851
|
Chakraborty S, Snijders AP, Chakravorty R, Ahmed M, Tarek AM, Hossain MA. Comparative network clustering of direct repeats (DRs) and cas genes confirms the possibility of the horizontal transfer of CRISPR locus among bacteria. Mol Phylogenet Evol 2010; 56:878-87. [DOI: 10.1016/j.ympev.2010.05.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 05/16/2010] [Accepted: 05/19/2010] [Indexed: 11/25/2022]
|
852
|
Abstract
Since the discovery in 1899 of bifidobacteria as numerically dominant microbes in the feces of breast-fed infants, there have been numerous studies addressing their role in modulating gut microflora as well as their other potential health benefits. Because of this, they are frequently incorporated into foods as probiotic cultures. An understanding of their full interactions with intestinal microbes and the host is needed to scientifically validate any health benefits they may afford. Recently, the genome sequences of nine strains representing four species of Bifidobacterium became available. A comparative genome analysis of these genomes reveals a likely efficient capacity to adapt to their habitats, with B. longum subsp. infantis exhibiting more genomic potential to utilize human milk oligosaccharides, consistent with its habitat in the infant gut. Conversely, B. longum subsp. longum exhibits a higher genomic potential for utilization of plant-derived complex carbohydrates and polyols, consistent with its habitat in an adult gut. An intriguing observation is the loss of much of this genome potential when strains are adapted to pure culture environments, as highlighted by the genomes of B. animalis subsp. lactis strains, which exhibit the least potential for a gut habitat and are believed to have evolved from the B. animalis species during adaptation to dairy fermentation environments.
Collapse
Affiliation(s)
- Ju-Hoon Lee
- Department of Food Science and Nutrition, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Ave., St. Paul, Minnesota 55108
| | - Daniel J. O'Sullivan
- Department of Food Science and Nutrition, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Ave., St. Paul, Minnesota 55108
| |
Collapse
|
853
|
Stern A, Keren L, Wurtzel O, Amitai G, Sorek R. Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet 2010; 26:335-40. [PMID: 20598393 PMCID: PMC2910793 DOI: 10.1016/j.tig.2010.05.008] [Citation(s) in RCA: 285] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Revised: 05/27/2010] [Accepted: 05/27/2010] [Indexed: 11/26/2022]
Abstract
The recently discovered prokaryotic immune system known as CRISPR (clustered regularly interspaced short palindromic repeats) is based on small RNAs ('spacers') that restrict phage and plasmid infection. It has been hypothesized that CRISPRs can also regulate self gene expression by utilizing spacers that target self genes. By analyzing CRISPRs from 330 organisms we found that one in every 250 spacers is self-targeting, and that such self-targeting occurs in 18% of all CRISPR-bearing organisms. However, complete lack of conservation across species, combined with abundance of degraded repeats near self-targeting spacers, suggests that self-targeting is a form of autoimmunity rather than a regulatory mechanism. We propose that accidental incorporation of self nucleic acids by CRISPR can incur an autoimmune fitness cost, and this could explain the abundance of degraded CRISPR systems across prokaryotes.
Collapse
Affiliation(s)
- Adi Stern
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Leeat Keren
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Omri Wurtzel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
854
|
Aklujkar M, Lovley DR. Interference with histidyl-tRNA synthetase by a CRISPR spacer sequence as a factor in the evolution of Pelobacter carbinolicus. BMC Evol Biol 2010; 10:230. [PMID: 20667132 PMCID: PMC2923632 DOI: 10.1186/1471-2148-10-230] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 07/28/2010] [Indexed: 11/21/2022] Open
Abstract
Background Pelobacter carbinolicus, a bacterium of the family Geobacteraceae, cannot reduce Fe(III) directly or produce electricity like its relatives. How P. carbinolicus evolved is an intriguing problem. The genome of P. carbinolicus contains clustered regularly interspaced short palindromic repeats (CRISPR) separated by unique spacer sequences, which recent studies have shown to produce RNA molecules that interfere with genes containing identical sequences. Results CRISPR spacer #1, which matches a sequence within hisS, the histidyl-tRNA synthetase gene of P. carbinolicus, was shown to be expressed. Phylogenetic analysis and genetics demonstrated that a gene paralogous to hisS in the genomes of Geobacteraceae is unlikely to compensate for interference with hisS. Spacer #1 inhibited growth of a transgenic strain of Geobacter sulfurreducens in which the native hisS was replaced with that of P. carbinolicus. The prediction that interference with hisS would result in an attenuated histidyl-tRNA pool insufficient for translation of proteins with multiple closely spaced histidines, predisposing them to mutation and elimination during evolution, was investigated by comparative genomics of P. carbinolicus and related species. Several ancestral genes with high histidine demand have been lost or modified in the P. carbinolicus lineage, providing an explanation for its physiological differences from other Geobacteraceae. Conclusions The disappearance of multiheme c-type cytochromes and other genes typical of a metal-respiring ancestor from the P. carbinolicus lineage may be the consequence of spacer #1 interfering with hisS, a condition that can be reproduced in a heterologous host. This is the first successful co-introduction of an active CRISPR spacer and its target in the same cell, the first application of a chimeric CRISPR construct consisting of a spacer from one species in the context of repeats of another species, and the first report of a potential impact of CRISPR on genome-scale evolution by interference with an essential gene.
Collapse
Affiliation(s)
- Muktak Aklujkar
- University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | | |
Collapse
|
855
|
Touchon M, Rocha EPC. The small, slow and specialized CRISPR and anti-CRISPR of Escherichia and Salmonella. PLoS One 2010; 5:e11126. [PMID: 20559554 PMCID: PMC2886076 DOI: 10.1371/journal.pone.0011126] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 05/25/2010] [Indexed: 11/30/2022] Open
Abstract
Prokaryotes thrive in spite of the vast number and diversity of their viruses. This partly results from the evolution of mechanisms to inactivate or silence the action of exogenous DNA. Among these, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) are unique in providing adaptive immunity against elements with high local resemblance to genomes of previously infecting agents. Here, we analyze the CRISPR loci of 51 complete genomes of Escherichia and Salmonella. CRISPR are in two pairs of loci in Escherichia, one single pair in Salmonella, each pair showing a similar turnover rate, repeat sequence and putative linkage to a common set of cas genes. Yet, phylogeny shows that CRISPR and associated cas genes have different evolutionary histories, the latter being frequently exchanged or lost. In our set, one CRISPR pair seems specialized in plasmids often matching genes coding for the replication, conjugation and antirestriction machinery. Strikingly, this pair also matches the cognate cas genes in which case these genes are absent. The unexpectedly high conservation of this anti-CRISPR suggests selection to counteract the invasion of mobile elements containing functional CRISPR/cas systems. There are few spacers in most CRISPR, which rarely match genomes of known phages. Furthermore, we found that strains divergent less than 250 thousand years ago show virtually identical CRISPR. The lack of congruence between cas, CRISPR and the species phylogeny and the slow pace of CRISPR change make CRISPR poor epidemiological markers in enterobacteria. All these observations are at odds with the expectedly abundant and dynamic repertoire of spacers in an immune system aiming at protecting bacteria from phages. Since we observe purifying selection for the maintenance of CRISPR these results suggest that alternative evolutionary roles for CRISPR remain to be uncovered.
