851
|
Wairiuko GM, Crisostomo PR, Wang M, Morrell ED, Meldrum KK, Lillemoe KD, Meldrum DR. Stem Cells Improve Right Ventricular Functional Recovery After Acute Pressure Overload and Ischemia Reperfusion Injury. J Surg Res 2007; 141:241-6. [PMID: 17583739 DOI: 10.1016/j.jss.2006.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 10/03/2006] [Accepted: 10/05/2006] [Indexed: 01/10/2023]
Abstract
BACKGROUND In many clinical scenarios, a relatively untrained right ventricle may be subjected to acute elevations in pulmonary artery and right ventricular pressures. The right and left heart are distinctly different in this regard and there is currently no in vivo model to study right ventricular ischemia in the setting of acute pressure overload. In acute injury, cardiomyocytes produce tumor necrosis factor, which mediates a proinflammatory pathway, eventually leading to myocardial dysfunction. Stem cells have been shown to reduce the production of proinflammatory mediators by the ischemic myocardium and protect the myocardium. Pretreatment with stem cells has been shown to protect the left ventricle. The effect of acute pressure overload to the untrained right ventricle is still not well understood. Furthermore, it is unclear whether pretreatment with stem cells would protect the right ventricle when it is subjected to acute pressure overload and concomitant ischemia reperfusion injury. The purpose of this study was (1) to create a simple model of acute pressure overload for the study of concomitant right ventricular ischemia and reperfusion, and (2) to evaluate the effect of pretreatment with stem cells prior to ischemia reperfusion injury. MATERIALS AND METHODS Isolated rat hearts were perfused with the modified Langendorff technique with the latex balloon in the right ventricle instead of the left, with a pressure-transduced balloon being used to create an acute elevation in right ventricular pressure before ischemia. In the first of a two-series experiment, there were two experimental groups (N = 8 per group): one with right ventricular balloon end-diastolic pressure (EDP) of 5 mmHg (physiological), and the other with an EDP of 40 mmHg (pathologic). In the second series, the hearts with the higher balloon pressure (EDP 40 mmHg) were divided into two experimental groups (N = 5 per group). The control group was not pretreated. One group was pretreated with human mesenchymal stem cells 5 min immediately prior to ischemia reperfusion injury. Right ventricular developed pressure (RVDP), contractility (+dP/dt), and compliance (-dP/dt) were continuously assessed. Additionally, mesenchymal stem cells (MSCs) in culture were stressed by hypoxia and activation was determined by measuring vascular endothelial growth factor-A (VEGF) and hepatocyte growth factor (HGF) production by enzyme-linked immunosorbent assay. RESULTS Recovery of RVDP, +dP/dt, and -dP/dt was significantly higher (P < 0.001) in the group with lower EDP compared to the group with the higher EDP [RVDP: 79.53 +/- 6.34 versus 54.28 +/- 10.76%; +dP/dt: 76.54 +/- 8.79 versus 38.75 +/- 19.74%; -dP/dt: 72.29 +/- 7.02 versus 30.54 +/- 12.44%]. In the higher EDP groups, pretreatment with human mesenchymal stem cells significantly improved myocardial function recovery (P < 0.01) when compared to controls [RVDP: 75.76 +/- 7.97 versus 59.10 +/- 11.18%; +dP/dt: 71.78 +/- 10.36 versus 54.93 +/- 12.64%; -dP/dt: 77.38 +/- 11.09 versus 59.30 +/- 15.20%]. Further, hypoxic MSCs demonstrated significantly greater VEGF and HGF release than controls. CONCLUSION This compounded injury model allowed the study of right ventricular dysfunction in the setting of acute pressure overload and ischemia. Additionally, we have also demonstrated that pretreatment with stem cells of an acutely pressure overloaded right ventricle prior to ischemia reperfusion injury improves functional recovery. This is the first report of a modified Langendorff technique to study right ventricular function in the setting of acute pressure overload and ischemia and the effect of pretreatment with stem cells.
Collapse
Affiliation(s)
- George M Wairiuko
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | |
Collapse
|
852
|
Ohnishi S, Sumiyoshi H, Kitamura S, Nagaya N. Mesenchymal stem cells attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions. FEBS Lett 2007; 581:3961-6. [PMID: 17662720 DOI: 10.1016/j.febslet.2007.07.028] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 07/12/2007] [Indexed: 01/11/2023]
Abstract
Mesenchymal stem cells (MSC) transplantation has been shown to decrease fibrosis in the heart; however, whether MSC directly influence the function of cardiac fibroblasts (CFB) remains unknown. MSC-conditioned medium significantly attenuated proliferation of CFB compared with CFB-conditioned medium. MSC-conditioned medium upregulated antiproliferation-related genes such as elastin, myocardin and DNA-damage inducible transcript 3, whereas CFB-conditioned medium upregulated proliferation-related genes such as alpha-2-macroglobulin and v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog. MSC-conditioned medium significantly downregulated type I and III collagen expression, and significantly suppressed type III collagen promoter activity. MSC may exert paracrine anti-fibrotic effects at least in part through regulation of CFB proliferation and collagen synthesis.
Collapse
Affiliation(s)
- Shunsuke Ohnishi
- Department of Regenerative Medicine and Tissue Engineering, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Osaka 565-8565, Japan.
| | | | | | | |
Collapse
|
853
|
Smart N, Rossdeutsch A, Riley PR. Thymosin beta4 and angiogenesis: modes of action and therapeutic potential. Angiogenesis 2007; 10:229-41. [PMID: 17632766 DOI: 10.1007/s10456-007-9077-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 06/12/2007] [Indexed: 12/14/2022]
Abstract
Here we review the mechanisms by which Thymosin beta4 (Tbeta4) regulates angiogenesis, its role in processes, such as wound healing and tumour progression and we discuss in more detail the role of Tbeta4 in the cardiovascular system and significant recent findings implicating Tbeta4 as a potential therapeutic agent for ischaemic heart disease.
