Hospital for Children, Subiaco, Western Australia, 6008, Australia
| | - Simon J. Miles
- Ngangganawili Aboriginal Health Service, Wiluna, Western Australia, 6646, Australia
| | - Toby McLeay
- Ngangganawili Aboriginal Health Service, Wiluna, Western Australia, 6646, Australia
| | - Sarra E. Jamieson
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
| | - Jenefer M. Blackwell
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, 6008, Australia
- Cambridge Institute for Medical Research, Department of Medicine, and Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
866
|
Sun W, Valero MC, Seong KM, Steele LD, Huang IT, Lee CH, Clark JM, Qiu X, Pittendrigh BR. A glycine insertion in the estrogen-related receptor (ERR) is associated with enhanced expression of three cytochrome P450 genes in transgenic Drosophila melanogaster. PLoS One 2015; 10:e0118779. [PMID: 25761142 PMCID: PMC4356566 DOI: 10.1371/journal.pone.0118779] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/16/2015] [Indexed: 01/09/2023] Open
Abstract
Insecticide-resistant Drosophila melanogaster strains represent a resource for the discovery of the underlying molecular mechanisms of cytochrome P450 constitutive over-expression, even if some of these P450s are not directly involved in the resistance phenotype. For example, in select 4,4'-dichlorodiphenyltrichloroethane (DDT) resistant strains the glucocorticoid receptor-like (GR-like) potential transcription factor binding motifs (TFBMs) have previously been shown to be associated with constitutively differentially-expressed cytochrome P450s, Cyp12d1, Cyp6g2 and Cyp9c1. However, insects are not known to have glucocorticoids. The only ortholog to the mammalian glucocorticoid receptor (GR) in D. melanogaster is an estrogen-related receptor (ERR) gene, which has two predicted alternative splice isoforms (ERRa and ERRb). Sequencing of ERRa and ERRb in select DDT susceptible and resistant D. melanogaster strains has revealed a glycine (G) codon insertion which was only observed in the ligand binding domain of ERR from the resistant strains tested (ERR-G). Transgenic flies, expressing the ERRa-G allele, constitutively over-expressed Cyp12d1, Cyp6g2 and Cyp9c1. Only Cyp12d1 and Cyp6g2 were over-expressed in the ERRb-G transgenic flies. Phylogenetic studies show that the G-insertion appeared to be located in a less conserved domain in ERR and this insertion is found in multiple species across the Sophophora subgenera.
Collapse
Affiliation(s)
- Weilin Sun
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illionois, 61801, United States of America
| | - M. Carmen Valero
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illionois, 61801, United States of America
| | - Keon Mook Seong
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illionois, 61801, United States of America
| | - Laura D. Steele
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illionois, 61801, United States of America
| | - I-Ting Huang
- Chung Hwa University of Medical Technology, Tainan, Taiwan, R. O. C.
| | - Chien-Hui Lee
- Chung Hwa University of Medical Technology, Tainan, Taiwan, R. O. C.
| | - John M. Clark
- Department of Veterinary & Animal Science, University of Massachusetts, Amherst, Massachusetts, 01003, United States of America
| | - Xinghui Qiu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Barry R. Pittendrigh
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illionois, 61801, United States of America
| |
Collapse
|
867
|
Wu HH, Hwang-Verslues WW, Lee WH, Huang CK, Wei PC, Chen CL, Shew JY, Lee EYHP, Jeng YM, Tien YW, Ma C, Lee WH. Targeting IL-17B-IL-17RB signaling with an anti-IL-17RB antibody blocks pancreatic cancer metastasis by silencing multiple chemokines. ACTA ACUST UNITED AC 2015; 212:333-49. [PMID: 25732306 PMCID: PMC4354366 DOI: 10.1084/jem.20141702] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pancreatic cancer has an extremely high mortality rate due to its aggressive metastatic nature. Resolving the underlying mechanisms will be crucial for treatment. Here, we found that overexpression of IL-17B receptor (IL-17RB) strongly correlated with postoperative metastasis and inversely correlated with progression-free survival in pancreatic cancer patients. Consistently, results from ex vivo experiments further validated that IL-17RB and its ligand, IL-17B, plays an essential role in pancreatic cancer metastasis and malignancy. Signals from IL-17B-IL-17RB activated CCL20/CXCL1/IL-8/TFF1 chemokine expressions via the ERK1/2 pathway to promote cancer cell invasion, macrophage and endothelial cell recruitment at primary sites, and cancer cell survival at distant organs. Treatment with a newly derived monoclonal antibody against IL-17RB blocked tumor metastasis and promoted survival in a mouse xenograft model. These findings not only illustrate a key mechanism underlying the highly aggressive characteristics of pancreatic cancer but also provide a practical approach to tackle this disease.
Collapse
Affiliation(s)
- Heng-Hsiung Wu
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | | | - Wen-Hsin Lee
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Chun-Kai Huang
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Pei-Chi Wei
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Lin Chen
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Jin-Yuh Shew
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Eva Y-H P Lee
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697
| | - Yung-Ming Jeng
- Department of Pathology and Department of Surgery, National Taiwan University Hospital, Taipei 10617, Taiwan
| | - Yu-Wen Tien
- Department of Pathology and Department of Surgery, National Taiwan University Hospital, Taipei 10617, Taiwan
| | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Wen-Hwa Lee
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan Graduate Institute of Clinical Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
868
|
Huang JY, Chou SF, Lee JW, Chen HL, Chen CM, Tao MH, Shih C. MicroRNA-130a can inhibit hepatitis B virus replication via targeting PGC1α and PPARγ. RNA (NEW YORK, N.Y.) 2015; 21:385-400. [PMID: 25595716 PMCID: PMC4338335 DOI: 10.1261/rna.048744.114] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 12/08/2014] [Indexed: 06/04/2023]
Abstract
In hepatitis B virus (HBV)-replicating hepatocytes, miR-130a expression was significantly reduced. In a reciprocal manner, miR-130a reduced HBV replication by targeting at two major metabolic regulators PGC1α and PPARγ, both of which can potently stimulate HBV replication. We proposed a positive feed-forward loop between HBV, miR-130a, PPARγ, and PGC1α. Accordingly, HBV can significantly enhance viral replication by reducing miR-130a and increasing PGC1α and PPARγ. NF-κB/p65 can strongly stimulate miR-130a promoter, while miR-130a can promote NF-κB/p65 protein level by reducing PPARγ and thus NF-κB/p65 protein degradation. We postulated another positive feed-forward loop between miR-130a and NF-κB/p65 via PPARγ. During liver inflammation, NF-κB signaling could contribute to viral clearance via its positive effect on miR-130a transcription. Conversely, in asymptomatic HBV carriers, persistent viral infection could reduce miR-130a and NF-κB expression, leading to dampened inflammation and immune tolerance. Finally, miR-130a could contribute to metabolic homeostasis by dual targeting PGC1α and PPARγ simultaneously.
Collapse
Affiliation(s)
- Jyun-Yuan Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, 114 Taiwan Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan
| | - Shu-Fan Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 110 Taiwan
| | - Jun-Wei Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan
| | - Hung-Lin Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan
| | - Chun-Ming Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan
| | - Mi-Hua Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan
| | - Chiaho Shih
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, 114 Taiwan Institute of Biomedical Sciences, Academia Sinica, Taipei, 115 Taiwan
| |
Collapse
|
869
|
Erickson PA, Cleves PA, Ellis NA, Schwalbach KT, Hart JC, Miller CT. A 190 base pair, TGF-β responsive tooth and fin enhancer is required for stickleback Bmp6 expression. Dev Biol 2015; 401:310-23. [PMID: 25732776 DOI: 10.1016/j.ydbio.2015.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/11/2015] [Indexed: 12/17/2022]
Abstract
The ligands of the Bone Morphogenetic Protein (BMP) family of developmental signaling molecules are often under the control of complex cis-regulatory modules and play diverse roles in vertebrate development and evolution. Here, we investigated the cis-regulatory control of stickleback Bmp6. We identified a 190bp enhancer ~2.5 kilobases 5' of the Bmp6 gene that recapitulates expression in developing teeth and fins, with a core 72bp sequence that is sufficient for both domains. By testing orthologous enhancers with varying degrees of sequence conservation from outgroup teleosts in transgenic reporter gene assays in sticklebacks and zebrafish, we found that the function of this regulatory element appears to have been conserved for over 250 million years of teleost evolution. We show that a predicted binding site for the TGFβ effector Smad3 in this enhancer is required for enhancer function and that pharmacological inhibition of TGFβ signaling abolishes enhancer activity and severely reduces endogenous Bmp6 expression. Finally, we used TALENs to disrupt the enhancer in vivo and find that Bmp6 expression is dramatically reduced in teeth and fins, suggesting this enhancer is necessary for expression of the Bmp6 locus. This work identifies a relatively short regulatory sequence that is required for expression in multiple tissues and, combined with previous work, suggests that shared regulatory networks control limb and tooth development.