Collapse
Affiliation(s)
- Marie Touchon
- Département Génomes et Génétique, Institut Pasteur, Microbial Evolutionary Genomics, Paris, France.
| | | |
Collapse
|
856
|
Luciano A Marraffini. Impact of CRIPSR immunity on the emergence of bacterial pathogens. Future Microbiol 2010; 5:693-5. [DOI: 10.2217/fmb.10.38] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
857
|
Abstract
Phages are now acknowledged as the most abundant microorganisms on the planet and are also possibly the most diversified. This diversity is mostly driven by their dynamic adaptation when facing selective pressure such as phage resistance mechanisms, which are widespread in bacterial hosts. When infecting bacterial cells, phages face a range of antiviral mechanisms, and they have evolved multiple tactics to avoid, circumvent or subvert these mechanisms in order to thrive in most environments. In this Review, we highlight the most important antiviral mechanisms of bacteria as well as the counter-attacks used by phages to evade these systems.
Collapse
Affiliation(s)
- Simon J Labrie
- Department of Civil & Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
858
|
Abstract
The past is never dead. It's not even past William Faulkner (1951)
Bacteria can acquire heritable immunity to viral (phage) enemies by incorporating phage DNA into their own genome. This mechanism of anti-viral defence, known by the acronym CRISPR, simultaneously stores detailed information about current and past enemies and the evolved resistance to them. As a high-resolution genetic marker that is intimately tied with the host–pathogen interaction, the CRISPR system offers a unique, and relatively untapped, opportunity to study epidemiological and coevolutionary dynamics in microbial communities that were previously neglected because they could not be cultured in the laboratory. We briefly review the molecular mechanisms of CRISPR-mediated host–pathogen resistance, before assessing their potential importance for coevolution in nature, and their utility as a means of studying coevolutionary dynamics through metagenomics and laboratory experimentation.
Collapse
Affiliation(s)
- Pedro F Vale
- Institute of Evolutionary Biology, University of Edinburgh, The Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK.
| | | |
Collapse
|
859
|
Karginov FV, Hannon GJ. The CRISPR system: small RNA-guided defense in bacteria and archaea. Mol Cell 2010; 37:7-19. [PMID: 20129051 DOI: 10.1016/j.molcel.2009.12.033] [Citation(s) in RCA: 263] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 12/11/2009] [Accepted: 12/23/2009] [Indexed: 01/23/2023]
Abstract
All cellular systems evolve ways to combat predators and genomic parasites. In bacteria and archaea, numerous resistance mechanisms have developed against phage. Our understanding of this defensive repertoire has recently been expanded to include the CRISPR system of clustered, regularly interspaced short palindromic repeats. In this remarkable pathway, short sequence tags from invading genetic elements are actively incorporated into the host's CRISPR locus to be transcribed and processed into a set of small RNAs that guide the destruction of foreign genetic material. Here we review the inner workings of this adaptable and heritable immune system and draw comparisons to small RNA-guided defense mechanisms in eukaryotic cells.
Collapse
Affiliation(s)
- Fedor V Karginov
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| | | |
Collapse
|
860
|
Pul Ü, Wurm R, Arslan Z, Geißen R, Hofmann N, Wagner R. Identification and characterization ofE. coliCRISPR-caspromoters and their silencing by H-NS. Mol Microbiol 2010; 75:1495-512. [DOI: 10.1111/j.1365-2958.2010.07073.x] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
861
|
Díez-Villaseñor C, Almendros C, García-Martínez J, Mojica FJM. Diversity of CRISPR loci in Escherichia coli. MICROBIOLOGY-SGM 2010; 156:1351-1361. [PMID: 20133361 DOI: 10.1099/mic.0.036046-0] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats) and CAS (CRISPR-associated sequence) proteins are constituents of a novel genetic barrier that limits horizontal gene transfer in prokaryotes by means of an uncharacterized mechanism. The fundamental discovery of small RNAs as the guides of the defence apparatus arose as a result of Escherichia coli studies. However, a survey of the system diversity in this species in order to further contribute to the understanding of the CRISPR mode of action has not yet been performed. Here we describe two CRISPR/CAS systems found in E. coli, following the analysis of 100 strains representative of the species' diversity. Our results substantiate different levels of activity between loci of both CRISPR types, as well as different target preferences and CRISPR relevances for particular groups of strains. Interestingly, the data suggest that the degeneration of one CRISPR/CAS system in E. coli ancestors could have been brought about by self-interference.
Collapse
Affiliation(s)
- C Díez-Villaseñor
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Spain
| | | | | | | |
Collapse
|
862
|
Evolutionary dynamics of clustered irregularly interspaced short palindromic repeat systems in the ocean metagenome. Appl Environ Microbiol 2010; 76:2136-44. [PMID: 20118362 DOI: 10.1128/aem.01985-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPRs) form a recently characterized type of prokaryotic antiphage defense system. The phage-host interactions involving CRISPRs have been studied in experiments with selected bacterial or archaeal species and, computationally, in completely sequenced genomes. However, these studies do not allow one to take prokaryotic population diversity and phage-host interaction dynamics into account. This gap can be filled by using metagenomic data: in particular, the largest existing data set, generated from the Sorcerer II Global Ocean Sampling expedition. The application of three publicly available CRISPR recognition programs to the Global Ocean metagenome produced a large proportion of false-positive results. To address this problem, a filtering procedure was designed. It resulted in about 200 reliable CRISPR cassettes, which were then studied in detail. The repeat consensuses were clustered into several stable classes that differed from the existing classification. Short fragments of DNA similar to the cassette spacers were more frequently present in the same geographical location than in other locations (P, <0.0001). We developed a catalogue of elementary CRISPR-forming events and reconstructed the likely evolutionary history of cassettes that had common spacers. Metagenomic collections allow for relatively unbiased analysis of phage-host interactions and CRISPR evolution. The results of this study demonstrate that CRISPR cassettes retain the memory of the local virus population at a particular ocean location. CRISPR evolution may be described using a limited vocabulary of elementary events that have a natural biological interpretation.
Collapse
|
863
|
Abstract
Microbes rely on diverse defense mechanisms that allow them to withstand viral predation and exposure to invading nucleic acid. In many Bacteria and most Archaea, clustered regularly interspaced short palindromic repeats (CRISPR) form peculiar genetic loci, which provide acquired immunity against viruses and plasmids by targeting nucleic acid in a sequence-specific manner. These hypervariable loci take up genetic material from invasive elements and build up inheritable DNA-encoded immunity over time. Conversely, viruses have devised mutational escape strategies that allow them to circumvent the CRISPR/Cas system, albeit at a cost. CRISPR features may be exploited for typing purposes, epidemiological studies, host-virus ecological surveys, building specific immunity against undesirable genetic elements, and enhancing viral resistance in domesticated microbes.
Collapse
|
864
|
Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 2010; 463:568-71. [PMID: 20072129 PMCID: PMC2813891 DOI: 10.1038/nature08703] [Citation(s) in RCA: 460] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 11/25/2009] [Indexed: 12/30/2022]
Abstract
All immune systems must distinguish self from non-self to repel invaders without inducing autoimmunity. Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci protect bacteria and archaea from invasion by phage and plasmid DNA through a genetic interference pathway1–9. CRISPR loci are present in ~ 40% and ~90% of sequenced bacterial and archaeal genomes respectively10 and evolve rapidly, acquiring new spacer sequences to adapt to highly dynamic viral populations1, 11–13. Immunity requires a sequence match between the invasive DNA and the spacers that lie between CRISPR repeats1–9. Each cluster is genetically linked to a subset of the cas (CRISPR-associated) genes14–16 that collectively encode >40 families of proteins involved in adaptation and interference. CRISPR loci encode small CRISPR RNAs (crRNAs) that contain a full spacer flanked by partial repeat sequences2, 17–19. CrRNA spacers are thought to identify targets by direct Watson-Crick pairing with invasive “protospacer” DNA2, 3, but how they avoid targeting the spacer DNA within the encoding CRISPR locus itself is unknown. Here we have defined the mechanism of CRISPR self/non-self discrimination. In Staphylococcus epidermidis, target/crRNA mismatches at specific positions outside of the spacer sequence license foreign DNA for interference, whereas extended pairing between crRNA and CRISPR DNA repeats prevents autoimmunity. Hence, this CRISPR system uses the base-pairing potential of crRNAs not only to specify a target but also to spare the bacterial chromosome from interference. Differential complementarity outside of the spacer sequence is a built-in feature of all CRISPR systems, suggesting that this mechanism is a broadly applicable solution to the self/non-self dilemma that confronts all immune pathways.