Collapse
Affiliation(s)
- Nicola Smart
- Molecular Medicine Unit, UCL-Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | | | | |
Collapse
|
854
|
Srivastava D, Saxena A, Michael Dimaio J, Bock-Marquette I. Thymosin beta4 is cardioprotective after myocardial infarction. Ann N Y Acad Sci 2007; 1112:161-70. [PMID: 17600280 DOI: 10.1196/annals.1415.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Heart disease is a leading cause of death in newborns and in adults. Efforts to promote cardiac repair by introduction or recruitment of exogenous stem cells hold promise but typically involve isolation and introduction of autologous or donor progenitor cells. We have found that the G-actin-sequestering peptide thymosin beta4 promotes myocardial and endothelial cell migration in the embryonic heart and retains this property in postnatal cardiomyocytes. Survival of embryonic and postnatal cardiomyocytes in culture was also enhanced by thymosin beta4. We found that thymosin beta4 formed a functional complex with PINCH and integrin-linked kinase (ILK), resulting in activation of the survival kinase Akt/PKB, which was necessary for thymosin beta4's effects on cardiomyocytes. After coronary artery ligation in mice, thymosin beta4 treatment resulted in upregulation of ILK and Akt activity in the heart, enhanced early myocyte survival, and improved cardiac function. These findings suggest that thymosin beta4 promotes cardiomyocyte and endothelial migration, survival, and repair and may be a novel therapeutic target in the setting of acute myocardial damage.
Collapse
Affiliation(s)
- Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, 1650 Owens Street, San Francisco, CA 94158, USA.
| | | | | | | |
Collapse
|
855
|
Mays RW, van't Hof W, Ting AE, Perry R, Deans R. Development of adult pluripotent stem cell therapies for ischemic injury and disease. Expert Opin Biol Ther 2007; 7:173-84. [PMID: 17250456 DOI: 10.1517/14712598.7.2.173] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Over the past 5 years, adult pluripotent stem cell lines have been isolated from multiple organs and tissues in laboratories worldwide. Adult pluripotent stem cells are capable of regenerating tissues of all three primitive germ layers and express pluripotency markers, such as Oct4 or telomerase, which are associated with the primitive stem cell properties of embryonic stem cells. As our collective understanding of the biology of these unique cells has improved, so has our ability to isolate, expand and subsequently evaluate them as therapeutics in preclinical models of acute injury and disease. Pluripotent adult stem cells, as opposed to tissue-restricted adult stem cells, such as mesenchymal stromal cells; have extensive replicative capacity enabling large-scale clinical expansion. This is essential to achieving consistent clinical response data and enabling the cost-effective production necessary for commercial adoption. In addition, investigators have reported effective use of allogeneic adult pluripotent stem cells in acute ischemic injury models in the heart and brain, supporting the 'off the shelf' product concept for this cellular therapy. In this article, the authors review preclinical animal data demonstrating the benefit of pluripotent adult progenitor cells in the treatment of ischemic injuries of the heart, vascular system and CNS.
Collapse
Affiliation(s)
- Robert W Mays
- Athersys, Inc., Division of Regenerative Medicine, 3201 Carnegie Avenue, Cleveland, OH 44115, USA.
| | | | | | | | | |
Collapse
|
856
|
Napoli C, Maione C, Schiano C, Fiorito C, Ignarro LJ. Bone marrow cell-mediated cardiovascular repair: potential of combined therapies. Trends Mol Med 2007; 13:278-86. [PMID: 17574919 DOI: 10.1016/j.molmed.2007.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 04/26/2007] [Accepted: 05/25/2007] [Indexed: 01/07/2023]
Abstract
Recent evidence indicates that bone-marrow cells (BMCs) can contribute to the healing process of the injured cardiovascular system via the chemokine receptor CXCR4/SDF-1, thymosin beta(4) and integrin alpha(4)beta(1) molecular pathways. During tissue ischemia overwhelming numbers of detrimental oxygen radicals are generated, and therefore treatment with antioxidants and L-arginine, the precursor of nitric oxide (NO), could induce beneficial effects beyond those achieved by BMC transplantation alone. Recent studies have reported that BMCs have enhanced neovascularization capacity in cotreatment with alpha-tocopherol (vitamin E), ascorbic acid (vitamin C) and L-arginine. Moreover, BMC therapy can be combined with gene therapy. Clinical trials employing BMCs in the treatment of cardiovascular diseases have been completed with mixed or positive results, and several trials are ongoing. Here, we discuss the clinical potential of BMC transplantation alone and in combined therapy that aims to restore organ vascularization and function. We also consider the mechanisms of mobilization, differentiation and incorporation of BMCs.
Collapse
Affiliation(s)
- Claudio Napoli
- Department of General Pathology, Division of Clinical Pathology and Excellence Research Center on Cardiovascular Diseases, 1st School of Medicine, II University of Naples, Italy.
| | | | | | | | | |
Collapse
|
857
|
Sze SK, de Kleijn DPV, Lai RC, Khia Way Tan E, Zhao H, Yeo KS, Low TY, Lian Q, Lee CN, Mitchell W, El Oakley RM, Lim SK. Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells. Mol Cell Proteomics 2007; 6:1680-9. [PMID: 17565974 DOI: 10.1074/mcp.m600393-mcp200] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transplantation of mesenchymal stem cells (MSCs) has been used to treat a wide range of diseases, and the mechanism of action is postulated to be mediated by either differentiation into functional reparative cells that replace injured tissues or secretion of paracrine factors that promote tissue repair. To complement earlier studies that identified some of the paracrine factors, we profiled the paracrine proteome to better assess the relevance of MSC paracrine factors to the wide spectrum of MSC-mediated therapeutic effects. To evaluate the therapeutic potential of the MSC paracrine proteome, a chemically defined serum-free culture medium was conditioned by MSCs derived from human embryonic stem cells using a clinically compliant protocol. The conditioned medium was analyzed by multidimensional protein identification technology and cytokine antibody array analysis and revealed the presence of 201 unique gene products. 86-88% of these gene products had detectable transcript levels by microarray or quantitative RT-PCR assays. Computational analysis predicted that these gene products will significantly drive three major groups of biological processes: metabolism, defense response, and tissue differentiation including vascularization, hematopoiesis, and skeletal development. It also predicted that the 201 gene products activate important signaling pathways in cardiovascular biology, bone development, and hematopoiesis such as Jak-STAT, MAPK, Toll-like receptor, transforming growth factor-beta, and mTOR (mammalian target of rapamycin) signaling pathways. This study identified a large number of MSC secretory products that have the potential to act as paracrine modulators of tissue repair and replacement in diseases of the cardiovascular, hematopoietic, and skeletal tissues. Moreover our results suggest that human embryonic stem cell-derived MSC-conditioned medium has the potency to treat a variety of diseases in humans without cell transplantation.
