901
|
Cheeran MCJ, Hu S, Sheng WS, Peterson PK, Lokensgard JR. CXCL10 production from cytomegalovirus-stimulated microglia is regulated by both human and viral interleukin-10. J Virol 2003; 77:4502-15. [PMID: 12663757 PMCID: PMC152158 DOI: 10.1128/jvi.77.8.4502-4515.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glial cells orchestrate immunocyte recruitment to focal areas of viral infection within the brain and synchronize immune cell functions through a regulated network of cytokines and chemokines. Since recruitment of T lymphocytes plays a critical role in resolving cytomegalovirus (CMV) infection, we investigated the production of a T-cell chemoattractant, CXCL10 (gamma interferon-inducible protein 10) in response to viral infection of human glial cells. Infection with CMV was found to elicit the production of CXCL10 from primary microglial cells but not from astrocytes. This CXCL10 expression was not dependent on secondary protein synthesis but did require the phosphorylation of p38 mitogen-activated protein (MAP) kinase. In addition, migration of activated lymphocytes toward supernatants from CMV-stimulated microglial cells was partially suppressed by anti-CXCL10 antibodies. Since regulation of central nervous system inflammation is essential to allow viral clearance without immunopathology, microglial cells were then treated with anti-inflammatory cytokines. CMV-induced CXCL10 production from microglial cells was suppressed following treatment with interleukin-10 (IL-10) and IL-4 but not following treatment with transforming growth factor beta. The IL-10-mediated inhibition of CXCL10 production was associated with decreased CMV-induced NF-kappa B activation but not decreased p38 MAP kinase phosphorylation. Finally, CMV infection of fully permissive astrocytes resulted in mRNA expression for the viral homologue to human IL-10 (i.e., cmvIL-10 [UL111a]) in its spliced form and conditioned medium from CMV-infected astrocytes inhibited virus-induced CXCL10 production from microglial cells through the IL-10 receptor. These findings present yet another mechanism through which CMV may subvert host immune responses.
Collapse
Affiliation(s)
- Maxim C-J Cheeran
- Minneapolis Medical Research Foundation and University of Minnesota Medical School, Minneapolis, Minnesota 55404, USA
| | | | | | | | | |
Collapse
|
902
|
Genc S, Kizildag S, Genc K, Ates H, Atabey N, Kizyldag S. Interferon gamma and lipopolysaccharide upregulate TNF-related apoptosis-inducing ligand expression in murine microglia. Immunol Lett 2003; 85:271-4. [PMID: 12663142 DOI: 10.1016/s0165-2478(02)00245-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, it is reported that neonatal murine microglia and N9 murine microglial cell line express tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL). TRAIL protein and mRNA expression in murine microglia greatly upregulate upon stimulation with interferon gamma (IFNgamma) or lipopolysaccharide (LPS) as revealed by immunoprecipitation-immunoblotting, reverse transcriptase-polymerase chain reaction (RT-PCR) and flow cytometry techniques. IFNgamma and LPS act synergistically to induce TRAIL expression on both translational and transcriptional levels. The upregulated microglial TRAIL in inflammatory conditions may involve in the cytotoxic effect of these cells and play a role in neurodegenerative processes.
Collapse
Affiliation(s)
- Sermin Genc
- Department of Medical Biology and Medical Genetics, School of Medicine, Dokuz Eylul University, Inciralti, 35340, Izmir, Turkey.
| | | | | | | | | | | |
Collapse
|
903
|
Ambrosini E, Columba-Cabezas S, Serafini B, Muscella A, Aloisi F. Astrocytes are the major intracerebral source of macrophage inflammatory protein-3alpha/CCL20 in relapsing experimental autoimmune encephalomyelitis and in vitro. Glia 2003; 41:290-300. [PMID: 12528183 DOI: 10.1002/glia.10193] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Macrophage inflammatory protein-3alpha/CCL20 is a recently identified chemokine that binds to CCR6 and acts as a chemoattractant for memory/differentiated T-cells, B-cells, and immature dendritic cells. We have previously reported that CCL20 and CCR6 mRNAs are expressed in the CNS of SJL mice with experimental autoimmune encephalomyelitis (EAE) and that CCL20 is produced by CNS-infiltrating leukocytes at disease onset and, additionally, by intraparenchymal astrocyte-like cells during disease relapses. In this study, we provide further immunohistochemical evidence that astrocytes represent the main CNS source of CCL20 during EAE. Moreover, we show that the proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha, but not interferon-gamma, induce expression of CCL20 mRNA and secretion of CCL20 protein in cultures of mouse brain-derived astrocytes. We also show that supernatants from cytokine-activated astrocytes stimulate the migration of polarized T helper cells and that this effect is partially inhibited by anti-CCL20 antibody. These findings suggest that, through secretion of CCL20, astrocytes could play an important role in orchestrating the recruitment of specific leukocyte subsets to the inflamed CNS and in regulating CNS-targeted immune responses.