Collapse
|
865
|
Proteomic analysis of interactions between a deep-sea thermophilic bacteriophage and its host at high temperature. J Virol 2009; 84:2365-73. [PMID: 20015994 DOI: 10.1128/jvi.02182-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The virus-host interaction is essential to understanding the role that viruses play in ecological and geochemical processes in deep-sea vent ecosystems. Virus-induced changes in cellular gene expression and host physiology have been studied extensively. However, the molecular mechanism of interaction between a bacteriophage and its host at high temperature remains poorly understood. In the present study, the virus-induced gene expression profile of Geobacillus sp. E263, a thermophile isolated from a deep-sea hydrothermal ecosystem, was characterized. Based on proteomic analysis and random arbitrarily primed PCR (RAP-PCR) of Geobacillus sp. E263 cultured under non-bacteriophage GVE2 infection and GVE2 infection conditions, there were two types of protein/gene profiles in response to GVE2 infection. Twenty differentially expressed genes and proteins were revealed that could be grouped into 3 different categories based on cellular function, suggesting a coordinated response to infection. These differentially expressed genes and proteins were further confirmed by Northern blot analysis. To characterize the host proteins in response to virus infection, aspartate aminotransferase (AST) was inactivated to construct the AST mutant of Geobacillus sp. E263. The results showed that the AST protein was essential in virus infection. Thus, transcriptional and proteomic analyses and functional analysis revealed previously unknown host responses to deep-sea thermophilic virus infection.
Collapse
|
866
|
Koonin EV, Makarova KS. CRISPR-Cas: an adaptive immunity system in prokaryotes. F1000 BIOLOGY REPORTS 2009; 1:95. [PMID: 20556198 PMCID: PMC2884157 DOI: 10.3410/b1-95] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Most of the archaea and numerous bacteria possess an elaborate system of adaptive immunity to mobile genetic elements known as the CRISPR (clustered regularly interspaced short palindromic repeats)-associated system (CRISPR-Cas), which consists of arrays of short repeats interspersed with unique DNA spacers and adjacent operons encompassing CRISPR-associated (cas) genes with predicted and, in some cases, experimentally validated nuclease, helicase, and polymerase activities. The system functions by integrating fragments of alien DNA between the repeats and employing their transcripts to degrade the DNA of the respective invading elements via an RNA interference-like mechanism. The CRISPR-Cas system is a case of apparent Lamarckian inheritance.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | | |
Collapse
|
867
|
|
868
|
Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L, Terns RM, Terns MP. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 2009; 139:945-56. [PMID: 19945378 PMCID: PMC2951265 DOI: 10.1016/j.cell.2009.07.040] [Citation(s) in RCA: 792] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 04/13/2009] [Accepted: 07/17/2009] [Indexed: 12/19/2022]
Abstract
Compelling evidence indicates that the CRISPR-Cas system protects prokaryotes from viruses and other potential genome invaders. This adaptive prokaryotic immune system arises from the clustered regularly interspaced short palindromic repeats (CRISPRs) found in prokaryotic genomes, which harbor short invader-derived sequences, and the CRISPR-associated (Cas) protein-coding genes. Here, we have identified a CRISPR-Cas effector complex that is comprised of small invader-targeting RNAs from the CRISPR loci (termed prokaryotic silencing (psi)RNAs) and the RAMP module (or Cmr) Cas proteins. The psiRNA-Cmr protein complexes cleave complementary target RNAs at a fixed distance from the 3' end of the integral psiRNAs. In Pyrococcus furiosus, psiRNAs occur in two size forms that share a common 5' sequence tag but have distinct 3' ends that direct cleavage of a given target RNA at two distinct sites. Our results indicate that prokaryotes possess a unique RNA silencing system that functions by homology-dependent cleavage of invader RNAs.
Collapse
Affiliation(s)
- Caryn R. Hale
- Department of Biochemistry and Molecular Biology, and Genetics, University of Georgia, Athens, GA 30602, USA
| | - Peng Zhao
- Department of Biochemistry and Molecular Biology, and Genetics, University of Georgia, Athens, GA 30602, USA
| | - Sara Olson
- Department of Genetics and Developmental Biology, University of Connecticut Stem Cell Institute, University of Connecticut Health Center, 263 armington Avenue, Farmington, CT 06030-3301, USA
| | - Michael O. Duff
- Department of Genetics and Developmental Biology, University of Connecticut Stem Cell Institute, University of Connecticut Health Center, 263 armington Avenue, Farmington, CT 06030-3301, USA
| | - Brenton R. Graveley
- Department of Genetics and Developmental Biology, University of Connecticut Stem Cell Institute, University of Connecticut Health Center, 263 armington Avenue, Farmington, CT 06030-3301, USA
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, and Genetics, University of Georgia, Athens, GA 30602, USA
| | - Rebecca M. Terns
- Department of Biochemistry and Molecular Biology, and Genetics, University of Georgia, Athens, GA 30602, USA
| | - Michael P. Terns
- Department of Biochemistry and Molecular Biology, and Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
869
|
Guglielmotti DM, Deveau H, Binetti AG, Reinheimer JA, Moineau S, Quiberoni A. Genome analysis of two virulent Streptococcus thermophilus phages isolated in Argentina. Int J Food Microbiol 2009; 136:101-9. [DOI: 10.1016/j.ijfoodmicro.2009.09.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 08/31/2009] [Accepted: 09/06/2009] [Indexed: 11/30/2022]
|
870
|
Abstract
In this issue of Structure, Wiedenheft et al. describe the structure and activity of Cas1, the only protein associated with all CRISPR loci. Cas1 is a metal-dependent deoxyribonuclease, consistent with a role in the adaptation phase of CRISPR immunity against invading nucleic acids.
Collapse
Affiliation(s)
- Luciano A Marraffini
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | | |
Collapse
|
871
|
Maruyama F, Kobata M, Kurokawa K, Nishida K, Sakurai A, Nakano K, Nomura R, Kawabata S, Ooshima T, Nakai K, Hattori M, Hamada S, Nakagawa I. Comparative genomic analyses of Streptococcus mutans provide insights into chromosomal shuffling and species-specific content. BMC Genomics 2009; 10:358. [PMID: 19656368 PMCID: PMC2907686 DOI: 10.1186/1471-2164-10-358] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 08/05/2009] [Indexed: 11/20/2022] Open
Abstract
Background Streptococcus mutans is the major pathogen of dental caries, and it occasionally causes infective endocarditis. While the pathogenicity of this species is distinct from other human pathogenic streptococci, the species-specific evolution of the genus Streptococcus and its genomic diversity are poorly understood. Results We have sequenced the complete genome of S. mutans serotype c strain NN2025, and compared it with the genome of UA159. The NN2025 genome is composed of 2,013,587 bp, and the two strains show highly conserved core-genome. However, comparison of the two S. mutans strains showed a large genomic inversion across the replication axis producing an X-shaped symmetrical DNA dot plot. This phenomenon was also observed between other streptococcal species, indicating that streptococcal genetic rearrangements across the replication axis play an important role in Streptococcus genetic shuffling. We further confirmed the genomic diversity among 95 clinical isolates using long-PCR analysis. Genomic diversity in S. mutans appears to occur frequently between insertion sequence (IS) elements and transposons, and these diversity regions consist of restriction/modification systems, antimicrobial peptide synthesis systems, and transporters. S. mutans may preferentially reject the phage infection by clustered regularly interspaced short palindromic repeats (CRISPRs). In particular, the CRISPR-2 region, which is highly divergent between strains, in NN2025 has long repeated spacer sequences corresponding to the streptococcal phage genome. Conclusion These observations suggest that S. mutans strains evolve through chromosomal shuffling and that phage infection is not needed for gene acquisition. In contrast, S. pyogenes tolerates phage infection for acquisition of virulence determinants for niche adaptation.