Collapse
Affiliation(s)
- Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
858
|
Fox JM, Chamberlain G, Ashton BA, Middleton J. Recent advances into the understanding of mesenchymal stem cell trafficking. Br J Haematol 2007; 137:491-502. [PMID: 17539772 DOI: 10.1111/j.1365-2141.2007.06610.x] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The use of adult stem cells to regenerate damaged tissue circumvents the moral and technical issues associated with the use of those from an embryonic source. Mesenchymal stem cells (MSC) can be isolated from a variety of tissues, most commonly from the bone marrow, and, although they represent a very small percentage of these cells, are easily expandable. Recently, the use of MSC has provided clinical benefit to patients with osteogenesis imperfecta, graft-versus-host disease and myocardial infarction. The cellular cues that enabled the MSC to be directed to the sites of tissue damage and the mechanisms by which MSC then exert their therapeutic effect are becoming clearer. This review discusses the relative therapeutic importance of the ability of MSC to differentiate into multiple cell lineages or stimulate resident or attracted cells via a paracrine mode of action. It also reviews recent findings that MSC home to damaged tissues in a similar, but somewhat distinct, manner to that of leucocytes via the utilisation of adhesion molecules, such as selectins and integrins, and chemokines and their receptors in a manner reminiscent of leucocytes trafficking from the blood stream to inflammatory sites.
Collapse
Affiliation(s)
- James M Fox
- Arthritis Research Centre, Institute of Science and Technology in Medicine, Keele University at Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, UK.
| | | | | | | |
Collapse
|
859
|
Seguin T, Braun T, Mira JP. [Endothelial progenitor cells: new biomarkers and potential therapy in intensive care]. Med Mal Infect 2007; 37:305-11. [PMID: 17512151 DOI: 10.1016/j.medmal.2007.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 03/12/2007] [Indexed: 11/25/2022]
Abstract
One of the most important breakthroughs in the field of vascular biology in the last decade was the discovery of endothelial progenitor cells (EPCs). These angiogenic cells dwell in bone marrow, and may be found in the general circulation spontaneously or in response to various stimuli such as ischemia, growth factor, pro-inflammatory cytokines, and drugs such as statins. There is growing evidence that EPCs can differentiate into mature endothelial cells and facilitate endothelial repair and angiogenesis in vivo. In recent years, consistent publications have shown that EPCs provide both diagnostic and prognostic information with respect to cardiovascular diseases, acute lung injury, and sepsis. Activation of EPCs from the bone marrow or injection of these cells may be used as a therapeutic option for the treatment of ischemic cardiovascular diseases.
Collapse
Affiliation(s)
- T Seguin
- Service de réanimation médicale, CHU de Cochin-Saint-Vincent-de-Paul, Assistance publique - Hôpitaux de Paris, université Paris-Descartes, 27, rue du Faubourg-Saint-Jacques, 75679 Paris cedex 14, France
| | | | | |
Collapse
|
860
|
Ventura C, Cantoni S, Bianchi F, Lionetti V, Cavallini C, Scarlata I, Foroni L, Maioli M, Bonsi L, Alviano F, Fossati V, Bagnara GP, Pasquinelli G, Recchia FA, Perbellini A. Hyaluronan mixed esters of butyric and retinoic Acid drive cardiac and endothelial fate in term placenta human mesenchymal stem cells and enhance cardiac repair in infarcted rat hearts. J Biol Chem 2007; 282:14243-14252. [PMID: 17363374 DOI: 10.1074/jbc.m609350200] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We have developed a mixed ester of hyaluronan with butyric and retinoic acid (HBR) that acted as a novel cardiogenic/vasculogenic agent in human mesenchymal stem cells isolated from bone marrow, dental pulp, and fetal membranes of term placenta (FMhMSCs). HBR remarkably enhanced vascular endothelial growth factor (VEGF), KDR, and hepatocyte growth factor (HGF) gene expression and the secretion of the angiogenic, mitogenic, and antiapoptotic factors VEGF and HGF, priming stem cell differentiation into endothelial cells. HBR also increased the transcription of the cardiac lineage-promoting genes GATA-4 and Nkx-2.5 and the yield of cardiac markerexpressing cells. These responses were notably more pronounced in FMhMSCs. FMhMSC transplantation into infarcted rat hearts was associated with increased capillary density, normalization of left ventricular function, and significant decrease in scar tissue. Transplantation of HBR-preconditioned FMhM-SCs further enhanced capillary density and the yield of human vWF-expressing cells, additionally decreasing the infarct size. Some engrafted, HBR-pretreated FMhMSCs were also positive for connexin 43 and cardiac troponin I. Thus, the beneficial effects of HBR-exposed FMhMSCs may be mediated by a large supply of angiogenic and antiapoptotic factors, and FMhMSC differentiation into vascular cells. These findings may contribute to further development in cell therapy of heart failure.
Collapse
Affiliation(s)
- Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering, Institute of Cardiology, National Institute of Biostructures and Biosystems, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
861
|
Tögel F, Weiss K, Yang Y, Hu Z, Zhang P, Westenfelder C. Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol 2007; 292:F1626-35. [PMID: 17213465 DOI: 10.1152/ajprenal.00339.2006] [Citation(s) in RCA: 463] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute kidney injury (AKI) is a major clinical problem in which a critical vascular, pathophysiological component is recognized. We demonstrated previously that mesenchymal stem cells (MSC), unlike fibroblasts, are significantly renoprotective after ischemia-reperfusion injury and concluded that this renoprotection is mediated primarily by paracrine mechanisms. In this study, we investigated whether MSC possess vasculoprotective activity that may contribute, at least in part, to an improved outcome after ischemia-reperfusion AKI. MSC-conditioned medium contains VEGF, HGF, and IGF-1 and augments aortic endothelial cell (EC) growth and survival, a response not observed with fibroblast-conditioned medium. MSC and EC share vasculotropic gene expression profiles, as both form capillary tubes in vitro on Matrigel alone or in cooperation without fusion. MSC undergo differentiation into an endothelial-like cell phenotype in culture and develop into vascular structures in vivo. Infused MSC were readily detected in the kidney early after reflow but were only rarely engrafted at 1 wk post-AKI. MSC attached in the renal microvascular circulation significantly decreased apoptosis of adjacent cells. Infusion of MSC immediately after reflow in severe ischemia-reperfusion AKI did not improve renal blood flow, renovascular resistance, or outer cortical blood flow. These data demonstrate that the unique vasculotropic, paracrine actions elicited by MSC play a significant renoprotective role after AKI, further demonstrating that cell therapy has promise as a novel intervention in AKI.