Collapse
Affiliation(s)
- Elena Ambrosini
- Laboratory of Organ and System Pathophysiology, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | |
Collapse
|
904
|
Colonna M. DAP12 signaling: from immune cells to bone modeling and brain myelination. J Clin Invest 2003; 111:313-4. [PMID: 12569153 PMCID: PMC151875 DOI: 10.1172/jci17745] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
905
|
Kielian T, Drew PD. Effects of peroxisome proliferator-activated receptor-gamma agonists on central nervous system inflammation. J Neurosci Res 2003; 71:315-25. [PMID: 12526021 DOI: 10.1002/jnr.10501] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) plays a critical role in glucose and lipid metabolism. More recently, PPAR-gamma ligands have been reported to inhibit the expression of proinflammatory molecules by monocytes/macrophages. Of relevance to CNS disease is that PPAR-gamma agonists have been demonstrated to have similar effects on microglia. PPAR-gamma agonists also ameliorate experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. This Mini-Review summarizes the effects of PPAR-gamma agonists in mediating immune responses and the potential of these agonists in the treatment of inflammatory disorders of the CNS.
Collapse
Affiliation(s)
- Tammy Kielian
- Department of Anatomy and Neurobiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | |
Collapse
|
906
|
The role of astrocytes and microglia in persistent pain. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1569-2558(03)31042-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
907
|
Suzuki M, Uchida K, Morozumi M, Hasegawa T, Yanai T, Nakayama H, Tateyama S. A Comparative Pathological Study on Canine Necrotizing Meningoencephalitis and Granulomatous Meningoencephalomyelitis. J Vet Med Sci 2003; 65:1233-9. [PMID: 14665754 DOI: 10.1292/jvms.65.1233] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Canine necrotizing meningoencephalitis (NME) and granulomatous meningoencephalomyelitis (GME) were compared pathologically. Gross observation exhibited lateral ventricular dilation and discoloration, malacia and/or cavitation of the cerebrum in NME. On the contrary, gross changes were milder in GME, except for occasional visible granulomatous mass formation. Histopathologically, the lesions of NME were distributed predominantly in the cerebral cortex and various degrees of inflammatory and necrotic changes were observed according to clinical stages. Besides, microscopic lesions of GME were mainly distributed in the white matter of the cerebrum, cerebellum and brainstem, which are characterized by perivascular cuffing, multiple granulomas and leptomeningeal infiltrates. Although macrophages and lymphocytes were predominant in the inflammatory lesions of both disorders, macrophages in GME transformed into epithelioid cells and exhibited more massive infiltration. Although lectin RCA-1-reactive cells were numerous in both disorders, lysozyme immunoreactive cells in NME were fewer than that in GME. Parenchymal infiltration of MAC387-positive cells was common in GME and limited in NME. The number of CD3-positive lymphocytes in the GME lesions tended to be greater than in NME, though the difference was not statistically significant. Morphological and immunohistochemical differences of the lesions, in particular, the characteristics of infiltrative macrophages may reflect these different pathogeneses of the two disorders.