Collapse
Affiliation(s)
- Fumito Maruyama
- Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
872
|
Streptococcus thermophilus phage monitoring in a cheese factory: Phage characteristics and starter sensitivity. Int Dairy J 2009. [DOI: 10.1016/j.idairyj.2009.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
873
|
van der Oost J, Jore MM, Westra ER, Lundgren M, Brouns SJJ. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci 2009; 34:401-7. [PMID: 19646880 DOI: 10.1016/j.tibs.2009.05.002] [Citation(s) in RCA: 362] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 05/05/2009] [Accepted: 05/07/2009] [Indexed: 11/18/2022]
Abstract
The recently discovered CRISPR (clustered regularly interspaced short palindromic repeat) defense system protects bacteria and archaea against mobile genetic elements. This immunity system has the potential to continuously adjust its reach at the genomic level, implying that both gain and loss of information is inheritable. The CRISPR system consists of typical stretches of interspaced repetitive DNA (CRISPRs) and associated cas genes. Three distinct stages are recognized in the CRISPR defense mechanism: (i) adaptation of the CRISPR via the integration of short sequences of the invaders as spacers; (ii) expression of CRISPRs and subsequent processing to small guide RNAs; and (iii) interference of target DNA by the crRNA guides. Recent analyses of key Cas proteins indicate that, despite some functional analogies, this fascinating prokaryotic system shares no phylogenetic relation with the eukaryotic RNA interference system.
Collapse
Affiliation(s)
- John van der Oost
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
874
|
Evidence for the presence of restriction/modification systems in Lactobacillus delbrueckii. J DAIRY RES 2009; 76:433-40. [PMID: 19640327 DOI: 10.1017/s0022029909990112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The bacteriophages Cb1/204 and Cb1/342 were obtained by induction from the commercial strain Lactobacillus delbrueckii subsp. lactis Cb1, and propagated on Lactobacillus delbrueckii subsp. lactis 204 (Lb.l 204) and Lactobacillus delbrueckii subsp. bulgaricus 342 (Lb.b 342), respectively. By cross sensitivity, it was possible to detect a delay in the lysis of Lb.l 204 with Cb1/342 phage, while the adsorption rate was high (99.5%). Modified and unmodified phages were isolated using phage Cb1/342 and strain Lb.l 204. The EOP (Efficiency of Plaquing) values for the four phages (Cb1/204, Cb1/342, Cb1/342modified and Cb1/342unmodified) suggested that an R/M system modified the original temperate phage, and the BglII-DNA restriction patterns of these phages might point out the presence of a Type II R/M system. Also, the existence of a Type I R/M system was demonstrated by PCR and nucleotide sequence, being the percentages of alignment homology with Type I R/M systems reported previously higher than 95%. In this study it was possible to demonstrate that the native phage resistant mechanisms and the occurrence of prophages in commercial host strains, contribute strongly to diversify the phage population in a factory environment.
Collapse
|
875
|
Mills S, Griffin C, Coffey A, Meijer WC, Hafkamp B, Ross RP. CRISPR analysis of bacteriophage-insensitive mutants (BIMs) of industrial Streptococcus thermophilus--implications for starter design. J Appl Microbiol 2009; 108:945-955. [PMID: 19709335 DOI: 10.1111/j.1365-2672.2009.04486.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AIMS An efficient approach for generation of bacteriophage-insensitive mutants (BIMs) of Streptococcus thermophilus starters was described in our laboratory [Mills et al. (2007) J Microbiol Methods70, 159-164]. The aim of this study was to analyse the phage resistance mechanism responsible for BIM formation. METHODS AND RESULTS Three clustered regularly interspaced short palindromic repeat (CRISPR) regions have been identified in Strep. thermophilus, and Strep. thermophilus can integrate novel spacers into these loci in response to phage attack. Characterization of three sets of BIMs indicated that two sets had altered CRISPR1 and/or CRISPR3 loci. A range of BIMs of yoghurt starter CSK938 were generated with the same phage in different phage challenge experiments, and each acquired unique spacer regions ranging between one and four new spacers in CRISPR1. In addition, the BIM that acquired only one new spacer in CRISPR1 also acquired an additional spacer in CRISPR3. A fourth BIM, generated with a different phage, had two spacers deleted from CRISPR1 but acquired two spacers in CRISPR3. Analysis of the Mozzarella starter CSK939 and its associated BIMs indicated that formation of second generation BIMs does not lead to increases in spacer number but to alterations in spacer regions. BIMs of an exopolysaccharide (EPS)-producing strain that lost the ability to produce EPS did not harbour an altered CRISPR, suggesting that phage sensitivity may be related to the EPS-producing phenotype. CONCLUSIONS Acquisition/deletion of new spacers in CRISPR loci in response to phage attack generates distinctly individual variants. It also demonstrates that other modifications may be responsible for the phage resistance of Strep. thermophilus BIMs. SIGNIFICANCE AND IMPACT OF THE STUDY Isolation of individual BIMs that have unique spacers towards the leader region of the CRISPR locus may be a very useful approach for rotation strategies with the same starter backbone. Upon phage infection, BIMs 'in reserve' can be slotted into the rotation scheme.
Collapse
Affiliation(s)
- S Mills
- Teagasc, Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland., CSK Food Enrichment, Ede, the Netherlands
| | - C Griffin
- Teagasc, Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland., CSK Food Enrichment, Ede, the Netherlands
| | - A Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - W C Meijer
- CSK Food Enrichment, Ede, the Netherlands
| | - B Hafkamp
- CSK Food Enrichment, Ede, the Netherlands
| | - R P Ross
- Teagasc, Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland., Alimentary Pharmabiotic Centre, Cork, Ireland
| |
Collapse
|
876
|
Semenova E, Nagornykh M, Pyatnitskiy M, Artamonova II, Severinov K. Analysis of CRISPR system function in plant pathogenXanthomonas oryzae. FEMS Microbiol Lett 2009; 296:110-6. [DOI: 10.1111/j.1574-6968.2009.01626.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
877
|
Forsdyke DR. X chromosome reactivation perturbs intracellular self/not-self discrimination. Immunol Cell Biol 2009; 87:525-8. [PMID: 19506573 DOI: 10.1038/icb.2009.39] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
New reports indicate a chromosomal rather than hormonal basis for the susceptibility of females to autoimmune disease. It is held that if females reactivate an inactivated X chromosome, there will be overexpression of certain X-located genes affecting immune function. Hence, normal mechanisms of self/not-self discrimination might be impaired resulting in immune reaction to self antigens. However, the data are also consistent with the long-held view that the demands of intracellular self/not-self discrimination have driven the evolution of X-chromosome dosage compensation. It was proposed that, whether cells are in male or female bodies, concentrations of proteins are fine-tuned up to their aggregation thresholds. A disruption of this equilibrium, by agents originating either externally (for example, virus) or internally (for example, reactivated X chromosome), generates homoaggregates that trigger responses against the respective not-self or self antigens. Thus, female susceptibility to autoimmune disease may not be because certain immune system genes happen to be X-located, but because self/not-self discrimination was the raison d'être for X-chromosome dosage compensation in the first place.