Collapse
Affiliation(s)
- Priscilla A Erickson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
| | - Phillip A Cleves
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
| | - Nicholas A Ellis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
| | - Kevin T Schwalbach
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
| | - James C Hart
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
| | - Craig T Miller
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
870
|
Prevalence of human papillomavirus variants and genetic diversity in the L1 gene and long control region of HPV16, HPV31, and HPV58 found in North-East Brazil. BIOMED RESEARCH INTERNATIONAL 2015; 2015:130828. [PMID: 25793187 PMCID: PMC4352477 DOI: 10.1155/2015/130828] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/08/2015] [Indexed: 02/06/2023]
Abstract
This study showed the prevalence of human papillomavirus (HPV) variants as well as nucleotide changes within L1 gene and LCR of the HPV16, HPV31, and HPV58 found in cervical lesions of women from North-East Brazil.
Collapse
|
871
|
Kim E, Park S, Choi N, Lee J, Yoe J, Kim S, Jung HY, Kim KT, Kang H, Fryer JD, Zoghbi HY, Hwang D, Lee Y. Deficiency of Capicua disrupts bile acid homeostasis. Sci Rep 2015; 5:8272. [PMID: 25653040 PMCID: PMC4317698 DOI: 10.1038/srep08272] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/10/2014] [Indexed: 01/22/2023] Open
Abstract
Capicua (CIC) has been implicated in pathogenesis of spinocerebellar ataxia type 1 and cancer in mammals; however, the in vivo physiological functions of CIC remain largely unknown. Here we show that Cic hypomorphic (Cic-L-/-) mice have impaired bile acid (BA) homeostasis associated with induction of proinflammatory cytokines. We discovered that several drug metabolism and BA transporter genes were down-regulated in Cic-L-/- liver, and that BA was increased in the liver and serum whereas bile was decreased within the gallbladder of Cic-L-/- mice. We also found that levels of proinflammatory cytokine genes were up-regulated in Cic-L-/- liver. Consistent with this finding, levels of hepatic transcriptional regulators, such as hepatic nuclear factor 1 alpha (HNF1α), CCAAT/enhancer-binding protein beta (C/EBPβ), forkhead box protein A2 (FOXA2), and retinoid X receptor alpha (RXRα), were markedly decreased in Cic-L-/- mice. Moreover, induction of tumor necrosis factor alpha (Tnfα) expression and decrease in the levels of FOXA2, C/EBPβ, and RXRα were found in Cic-L-/- liver before BA was accumulated, suggesting that inflammation might be the cause for the cholestasis in Cic-L-/- mice. Our findings indicate that CIC is a critical regulator of BA homeostasis, and that its dysfunction might be associated with chronic liver disease and metabolic disorders.
Collapse
Affiliation(s)
- Eunjeong Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Sungjun Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Nahyun Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Jieon Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Jeehyun Yoe
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Soeun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Hoe-Yune Jung
- Division of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Kyong-Tai Kim
- 1] Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, Republic of Korea [2] Division of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Hyojin Kang
- National Institute of Supercomputing and Networking, Korea Institute of Science and Technology Information, Daejeon 305-806, Republic of Korea
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Huda Y Zoghbi
- Howard Hughes Medical Institute, Departments of Molecular and Human Genetics, and Neuroscience, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Daehee Hwang
- 1] Division of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, Republic of Korea [2] Center for Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Yoontae Lee
- 1] Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, Republic of Korea [2] Division of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, Republic of Korea
| |
Collapse
|
872
|
Cheng CY, Huang WR, Chi PI, Chiu HC, Liu HJ. Cell entry of bovine ephemeral fever virus requires activation of Src-JNK-AP1 and PI3K-Akt-NF-κB pathways as well as Cox-2-mediated PGE2/EP receptor signalling to enhance clathrin-mediated virus endocytosis. Cell Microbiol 2015; 17:967-87. [DOI: 10.1111/cmi.12414] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/16/2014] [Accepted: 12/26/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Ching-Yuan Cheng
- Institute of Molecular Biology; National Chung Hsing University; Taichung 402 Taiwan
| | - Wei-Ru Huang
- Institute of Molecular Biology; National Chung Hsing University; Taichung 402 Taiwan
| | - Pei-I Chi
- Institute of Molecular Biology; National Chung Hsing University; Taichung 402 Taiwan
| | - Hung-Chuan Chiu
- Institute of Molecular Biology; National Chung Hsing University; Taichung 402 Taiwan
| | - Hung-Jen Liu
- Institute of Molecular Biology; National Chung Hsing University; Taichung 402 Taiwan
- Agricultural Biotechnology Center; National Chung Hsing University; Taichung 402 Taiwan
- Rong Hsing Research Center for Translational Medicine; National Chung Hsing University; Taichung 402 Taiwan
| |
Collapse
|
873
|
Bilodeau MS, Arguin G, Gendron FP. C/EBPβ regulates P2X7 receptor expression in response to glucose challenge in intestinal epithelial cells. Biochem Cell Biol 2015; 93:38-46. [DOI: 10.1139/bcb-2014-0098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Activation of the ATP-dependent P2X7 receptor modulates glucose transport in intestinal epithelial cells through the downregulation of glucose transporter GLUT2. In the present study, we show that an increase in glucose concentration stimulates P2X7 receptor transcription via modulation of CCAAT/enhancer binding proteins (C/EBPs) α and β expression. The described human P2X7 receptor promoter region (GenBank Y12851) was cloned upstream of a luciferase reporter gene in pGL4.10 plasmid and used to determine whether C/EBPs, namely C/EBPα and C/EBPβ, are able to stimulate the transcription of P2X7 receptor. Results show that C/EBPβ was the main regulator of P2X7 receptor expression in response to a glucose challenge. Chromatin immunoprecipitation (ChIP) assays further revealed that C/EBPβ occupied the –213 to +6 nt P2X7 promoter region. Surprisingly, C/EBPα was also able to bind this region as revealed by ChIP assays, but without inducing receptor transcription. In fact, C/EBPα and the C/EBPβ-LIP isoform blocked the C/EBPβ-dependent regulation of P2X7 receptor transcription. These findings suggest that glucose is not only the major source of energy for cell function but may also act as a signaling molecule to stimulate the expression of regulatory proteins.
Collapse
Affiliation(s)
- Maude S. Bilodeau
- Department of Anatomy and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, 3201 Jean-Mignault, QC J1E 4K8, Canada
| | - Guillaume Arguin
- Department of Anatomy and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, 3201 Jean-Mignault, QC J1E 4K8, Canada
| | - Fernand-Pierre Gendron
- Department of Anatomy and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Pavillon de Recherche Appliquée sur le Cancer, Université de Sherbrooke, Sherbrooke, 3201 Jean-Mignault, QC J1E 4K8, Canada
| |
Collapse
|
874
|
Wang X, Docanto MM, Sasano H, Lo C, Simpson ER, Brown KA. Prostaglandin E2 inhibits p53 in human breast adipose stromal cells: a novel mechanism for the regulation of aromatase in obesity and breast cancer. Cancer Res 2015; 75:645-55. [PMID: 25634217 DOI: 10.1158/0008-5472.can-14-2164] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Obesity is a risk factor for postmenopausal breast cancer and the majority of these cancers are estrogen dependent. Aromatase converts androgens into estrogens and its increased expression in breast adipose stromal cells (ASC) is a major driver of estrogen receptor-positive breast cancer. In particular, obesity-associated and tumor-derived factors, such as prostaglandin E2 (PGE2), have been shown to drive the expression of aromatase by stimulating the activity of the proximal promoter II (PII). The tumor-suppressor p53 is a key regulator of cell-cycle arrest and apoptosis and is frequently mutated in breast cancer. Mutations in p53 are rare in tumor-associated ASCs. Therefore, it was hypothesized that p53 is regulated by PGE2 and involved in the PGE2-mediated regulation of aromatase. Results demonstrate that PGE2 causes a significant decrease in p53 transcript and nuclear protein expression, as well as phosphorylation at Ser15 in primary human breast ASCs. Stabilization of p53 with RITA leads to a significant decrease in the PGE2-stimulated aromatase mRNA expression and activity, and PII activity. Interaction of p53 with PII was demonstrated and this interaction is decreased in the presence of PGE2. Moreover, mutation of the identified p53 response element leads to an increase in the basal activity of the promoter. Immunofluorescence on clinical samples demonstrates that p53 is decreased in tumor-associated ASCs compared with ASCs from normal breast tissue, and that there is a positive association between perinuclear (inactive) p53 and aromatase expression in these cells. Furthermore, aromatase expression is increased in breast ASCs from Li-Fraumeni patients (germline TP53 mutations) compared with non-Li-Fraumeni breast tissue. Overall, our results demonstrate that p53 is a negative regulator of aromatase in the breast and its inhibition by PGE2 provides a novel mechanism for aromatase regulation in obesity and breast cancer.