Collapse
Affiliation(s)
- Mari Suzuki
- Department of Veterinary Pathology, Faculty of Agriculture, Miyazaki University, Miyazaki, Japan
| | | | | | | | | | | | | |
Collapse
|
908
|
Lombardi VRM, Etcheverría I, Fernández-Novoa L, Cacabelos R. In vitro regulation of rat derived microglia. Neurotox Res 2003; 5:201-12. [PMID: 12835124 DOI: 10.1007/bf03033140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The cell culture approach to the study of the nervous system attempts to reduce cellular complexity to various extents and to characterize the influences of extrinsic molecules on the cell population under study. To date, the main source of culture model systems to explore CNS function and dysfunction is fetal brain material from experimental animals, typically rodents. We have developed primary microglial cell cultures and focused on the concentration-dependent effects of different amino acids and growth promoting additives on microglial morphology and function. We used Basal Medium Eagle (BME) with 1g/L of glucose instead of Dulbecco's modified Eagle medium (DMEM) as serum-free condition, since BME does not contain L-Glycine (Gly) and L-Serine (Ser), and investigated the effects of these two amino acids on microglial morphology and functions by adding various concentrations of the amino acids to BME and different concentrations of ascorbic acid (10-75 micro g/ ml), hydrocortisone (1-7.5 nM) and DL-alpha-tocopherol (0.01-0.5 micro g/ml) as growth promoters. Under Gly/Ser-free, serum-free condition, and growth promoters-free conditions, the majority of rat microglial cells displayed round morphology, whereas in the presence of 5 micro M Gly and 25 micro M Ser, which correspond to the concentrations of Gly and Ser in the cerebrospinal fluid, they extended multiple branched processes and formed clusters of rough endoplasmic reticulum. Ascorbic acid (25 micro g/ml), 2.5 nM hydrocortisone and 0.05 micro g/ml of DL-alpha-tocopherol elicited the highest level of microglial activation as measured by an increased expression of MHC class-I and MHC class-II antigens. Neuron culture experiments using the conditioned medium obtained from the different microglial culture conditions indicate neurotoxic and neurotrophic effects depending on the concentrations of amino acids as well as on the concentration of the growth promoters. These findings suggest that resting ramified microglial cells with neurotrophic activity can be induced with the combination of BME medium and small amounts of extracellular matrix growth promoters.
Collapse
|
909
|
Kettenmann H. Cellular components of neuroinflammation--an introduction. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2002:1-9. [PMID: 12066407 DOI: 10.1007/978-3-662-05073-6_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- H Kettenmann
- Max Delbrück Center for Molecular Medicine, Department of Neurosciences, Robert Roessle Str. 10, 13125 Berlin, Germany.
| |
Collapse
|
910
|
Desplat-Jégo S, Varriale S, Creidy R, Terra R, Bernard D, Khrestchatisky M, Izui S, Chicheportiche Y, Boucraut J. TWEAK is expressed by glial cells, induces astrocyte proliferation and increases EAE severity. J Neuroimmunol 2002; 133:116-23. [PMID: 12446014 DOI: 10.1016/s0165-5728(02)00368-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
TWEAK is a new TNF family member with proinflammatory and proliferative effects on different cell types, mediated by the recently identified Fn14 receptor. TWEAK expression was analyzed on mouse microglial cells and astrocytes. Both cell types express TWEAK mRNA. Astrocytes expressed Fn14 and proliferated in the presence of rTWEAK. TWEAK mRNA is expressed in normal CNS and its steady state level increases in spinal cord during EAE. Finally, EAE severity is enhanced in soluble TWEAK-overexpressing transgenic mice. These results support the contention that TWEAK is involved in CNS inflammation.