Collapse
Affiliation(s)
- Florian Tögel
- Division of Nephrology, Department of Medicine, University of Utah,Salt Lake City, Utah 84148, USA
| | | | | | | | | | | |
Collapse
|
862
|
Xu J, Woods CR, Mora AL, Joodi R, Brigham KL, Iyer S, Rojas M. Prevention of endotoxin-induced systemic response by bone marrow-derived mesenchymal stem cells in mice. Am J Physiol Lung Cell Mol Physiol 2007; 293:L131-41. [PMID: 17416739 DOI: 10.1152/ajplung.00431.2006] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMDMSCs) appear to be important in repair of the chronic lung injury caused by bleomycin in mice. To determine effects of these BMDMSCs on an acute inflammatory response, we injected C57BL/6 mice intraperitoneally with 1 mg/kg endotoxin followed either by intravenous infusion of 5 x 10(5) BMDMSCs, the same number of lung fibroblasts, or an equal volume of normal saline solution. Lungs harvested 6, 24, and 48 h and 14 days after endotoxin showed that BMDMSC administration prevented endotoxin-induced lung inflammation, injury, and edema. Although we were able to detect donor cells in the lungs at 1 day after endotoxin, by 14 days no donor cells were detected. BMDMSC administration suppressed the endotoxin-induced increase in circulating proinflammatory cytokines without decreasing circulating levels of anti-inflammatory mediators. Ex vivo cocultures of BMDMSC and lung cells from endotoxemic animals demonstrated a bilateral conversation in which lung cells stimulated proliferation and migration of stem cells and suppressed proinflammatory cytokine production by lung cells. We conclude that BMDMSCs decrease both the systemic and local inflammatory responses induced by endotoxin. These effects do not require either lung engraftment or differentiation of the stem cells and are due at least in part to the production of stem cell chemoattractants by the lungs and to humoral and physical interactions between stem cells and lung cells. We speculate that mobilization of this population of BMDMSCs may be a general mechanism for modulating an acute inflammatory response.
Collapse
Affiliation(s)
- Jianguo Xu
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
863
|
Dai W, Kloner RA. Myocardial regeneration by human amniotic fluid stem cells: Challenges to be overcome. J Mol Cell Cardiol 2007; 42:730-2. [PMID: 17362984 DOI: 10.1016/j.yjmcc.2007.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 01/29/2007] [Indexed: 10/23/2022]
|
864
|
Potapova IA, Gaudette GR, Brink PR, Robinson RB, Rosen MR, Cohen IS, Doronin SV. Mesenchymal stem cells support migration, extracellular matrix invasion, proliferation, and survival of endothelial cells in vitro. Stem Cells 2007; 25:1761-8. [PMID: 17395769 DOI: 10.1634/stemcells.2007-0022] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We investigated effects of the paracrine factors secreted by human mesenchymal stem cells (hMSCs) on endothelial cell migration, extracellular matrix invasion, proliferation, and survival in vitro. Human mesenchymal stem cells were cultured as a monolayer or as three-dimensional aggregates in hanging drops (hMSC spheroids). We performed analysis of paracrine factors in medium conditioned by a monolayer of hMSCs and hMSC spheroids. Concentrations of vascular endothelial growth factor (VEGF), basic fibroblast growth factor, angiogenin, procathepsin B, interleukin (IL)-11, and bone morphogenic protein 2 were increased 5-20 times in medium conditioned by hMSC spheroids, whereas concentrations of IL-6, IL-8, and monocyte hemoattractant protein-1 were not increased. Concentrations of VEGF and angiogenin in medium conditioned by hMSC spheroids showed a weak dependence on the presence of serum, which allows serum-free conditioned medium with elevated concentrations of angiogenic cytokines to be obtained. Medium conditioned by hMSC spheroids was more effective in stimulation of umbilical vein endothelial cell proliferation, migration, and basement membrane invasion than medium conditioned by a monolayer of hMSCs. This medium also promotes endothelial cell survival in vitro. We suggest that culturing of hMSCs as three-dimensional cellular aggregates provides a method to concentrate proangiogenic factors secreted by hMSCs and allows for reduction of serum concentration in conditioned medium. Our data support the hypothesis that hMSCs serve as trophic mediators for endothelial cells. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Irina A Potapova
- Department of Physiology and Biophysics, University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | | | | | | | |
Collapse
|
865
|
Zeng L, Hu Q, Wang X, Mansoor A, Lee J, Feygin J, Zhang G, Suntharalingam P, Boozer S, Mhashilkar A, Panetta CJ, Swingen C, Deans R, From AHL, Bache RJ, Verfaillie CM, Zhang J. Bioenergetic and functional consequences of bone marrow-derived multipotent progenitor cell transplantation in hearts with postinfarction left ventricular remodeling. Circulation 2007; 115:1866-75. [PMID: 17389266 DOI: 10.1161/circulationaha.106.659730] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The present study examined whether transplantation of adherent bone marrow-derived stem cells, termed pMultistem, induces neovascularization and cardiomyocyte regeneration that stabilizes bioenergetic and contractile function in the infarct zone and border zone (BZ) after coronary artery occlusion. METHODS AND RESULTS Permanent left anterior descending artery occlusion in swine caused left ventricular remodeling with a decrease of ejection fraction from 55+/-5.6% to 30+/-5.4% (magnetic resonance imaging). Four weeks after left anterior descending artery occlusion, BZ myocardium demonstrated profound bioenergetic abnormalities, with a marked decrease in subendocardial phosphocreatine/ATP (31P magnetic resonance spectroscopy; 1.06+/-0.30 in infarcted hearts [n=9] versus 1.90+/-0.15 in normal hearts [n=8; P<0.01]). This abnormality was significantly improved by transplantation of allogeneic pMultistem cells (subendocardial phosphocreatine/ATP to 1.34+/-0.29; n=7; P<0.05). The BZ protein expression of creatine kinase-mt and creatine kinase-m isoforms was significantly reduced in infarcted hearts but recovered significantly in response to cell transplantation. MRI demonstrated that the infarct zone systolic thickening fraction improved significantly from systolic "bulging" in untreated animals with myocardial infarction to active thickening (19.7+/-9.8%, P<0.01), whereas the left ventricular ejection fraction improved to 42.0+/-6.5% (P<0.05 versus myocardial infarction). Only 0.35+/-0.05% donor cells could be detected 4 weeks after left anterior descending artery ligation, independent of cell transplantation with or without immunosuppression with cyclosporine A (with cyclosporine A, n=6; no cyclosporine A, n=7). The fraction of grafted cells that acquired an endothelial or cardiomyocyte phenotype was 3% and approximately 2%, respectively. Patchy spared myocytes in the infarct zone were found only in pMultistem transplanted hearts. Vascular density was significantly higher in both BZ and infarct zone of cell-treated hearts than in untreated myocardial infarction hearts (P<0.05). CONCLUSIONS Thus, allogeneic pMultistem improved BZ energetics, regional contractile performance, and global left ventricular ejection fraction. These improvements may have resulted from paracrine effects that include increased vascular density in the BZ and spared myocytes in the infarct zone.