Collapse
Affiliation(s)
- Xuyi Wang
- Metabolism and Cancer Laboratory, Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia. Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Maria M Docanto
- Metabolism and Cancer Laboratory, Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Camden Lo
- Monash Micro Imaging, Monash University, Clayton, Victoria, Australia
| | - Evan R Simpson
- Metabolism and Cancer Laboratory, Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia. Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Kristy A Brown
- Metabolism and Cancer Laboratory, Centre for Cancer Research, MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia. Department of Physiology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
875
|
O'Brown NM, Summers BR, Jones FC, Brady SD, Kingsley DM. A recurrent regulatory change underlying altered expression and Wnt response of the stickleback armor plates gene EDA. eLife 2015; 4:e05290. [PMID: 25629660 PMCID: PMC4384742 DOI: 10.7554/elife.05290] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/26/2015] [Indexed: 12/15/2022] Open
Abstract
Armor plate changes in sticklebacks are a classic example of repeated adaptive
evolution. Previous studies identified ectodysplasin (EDA) gene as
the major locus controlling recurrent plate loss in freshwater fish, though the
causative DNA alterations were not known. Here we show that freshwater
EDA alleles have cis-acting regulatory changes
that reduce expression in developing plates and spines. An identical T → G
base pair change is found in EDA enhancers of divergent low-plated
fish. Recreation of the T → G change in a marine enhancer strongly reduces
expression in posterior armor plates. Bead implantation and cell culture experiments
show that Wnt signaling strongly activates the marine EDA enhancer,
and the freshwater T → G change reduces Wnt responsiveness. Thus parallel
evolution of low-plated sticklebacks has occurred through a shared DNA regulatory
change, which reduces the sensitivity of an EDA enhancer to Wnt
signaling, and alters expression in developing armor plates while preserving
expression in other tissues. DOI:http://dx.doi.org/10.7554/eLife.05290.001 Stickleback fish develop bony plates on their surface to protect themselves from
predators. The extent and pattern of their bony armor depends on their habitat:
marine sticklebacks are typically covered from head to tail with bony plates, but
freshwater sticklebacks retain only a few plates on their sides. One gene that promotes the formation of the bony plates is called
ectodysplasin (EDA). This encodes a signaling
protein that is important for the development of the skeleton, skin and many other
tissues. Variations in the sequence of this gene are shared among different
stickleback populations worldwide. However, it has not been clear which genetic
changes can explain how lightly armored freshwater sticklebacks could have evolved
from their well-armored marine ancestors on several separate occasions. Here, O'Brown et al. studied EDA in marine and groups of
freshwater sticklebacks that have evolved in different locations around the world.
The experiments show that the level of expression of EDA in the
developing plates and spines is lower in the freshwater fish. O'Brown et al.
thought this could be due to genetic changes in regions of EDA that
lie outside the region that encodes the protein, so called ‘regulatory
elements’. Indeed, further experiments found that all freshwater fish have a small change in the
DNA of a regulatory element that switches on the gene in plate-forming regions of the
body. When this change was introduced into marine sticklebacks, the fish had lower
levels of gene expression in these plate-forming regions. These findings demonstrate that lightly armored sticklebacks have evolved multiple
times from their well-armored marine ancestors through the same small change in their
DNA that alters the expression of the EDA gene. The next challenge
will be to understand why this particular small change in DNA appears to be favored
over all the other changes that could occur in the regulatory element, and to see if
factors that act through this regulatory switch also modify armor structures in
natural populations. DOI:http://dx.doi.org/10.7554/eLife.05290.002
Collapse
Affiliation(s)
- Natasha M O'Brown
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States
| | - Brian R Summers
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States
| | - Felicity C Jones
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States
| | - Shannon D Brady
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
876
|
DiGiacomo V, Meruelo D. Looking into laminin receptor: critical discussion regarding the non-integrin 37/67-kDa laminin receptor/RPSA protein. Biol Rev Camb Philos Soc 2015; 91:288-310. [PMID: 25630983 DOI: 10.1111/brv.12170] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 02/06/2023]
Abstract
The 37/67-kDa laminin receptor (LAMR/RPSA) was originally identified as a 67-kDa binding protein for laminin, an extracellular matrix glycoprotein that provides cellular adhesion to the basement membrane. LAMR has evolutionary origins, however, as a 37-kDa RPS2 family ribosomal component. Expressed in all domains of life, RPS2 proteins have been shown to have remarkably diverse physiological roles that vary across species. Contributing to laminin binding, ribosome biogenesis, cytoskeletal organization, and nuclear functions, this protein governs critical cellular processes including growth, survival, migration, protein synthesis, development, and differentiation. Unsurprisingly given its purview, LAMR has been associated with metastatic cancer, neurodegenerative disease and developmental abnormalities. Functioning in a receptor capacity, this protein also confers susceptibility to bacterial and viral infection. LAMR is clearly a molecule of consequence in human disease, directly mediating pathological events that make it a prime target for therapeutic interventions. Despite decades of research, there are still a large number of open questions regarding the cellular biology of LAMR, the nature of its ability to bind laminin, the function of its intrinsically disordered C-terminal region and its conversion from 37 to 67 kDa. This review attempts to convey an in-depth description of the complexity surrounding this multifaceted protein across functional, structural and pathological aspects.
Collapse
Affiliation(s)
- Vincent DiGiacomo
- Department of Pathology, New York University School of Medicine, 180 Varick Street, New York, NY 10014, U.S.A
| | - Daniel Meruelo
- Department of Pathology, New York University School of Medicine, 180 Varick Street, New York, NY 10014, U.S.A.,NYU Cancer Institute, 550 First Avenue, New York, NY 10016, U.S.A.,NYU Gene Therapy Center, 550 First Avenue, New York, NY 10016, U.S.A
| |
Collapse
|
877
|
Visser M, Palstra RJ, Kayser M. Allele-specific transcriptional regulation of IRF4 in melanocytes is mediated by chromatin looping of the intronic rs12203592 enhancer to the IRF4 promoter. Hum Mol Genet 2015; 24:2649-61. [PMID: 25631878 DOI: 10.1093/hmg/ddv029] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/24/2015] [Indexed: 01/07/2023] Open
Abstract
The majority of significant single-nucleotide polymorphisms (SNPs) identified with genome-wide association studies are located in non-coding regions of the genome; it is therefore possible that they are involved in transcriptional regulation of a nearby gene rather than affecting an encoded protein's function. Previously, it was demonstrated that the SNP rs12203592, located in intron 4 of the IRF4 gene, is strongly associated with human skin pigmentation and modulates an enhancer element that controls expression of IRF4. In our study, we investigated the allele-specific effect of rs12203592 on IRF4 expression in epidermal skin samples and in melanocytic cells from donors of different skin color. We focused on the characteristics and activity of the enhancer, and on long-range chromatin interactions in melanocytic cells homozygous and heterozygous for rs12203592. We found that, irrespective of the trans-activating environment, IRF4 transcription is strongly correlated with the allelic status of rs12203592, the activity of the rs12203592 enhancer and that the chromatin features depend on the rs12203592 genotype. Furthermore, we demonstrate that the rs12203592 enhancer physically interacts with the IRF4 promoter through an allele-dependent chromatin loop, and suggest that subsequent allele-specific activation of IRF4 transcription is stabilized by another allele-specific loop from the rs12203592 enhancer to an additional regulatory element in IRF4. We conclude that the non-coding SNP rs12203592 is located in a regulatory region and affects a wide range of enhancer characteristics, resulting into modulation of the enhancer's activity, its interaction with the IRF4 promoter and subsequent allele-specific transcription of IRF4. Our findings provide another example of a non-coding SNP affecting skin color by modulating enhancer-mediated transcriptional regulation.