Collapse
MESH Headings
- Animals
- Apoptosis Regulatory Proteins
- Astrocytes/immunology
- Astrocytes/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/pharmacology
- Cell Division/drug effects
- Cell Division/genetics
- Cell Division/immunology
- Cells, Cultured
- Central Nervous System/growth & development
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Cytokine TWEAK
- Disease Progression
- Disease Susceptibility/immunology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Gene Expression Regulation/immunology
- Inflammation Mediators/pharmacology
- Mice
- Mice, Transgenic
- Microglia/immunology
- Microglia/metabolism
- RNA, Messenger/immunology
- RNA, Messenger/metabolism
- Tumor Necrosis Factors
Collapse
Affiliation(s)
- Sophie Desplat-Jégo
- NICN CNRS FRE 2533, IFR Jean Roche, Université de la Méditerranée, 13 916 Cedex 20, Marseilles, France
| | | | | | | | | | | | | | | | | |
Collapse
|
911
|
Schmid CD, Sautkulis LN, Danielson PE, Cooper J, Hasel KW, Hilbush BS, Sutcliffe JG, Carson MJ. Heterogeneous expression of the triggering receptor expressed on myeloid cells-2 on adult murine microglia. J Neurochem 2002; 83:1309-20. [PMID: 12472885 PMCID: PMC2637869 DOI: 10.1046/j.1471-4159.2002.01243.x] [Citation(s) in RCA: 270] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microglial activation is an early and common feature of almost all neuropathologies, including multiple sclerosis, Alzheimer's disease and mechanical injury. To better understand the relative contributions microglia make toward neurodegeneration and neuroprotection, we used TOGA(R) to identify molecules expressed by microglia and regulated by inflammatory signals. Triggering receptor expressed on myeloid cells-2 (TREM-2) was among the mRNAs identified as being expressed by unactivated microglia, but down-regulated by lipopolysaccharide/interferon gamma. In the healthy CNS, not all microglia expressed TREM-2. Microglial expression of TREM-2 varied not only between brain regions but also within each brain region. Brain regions with an incomplete blood-brain barrier had the lowest percentages of TREM-2- expressing microglia, whereas the lateral entorhinal and cingulate cortex had the highest percentages. A novel form of TREM-2b that lacked a transmembrane domain was detected, perhaps indicating a soluble form of the protein. Taken together, these data suggest that (1) subsets of microglia are specialized to respond to defined extracellular signals; and (2) regional variations in TREM-2 expression may contribute to the varying sensitivities of different brain regions to similar pathological signals.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Brain/cytology
- Brain/drug effects
- Brain/metabolism
- Cell Count
- Cells, Cultured
- Cloning, Molecular
- Down-Regulation/drug effects
- Down-Regulation/physiology
- Interferon-gamma/pharmacology
- Lipopolysaccharides/pharmacology
- Macrophages, Peritoneal/cytology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/metabolism
- Membrane Glycoproteins
- Mice
- Mice, Inbred C57BL
- Microglia/cytology
- Microglia/metabolism
- Molecular Sequence Data
- Protein Isoforms/biosynthesis
- Protein Isoforms/genetics
- Protein Structure, Tertiary/genetics
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/genetics
Collapse
Affiliation(s)
- Christoph D. Schmid
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Lauren N. Sautkulis
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Patria E. Danielson
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Judith Cooper
- Digital Gene Technologies Inc., La Jolla, California, USA
| | - Karl W. Hasel
- Digital Gene Technologies Inc., La Jolla, California, USA
| | | | - J. Gregor Sutcliffe
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Monica J. Carson
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
912
|
Badie B, Bartley B, Schartner J. Differential expression of MHC class II and B7 costimulatory molecules by microglia in rodent gliomas. J Neuroimmunol 2002; 133:39-45. [PMID: 12446006 DOI: 10.1016/s0165-5728(02)00350-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To assess the immune function of microglia and macrophages in brain tumors, the expression of MHC class II and B7 costimulatory molecules in three rodent glioma models was examined. Microglia and macrophages, which accounted for 5-12% of total cells, expressed B7.1 and MHC class II molecules in the C6 and 9L tumors, but not RG2 gliomas. Interestingly, the expression of B7.1 and MHC class II molecules by microglia and macrophage was associated with an increase in the number of tumor-infiltrating lymphocytes in C6 and 9L tumors. B7.2 expression, which was present at low levels on microglia and macrophages in normal brain, did not significantly change in tumors. Interestingly, the expression of all three surface antigens increased after microglia were isolated from intracranial C6 tumors and cultured for a short period of time. We conclude that microglia immune activity may be suppressed in gliomas and directly correlates to the immunogenecity of experimental brain tumors.