Collapse
|
878
|
Sakamoto K, Agari Y, Agari K, Yokoyama S, Kuramitsu S, Shinkai A. X-ray crystal structure of a CRISPR-associated RAMP module [corrected] Cmr5 protein [corrected] from Thermus thermophilus HB8. Proteins 2009; 75:528-32. [PMID: 19173314 DOI: 10.1002/prot.22358] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Keiko Sakamoto
- RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan
| | | | | | | | | | | |
Collapse
|
879
|
van der Ploeg JR. Analysis of CRISPR in Streptococcus mutans suggests frequent occurrence of acquired immunity against infection by M102-like bacteriophages. MICROBIOLOGY-SGM 2009; 155:1966-1976. [PMID: 19383692 DOI: 10.1099/mic.0.027508-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) consist of highly conserved direct repeats interspersed with variable spacer sequences. They can protect bacteria against invasion by foreign DNA elements. The genome sequence of Streptococcus mutans strain UA159 contains two CRISPR loci, designated CRISPR1 and CRISPR2. The aims of this study were to analyse the organization of CRISPR in further S. mutans strains and to investigate the importance of CRISPR in acquired immunity to M102-like phages. The sequences of CRISPR1 and CRISPR2 arrays were determined for 29 S. mutans strains from different persons. More than half of the CRISPR1 spacers and about 35 % of the CRISPR2 spacers showed sequence similarity with the genome sequence of M102, a virulent siphophage specific for S. mutans. Although only a few spacers matched the phage sequence completely, most of the mismatches had no effect on the amino acid sequences of the phage-encoded proteins. The results suggest that S. mutans is often attacked by M102-like bacteriophages, and that its acquisition of novel phage-derived CRISPR sequences goes along with the presence of S. mutans phages in the environment. Analysis of CRISPR1 of M102-resistant mutants of S. mutans OMZ 381 showed that some of them had acquired novel spacers, and the sequences of all but one of these matched the phage M102 genome sequence. This suggests that the acquisition of the spacers contributed to the resistance against phage infection. However, since not all resistant mutants had new spacers, and since the removal of the CRISPR1 array in one of the mutants and in wild-type strains did not lead to loss of resistance to infection by M102, the acquisition of resistance must be based on further elements as well.
Collapse
Affiliation(s)
- Jan R van der Ploeg
- Institute of Oral Biology, University of Zurich, Plattenstrasse 11, CH-8032 Zurich, Switzerland
| |
Collapse
|
880
|
Comparison of the complete genome sequences of Bifidobacterium animalis subsp. lactis DSM 10140 and Bl-04. J Bacteriol 2009; 191:4144-51. [PMID: 19376856 DOI: 10.1128/jb.00155-09] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bifidobacteria are important members of the human gut flora, especially in infants. Comparative genomic analysis of two Bifidobacterium animalis subsp. lactis strains revealed evolution by internal deletion of consecutive spacer-repeat units within a novel clustered regularly interspaced short palindromic repeat locus, which represented the largest differential content between the two genomes. Additionally, 47 single nucleotide polymorphisms were identified, consisting primarily of nonsynonymous mutations, indicating positive selection and/or recent divergence. A particular nonsynonymous mutation in a putative glucose transporter was linked to a negative phenotypic effect on the ability of the variant to catabolize glucose, consistent with a modification in the predicted protein transmembrane topology. Comparative genome sequence analysis of three Bifidobacterium species provided a core genome set of 1,117 orthologs complemented by a pan-genome of 2,445 genes. The genome sequences of the intestinal bacterium B. animalis subsp. lactis provide insights into rapid genome evolution and the genetic basis for adaptation to the human gut environment, notably with regard to catabolism of dietary carbohydrates, resistance to bile and acid, and interaction with the intestinal epithelium. The high degree of genome conservation observed between the two strains in terms of size, organization, and sequence is indicative of a genomically monomorphic subspecies and explains the inability to differentiate the strains by standard techniques such as pulsed-field gel electrophoresis.
Collapse
|
881
|
Mojica FJM, Díez-Villaseñor C, García-Martínez J, Almendros C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. MICROBIOLOGY-SGM 2009; 155:733-740. [PMID: 19246744 DOI: 10.1099/mic.0.023960-0] [Citation(s) in RCA: 1057] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated CRISPR-associated sequence (CAS) proteins constitute a novel antiviral defence system that is widespread in prokaryotes. Repeats are separated by spacers, some of them homologous to sequences in mobile genetic elements. Although the whole process involved remains uncharacterized, it is known that new spacers are incorporated into CRISPR loci of the host during a phage challenge, conferring specific resistance against the virus. Moreover, it has been demonstrated that such interference is based on small RNAs carrying a spacer. These RNAs would guide the defence apparatus to foreign molecules carrying sequences that match the spacers. Despite this essential role, the spacer uptake mechanism has not been addressed. A first step forward came from the detection of motifs associated with spacer precursors (proto-spacers) of Streptococcus thermophilus, revealing a specific recognition of donor sequences in this species. Here we show that the conservation of proto-spacer adjacent motifs (PAMs) is a common theme for the most diverse CRISPR systems. The PAM sequence depends on the CRISPR-CAS variant, implying that there is a CRISPR-type-specific (motif-directed) choice of the spacers, which subsequently determines the interference target. PAMs also direct the orientation of spacers in the repeat arrays. Remarkably, observations based on such polarity argue against a recognition of the spacer precursors on transcript RNA molecules as a general rule.
Collapse
Affiliation(s)
- F J M Mojica
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, E-03080 Alicante, Spain
| | - C Díez-Villaseñor
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, E-03080 Alicante, Spain
| | - J García-Martínez
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, E-03080 Alicante, Spain
| | - C Almendros
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, E-03080 Alicante, Spain
| |
Collapse
|
882
|
Lillestøl RK, Shah SA, Brügger K, Redder P, Phan H, Christiansen J, Garrett RA. CRISPR families of the crenarchaeal genus Sulfolobus: bidirectional transcription and dynamic properties. Mol Microbiol 2009; 72:259-72. [DOI: 10.1111/j.1365-2958.2009.06641.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
883
|
Held NL, Whitaker RJ. Viral biogeography revealed by signatures in Sulfolobus islandicus genomes. Environ Microbiol 2009; 11:457-66. [PMID: 19196276 DOI: 10.1111/j.1462-2920.2008.01784.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Viruses are a driving force of microbial evolution. Despite their importance, the evolutionary dynamics that shape diversity in viral populations are not well understood. One of the primary factors that define viral population structure is coevolution with microbial hosts. Experimental models predict that the trajectory of coevolution will be determined by the relative migration rates of viruses and their hosts; however, there are no natural microbial systems in which both have been examined. The biogeographic distribution of viruses that infect Sulfolobus islandicus is investigated using genome comparisons among four newly identified, integrated, Sulfolobus spindle-shaped viruses and previously sequenced viral strains. Core gene sequences show a biogeographic distribution where viral genomes are specifically associated with each local population. In addition, signatures of host-virus interactions recorded in the sequence-specific CRISPR (clustered regularly interspaced short palindromic repeats) system show that hosts have interacted with viral communities that are more closely related to local viral strains than to foreign ones. Together, both proviral and CRISPR sequences show a clear biogeographic structure for Sulfolobus viral populations. Our findings demonstrate that virus-microbe coevolution must be examined in a spatially explicit framework. The combination of host and virus biogeography suggests a model for viral diversification driven by host immunity and local adaptation.