Collapse
Affiliation(s)
- Mijke Visser
- Department of Forensic Molecular Biology, Erasmus MC University Medical Centre Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Robert-Jan Palstra
- Department of Forensic Molecular Biology, Erasmus MC University Medical Centre Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Manfred Kayser
- Department of Forensic Molecular Biology, Erasmus MC University Medical Centre Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
878
|
Abstract
Oncogene-induced senescence (OIS) protects normal cells from transformation by Ras, whereas cells lacking p14/p19(Arf) or other tumor suppressors can be transformed. The transcription factor C/EBPβ is required for OIS in primary fibroblasts but is downregulated by H-Ras(V12) in immortalized NIH 3T3 cells through a mechanism involving p19(Arf) loss. Here, we report that members of the serum-induced early growth response (Egr) protein family are also downregulated in 3T3(Ras) cells and directly and redundantly control Cebpb gene transcription. Egr1, Egr2, and Egr3 recognize three sites in the Cebpb promoter and associate transiently with this region after serum stimulation, coincident with Cebpb induction. Codepletion of all three Egrs prevented Cebpb expression, and serum induction of Egrs was significantly blunted in 3T3(Ras) cells. Egr2 and Egr3 levels were also reduced in Ras(V12)-expressing p19(Arf) null mouse embryonic fibroblasts (MEFs), and overall Egr DNA-binding activity was suppressed in Arf-deficient but not wild-type (WT) MEFs, leading to Cebpb downregulation. Analysis of human cancers revealed a strong correlation between EGR levels and CEBPB expression, regardless of whether CEBPB was increased or decreased in tumors. Moreover, overexpression of Egrs in tumor cell lines induced CEBPB and inhibited proliferation. Thus, our findings identify the Arf-Egr-C/EBPβ axis as an important determinant of cellular responses (senescence or transformation) to oncogenic Ras signaling.
Collapse
|
879
|
The Wilms' tumour suppressor Wt1 is a major regulator of tumour angiogenesis and progression. Nat Commun 2014; 5:5852. [PMID: 25510679 DOI: 10.1038/ncomms6852] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/13/2014] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis, activation of metastasis and avoidance of immune destruction are important for cancer progression. These biological capabilities are, apart from cancer cells, mediated by different cell types, including endothelial, haematopoietic progenitor and myeloid-derived suppressor cells. We show here that all these cell types frequently express the Wilms' tumour suppressor Wt1, which transcriptionally controls expression of Pecam-1 (CD31) and c-kit (CD117). Inducible conditional knockout of Wt1 in endothelial, haematopoietic and myeloid-derived suppressor cells is sufficient to cause regression of tumour vascularization and an enhanced immune response, leading to decreased metastasis, regression of established tumours and enhanced survival. Thus, Wt1 is an important regulator of cancer growth via modulation of tumour vascularization, immune response and metastasis formation.
Collapse
|
880
|
Zhang W, Xiao MS, Ji S, Tang J, Xu L, Li X, Li M, Wang HZ, Jiang HY, Zhang DF, Wang J, Zhang S, Xu XF, Yu L, Zheng P, Chen X, Yao YG. Promoter variant rs2301228 on the neural cell adhesion molecule 1 gene confers risk of schizophrenia in Han Chinese. Schizophr Res 2014; 160:88-96. [PMID: 25445624 DOI: 10.1016/j.schres.2014.09.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 09/09/2014] [Accepted: 09/16/2014] [Indexed: 01/15/2023]
Abstract
BACKGROUND Schizophrenia is recognized as a disorder of the brain and neuronal connectivity. The neural cell adhesion molecule 1 (NCAM1) gene plays a crucial role in regulating neuronal connectivity. METHODS We conducted a two-stage association analysis on 17 NCAM1 SNPs in two independent Han Chinese schizophrenia case-control cohorts (discovery sample from Hunan Province: 986 patients and 1040 normal controls; replication sample from Yunnan Province: 564 cases and 547 healthy controls). Allele, genotype and haplotype frequencies were compared between case and control samples. Transcription factor binding site prediction and luciferase reporter assays were employed to assess the potential function of promoter SNPs. We detected developmental changes at the transcriptional level of NCAM1 during neuron differentiation in Macaca mulatta neural progenitor cells (NPC). Serum levels of NCAM1 were measured in 72 cases and 88 controls. RESULTS A promoter variant, rs2301228, was found to be associated with schizophrenia at the allelic level and was validated in a replication cohort. Luciferase reporter assays demonstrated that risk allele rs2301228-A significantly down-regulated NCAM1 gene transcription compared to the G-allele. Concordantly, schizophrenia patients had a significantly lower level of serum NCAM1 compared to healthy donors. During the NPC neuronal differentiation, NCAM1 mRNA was significantly increased, suggesting a critical role of this gene in neural development. CONCLUSIONS Our results provide direct evidence for NCAM1 as a susceptibility gene for schizophrenia, which offers support to a neurodevelopmental model and neuronal connectivity hypothesis in the onset of schizophrenia.
Collapse
Affiliation(s)
- Wen Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Mei-Sheng Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Shuang Ji
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jinsong Tang
- Institute of Mental Health, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ming Li
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Hui-Zhen Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China; School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Hong-Yan Jiang
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Deng-Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jicai Wang
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shuliang Zhang
- Coal Mine Mental Hospital of Yunnan Province, Honghe, Yunnan 652402, China
| | - Xiu-Feng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Li Yu
- Laboratory for Conservation and Utilization of Bio-resource & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiaogang Chen
- Institute of Mental Health, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China.
| |
Collapse
|
881
|
Bowers JM, Perez-Pouchoulen M, Roby CR, Ryan TE, McCarthy MM. Androgen modulation of Foxp1 and Foxp2 in the developing rat brain: impact on sex specific vocalization. Endocrinology 2014; 155:4881-94. [PMID: 25247470 PMCID: PMC4239422 DOI: 10.1210/en.2014-1486] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sex differences in vocal communication are prevalent in both the animals and humans. The mechanism(s) mediating gender differences in human language are unknown, although, sex hormones, principally androgens, play a central role in the development of vocalizations in a wide variety of animal species. The discovery of FOXP2 has added an additional avenue for exploring the origins of language and animal communication. The FOXP2 gene is a member of the forkhead box P (FOXP) family of transcription factors. Prior to the prenatal androgen surge in male fetuses, we observed no sex difference for Foxp2 protein levels in cultured cells. In contrast, 24 hours after the onset of the androgen surge, we found a sex difference for Foxp2 protein levels in cultured cortical cells with males having higher levels than females. Furthermore, we observed the potent nonaromatizable androgen dihydrotestosterone altered not only Foxp2 mRNA and protein levels but also Foxp1. Androgen effects on both Foxp2 and Foxp1 were found to occur in the striatum, cerebellar vermis, and cortex. Immunofluorescence microscopy and coimmunoprecipitation demonstrate Foxp2 and the androgen receptor protein interact. Databases for transcription factor binding sites predict a consensus binding motif for androgen receptor on the Foxp2 promoter regions. We also observed a sex difference in rat pup vocalization with males vocalizing more than females and treatment of females with dihydrotestosterone eliminated the sex difference. We propose that androgens might be an upstream regulator of both Foxp2 and Foxp1 expression and signaling. This has important implications for language and communication as well as neuropsychiatric developmental disorders involving impairments in communication.
Collapse
Affiliation(s)
- J Michael Bowers
- Department of Pharmacology (J.M.B., M.P.-P., C.R.R., M.M.M.), University of Maryland School of Medicine and Programs in Neuroscience (M.M.M.) and Medicine (T.E.R.), University of Maryland School of Medicine, University of Maryland, Baltimore, Baltimore, Maryland 21201
| | | | | | | | | |
Collapse
|
882
|
Sidler C, Li D, Wang B, Kovalchuk I, Kovalchuk O. SUV39H1 downregulation induces deheterochromatinization of satellite regions and senescence after exposure to ionizing radiation. Front Genet 2014; 5:411. [PMID: 25484892 PMCID: PMC4240170 DOI: 10.3389/fgene.2014.00411] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 11/05/2014] [Indexed: 12/22/2022] Open
Abstract
While the majority of cancer patients are exposed to ionizing radiation during diagnostic and therapeutic procedures, age-dependent differences in radiation sensitivity are not yet well understood. Radiation sensitivity is characterized by the appearance of side effects to radiation therapy, such as secondary malignancies, developmental deficits, and compromised immune function. However, the knowledge of the molecular mechanisms that trigger these side effects is incomplete. Here we used an in vitro system and showed that low-senescent normal human diploid fibroblasts (WI-38) senesce in response to 5 Gy IR, while highly senescent cultures do not show changes in cell cycle regulation and only a slight increase in the percentage of senescent cells. Our study shows that this is associated with changes in the expression of genes responsible for cell cycle progression, apoptosis, DNA repair, and aging, as well as transcriptional and epigenetic regulators. Furthermore, we propose a role of the downregulation of SUV39H1 expression, a histone methyltransferase that specifically trimethylates H3K9, and the corresponding reduction in H3K9me3 levels in the establishment of IR-induced senescence.