Collapse
Affiliation(s)
- Behnam Badie
- Neuro-Oncology Laboratory, K3/805 Clinical Science Center, Department of Neurological Surgery, University of Wisconsin, School of Medicine, Madison, WI 53792-3232, USA.
| | | | | |
Collapse
|
913
|
Abstract
The symptoms of Parkinson's disease (PD) were first described nearly two centuries ago and its characteristic pathology identified nearly a century ago, yet its pathogenesis is still poorly understood. Parkinson's disease is the most prevalent neurodegenerative movement disorder and research into its pathogenesis recently accelerated following the identification of a number of causal genetic mutations. The mutant gene products all cause dysfunction of the ubiquitin-proteosome system, identifying protein modification and degradation as critical for pathogenesis. Modified non-degraded intracellular proteins accumulate in certain neuronal populations in all forms of the disease. However, neuronal degeneration is more highly selective and associates with substantial activation of microglia, the inflammatory cells of the brain. We review the current change in thinking regarding the role of microglia in the brain in the context of Parkinson's disease and animal models of the disease. Comparison of the cellular tissue changes across a number of animal models using diverse stimuli to mimic Parkinson's disease reveals a consistent pattern implicating microglia as the effector for the selective degeneration of dopaminergic neurons. While previous reviews have concentrated on the intracellular neuronal changes in Parkinson's disease, we highlight the cell to cell interactions and immune regulation critical for neuronal homeostasis and survival in Parkinson's disease.
Collapse
Affiliation(s)
- C F Orr
- Prince of Wales Medical Research Institute and the University of New South Wales, Sydney 2031, Royal North Shore Hospital, Sydney 2065, Australia
| | | | | |
Collapse
|
914
|
Häusler KG, Prinz M, Nolte C, Weber JR, Schumann RR, Kettenmann H, Hanisch UK. Interferon-gamma differentially modulates the release of cytokines and chemokines in lipopolysaccharide- and pneumococcal cell wall-stimulated mouse microglia and macrophages. Eur J Neurosci 2002; 16:2113-22. [PMID: 12473079 DOI: 10.1046/j.1460-9568.2002.02287.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During bacterial infections of the CNS, activated microglia could support leucocyte recruitment to the brain through the synthesis of cyto- and chemokines. In turn, invading leucocytes may feedback on microglial cells to influence their chemokine release pattern. Here, we analyzed the capacity of interferon-gamma (IFNgamma) to serve as such a leucocyte-to-microglia signal. Production of cyto- and chemokines was stimulated in mouse microglia cultures by treatments with lipopolysaccharide (LPS) from Gram-negative Escherichia coli or cell walls from Gram-positive Streptococcus pneumoniae (PCW). IFNgamma presence during the stimulation (0.1-100 ng/mL) modulated the patterns of LPS- and PCW-induced cyto- and chemokine release in a dose-dependent, potent and complex manner. While amounts of TNFalpha and IL-6 remained nearly unchanged, IFNgamma enhanced the production of IL-12, MCP-1 and RANTES, but attenuated that of KC, MIP-1alpha and MIP-2. Release modulation was obtained with IFNgamma preincubation (treatment of cells before LPS or PCW administration), coincubation and even delayed addition to an ongoing LPS or PCW stimulation. Together the changes observed for the microglial chemokine release under IFNgamma would shift the chemoattractive profile from favouring neutrophils to a preferential attraction of monocytes and T lymphocyte populations--as actually seen during the course of bacterial meningitis. The findings support the view of activated microglia as a major intrinsic source for an instant production of a variety of chemokines and suggest that leucocyte-derived IFNgamma could potentially regulate the microglial chemokine release pattern.
Collapse
Affiliation(s)
- Karl Georg Häusler
- Max Delbrück Center for Molecular Medicine, Cellular Neurosciences, Robert-Rössle-Strasse 10, D-13092 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
915
|
Vairano M, Dello Russo C, Pozzoli G, Battaglia A, Scambia G, Tringali G, Aloe-Spiriti MA, Preziosi P, Navarra P. Erythropoietin exerts anti-apoptotic effects on rat microglial cells in vitro. Eur J Neurosci 2002; 16:584-92. [PMID: 12270034 DOI: 10.1046/j.1460-9568.2002.02125.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Erythropoietin (EPO), a renal cytokine regulating haematopoiesis, is also produced by different cell types within the central nervous system, where it acts via the activation of specific receptors. Current evidence shows that EPO exerts neurotrophic and neuroprotective activities in different in vivo and in vitro models of brain damage. In the present study we investigated the effects of EPO on primary cultures of rat cortical microglia and astrocytes. We found that: (i) EPO exerted a marked stimulatory effect on microglial cell viability, assessed through the MTS assay, whereas astrocytes were almost unaffected; (ii) the cytokine increased microglial cell population size in a concentration-dependent manner; however, as microglia cultures undergo spontaneous apoptosis after separation from astrocytes, the apparent effect on cell proliferation could be attributed to EPO antagonism of normal apoptosis; (iii) subsequent flow cytometry analysis on microglial cells demonstrated both the trophic role of factor(s) released by astrocytes in mixed cultures, and the putative anti-apoptotic action of EPO; (iv) the latter was further confirmed through the assessment of gene expression of anti- and pro-apoptotic factors, which showed that EPO is able to shift the Bcl : Bax ratio towards a net anti-apoptotic effect; (v) EPO did not affect the pro-inflammatory function of microglial cells.