Collapse
Affiliation(s)
- Lepeng Zeng
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minn, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
866
|
Abstract
Mesenchymal stem cells (MSCs) constitute a rare population of adult stem cells that can be isolated from a simple bone marrow aspirate in the absence of prior mobilization. For this reason, MSCs are particularly attractive for cell-based medicine. Ex-vivo-expanded MSCs isolated from different species, including human MSCs, have been shown to suppress the activity of a broad range of immune cells, including T cells, antigen-presenting cells, natural killer (NK) cells and B cells. New studies have further shown that MSCs interact with NK cells, express NK cell receptor ligands, express Toll-like receptors (TLRs), respond to TLR ligands and act as antigen-presenting cells upon interferon-gamma stimulation. Taken together, these studies suggest that MSCs may constitute a previously unrecognized player of the immune system with dichotomy of function reminiscent of other antigen-presenting cells. An important question that remains unanswered is whether resident MSCs actually play a role in endogenous immune responses? I here review the mechanisms of MSC-mediated immune regulation and discuss the major roles of resident MSCs in health and disease.
Collapse
Affiliation(s)
- J Stagg
- Cancer Immunology Program, Sir Donald and Lady Trescowthick Laboratories, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia.
| |
Collapse
|
867
|
Iso Y, Spees JL, Serrano C, Bakondi B, Pochampally R, Song YH, Sobel BE, Delafontaine P, Prockop DJ. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem Biophys Res Commun 2007; 354:700-6. [PMID: 17257581 PMCID: PMC1851899 DOI: 10.1016/j.bbrc.2007.01.045] [Citation(s) in RCA: 295] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 01/07/2007] [Indexed: 12/20/2022]
Abstract
The aim of this study was to determine whether intravenously administered multipotent stromal cells from human bone marrow (hMSCs) can improve cardiac function after myocardial infarction (MI) without long-term engraftment and therefore whether transitory paracrine effects or secreted factors are responsible for the benefit conferred. hMSCs were injected systemically into immunodeficient mice with acute MI. Cardiac function and fibrosis after MI in the hMSC-treated group were significantly improved compared with controls. However, despite the cardiac improvement, there was no evident hMSC engraftment in the heart 3 weeks after MI. Microarray assays and ELISAs demonstrated that multiple protective factors were expressed and secreted from the hMSCs in culture. Factors secreted by hMSCs prevented cell death of cultured cardiomyocytes and endothelial cells under conditions that mimicked tissue ischemia. The favorable effects of hMSCs appear to reflect the impact of secreted factors rather than engraftment, differentiation, or cell fusion.
Collapse
Affiliation(s)
- Yoshitaka Iso
- Center for Gene Therapy, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112
- Cardiovascular Research Institute, Department of Medicine, University of Vermont, 208 South Park Drive, Colchester, VT 05446
| | - Jeffrey L. Spees
- Center for Gene Therapy, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112
- Cardiovascular Research Institute, Department of Medicine, University of Vermont, 208 South Park Drive, Colchester, VT 05446
| | - Claudia Serrano
- Section of Cardiology, Department of Medicine, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112
| | - Benjamin Bakondi
- Cardiovascular Research Institute, Department of Medicine, University of Vermont, 208 South Park Drive, Colchester, VT 05446
| | - Radhika Pochampally
- Center for Gene Therapy, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112
| | - Yao-Hua Song
- Section of Cardiology, Department of Medicine, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112
| | - Burton E. Sobel
- Cardiovascular Research Institute, Department of Medicine, University of Vermont, 208 South Park Drive, Colchester, VT 05446
| | - Patrick Delafontaine
- Section of Cardiology, Department of Medicine, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112
| | - Darwin J. Prockop
- Center for Gene Therapy, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112
| |
Collapse
|
868
|
|
869
|
Cavasin MA. Therapeutic potential of thymosin-beta4 and its derivative N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) in cardiac healing after infarction. Am J Cardiovasc Drugs 2007; 6:305-11. [PMID: 17083265 DOI: 10.2165/00129784-200606050-00003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Despite the numerous advances made in the prevention and treatment of cardiovascular diseases, there is a need for new strategies to repair and/or regenerate the myocardium after ischemia and infarction in order to prevent maladaptive remodeling and cardiac dysfunction. This article compiles and analyzes the available experimental data regarding the potential therapeutic effects of thymosin-beta4 and its derivative N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) in cardiac healing after myocardial infarction (MI) as well as discussing the possible mechanisms involved. The healing properties of thymosin-beta4 have been described in different types of tissues, such as the skin and cornea, and more recently it has been shown that thymosin-beta4 facilitates cardiac repair after infarction by promoting cell migration and myocyte survival. Additionally, the tetrapeptide Ac-SDKP was reported to reduce left ventricular fibrosis in hypertensive rats, reverse fibrosis and inflammation in rats with MI, and stimulate both in vitro and in vivo angiogenesis. Ac-SDKP also reduced cardiac rupture rate in mice post-MI. Some of the effects of Ac-SDKP, such as the enhancement of angiogenesis and the decrease in inflammation and collagenase activity, are similar to those described for thymosin-beta4. Thus, it is possible that Ac-SDKP could be mediating some of the beneficial effects of its precursor. Although the experimental evidence is very promising, there are no data available from a clinical trial supporting the use of thymosin-beta(4) or Ac-SDKP as means of healing the myocardium after MI in patients.