Collapse
Affiliation(s)
- Corinne Sidler
- Department of Biological Sciences, University of Lethbridge Lethbridge, AB, Canada
| | - Dongping Li
- Department of Biological Sciences, University of Lethbridge Lethbridge, AB, Canada
| | - Bo Wang
- Department of Biological Sciences, University of Lethbridge Lethbridge, AB, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge Lethbridge, AB, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge Lethbridge, AB, Canada
| |
Collapse
|
883
|
Gokulnath M, Partridge NC, Selvamurugan N. Runx2, a target gene for activating transcription factor-3 in human breast cancer cells. Tumour Biol 2014; 36:1923-31. [PMID: 25380580 DOI: 10.1007/s13277-014-2796-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/30/2014] [Indexed: 12/31/2022] Open
Abstract
Activating transcription factor (ATF-3) is a stress response gene and is induced by transforming growth factor beta 1 (TGF-β1) in breast cancer cells. In this study, we dissected the functional role of ATF-3 gene in vitro by knocking down its expression stably in human bone metastatic breast cancer cells (MDA-MB231). Knockdown of ATF-3 expression in these cells decreased cell number, altered cell cycle phase transition, and decreased mRNA expression of cell cycle genes. Knockdown of ATF-3 expression in MDA-MB231 cells also decreased cell migration, and the expression levels of invasive and metastatic genes such as MMP-13 and Runx2 were found to be decreased in these cells. Most importantly, ATF-3 was associated with Runx2 promoter in MDA-MB231 cells and knockdown of ATF-3 expression decreased its association with Runx2 promoter. Hence, our results suggested that ATF-3 plays a role in proliferation and invasion of bone metastatic breast cancer cells in vitro and we identified for the first time that Runx2 is a target gene of ATF-3 in MDA-MB231 cell line.
Collapse
Affiliation(s)
- M Gokulnath
- Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, 603203, Tamil Nadu, India
| | | | | |
Collapse
|
884
|
Wu H, Wu Y, Ai Z, Yang L, Gao Y, Du J, Guo Z, Zhang Y. Vitamin C enhances Nanog expression via activation of the JAK/STAT signaling pathway. Stem Cells 2014; 32:166-76. [PMID: 23963652 DOI: 10.1002/stem.1523] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 06/08/2013] [Accepted: 07/31/2013] [Indexed: 11/09/2022]
Abstract
Vitamin C (Vc), also known as ascorbic acid, is involved in many important metabolic and physiological reactions in the body. Here, we report that Vc enhances the expression of Nanog and inhibits retinoic acid-induced differentiation of embryonic stem cells. We investigated Vc regulation of Nanog through Janus kinase/signal transducer and activator of transcription pathway using cell signaling pathway profiling systems, and further confirmed by specific pathway inhibition. Using overexpression and knockdown strategies, we demonstrated that STAT2 is a new positive regulator of Nanog and is activated by phosphorylation following Vc treatment. In addition, site mutation analysis identified that STAT2 physically occupies the Nanog promoter, which was confirmed by chromatin immunoprecipitation and electrophoretic mobility shift assays. Taken together, our data suggest a role for Vc in Nanog regulation networks and reveal a novel role for STAT2 in regulating Nanog expression.
Collapse
Affiliation(s)
- Haibo Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
885
|
Kim HS, Jung G. Reactive oxygen species increase HEPN1 expression via activation of the XBP1 transcription factor. FEBS Lett 2014; 588:4413-21. [DOI: 10.1016/j.febslet.2014.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/06/2014] [Accepted: 10/09/2014] [Indexed: 12/16/2022]
|
886
|
Gu J, Lu Y, Li F, Qiao L, Wang Q, Li N, Borgia JA, Deng Y, Lei G, Zheng Q. Identification and characterization of the novel Col10a1 regulatory mechanism during chondrocyte hypertrophic differentiation. Cell Death Dis 2014; 5:e1469. [PMID: 25321476 PMCID: PMC4649528 DOI: 10.1038/cddis.2014.444] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 02/03/2023]
Abstract
The majority of human skeleton develops through the endochondral pathway, in which cartilage-forming chondrocytes proliferate and enlarge into hypertrophic chondrocytes that eventually undergo apoptosis and are replaced by bone. Although at a terminal differentiation stage, hypertrophic chondrocytes have been implicated as the principal engine of bone growth. Abnormal chondrocyte hypertrophy has been seen in many skeletal dysplasia and osteoarthritis. Meanwhile, as a specific marker of hypertrophic chondrocytes, the type X collagen gene (COL10A1) is also critical for endochondral bone formation, as mutation and altered COL10A1 expression are often accompanied by abnormal chondrocyte hypertrophy in many skeletal diseases. However, how the type X collagen gene is regulated during chondrocyte hypertrophy has not been fully elucidated. We have recently demonstrated that Runx2 interaction with a 150-bp mouse Col10a1 cis-enhancer is required but not sufficient for its hypertrophic chondrocyte-specific reporter expression in transgenic mice, suggesting requirement of additional Col10a1 regulators. In this study, we report in silico sequence analysis of this 150-bp enhancer and identification of its multiple binding factors, including AP1, MEF2, NFAT, Runx1 and TBX5. Using this enhancer as bait, we performed yeast one-hybrid assay and identified multiple candidate Col10a1-interacting genes, including cyclooxygenase 1 (Cox-1) and Cox-2. We have also performed mass spectrometry analysis and detected EF1-alpha, Fus, GdF7 and Runx3 as components of the specific complex formed by the cis-enhancer and nuclear extracts from hypertrophic MCT (mouse chondrocytes immortalized with large T antigen) cells that express Col10a1 abundantly. Notably, some of the candidate genes are differentially expressed in hypertrophic MCT cells and have been associated with chondrocyte hypertrophy and Runx2, an indispensible Col10a1 regulator. Intriguingly, we detected high-level Cox-2 expression in hypertrophic MCT cells. Electrophoretic mobility shift assay and chromatin immunoprecipitation assays confirmed the interaction between Cox-2 and Col10a1 cis-enhancer, supporting its role as a candidate Col10a1 regulator. Together, our data support a Cox-2-containing, Runx2-centered Col10a1 regulatory mechanism, during chondrocyte hypertrophic differentiation.
Collapse
Affiliation(s)
- J Gu
- Department of Hematology and Hematological Laboratory Science, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Y Lu
- Department of Hematology and Hematological Laboratory Science, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, China
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - F Li
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - L Qiao
- Department of Hematology and Hematological Laboratory Science, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Q Wang
- Department of Hematology and Hematological Laboratory Science, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - N Li
- Department of Hematology and Hematological Laboratory Science, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - J A Borgia
- Department of Pathology and Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Y Deng
- Department of Internal Medicine and Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - G Lei
- Department of Orthopaedic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Q Zheng
- Department of Hematology and Hematological Laboratory Science, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, China
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
887
|
Coagulation factor VII is regulated by androgen receptor in breast cancer. Exp Cell Res 2014; 331:239-250. [PMID: 25447311 DOI: 10.1016/j.yexcr.2014.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 11/22/2022]
Abstract
Androgen receptor (AR) is widely expressed in breast cancer; however, there is limited information on the key molecular functions and gene targets of AR in this disease. In this study, gene expression data from a cohort of 52 breast cancer cell lines was analyzed to identify a network of AR co-expressed genes. A total of 300 genes, which were significantly enriched for cell cycle and metabolic functions, showed absolute correlation coefficients (|CC|) of more than 0.5 with AR expression across the dataset. In this network, a subset of 35 "AR-signature" genes were highly co-expressed with AR (|CC|>0.6) that included transcriptional regulators PATZ1, NFATC4, and SPDEF. Furthermore, gene encoding coagulation factor VII (F7) demonstrated the closest expression pattern with AR (CC=0.716) in the dataset and factor VII protein expression was significantly associated to that of AR in a cohort of 209 breast tumors. Moreover, functional studies demonstrated that AR activation results in the induction of factor VII expression at both transcript and protein levels and AR directly binds to a proximal region of F7 promoter in breast cancer cells. Importantly, AR activation in breast cancer cells induced endogenous factor VII activity to convert factor X to Xa in conjunction with tissue factor. In summary, F7 is a novel AR target gene and AR activation regulates the ectopic expression and activity of factor VII in breast cancer cells. These findings have functional implications in the pathobiology of thromboembolic events and regulation of factor VII/tissue factor signaling in breast cancer.