Collapse
Affiliation(s)
- Mauro Vairano
- Institute of Pharmacology, Catholic University Medical School, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
916
|
The role of spinal neuroimmune activation in morphine tolerance/hyperalgesia in neuropathic and sham-operated rats. J Neurosci 2002. [PMID: 12427855 DOI: 10.1523/jneurosci.22-22-09980.2002] [Citation(s) in RCA: 326] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hypersensitivity resulting from nerve injury or morphine tolerance/hyperalgesia is predicted to involve similar cellular and molecular mechanisms. One expected but incompletely explored mechanism is the activation of central neuroimmune responses associated with these conditions. To begin to address this, we undertook three separate studies: First, we determined the acute antinociceptive action of morphine, the rate of development of opioid tolerance, and withdrawal-induced hyperalgesia/allodynia in nerve-injured and sham-operated rats using noxious (thermal and mechanical) and non-noxious (mechanical allodynia) behavioral paradigms. Second, we investigated the impact of chronic morphine treatment on spinal glial activation and cytokine expression after L5 spinal nerve transection or sham surgery. Third, we examined the consequences of spinal administration of cytokine inhibitors on the development of morphine tolerance and morphine withdrawal-induced hyperalgesia and allodynia. Results demonstrated that after nerve injury, the antinociceptive effect of acute morphine was significantly decreased, and the rate of development of tolerance and opioid withdrawal-induced hyperalgesia/allodynia was significantly enhanced compared with that after sham surgery. Chronic administration of morphine to sham-operated rats activated spinal glia and upregulated proinflammatory cytokines [interleukin (IL)-1beta, IL-6, and tumor necrosis factor-alpha]. This neuroimmune activation was further enhanced in nerve-injured rats after chronic morphine treatment. Spinal inhibition of proinflammatory cytokines restored acute morphine antinociception in nerve-injured rats and also significantly reversed the development of morphine tolerance and withdrawal-induced hyperalgesia and allodynia in nerve-injured or sham-operated rats. Targeting central cytokine production and glial activation may improve the effectiveness of morphine and reduce the incidence of morphine withdrawal-induced hyperalgesia and allodynia in neuropathic pain conditions.
Collapse
|
917
|
Carson MJ. Microglia as liaisons between the immune and central nervous systems: functional implications for multiple sclerosis. Glia 2002; 40:218-231. [PMID: 12379909 PMCID: PMC2693029 DOI: 10.1002/glia.10145] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multiple sclerosis is a chronic demyelinating inflammatory disease of the central nervous system (CNS). As the tissue macrophage of the CNS, microglia have the potential to regulate and be regulated by cells of the CNS and by CNS-infiltrating immune cells. The exquisite sensitivity of microglia to these signals, coupled with their ability to develop a broad range of effector functions, allows the CNS to tailor microglial function for specific physiological needs. However, the great plasticity of microglial responses can also predispose these cells to amplify disproportionately the irrelevant or dysfunctional signals provided by either the CNS or immune systems. The consequences of such an event could be the conversion of self-limiting inflammatory responses into chronic neurodegeneration and may explain in part the heterogeneous nature of multiple sclerosis.