Collapse
Affiliation(s)
- Maria A Cavasin
- Hypertension and Vascular Research Division, Henry Ford Health System, Detroit, Michigan, USA.
| |
Collapse
|
870
|
Ohnishi S, Yasuda T, Kitamura S, Nagaya N. Effect of hypoxia on gene expression of bone marrow-derived mesenchymal stem cells and mononuclear cells. Stem Cells 2007; 25:1166-77. [PMID: 17289933 DOI: 10.1634/stemcells.2006-0347] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MSC have self-renewal and multilineage differentiation potential, including differentiation into endothelial cells and vascular smooth muscle cells. Although bone marrow-derived mononuclear cells (MNC) have been applied for therapeutic angiogenesis in ischemic tissue, little information is available regarding comparison of the molecular foundation between MNC and their MSC subpopulation, as well as their response to ischemic conditions. Thus, we investigated the gene expression profiles between MSC and MNC of rat bone marrow under normoxia and hypoxia using a microarray containing 31,099 genes. In normoxia, 2,232 (7.2%) and 2,193 genes (7.1%) were preferentially expressed more than threefold in MSC and MNC, respectively, and MSC expressed a number of genes involved in development, morphogenesis, cell adhesion, and proliferation, whereas various genes highly expressed in MNC were involved in inflammatory response and chemotaxis. Under hypoxia, 135 (0.44%) and 49 (0.16%) genes were upregulated (>threefold) in MSC and MNC, respectively, and a large number of those upregulated genes were involved in glycolysis and metabolism. Focusing on genes encoding secretory proteins, the upregulated genes in MSC under hypoxia included several molecules involved in cell proliferation and survival, such as vascular endothelial growth factor-D, placenta growth factor, pre-B-cell colony-enhancing factor 1, heparin-binding epidermal growth factor-like growth factor, and matrix metalloproteinase-9, whereas the upregulated genes in MNC under hypoxia included proinflammatory cytokines such as chemokine (C-X-C motif) ligand 2 and interleukin-1alpha. Our results may provide information on the differential molecular mechanisms regulating the properties of MSC and MNC under ischemic conditions. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Shunsuke Ohnishi
- Department of Regenerative Medicine and Tissue Engineering, National Cardiovascular Center, 5-7-1 Fujishirodai, Osaka 565-8565, Japan.
| | | | | | | |
Collapse
|
871
|
Lian Q, Lye E, Suan Yeo K, Khia Way Tan E, Salto-Tellez M, Liu TM, Palanisamy N, El Oakley RM, Lee EH, Lim B, Lim SK. Derivation of clinically compliant MSCs from CD105+, CD24- differentiated human ESCs. Stem Cells 2007; 25:425-436. [PMID: 17053208 DOI: 10.1634/stemcells.2006-0420] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adult tissue-derived mesenchymal stem cells (MSCs) have demonstrated therapeutic efficacy in treating diseases or repairing damaged tissues through mechanisms thought to be mediated by either cell replacement or secretion of paracrine factors. Characterized, self-renewing human ESCs could potentially be an invariable source of consistently uniform MSCs for therapeutic applications. Here we describe a clinically relevant and reproducible manner of generating identical batches of hESC-derived MSC (hESC-MSC) cultures that circumvents exposure to virus, mouse cells, or serum. Trypsinization and propagation of HuES9 or H1 hESCs in feeder- and serum-free selection media generated three polyclonal, karyotypically stable, and phenotypically MSC-like cultures that do not express pluripotency-associated markers but displayed MSC-like surface antigens and gene expression profile. They differentiate into adipocytes, osteocytes, and chondrocytes in vitro. Gene expression and fluorescence-activated cell sorter analysis identified CD105 and CD24 as highly expressed antigens on hESC-MSCs and hESCs, respectively. CD105+, CD24- monoclonal isolates have a typical MSC gene expression profiles and were identical to each other with a highly correlated gene expression profile (r(2) > .90). We have developed a protocol to reproducibly generate clinically compliant and identical hESC-MSC cultures.
Collapse
Affiliation(s)
- Qizhou Lian
- Department of Surgery, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
872
|
Shiojima I, Walsh K. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev 2007; 20:3347-65. [PMID: 17182864 DOI: 10.1101/gad.1492806] [Citation(s) in RCA: 278] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Postnatal growth of the heart is primarily achieved through hypertrophy of individual myocytes. Cardiac growth observed in athletes represents adaptive or physiological hypertrophy, whereas cardiac growth observed in patients with hypertension or valvular heart diseases is called maladaptive or pathological hypertrophy. These two types of hypertrophy are morphologically, functionally, and molecularly distinct from each other. The serine/threonine protein kinase Akt is activated by various extracellular stimuli in a phosphatidylinositol-3 kinase-dependent manner and regulates multiple aspects of cellular functions including survival, growth and metabolism. In this review we will discuss the role of the Akt signaling pathway in the heart, focusing on the regulation of cardiac growth, contractile function, and coronary angiogenesis. How this signaling pathway contributes to the development of physiological/pathological hypertrophy and heart failure will also be discussed.
Collapse
Affiliation(s)
- Ichiro Shiojima
- Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | |
Collapse
|
873
|
Zenovich AG, Davis BH, Taylor DA. Comparison of intracardiac cell transplantation: autologous skeletal myoblasts versus bone marrow cells. Handb Exp Pharmacol 2007:117-65. [PMID: 17554507 DOI: 10.1007/978-3-540-68976-8_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
An increasing number of patients living with cardiovascular disease (CVD) and still unacceptably high mortality created an urgent need to effectively treat and prevent disease-related events. Within the past 5 years, skeletal myoblasts (SKMBs) and bone marrow (or blood)-derived mononuclear cells (BMNCs) have demonstrated preclinical efficacy in reducing ischemia and salvaging already injured myocardium, and in preventing left ventricular (LV) remodeling, respectively. These findings have been translated into clinical trials, so far totaling over 200 patients for SKMBs and over 800 patients for BMNCs. These safety/feasibility and early phase II studies showed promising but somewhat conflicting symptomatic and functional improvements, and some safety concerns have arisen. However, the patient population, cell type, dose, time and mode of delivery, and outcome measures differed, making comparisons problematic. In addition, the mechanisms through which cells engraft and deliver their beneficial effects remain to be fully elucidated. It is now time to critically evaluate progress made and challenges encountered in order to select not only the most suitable cells for cardiac repair but also to define appropriate patient populations and outcome measures. Reiterations between bench and bedside will increase the likelihood of cell therapy success, reduce the time to development of combined of drug- and cell-based disease management algorithms, and offer these therapies to patients to achieve a greater reduction of symptoms and allow for a sustained improvement of quality of life.