Collapse
|
888
|
Jia Z, Gao S, M'Rabet N, De Geyter C, Zhang H. Sp1 is necessary for gene activation of Adamts17 by estrogen. J Cell Biochem 2014; 115:1829-39. [PMID: 24906090 DOI: 10.1002/jcb.24855] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 05/30/2014] [Indexed: 12/21/2022]
Abstract
Adamts17 is a member of a family of secreted metalloproteinases. In this report, we show that knockdown of Adamts17 expression induces apoptosis and inhibits breast cancer cell growth. Adamts17 expression can rapidly be induced by estrogens. siRNA knockdown of Sp1 or Myc demonstrated that Sp1 is required to induce Adamts17 gene expression in response to estrogen. Moreover, reporter assays showed that the proximal promoter and the upstream sequences were not capable of conferring estrogen responsiveness, suggesting that Sp1 elements may be located in the downstream intronic region. We further demonstrated that Sp1 and Myc binding in the proximal promoter region contributed to the Adamts17 basal expression. Furthermore, histone deacetylase (HDAC) and methylase inhibitors also induced Adamts17 expression, indicating that epigenetic alterations, such as aberrant HDAC and/or methylation are associated with dysregulated Adamts17 expression. By meta-analysis using Oncomine microarray data, we found that higher Adamts17 expression is found in several human cancer cell subtypes, especially in breast ductal carcinoma. Moreover, we found that there is an inverse correlation between higher Adamts17 expression and patients' survival. Our study suggests that Adamts17 may support breast cancer cell growth and survival.
Collapse
Affiliation(s)
- Zanhui Jia
- Clinic of Gynecological Endocrinology and Reproductive Medicine, University of Basel, Spitalstrasse 21, CH-4031, Basel, Switzerland; Department of Biomedicine, University of Basel, Hebelstrasse 20, CH-4031, Basel, Switzerland; Department of Gynecology and Obstetrics, Second Hospital of Jilin University, Changchun City, Jilin Province, P.R. China
| | | | | | | | | |
Collapse
|
889
|
Hummel DM, Fetahu IS, Gröschel C, Manhardt T, Kállay E. Role of proinflammatory cytokines on expression of vitamin D metabolism and target genes in colon cancer cells. J Steroid Biochem Mol Biol 2014; 144 Pt A:91-5. [PMID: 24120915 PMCID: PMC4138205 DOI: 10.1016/j.jsbmb.2013.09.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/20/2013] [Accepted: 09/30/2013] [Indexed: 12/28/2022]
Abstract
Interleukin 6 (IL-6) and tumor necrosis factor alpha (TNFα) are proinflammatory cytokines that play a critical role in inflammatory bowel disease, as well as in colorectal tumorigenesis. We hypothesize that these cytokines modulate the expression and thus activity of the vitamin D system in colonic epithelial cells. We treated the colon cancer cell line COGA-1A for 6, 12, and 24h with 1,25-dihydroxyvitamin D3 (1,25-D3), IL-6, TNFα, and with combinations of these compounds. Using quantitative RT-PCR, we analyzed mRNA expression of genes activating and catabolizing 1,25-D3 (1α-hydroxylase (CYP27B1), 24-hydroxylase (CYP24A1)), expression of several vitamin D target genes, as well as expression of cyclooxygenase 2 (COX-2) and 15-hydroxyprostaglandin dehydrogenase. As expected, treatment with 1,25-D3 resulted in an upregulation of CYP24A1, whereas expression of CYP27B1 was not affected. Treatment with TNFα and IL-6 led to decreased expression of the vitamin D activating enzyme CYP27B1. The strong inflammatory property of TNFα was mirrored by its activation of COX-2 and inhibition of prostaglandin E2 (PGE2) catabolism. Interestingly, expression of the calcium ion channel TRPV6 was markedly decreased by TNFα. We conclude from these results that the presence of proinflammatory cytokines might impair activation of 1,25-D3, limiting its anti-inflammatory action. This article is part of a Special Issue entitled '16th Vitamin D Workshop'.
Collapse
Affiliation(s)
- Doris M Hummel
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | - Irfete S Fetahu
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | - Charlotte Gröschel
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | - Teresa Manhardt
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | - Enikő Kállay
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
890
|
Sousa B, Ribeiro AS, Nobre AR, Lopes N, Martins D, Pinheiro C, Vieira AF, Albergaria A, Gerhard R, Schmitt F, Baltazar F, Paredes J. The basal epithelial marker P-cadherin associates with breast cancer cell populations harboring a glycolytic and acid-resistant phenotype. BMC Cancer 2014; 14:734. [PMID: 25269858 PMCID: PMC4190447 DOI: 10.1186/1471-2407-14-734] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/18/2014] [Indexed: 12/26/2022] Open
Abstract
Background Cancer stem cells are hypoxia-resistant and present a preponderant glycolytic metabolism. These characteristics are also found in basal-like breast carcinomas (BLBC), which show increased expression of cancer stem cell markers. Recently, we demonstrated that P-cadherin, a biomarker of BLBC and a poor prognostic factor in this disease, mediates stem-like properties and resistance to radiation therapy. Thus, the aim of the present study was to evaluate if P-cadherin expression was associated to breast cancer cell populations with an adapted phenotype to hypoxia. Methods Immunohistochemistry was performed to address the expression of P-cadherin, hypoxic, glycolytic and acid-resistance biomarkers in primary human breast carcinomas. In vitro studies were performed using basal-like breast cancer cell lines. qRT-PCR, FACS analysis, western blotting and confocal microscopy were used to assess the expression of P-cadherin after HIF-1α stabilization, achieved by CoCl2 treatment. siRNA-mediated knockdown was used to silence the expression of several targets and qRT-PCR was employed to evaluate the effects of P-cadherin on HIF-1α signaling. P-cadherin high and low breast cancer cell populations were sorted by FACS and levels of GLUT1 and CAIX were assessed by FACS and western blotting. Mammosphere forming efficiency was used to determine the stem cell activity after specific siRNA-mediated knockdown, further confirmed by western blotting. Results We demonstrated that P-cadherin overexpression was significantly associated with the expression of HIF-1α, GLUT1, CAIX, MCT1 and CD147 in human breast carcinomas. In vitro, we showed that HIF-1α stabilization was accompanied by increased membrane expression of P-cadherin and that P-cadherin silencing led to a decrease of the mRNA levels of GLUT1 and CAIX. We also found that the cell fractions harboring high levels of P-cadherin were the same exhibiting more GLUT1 and CAIX expression. Finally, we showed that P-cadherin silencing significantly decreases the mammosphere forming efficiency in the same range as the silencing of HIF-1α, CAIX or GLUT1, validating that all these markers are being expressed by the same breast cancer stem cell population. Conclusions Our results establish a link between aberrant P-cadherin expression and hypoxic, glycolytic and acid-resistant breast cancer cells, suggesting a possible role for this marker in cancer cell metabolism. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-734) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Joana Paredes
- IPATIMUP- Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr Roberto Frias s/n, Porto 4200-465, Portugal.
| |
Collapse
|
891
|
Patnaik BB, Patnaik HH, Seo GW, Jo YH, Lee YS, Lee BL, Han YS. Gene structure, cDNA characterization and RNAi-based functional analysis of a myeloid differentiation factor 88 homolog in Tenebrio molitor larvae exposed to Staphylococcus aureus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:208-221. [PMID: 24755285 DOI: 10.1016/j.dci.2014.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/13/2014] [Accepted: 04/14/2014] [Indexed: 06/03/2023]
Abstract
Myeloid differentiation factor 88 (MyD88), an intracellular adaptor protein involved in Toll/Toll-like receptor (TLR) signal processing, triggers activation of nuclear factor-kappaB (NF-κB) transcription factors. In the present study, we analyzed the gene structure and biological function of MyD88 in a coleopteran insect, Tenebrio molitor (TmMyD88). The TmMyD88 gene was 1380 bp in length and consisted of five exons and four introns. The 5'-flanking sequence revealed several putative transcription factor binding sites, such as STAT-4, AP-1, cJun, cfos, NF-1 and many heat shock factor binding elements. The cDNA contained a typical death domain, a conservative Toll-like interleukin-1 receptor (TIR) domain, and a C-terminal extension (CTE). The TmMyD88 TIR domain showed three significantly conserved motifs for interacting with the TIR domain of TLRs. TmMyD88 was grouped within the invertebrate cluster of the phylogenetic tree and shared 75% sequence identity with the TIR domain of Tribolium castaneum MyD88. Homology modeling of the TmMyD88 TIR domain revealed five parallel β-strands surrounded by five α-helices that adopted loop conformations to function as an adaptor. TmMyD88 expression was upregulated 7.3- and 4.79-fold after 12 and 6h, respectively, of challenge with Staphylococcus aureus and fungal β-1,3 glucan. Silencing of the TmMyD88 transcript by RNA interference led to reduced resistance of the host to infection by S. aureus. These results indicate that TmMyD88 is required for survival against Staphylococcus infection.