Collapse
Affiliation(s)
- Nicole L Held
- Department of Microbiology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
884
|
Robitaille G, Tremblay A, Moineau S, St-Gelais D, Vadeboncoeur C, Britten M. Fat-free yogurt made using a galactose-positive exopolysaccharide-producing recombinant strain of Streptococcus thermophilus. J Dairy Sci 2009; 92:477-82. [DOI: 10.3168/jds.2008-1312] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
885
|
Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 2009; 322:1843-5. [PMID: 19095942 DOI: 10.1126/science.1165771] [Citation(s) in RCA: 1214] [Impact Index Per Article: 75.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Horizontal gene transfer (HGT) in bacteria and archaea occurs through phage transduction, transformation, or conjugation, and the latter is particularly important for the spread of antibiotic resistance. Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci confer sequence-directed immunity against phages. A clinical isolate of Staphylococcus epidermidis harbors a CRISPR spacer that matches the nickase gene present in nearly all staphylococcal conjugative plasmids. Here we show that CRISPR interference prevents conjugation and plasmid transformation in S. epidermidis. Insertion of a self-splicing intron into nickase blocks interference despite the reconstitution of the target sequence in the spliced mRNA, which indicates that the interference machinery targets DNA directly. We conclude that CRISPR loci counteract multiple routes of HGT and can limit the spread of antibiotic resistance in pathogenic bacteria.
Collapse
Affiliation(s)
- Luciano A Marraffini
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | | |
Collapse
|
886
|
Heidelberg JF, Nelson WC, Schoenfeld T, Bhaya D. Germ warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes. PLoS One 2009; 4:e4169. [PMID: 19132092 PMCID: PMC2612747 DOI: 10.1371/journal.pone.0004169] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 09/12/2008] [Indexed: 11/18/2022] Open
Abstract
CRISPR arrays and associated cas genes are widespread in bacteria and archaea and confer acquired resistance to viruses. To examine viral immunity in the context of naturally evolving microbial populations we analyzed genomic data from two thermophilic Synechococcus isolates (Syn OS-A and Syn OS-B′) as well as a prokaryotic metagenome and viral metagenome derived from microbial mats in hotsprings at Yellowstone National Park. Two distinct CRISPR types, distinguished by the repeat sequence, are found in both the Syn OS-A and Syn OS-B′ genomes. The genome of Syn OS-A contains a third CRISPR type with a distinct repeat sequence, which is not found in Syn OS-B′, but appears to be shared with other microorganisms that inhabit the mat. The CRISPR repeats identified in the microbial metagenome are highly conserved, while the spacer sequences (hereafter referred to as “viritopes” to emphasize their critical role in viral immunity) were mostly unique and had no high identity matches when searched against GenBank. Searching the viritopes against the viral metagenome, however, yielded several matches with high similarity some of which were within a gene identified as a likely viral lysozyme/lysin protein. Analysis of viral metagenome sequences corresponding to this lysozyme/lysin protein revealed several mutations all of which translate into silent or conservative mutations which are unlikely to affect protein function, but may help the virus evade the host CRISPR resistance mechanism. These results demonstrate the varied challenges presented by a natural virus population, and support the notion that the CRISPR/viritope system must be able to adapt quickly to provide host immunity. The ability of metagenomics to track population-level variation in viritope sequences allows for a culture-independent method for evaluating the fast co-evolution of host and viral genomes and its consequence on the structuring of complex microbial communities.
Collapse
Affiliation(s)
- John F. Heidelberg
- Department of Biological Sciences, Marine Environmental Biology Division, Wrigley Institute for Environmental Studies, University of Southern California, Avalon, California, United States of America
- * E-mail:
| | - William C. Nelson
- Department of Biological Sciences, Marine Environmental Biology Division, Wrigley Institute for Environmental Studies, University of Southern California, Avalon, California, United States of America
| | | | - Devaki Bhaya
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| |
Collapse
|
887
|
Daniels C, Ramos JL. A broad range of themes in Microbial Biotechnology. Microb Biotechnol 2009; 2:3-5. [PMID: 21261877 PMCID: PMC3815417 DOI: 10.1111/j.1751-7915.2008.00076.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Craig Daniels
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | |
Collapse
|
888
|
Zegans ME, Wagner JC, Cady KC, Murphy DM, Hammond JH, O'Toole GA. Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa. J Bacteriol 2009; 191:210-9. [PMID: 18952788 PMCID: PMC2612449 DOI: 10.1128/jb.00797-08] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 10/17/2008] [Indexed: 01/24/2023] Open
Abstract
Bacteriophage infection has profound effects on bacterial biology. Clustered regular interspaced short palindromic repeats (CRISPRs) and cas (CRISPR-associated) genes are found in most archaea and many bacteria and have been reported to play a role in resistance to bacteriophage infection. We observed that lysogenic infection of Pseudomonas aeruginosa PA14 with bacteriophage DMS3 inhibits biofilm formation and swarming motility, both important bacterial group behaviors. This inhibition requires the CRISPR region in the host. Mutation or deletion of five of the six cas genes and one of the two CRISPRs in this region restored biofilm formation and swarming to DMS3 lysogenized strains. Our observations suggest a role for CRISPR regions in modifying the effects of lysogeny on P. aeruginosa.
Collapse
Affiliation(s)
- Michael E Zegans
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | |
Collapse
|
889
|
Carte J, Wang R, Li H, Terns RM, Terns MP. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev 2008; 22:3489-96. [PMID: 19141480 PMCID: PMC2607076 DOI: 10.1101/gad.1742908] [Citation(s) in RCA: 431] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 10/20/2008] [Indexed: 11/25/2022]
Abstract
An RNA-based gene silencing pathway that protects bacteria and archaea from viruses and other genome invaders is hypothesized to arise from guide RNAs encoded by CRISPR loci and proteins encoded by the cas genes. CRISPR loci contain multiple short invader-derived sequences separated by short repeats. The presence of virus-specific sequences within CRISPR loci of prokaryotic genomes confers resistance against corresponding viruses. The CRISPR loci are transcribed as long RNAs that must be processed to smaller guide RNAs. Here we identified Pyrococcus furiosus Cas6 as a novel endoribonuclease that cleaves CRISPR RNAs within the repeat sequences to release individual invader targeting RNAs. Cas6 interacts with a specific sequence motif in the 5' region of the CRISPR repeat element and cleaves at a defined site within the 3' region of the repeat. The 1.8 angstrom crystal structure of the enzyme reveals two ferredoxin-like folds that are also found in other RNA-binding proteins. The predicted active site of the enzyme is similar to that of tRNA splicing endonucleases, and concordantly, Cas6 activity is metal-independent. cas6 is one of the most widely distributed CRISPR-associated genes. Our findings indicate that Cas6 functions in the generation of CRISPR-derived guide RNAs in numerous bacteria and archaea.