Collapse
Affiliation(s)
- A G Zenovich
- Center for Cardiovascular Repair, 312 Church Street SE, NHH 7-105A, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
874
|
Field LJ. Unraveling the mechanistic basis of mesenchymal stem cell activity in the heart. Mol Ther 2006; 14:755-6. [PMID: 17070734 PMCID: PMC2653080 DOI: 10.1016/j.ymthe.2006.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 10/25/2006] [Indexed: 12/17/2022] Open
|
875
|
Tateishi K, Ashihara E, Honsho S, Takehara N, Nomura T, Takahashi T, Ueyama T, Yamagishi M, Yaku H, Matsubara H, Oh H. Human cardiac stem cells exhibit mesenchymal features and are maintained through Akt/GSK-3beta signaling. Biochem Biophys Res Commun 2006; 352:635-41. [PMID: 17150190 DOI: 10.1016/j.bbrc.2006.11.096] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 11/11/2006] [Indexed: 01/25/2023]
Abstract
Recent evidence suggested that human cardiac stem cells (hCSCs) may have the clinical application for cardiac repair; however, their characteristics and the regulatory mechanisms of their growth have not been fully investigated. Here, we show the novel property of hCSCs with respect to their origin and tissue distribution in human heart, and demonstrate the signaling pathway that regulates their growth and survival. Telomerase-active hCSCs were predominantly present in the right atrium and outflow tract of the heart (infant > adult) and had a mesenchymal cell-like phenotype. These hCSCs expressed the embryonic stem cell markers and differentiated into cardiomyocytes to support cardiac function when transplanted them into ischemic myocardium. Inhibition of Akt pathway impaired the hCSC proliferation and induced apoptosis, whereas inhibition of glycogen synthase kinase-3 (GSK-3) enhanced their growth and survival. We conclude that hCSCs exhibit mesenchymal features and that Akt/GSK-3beta may be crucial modulators for hCSC maintenance in human heart.
Collapse
Affiliation(s)
- Kento Tateishi
- Department of Experimental Therapeutics, Translational Research Center, Kyoto University Hospital, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
876
|
Nakamura Y, Wang X, Xu C, Asakura A, Yoshiyama M, From AHL, Zhang J. Xenotransplantation of long-term-cultured swine bone marrow-derived mesenchymal stem cells. Stem Cells 2006; 25:612-20. [PMID: 17095707 DOI: 10.1634/stemcells.2006-0168] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Swine-derived MSCs were efficiently isolated and extensively expanded using a low fetal serum content growth medium to which selected growth factors were added. After > or =96 cell population doublings (PDs), MSCs were devoid of cytogenetic abnormalities. In vitro chondrogenic and osteogenic differentiation capacity was preserved after 80 PDs. To test therapeutic efficacy, 1 x 10(6) 80-PD MSCs were injected directly into the peri-infarct zone of hearts of immunodeficient (non-obese diabetic/severe combined immunodeficient) mice at the time of acute myocardial infarction. Engrafted MSCs survived in the infarcted hearts for at least 4 weeks. Echocardiography at 2 and 4 weeks postinfarction revealed a significant preservation of the left ventricular ejection fractions of infarct hearts receiving MSCs compared with infarct hearts receiving saline. Peri-infarct zone capillarity was better preserved in MSC-treated hearts than other infarct groups of hearts, but infarct size was comparable in all groups. Only rare engrafted MSCs expressed cardiac-specific or endothelial cell-specific markers. Hence, 80-PD MSCs retained the capacity to promote functional improvement in the infarcted heart despite minimal differentiation of MSCs into cardiomyocytes or endothelial cells. These data suggest that the beneficial effects of MSC transplantation most likely result from the trophic effects of MSC-released substances on native cardiac and vascular cells. The capacity to massively expand MSC lines without loss of therapeutic efficacy may prove to be useful in the clinical setting where "off the shelf" MSCs may be required for interventions in patients with acute coronary syndromes.
Collapse
Affiliation(s)
- Yasuhiro Nakamura
- Cardiovascular Division, Department of Medicine, University of Minnesota Academic Health Center, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
877
|
Abstract
The cues governing cardiac cell-fate decisions, cardiac differentiation, and three-dimensional morphogenesis are rapidly being elucidated. Several themes are emerging that are relevant for childhood and adult heart disease and the growing field of stem cell biology. This review will consider our current understanding of cardiac cell-fate determination and cardiogenesis--largely derived from developmental studies in model organisms and human genetic approaches--and examine future implications for diagnosis, prevention, and treatment of heart disease in the young and old.
Collapse
Affiliation(s)
- Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease and Department of Pediatrics and Biochemistry, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
878
|
Abstract
PURPOSE OF REVIEW Our understanding of the biology and properties of mesenchymal stem cells or multipotent mesenchymal stromal cells has expanded dramatically over the last 3 years and is likely to have an impact on clinical practice in the near future, making a review of this topic both timely and relevant RECENT FINDINGS Recommendations regarding nomenclature and the definition of mesenchymal stromal cells have been proposed, a rapidly dividing population within the mesenchymal stromal cell compartment has been better defined and the ability of these cells to exhibit characteristics of cells from a variety of lineages has been extended. The notion that tissue repair with mesenchymal stromal cells is related to transdifferentiation has been re-evaluated and, for the myocardium at least, may be due rather to a paracrine mechanism. The most dramatic developments have been in identifying some of the complex mechanisms underlying the immunosuppressive and nonimmunogenic properties of mesenchymal stromal cells which have important implications for the management of conditions like acute graft-versus-host disease. SUMMARY Mesenchymal stromal cells are a biologically important cell population that are able to support hematopoiesis, can differentiate along mesenchymal and nonmesenchymal lineages in vitro, are capable of suppressing alloresponses and appear to be nonimmunogenic. These properties suggest emerging roles for mesenchymal stromal cells in cell therapy.