Collapse
Affiliation(s)
- Bharat Bhusan Patnaik
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hongray Howrelia Patnaik
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Gi Won Seo
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Yong Hun Jo
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, Asan City 336-745, Republic of Korea
| | - Bok Luel Lee
- National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University, Jangjeon Dong, Kumjeong Ku, Busan 609-735, Republic of Korea
| | - Yeon Soo Han
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
892
|
Chang CH, Fan TC, Yu JC, Liao GS, Lin YC, Shih ACC, Li WH, Yu ALT. The prognostic significance of RUNX2 and miR-10a/10b and their inter-relationship in breast cancer. J Transl Med 2014; 12:257. [PMID: 25266482 PMCID: PMC4189660 DOI: 10.1186/s12967-014-0257-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/08/2014] [Indexed: 12/15/2022] Open
Abstract
Background The major cancer related mortality is caused by metastasis and invasion. It is important to identify genes regulating metastasis and invasion in order to curtail metastatic spread of cancer cells. Methods This study investigated the association between RUNX2 and miR-10a/miR-10b and the risk of breast cancer relapse. Expression levels of RUNX2 and miR-10a/b in108 pairs of tumor and non-tumor tissue of breast cancer were assayed by quantitative PCR analysis and evaluated for their prognostic implications. Results The median expression levels of RUNX2 and miR-10b in tumor tissue normalized using adjacent non-tumor tissue were significantly higher in relapsed patients than in relapse-free patients. Higher expression of these three genes were significantly correlated with the hazard ratio for breast cancer recurrence (RUNX2: 3.02, 95% CI = 1.50 ~ 6.07; miR-10a: 2.31, 95% CI = 1.00 ~ 5.32; miR-10b: 3.96, 95% CI = 1.21 ~ 12.98). The joint effect of higher expression of all three genes was associated with a hazard ratio of 12.37 (95% CI = 1.62 ~ 94.55) for relapse. In a breast cancer cell line, RUNX2 silencing reduced the expression of miR-10a/b and also impaired cell motility, while RUNX2 overexpression elicited opposite effects. Conclusions These findings indicate that higher expression of RUNX2 and miR-10a/b was associated with adverse outcome of breast cancer. Expression levels of RUNX2 and miR-10a/b individually or jointly are potential prognostic factors for predicting breast cancer recurrence. Data from in vitro studies support the notion that RUNX2 promoted cell motility by upregulating miR-10a/b. Electronic supplementary material The online version of this article (doi:10.1186/s12967-014-0257-3) contains supplementary material, which is available to authorized users.
Collapse
|
893
|
Cyclin D1 acts as a barrier to pluripotent reprogramming by promoting neural progenitor fate commitment. FEBS Lett 2014; 588:4008-17. [DOI: 10.1016/j.febslet.2014.08.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/11/2014] [Accepted: 08/27/2014] [Indexed: 11/21/2022]
|
894
|
Schieck M, Sharma V, Michel S, Toncheva AA, Worth L, Potaczek DP, Genuneit J, Kretschmer A, Depner M, Dalphin JC, Riedler J, Frei R, Pekkanen J, Tost J, Kabesch M. A polymorphism in the TH 2 locus control region is associated with changes in DNA methylation and gene expression. Allergy 2014; 69:1171-80. [PMID: 24866380 DOI: 10.1111/all.12450] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2014] [Indexed: 02/01/2023]
Abstract
BACKGROUND Genomewide association and epigenetic studies found a region within the RAD50 gene on chromosome 5q31 to be associated with total serum IgE levels and asthma. In mice, this region harbors a locus control region for nearby TH 2 cytokines, which is characterized by four Rad50 DNase I hypersensitive sites (RHS4-7). Among these, RHS7 seems to have the strongest impact on TH 2 differentiation. We investigated whether within the human homolog of RHS7, functional polymorphisms exist, which could affect DNA methylation or gene expression in the 5q31 locus and might have an influence on asthma status or IgE regulation. METHODS The human RHS7 region was fine mapped using 1000 genomes database information. In silico analysis and electrophoretic mobility shift assays were used to assess SNP function. Allele-specific effects on DNA methylation were evaluated in cord blood (n = 73) and at age of 4.5 years (n = 61) by pyrosequencing. Allele-specific effects on RAD50, IL4, and IL13 expression were analyzed in 100 subjects. Associations with asthma and IgE levels were investigated in the MAGICS/ISAAC II population (n = 1145). RESULTS Polymorphism rs2240032 in the RHS7 region is suggestive of allele-specific transcription factor binding, affects methylation of the IL13 promoter region and influences RAD50 and IL4 expression (lowest P = 0.0027). It is also associated with total serum IgE levels (P = 0.0227). CONCLUSION A functional relevant polymorphism in the TH 2 locus control region, equivalent to RHS7 in mice, affects DNA methylation and gene expression within 5q31 and influences total serum IgE on the population level.
Collapse
Affiliation(s)
- M Schieck
- Department of Pediatric Pneumology and Allergy, University Children`s Hospital Regensburg (KUNO), Regensburg, Germany; Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
895
|
Zhao ZX, Xu P, Cao DC, Kuang YY, Deng HX, Zhang Y, Xu LM, Li JT, Xu J, Sun XW. Duplication and differentiation of common carp (Cyprinus carpio) myoglobin genes revealed by BAC analysis. Gene 2014; 548:210-6. [DOI: 10.1016/j.gene.2014.07.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 05/09/2014] [Accepted: 07/11/2014] [Indexed: 12/26/2022]
|
896
|
Agrawal R, Pandey P, Jha P, Dwivedi V, Sarkar C, Kulshreshtha R. Hypoxic signature of microRNAs in glioblastoma: insights from small RNA deep sequencing. BMC Genomics 2014; 15:686. [PMID: 25129238 PMCID: PMC4148931 DOI: 10.1186/1471-2164-15-686] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 08/12/2014] [Indexed: 01/22/2023] Open
Abstract
Background Hypoxia is a critical aspect of the glioma microenvironment and has been associated with poor prognosis and resistance to various therapies. However, the mechanisms responsible for hypoxic survival of glioma cells remain unclear. Recent studies strongly suggest that microRNAs act as critical mediators of the hypoxic response. We thus hypothesized their prominent role in hypoxia resistance in glioblastoma (GBM) and aimed to identify those. Results With this study, we present the first detailed analysis of small RNA transcriptome of cell line U87MG, a grade IV glioma cell line, and its alteration under hypoxic condition. Based on deep sequencing and microarray data, we identify a set of hypoxia regulated microRNAs, with the miR-210-3p and its isomiRs showing highest induction in GBM cell lines U87MG and U251MG. We show miR-210-3p, miR-1275, miR-376c-3p, miR-23b-3p, miR-193a-3p and miR-145-5p to be up-regulated, while miR-92b-3p, miR-20a-5p, miR-10b-5p, miR-181a-2-3p and miR-185-5p are down-regulated by hypoxia. Interestingly, certain hypoxia-induced miRNAs are also known to be over-expressed in GBM tumors, suggesting that hypoxia may be one of the factors involved in establishing the miRNA signature of GBM. Transcription factor binding sites for Hypoxia inducible factor 1 A (HIF1A) were identified in the promoter region (5 kb upstream) of 30 hypoxia-induced miRNAs. HIF-1A over-expression and silencing studies show regulation of specific miRNAs, including miR-210-3p, to be HIF1A dependent. On the other hand, miR-210-3p leads to an increase in transcriptional activity of HIF and its target genes vascular endothelial growth factor (VEGF) and carbonic anhydrase 9 (CA9). MiR-210-3p levels were found to be high in GBM patient samples and showed good correlation with the known hypoxia markers CA9 and VEGF. We show that miR-210-3p promotes hypoxic survival and chemoresistance in GBM cells and targets a negative regulator of hypoxic response, HIF3A. Additionally, a total of 139 novel miRNAs were discovered by the analysis of deep sequencing data and three of these were found to be differentially expressed under hypoxia. Conclusions Overall, our study reveals a novel miRNA signature of hypoxia in GBM and suggests miR-210-3p to be an oncogenic player and a novel potential intrinsic marker of hypoxia in glioblastoma. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-686) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, 110016, New Delhi, India.