Collapse
Affiliation(s)
- Jason Carte
- Department of Biochemistry and Molecular Biology and Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Ruiying Wang
- Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| | - Hong Li
- Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| | - Rebecca M. Terns
- Department of Biochemistry and Molecular Biology and Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Michael P. Terns
- Department of Biochemistry and Molecular Biology and Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
890
|
Hale C, Kleppe K, Terns RM, Terns MP. Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus. RNA (NEW YORK, N.Y.) 2008; 14:2572-9. [PMID: 18971321 PMCID: PMC2590957 DOI: 10.1261/rna.1246808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In many prokaryotes, noncoding RNAs that arise from the clustered regularly interspaced short palindromic repeat (CRISPR) loci are now thought to mediate defense against viruses and other molecular invaders by an RNAi-like pathway. CRISPR loci contain multiple short regions of similarity to invader sequences separated by short repeat sequences, and are associated with resistance to infection by corresponding viruses. It is hypothesized that RNAs derived from these regions, termed prokaryotic silencing (psi)RNAs, guide Slicer-like complexes of partner proteins to destroy invader nucleic acids. Here we have investigated CRISPR-derived RNAs in the archaeon Pyrococcus furiosus. Northern analysis revealed multiple RNA species consistent with a proposed biogenesis pathway that includes full-length CRISPR locus transcripts and intermediates generated by endonucleolytic cleavages within the repeat sequences. However, our results identify the principal products of the CRISPR loci as small psiRNAs comprised primarily of invader-targeting sequence with perhaps only 5-10 nucleotides of CRISPR repeat sequence. These RNAs are the most abundant CRISPR RNA species in P. furiosus and are likely the guides for the effector complexes of the proposed prokaryotic RNAi (pRNAi) system. We analyzed cell-free extracts fractionated under non-denaturing conditions and found that the various CRISPR RNA species are components of distinct RNA-protein complexes, including at least two complexes that contain mature-length psiRNAs. Finally, RNAs are produced from all seven CRISPR loci present in the P. furiosus genome, and interestingly, the most recently acquired psiRNAs encoded proximal to the leader sequence of a CRISPR locus appear to be the most abundant.
Collapse
Affiliation(s)
- Caryn Hale
- Department of Biochemistry, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
891
|
Affiliation(s)
- Roland J Siezen
- Kluyver Centre for Genomics of Industrial Fermentation, TI Food and Nutrition, Wageningen, The Netherlands.
| | | |
Collapse
|
892
|
Agari Y, Yokoyama S, Kuramitsu S, Shinkai A. X-ray crystal structure of a CRISPR-associated protein, Cse2, from Thermus thermophilus
HB8. Proteins 2008; 73:1063-7. [DOI: 10.1002/prot.22224] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
893
|
Affiliation(s)
- Ryland F Young
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA.
| |
Collapse
|
894
|
Beres SB, Sesso R, Pinto SWL, Hoe NP, Porcella SF, DeLeo FR, Musser JM. Genome sequence of a Lancefield group C Streptococcus zooepidemicus strain causing epidemic nephritis: new information about an old disease. PLoS One 2008; 3:e3026. [PMID: 18716664 PMCID: PMC2516327 DOI: 10.1371/journal.pone.0003026] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 07/29/2008] [Indexed: 12/02/2022] Open
Abstract
Outbreaks of disease attributable to human error or natural causes can provide unique opportunities to gain new information about host-pathogen interactions and new leads for pathogenesis research. Poststreptococcal glomerulonephritis (PSGN), a sequela of infection with pathogenic streptococci, is a common cause of preventable kidney disease worldwide. Although PSGN usually occurs after infection with group A streptococci, organisms of Lancefield group C and G also can be responsible. Despite decades of study, the molecular pathogenesis of PSGN is poorly understood. As a first step toward gaining new information about PSGN pathogenesis, we sequenced the genome of Streptococcus equi subsp. zooepidemicus strain MGCS10565, a group C organism that caused a very large and unusually severe epidemic of nephritis in Brazil. The genome is a circular chromosome of 2,024,171 bp. The genome shares extensive gene content, including many virulence factors, with genetically related group A streptococci, but unexpectedly lacks prophages. The genome contains many apparently foreign genes interspersed around the chromosome, consistent with the presence of a full array of genes required for natural competence. An inordinately large family of genes encodes secreted extracellular collagen-like proteins with multiple integrin-binding motifs. The absence of a gene related to speB rules out the long-held belief that streptococcal pyrogenic exotoxin B or antibodies reacting with it singularly cause PSGN. Many proteins previously implicated in GAS PSGN, such as streptokinase, are either highly divergent in strain MGCS10565 or are not more closely related between these species than to orthologs present in other streptococci that do not commonly cause PSGN. Our analysis provides a comparative genomics framework for renewed appraisal of molecular events underlying APSGN pathogenesis.
Collapse
Affiliation(s)
- Stephen B. Beres
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute and Department of Pathology, Houston, Texas, United States of America
| | - Ricardo Sesso
- Division of Nephrology, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | | | - Nancy P. Hoe
- Division of Occupational Health and Safety, Office of Research Services, National Institutes of Health, Hamilton, Montana, United States of America
| | - Stephen F. Porcella
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Frank R. DeLeo
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - James M. Musser
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute and Department of Pathology, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
895
|
Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH, Snijders APL, Dickman MJ, Makarova KS, Koonin EV, van der Oost J. Small CRISPR RNAs guide antiviral defense in prokaryotes. SCIENCE (NEW YORK, N.Y.) 2008. [PMID: 18703739 DOI: 10.1126/science.1159689.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Prokaryotes acquire virus resistance by integrating short fragments of viral nucleic acid into clusters of regularly interspaced short palindromic repeats (CRISPRs). Here we show how virus-derived sequences contained in CRISPRs are used by CRISPR-associated (Cas) proteins from the host to mediate an antiviral response that counteracts infection. After transcription of the CRISPR, a complex of Cas proteins termed Cascade cleaves a CRISPR RNA precursor in each repeat and retains the cleavage products containing the virus-derived sequence. Assisted by the helicase Cas3, these mature CRISPR RNAs then serve as small guide RNAs that enable Cascade to interfere with virus proliferation. Our results demonstrate that the formation of mature guide RNAs by the CRISPR RNA endonuclease subunit of Cascade is a mechanistic requirement for antiviral defense.
Collapse
Affiliation(s)
- Stan J J Brouns
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
896
|
Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH, Snijders APL, Dickman MJ, Makarova KS, Koonin EV, van der Oost J. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008; 321:960-4. [PMID: 18703739 PMCID: PMC5898235 DOI: 10.1126/science.1159689] [Citation(s) in RCA: 1826] [Impact Index Per Article: 107.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Prokaryotes acquire virus resistance by integrating short fragments of viral nucleic acid into clusters of regularly interspaced short palindromic repeats (CRISPRs). Here we show how virus-derived sequences contained in CRISPRs are used by CRISPR-associated (Cas) proteins from the host to mediate an antiviral response that counteracts infection. After transcription of the CRISPR, a complex of Cas proteins termed Cascade cleaves a CRISPR RNA precursor in each repeat and retains the cleavage products containing the virus-derived sequence. Assisted by the helicase Cas3, these mature CRISPR RNAs then serve as small guide RNAs that enable Cascade to interfere with virus proliferation. Our results demonstrate that the formation of mature guide RNAs by the CRISPR RNA endonuclease subunit of Cascade is a mechanistic requirement for antiviral defense.