Collapse
Affiliation(s)
- Monica J. Carson
- Correspondence to: Monica J. Carson, Department of Molecular Biology, MB10, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037.
| |
Collapse
|
918
|
Abstract
Cytokines constitute a significant portion of the immuno- and neuromodulatory messengers that can be released by activated microglia. By virtue of potent effects on resident and invading cells, microglial cyto- and chemokines regulate innate defense mechanisms, help the initiation and influence the type of immune responses, participate in the recruitment of leukocytes to the CNS, and support attempts of tissue repair and recovery. Microglia can also receive cyto- and chemokine signals as part of auto- and paracrine communications with astrocytes, neurons, the endothelium, and leukocyte infiltrates. Strong responses and modulatory influences can be demonstrated, adding to the emerging view that microglial behavior is highly dependent on the (cytokine) environment and that reactions to a challenge may vary with the stimulation context. In principle, microglial activation aims at CNS protection. However, failed microglial engagement due to excessive or sustained activation could significantly contribute to acute and chronic neuropathologies. Dysregulation of microglial cytokine production could thereby promote harmful actions of the defense mechanisms, result in direct neurotoxicity, as well as disturb neural cell functions as they are sensitive to cytokine signaling.
Collapse
Affiliation(s)
- Uwe-Karsten Hanisch
- Department of Cellular Neurosciences, Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
- University of Applied Sciences Lausitz, Senftenberg, Germany
| |
Collapse
|
919
|
Bsibsi M, Ravid R, Gveric D, van Noort JM. Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 2002; 61:1013-21. [PMID: 12430718 DOI: 10.1093/jnen/61.11.1013] [Citation(s) in RCA: 737] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The family of Toll-like receptors (TLRs) plays a key role in controlling innate immune responses to a wide variety of pathogen-associated molecules. In this study we investigated expression of TLRs in vitro by purified human microglia, astrocytes, and oligodendrocytes, and in vivo by immunohistochemical examination of brain and spinal cord sections. Cultured primary microglia were found to express mRNA encoding a wide range of different TLR family members while astrocytes and oligodendrocytes primarily express TLR2 and TLR3. Comparisons between microglia derived from a series of control subjects and neurodegenerative cases indicate distinct differences in levels of mRNA encoding the different TLRs indifferent microglia samples. Interestingly, expression of TLR proteins in cultured microglia as revealed by immunocytochemistry was restricted to intracellular vesicles, whereas in astrocytes they were exclusively localized on the cell surface. Finally, in vivo expression of TLR3 and TLR4 was examined by immunohistochemical analysis of brain and spinal cord sections from both control and multiple sclerosis brains, revealing enhanced expression of either TLR in inflamed CNS tissues. Together, our data reveal broad and regulated expression of TLRs both in vitro and in vivo by human glia cells.
Collapse
Affiliation(s)
- Malika Bsibsi
- Division of Immunological and Infectious Diseases, TNO Prevention and Health, Leiden, The Netherlands
| | | | | | | |
Collapse
|
920
|
Magnus T, Chan A, Savill J, Toyka KV, Gold R. Phagocytotic removal of apoptotic, inflammatory lymphocytes in the central nervous system by microglia and its functional implications. J Neuroimmunol 2002; 130:1-9. [PMID: 12225883 DOI: 10.1016/s0165-5728(02)00212-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Apoptotic cell death of inflammatory T cells is an established mechanism to terminate an autoimmune inflammatory response in the rodent and human central nervous system (CNS). The efficient clearance of apoptotic cells protects the tissue from leakage of potentially harmful substances from secondary necrotic cells. As the resident phagocyte, the microglial cell is the primary candidate for the clearance of apoptotic lymphocytes. Furthermore, the phagocytosis of apoptotic cells is accompanied by a spectrum of anti-inflammatory effects. In this review, we focus on the mechanisms for removal of apoptotic inflammatory cells by microglia in the central nervous system and their functional consequences.
Collapse
Affiliation(s)
- Tim Magnus
- Department of Neurology, Clinical Research Group for Multiple Sclerosis and Neuroimmunology, Julius-Maximilians-University, D-97080, Würzburg, Germany
| | | | | | | | | |
Collapse
|
921
|
Columba-Cabezas S, Serafini B, Ambrosini E, Sanchez M, Penna G, Adorini L, Aloisi F. Induction of macrophage-derived chemokine/CCL22 expression in experimental autoimmune encephalomyelitis and cultured microglia: implications for disease regulation. J Neuroimmunol 2002; 130:10-21. [PMID: 12225884 DOI: 10.1016/s0165-5728(02)00170-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Macrophage-derived chemokine (MDC/CCL22) and its receptor CCR4 have been implicated in chronic inflammatory processes and in the homing of monocytes, Th2 cells and regulatory T-cell subsets. Here, we demonstrate that MDC and CCR4 mRNAs are expressed in the central nervous system (CNS) of mice developing relapsing-remitting and chronic-relapsing forms of experimental autoimmune encephalomyelitis (EAE). By immunohistochemistry, we show that MDC is produced by CNS-infiltrating leukocytes and intraparenchymal microglia, whereas CCR4 is expressed on some invading leukocytes. Upon in vitro activation, mouse microglia express MDC transcripts and secrete bioactive MDC that induces chemotaxis of Th2, but not Th1 cells. We suggest that MDC produced by microglia could regulate Th1-mediated CNS inflammation by facilitating the homing of Th2 and, possibly, regulatory T cells into the lesion site.