| |
Collapse
|
897
|
Xu J, Zhou J, Li MS, Ng CF, Ng YK, Lai PBS, Tsui SKW. Transcriptional regulation of the tumor suppressor FHL2 by p53 in human kidney and liver cells. PLoS One 2014; 9:e99359. [PMID: 25121502 PMCID: PMC4133229 DOI: 10.1371/journal.pone.0099359] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 05/14/2014] [Indexed: 11/18/2022] Open
Abstract
Four and a Half LIM protein 2 (FHL2) is a LIM domain only protein that is able to form various protein complexes and regulate gene transcription. Recent findings showed that FHL2 is a potential tumor suppressor gene that was down-regulated in hepatocellular carcinoma (HCC). Moreover, FHL2 can bind to and activate the TP53 promoter in hepatic cells. In this study, the activity of the two promoters of FHL2, 1a and 1b, were determined in the human embryonic kidney cell line HEK293 and the activation of these two promoters by p53 was investigated. Our results showed that the 1b promoter has a higher activity than the 1a promoter in HEK 293 cells but the 1a promoter is more responsive to the activation by p53 when compared with the 1b promoter. The regulation of FHL2 by p53 was further confirmed in liver cells by the overexpression of p53 in Hep3B cells and the knockdown of p53 in HepG2 cells. Combining promoter activity results of truncated mutants and predictions by bioinformatics tools, a putative p53 binding site was found in the exon 1a of FHL2 from +213 to +232. The binding between the p53 protein and the putative p53 binding site was then validated by the ChIP assay. Furthermore, the expression of FHL2 and TP53 were down-regulated in majority of HCC tumour samples (n = 41) and significantly correlated (P = 0.026). Finally, we found that the somatic mutation 747 (G→T), a hot spot mutation of the TP53 gene, is potentially associated with a higher expression of FHL2 in HCC tumour samples. Taken together, this is the first in-depth study about the transcriptional regulation of FHL2 by p53.
Collapse
Affiliation(s)
- Jiaying Xu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Junwei Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Man-Shan Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Chor-Fung Ng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Yuen-Keng Ng
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Paul Bo-San Lai
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- * E-mail:
| |
Collapse
|
898
|
Gonzalez-Hernandez MJ, Cavalcoli JD, Sartor MA, Contreras-Galindo R, Meng F, Dai M, Dube D, Saha AK, Gitlin SD, Omenn GS, Kaplan MH, Markovitz DM. Regulation of the human endogenous retrovirus K (HML-2) transcriptome by the HIV-1 Tat protein. J Virol 2014; 88:8924-35. [PMID: 24872592 PMCID: PMC4136263 DOI: 10.1128/jvi.00556-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/22/2014] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED Approximately 8% of the human genome is made up of endogenous retroviral sequences. As the HIV-1 Tat protein activates the overall expression of the human endogenous retrovirus type K (HERV-K) (HML-2), we used next-generation sequencing to determine which of the 91 currently annotated HERV-K (HML-2) proviruses are regulated by Tat. Transcriptome sequencing of total RNA isolated from Tat- and vehicle-treated peripheral blood lymphocytes from a healthy donor showed that Tat significantly activates expression of 26 unique HERV-K (HML-2) proviruses, silences 12, and does not significantly alter the expression of the remaining proviruses. Quantitative reverse transcription-PCR validation of the sequencing data was performed on Tat-treated PBLs of seven donors using provirus-specific primers and corroborated the results with a substantial degree of quantitative similarity. IMPORTANCE The expression of HERV-K (HML-2) is tightly regulated but becomes markedly increased following infection with HIV-1, in part due to the HIV-1 Tat protein. The findings reported here demonstrate the complexity of the genome-wide regulation of HERV-K (HML-2) expression by Tat. This work also demonstrates that although HERV-K (HML-2) proviruses in the human genome are highly similar in terms of DNA sequence, modulation of the expression of specific proviruses in a given biological situation can be ascertained using next-generation sequencing and bioinformatics analysis.
Collapse
Affiliation(s)
- Marta J Gonzalez-Hernandez
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - James D Cavalcoli
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Maureen A Sartor
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Fan Meng
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Manhong Dai
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Derek Dube
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Anjan K Saha
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott D Gitlin
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA Department of Veterans Affairs, University of Michigan, Ann Arbor, Michigan, USA
| | - Gilbert S Omenn
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA School of Public Health, University of Michigan, Ann Arbor, Michigan, USA National Center for Integrative Biomedical Informatics, University of Michigan, Ann Arbor, Michigan, USA Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Mark H Kaplan
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - David M Markovitz
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA Program in Cancer Biology, University of Michigan, Ann Arbor, Michigan, USA Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
899
|
Manthey AL, Terrell AM, Wang Y, Taube JR, Yallowitz AR, Duncan MK. The Zeb proteins δEF1 and Sip1 may have distinct functions in lens cells following cataract surgery. Invest Ophthalmol Vis Sci 2014; 55:5445-55. [PMID: 25082886 DOI: 10.1167/iovs.14-14845] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Posterior capsular opacification (PCO), the most prevalent side effect of cataract surgery, occurs when residual lens epithelial cells (LECs) undergo fiber cell differentiation or epithelial-to-mesenchymal transition (EMT). Here, we used a murine cataract surgery model to investigate the role of the Zeb proteins, Smad interacting protein 1 (Sip1) and δ-crystallin enhancer-binding factor 1 (δEF1), during PCO. METHODS Extracapsular extraction of lens fiber cells was performed on wild-type and Sip1 knockout mice. Protein expression patterns were assessed at multiple time points after surgery using confocal immunofluorescence. βB1-Crystallin mRNA levels were measured using quantitative RT-PCR. We used Transfac searches to identify δEF1 binding sites in the βB1-crystallin promoter and transfection analysis to test the ability of δEF1 to regulate βB1-crystallin expression. RESULTS δEF1, which, in other systems, can activate fibrotic genes (e.g., α-smooth muscle actin) and repress epithelial genes, upregulates by 48 hours after fiber cell removal. In culture, δEF1 repressed βB1-crystallin promoter activity, suggesting that it may also turn off lens gene expression following surgery, contributing to "fibrotic PCO" development. Sip1 also upregulates in LECs by 48 hours, but analysis of Sip1 knockout lenses demonstrated that Sip1 does not play a major role in EMT or fiber cell differentiation after surgery. However, Sip1 knockout LECs do express the ectodermal marker keratin 8, suggesting that Sip1 may limit the reprogramming of residual LECs to an embryonic state. CONCLUSIONS Zeb transcription factors likely play important, but distinct roles in PCO development after cataract surgery.
Collapse
Affiliation(s)
- Abby L Manthey
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Anne M Terrell
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Jennifer R Taube
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Alisha R Yallowitz
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
900
|
Epigenetic changes in hypothalamic appetite regulatory genes may underlie the developmental programming for obesity in rat neonates subjected to a high-carbohydrate dietary modification. J Dev Orig Health Dis 2014; 4:479-90. [PMID: 24924227 DOI: 10.1017/s2040174413000238] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Earlier, we showed that rearing of newborn rats on a high-carbohydrate (HC) milk formula resulted in the onset of hyperinsulinemia, its persistence in the post-weaning period and adult-onset obesity. DNA methylation of CpG dinucleotides in the proximal promoter region and modifications in the N-terminal tail of histone 3 associated with the neuropeptide Y (Npy) and pro-opiomelanocortin (Pomc) genes were investigated to decipher the molecular mechanisms supporting the development of obesity in HC females. Although there were no differences in the methylation status of CpG dinucleotides in the proximal promoter region of the Pomc gene, altered methylation of specific CpG dinucleotides proximal to the transcription start site was observed for the Npy gene in the hypothalami of 16- and 100-day-old HC rats compared with their methylation status in mother-fed (MF) rats. Investigation of histone tail modifications on hypothalamic chromatin extracts from 16-day-old rats indicated decreased acetylation of lysine 9 in histone 3 (H3K9) for the Pomc gene and increased acetylation for the same residue for the Npy gene, without changes in histone methylation (H3K9) in both genes in HC rats. These findings are consistent with the changes in the levels of Npy and Pomc mRNAs in the hypothalami of HC rats compared with MF animals. Our results suggest that epigenetic modifications could contribute to the altered gene expression of the Npy and Pomc genes in the hypothalami of HC rats and could be a mechanism leading to hyperphagia and the development of obesity in adult female HC rats.
Collapse
|