Collapse
Affiliation(s)
- Armand Keating
- Princess Margaret Hospital/Ontario Cancer Institute, Faculty of Medicine and Institute for Biomaterials and Biomedical Engineering, University of Toronto, ON, Canada.
| |
Collapse
|
879
|
Schenk S, Mal N, Finan A, Zhang M, Kiedrowski M, Popovic Z, McCarthy PM, Penn MS. Monocyte chemotactic protein-3 is a myocardial mesenchymal stem cell homing factor. Stem Cells 2006; 25:245-51. [PMID: 17053210 DOI: 10.1634/stemcells.2006-0293] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
MSCs have received attention for their therapeutic potential in a number of disease states, including bone formation, diabetes, stem cell engraftment after marrow transplantation, graft-versus-host disease, and heart failure. Despite this diverse interest, the molecular signals regulating MSC trafficking to sites of injury are unclear. MSCs are known to transiently home to the freshly infarcted myocardium. To identify MSC homing factors, we determined chemokine expression pattern as a function of time after myocardial infarction (MI). We merged these profiles with chemokine receptors expressed on MSCs but not cardiac fibroblasts, which do not home after MI. This analysis identified monocyte chemotactic protein-3 (MCP-3) as a potential MSC homing factor. Overexpression of MCP-3 1 month after MI restored MSC homing to the heart. After serial infusions of MSCs, cardiac function improved in MCP-3-expressing hearts (88.7%, p < .001) but not in control hearts (8.6%, p = .47). MSC engraftment was not associated with differentiation into cardiac myocytes. Rather, MSC engraftment appeared to result in recruitment of myofibroblasts and remodeling of the collagen matrix. These data indicate that MCP-3 is an MSC homing factor; local overexpression of MCP-3 recruits MSCs to sites of injured tissue and improves cardiac remodeling independent of cardiac myocyte regeneration.
Collapse
Affiliation(s)
- Soren Schenk
- Departments of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
880
|
Andrade CF, Wong AP, Waddell TK, Keshavjee S, Liu M. Cell-based tissue engineering for lung regeneration. Am J Physiol Lung Cell Mol Physiol 2006; 292:L510-8. [PMID: 17028264 DOI: 10.1152/ajplung.00175.2006] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Emphysema is a chronic lung disease characterized by alveolar enlargement and tissue loss. Tissue engineering represents an attractive potential for regeneration of several organ systems. The complex three-dimensional architectural structure of lung parenchyma requiring connections of alveolar units to airways and the pulmonary circulation makes this strategy less optimistic. In the present study, we used Gelfoam sponge as a scaffold material, supplemented with fetal rat lung cells as progenitors, to explore the potential application of cell-based tissue engineering for lung regeneration in adult rats. After injection into lung parenchyma, the sponge showed porous structures similar to alveolar units. It did not induce severe local inflammatory response. Fetal lung cells in the sponge were able to survive in the adult lung for at least 35 days, determined by CMTMR [5-(and-6)-{[(4-chloromethyl)benzoyl]amino}tetramethylrhodamine] labeling. Proliferation of cells within the sponge was demonstrated in vivo by bromodeoxyuridine (BrdU) labeling. Cells formed "alveolar-like structures" at the border between the sponge and the surrounding lung tissue with positive immunohistochemical staining for epithelial and endothelial cells. Neovascularization of the sponge was demonstrated with India ink perfusion. The sponge degraded after several months. This study suggests that cell-based tissue engineering possesses the potential to regenerate alveolar-like structures, an important step towards our ultimate goal of lung regeneration.
Collapse
Affiliation(s)
- Cristiano F Andrade
- Thoracic Surgery Research Laboratory, Toronto General Hospital, University Health Network, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
881
|
|
882
|
Schiekofer S, Shiojima I, Sato K, Galasso G, Oshima Y, Walsh K. Microarray analysis of Akt1 activation in transgenic mouse hearts reveals transcript expression profiles associated with compensatory hypertrophy and failure. Physiol Genomics 2006; 27:156-70. [PMID: 16882883 DOI: 10.1152/physiolgenomics.00234.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To investigate molecular mechanisms involved in the development of cardiac hypertrophy and heart failure, we developed a tetracycline-regulated transgenic system to conditionally switch a constitutively active form of the Akt1 protein kinase on or off in the adult heart. Short-term activation (2 wk) of Akt1 resulted in completely reversible hypertrophy with maintained contractility. In contrast, chronic Akt1 activation (6 wk) induced extensive cardiac hypertrophy, severe contractile dysfunction, and massive interstitial fibrosis. The focus of this study was to create a transcript expression profile of the heart as it undergoes reversible Akt1-mediated hypertrophy and during the transition from compensated hypertrophy to heart failure. Heart tissue was analyzed before transgene induction, 2 wk after transgene induction, 2 wk of transgene induction followed by 2 days of repression, 6 wk after transgene induction, and 6 wk of transgene induction followed by 2 wk of repression. Acute overexpression of Akt1 (2 wk) leads to changes in the expression of 826 transcripts relative to noninduced hearts, whereas chronic induction (6 wk) led to changes in the expression of 1,611, of which 65% represented transcripts that were regulated during the pathological phase of heart growth. Another set of genes identified was uniquely regulated during heart regression but not growth, indicating that nonoverlapping transcription programs participate in the processes of cardiac hypertrophy and atrophy. These data define the gene regulatory programs downstream of Akt that control heart size and contribute to the transition from compensatory hypertrophy to heart failure.
Collapse
Affiliation(s)
- Stephan Schiekofer
- Molecular Cardiology/Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
883
|
Abstract
The use of stem cells to generate replacement cells for damaged heart muscle, valves, vessels and conduction cells holds great potential. Recent identification of multipotent progenitor cells in the heart and improved understanding of developmental processes relevant to pluripotent embryonic stem cells may facilitate the generation of specific types of cell that can be used to treat human heart disease. Secreted factors from circulating progenitor cells that localize to sites of damage may also be useful for tissue protection or neovascularization. The exciting discoveries in basic science will require rigorous testing in animal models to determine those most worthy of future clinical trials.
Collapse
Affiliation(s)
- Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease and Department of Pediatrics, University of California San Francisco, 1650 Owens Street, San Francisco, California 94158, USA.
| | | |
Collapse
|