Collapse
MESH Headings
- Animals
- Astrocytes/drug effects
- Astrocytes/immunology
- Astrocytes/metabolism
- Cells, Cultured
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Central Nervous System/physiopathology
- Chemokine CCL22
- Chemokines, CC/genetics
- Chemokines, CC/immunology
- Chemokines, CC/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Female
- Gene Expression Regulation/immunology
- Immunohistochemistry
- Macrophages/cytology
- Macrophages/immunology
- Macrophages/metabolism
- Mice
- Mice, Inbred Strains
- Microglia/drug effects
- Microglia/immunology
- Microglia/metabolism
- Multiple Sclerosis/immunology
- Multiple Sclerosis/physiopathology
- RNA, Messenger/metabolism
- Receptors, CCR4
- Receptors, Chemokine/genetics
- Receptors, Chemokine/immunology
- Receptors, Chemokine/metabolism
Collapse
Affiliation(s)
- Sandra Columba-Cabezas
- Laboratory of Organ and System Pathophysiology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
922
|
Hofmann N, Lachnit N, Streppel M, Witter B, Neiss WF, Guntinas-Lichius O, Angelov DN. Increased expression of ICAM-1, VCAM-1, MCP-1, and MIP-1 alpha by spinal perivascular macrophages during experimental allergic encephalomyelitis in rats. BMC Immunol 2002; 3:11. [PMID: 12196270 PMCID: PMC126207 DOI: 10.1186/1471-2172-3-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2002] [Accepted: 08/26/2002] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND T-cells extravasation and CNS parenchyma infiltration during autoimmune neurodegenerative disease can be evoked by local antigen presenting cells. Studying the chemoattracting potential of spinal perivascular macrophages (SPM) during experimental allergic encephalomyelitis (EAE), we observed numerous infiltrates of densely-packed mononuclear cells. Apart from the poor spatial and optical resolution, no differentiation between the resident SPM (mabs ED1+, ED2+) and the just recruited monocytes/macrophages (mab ED1+) was possible. RESULTS This is why we labeled SPM by injections of different fluoresecent dyes into the lateral cerebral ventricle before induction of active EAE. Within an additional experimental set EAE was induced by an intraperitoneal injection of T-cells specifically sensitized to myelin basic protein (MBP) and engineered to express the green fluorescent protein (GFP). In both experiments we observed a strong activation of SPM (mabs OX6+, SILK6+, CD40+, CD80+, CD86+) which was accompanied by a consistently increased expression of ICAM-1, VCAM-1, and the chemokines MCP-1 and MIP-1alpha. CONCLUSION These observations indicate that SPM play a role in promoting lymphocyte extravasation.
Collapse
Affiliation(s)
- Nils Hofmann
- Institut für Anatomie der Universität zu Köln, Germany
| | - Nina Lachnit
- Institut für Anatomie der Universität zu Köln, Germany
| | - Michael Streppel
- Klinik für Hals-, Nasen- und Ohrenheilkunde der Universität zu Köln, Germany
| | | | | | | | | |
Collapse
|
923
|
Hemmer B, Archelos JJ, Hartung HP. New concepts in the immunopathogenesis of multiple sclerosis. Nat Rev Neurosci 2002; 3:291-301. [PMID: 11967559 DOI: 10.1038/nrn784] [Citation(s) in RCA: 389] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Bernhard Hemmer
- Department of Neurology, Philipps-Universität, Marburg 35033, Germany
| | | | | |
Collapse
|