Collapse
Affiliation(s)
- Stan J. J. Brouns
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, Netherlands
| | - Matthijs M. Jore
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, Netherlands
| | - Magnus Lundgren
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, Netherlands
| | - Edze R. Westra
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, Netherlands
| | - Rik J. H. Slijkhuis
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, Netherlands
| | - Ambrosius P. L. Snijders
- Biological and Environmental Systems, Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - Mark J. Dickman
- Biological and Environmental Systems, Department of Chemical and Process Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD 20894, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD 20894, USA
| | - John van der Oost
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, Netherlands
| |
Collapse
|
897
|
Sieuwerts S, de Bok FAM, Hugenholtz J, van Hylckama Vlieg JET. Unraveling microbial interactions in food fermentations: from classical to genomics approaches. Appl Environ Microbiol 2008; 74:4997-5007. [PMID: 18567682 PMCID: PMC2519258 DOI: 10.1128/aem.00113-08] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Sander Sieuwerts
- Top Institute Food and Nutrition, P.O. Box 557, 6700 AN Wageningen, The Netherlands
| | | | | | | |
Collapse
|
898
|
Horvath P, Coûté-Monvoisin AC, Romero DA, Boyaval P, Fremaux C, Barrangou R. Comparative analysis of CRISPR loci in lactic acid bacteria genomes. Int J Food Microbiol 2008; 131:62-70. [PMID: 18635282 DOI: 10.1016/j.ijfoodmicro.2008.05.030] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 04/08/2008] [Accepted: 05/15/2008] [Indexed: 01/08/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) are hypervariable loci widely distributed in bacteria and archaea, that provide acquired immunity against foreign genetic elements. Here, we investigate the occurrence of CRISPR loci in the genomes of lactic acid bacteria (LAB), including members of the Firmicutes and Actinobacteria phyla. A total of 102 complete and draft genomes across 11 genera were studied and 66 CRISPR loci were identified in 26 species. We provide a comparative analysis of the CRISPR/cas content and diversity across LAB genera and species for 37 sets of CRISPR loci. We analyzed CRISPR repeats, CRISPR spacers, leader sequences, and cas gene content, sequences and architecture. Interestingly, multiple CRISPR families were identified within Bifidobacterium, Lactobacillus and Streptococcus, and similar CRISPR loci were found in distant organisms. Overall, eight distinct CRISPR families were identified consistently across CRISPR repeats, cas gene content and architecture, and sequences of the universal cas1 gene. Since the clustering of the CRISPR families does not correlate with the classical phylogenetic tree, we hypothesize that CRISPR loci have been subjected to horizontal gene transfer and further evolved independently in select lineages, in part due to selective pressure resulting from phage predation. Globally, we provide additional insights into the origin and evolution of CRISPR loci and discuss their contribution to microbial adaptation.
Collapse
|
899
|
Cui Y, Li Y, Gorgé O, Platonov ME, Yan Y, Guo Z, Pourcel C, Dentovskaya SV, Balakhonov SV, Wang X, Song Y, Anisimov AP, Vergnaud G, Yang R. Insight into microevolution of Yersinia pestis by clustered regularly interspaced short palindromic repeats. PLoS One 2008; 3:e2652. [PMID: 18612419 PMCID: PMC2440536 DOI: 10.1371/journal.pone.0002652] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 06/09/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Yersinia pestis, the pathogen of plague, has greatly influenced human history on a global scale. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR), an element participating in immunity against phages' invasion, is composed of short repeated sequences separated by unique spacers and provides the basis of the spoligotyping technology. In the present research, three CRISPR loci were analyzed in 125 strains of Y. pestis from 26 natural plague foci of China, the former Soviet Union and Mongolia were analyzed, for validating CRISPR-based genotyping method and better understanding adaptive microevolution of Y. pestis. METHODOLOGY/PRINCIPAL FINDINGS Using PCR amplification, sequencing and online data processing, a high degree of genetic diversity was revealed in all three CRISPR elements. The distribution of spacers and their arrays in Y. pestis strains is strongly region and focus-specific, allowing the construction of a hypothetic evolutionary model of Y. pestis. This model suggests transmission route of microtus strains that encircled Takla Makan Desert and ZhunGer Basin. Starting from Tadjikistan, one branch passed through the Kunlun Mountains, and moved to the Qinghai-Tibet Plateau. Another branch went north via the Pamirs Plateau, the Tianshan Mountains, the Altai Mountains and the Inner Mongolian Plateau. Other Y. pestis lineages might be originated from certain areas along those routes. CONCLUSIONS/SIGNIFICANCE CRISPR can provide important information for genotyping and evolutionary research of bacteria, which will help to trace the source of outbreaks. The resulting data will make possible the development of very low cost and high-resolution assays for the systematic typing of any new isolate.
Collapse
Affiliation(s)
- Yujun Cui
- State Key laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yanjun Li
- State Key laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Olivier Gorgé
- Univ. Paris-Sud 11, CNRS, UMR8621, Institut de Génétique et Microbiologie, Orsay, France
| | - Mikhail E. Platonov
- State Research Center for Applied Microbiology, Obolensk, Moscow Region, Russia
| | - Yanfeng Yan
- State Key laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhaobiao Guo
- State Key laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Christine Pourcel
- Univ. Paris-Sud 11, CNRS, UMR8621, Institut de Génétique et Microbiologie, Orsay, France
| | | | | | - Xiaoyi Wang
- State Key laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yajun Song
- State Key laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Andrey P. Anisimov
- State Research Center for Applied Microbiology, Obolensk, Moscow Region, Russia
| | - Gilles Vergnaud
- Univ. Paris-Sud 11, CNRS, UMR8621, Institut de Génétique et Microbiologie, Orsay, France
- DGA/D4S-Mission pour la Recherche et l'Innovation Scientifique, Bagneux, France
| | - Ruifu Yang
- State Key laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
900
|
Bourgogne A, Garsin DA, Qin X, Singh KV, Sillanpaa J, Yerrapragada S, Ding Y, Dugan-Rocha S, Buhay C, Shen H, Chen G, Williams G, Muzny D, Maadani A, Fox KA, Gioia J, Chen L, Shang Y, Arias CA, Nallapareddy SR, Zhao M, Prakash VP, Chowdhury S, Jiang H, Gibbs RA, Murray BE, Highlander SK, Weinstock GM. Large scale variation in Enterococcus faecalis illustrated by the genome analysis of strain OG1RF. Genome Biol 2008; 9:R110. [PMID: 18611278 PMCID: PMC2530867 DOI: 10.1186/gb-2008-9-7-r110] [Citation(s) in RCA: 228] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 05/08/2008] [Accepted: 07/08/2008] [Indexed: 11/18/2022] Open
Abstract
A comparison of two strains of the hospital pathogen Enterococcus faecalis suggests that mediators of virulence differ between strains and that virulence does not depend on mobile gene elements Background Enterococcus faecalis has emerged as a major hospital pathogen. To explore its diversity, we sequenced E. faecalis strain OG1RF, which is commonly used for molecular manipulation and virulence studies. Results The 2,739,625 base pair chromosome of OG1RF was found to contain approximately 232 kilobases unique to this strain compared to V583, the only publicly available sequenced strain. Almost no mobile genetic elements were found in OG1RF. The 64 areas of divergence were classified into three categories. First, OG1RF carries 39 unique regions, including 2 CRISPR loci and a new WxL locus. Second, we found nine replacements where a sequence specific to V583 was substituted by a sequence specific to OG1RF. For example, the iol operon of OG1RF replaces a possible prophage and the vanB transposon in V583. Finally, we found 16 regions that were present in V583 but missing from OG1RF, including the proposed pathogenicity island, several probable prophages, and the cpsCDEFGHIJK capsular polysaccharide operon. OG1RF was more rapidly but less frequently lethal than V583 in the mouse peritonitis model and considerably outcompeted V583 in a murine model of urinary tract infections. Conclusion E. faecalis OG1RF carries a number of unique loci compared to V583, but the almost complete lack of mobile genetic elements demonstrates that this is not a defining feature of the species. Additionally, OG1RF's effects in experimental models suggest that mediators of virulence may be diverse between different E. faecalis strains and that virulence is not dependent on the presence of mobile genetic elements.
Collapse
Affiliation(s)
- Agathe Bourgogne
- Division of Infectious Diseases, Department of Medicine, University of Texas Medical School, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|