901
|
Hanniffy S, Wiedermann U, Repa A, Mercenier A, Daniel C, Fioramonti J, Tlaskolova H, Kozakova H, Israelsen H, Madsen S, Vrang A, Hols P, Delcour J, Bron P, Kleerebezem M, Wells J. Potential and opportunities for use of recombinant lactic acid bacteria in human health. ADVANCES IN APPLIED MICROBIOLOGY 2005; 56:1-64. [PMID: 15566975 DOI: 10.1016/s0065-2164(04)56001-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sean Hanniffy
- Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
902
|
Lemieux MJ, Huang Y, Wang DN. Glycerol-3-phosphate transporter of Escherichia coli: structure, function and regulation. Res Microbiol 2005; 155:623-9. [PMID: 15380549 DOI: 10.1016/j.resmic.2004.05.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Accepted: 05/14/2004] [Indexed: 11/22/2022]
Abstract
Glycerol-3-phosphate (G3P) plays a major role in glycolysis and phospholipid biosynthesis in the cell. Escherichia coli uses a secondary membrane transporter protein, GlpT, to uptake G3P into the cytoplasm. The crystal structure of the protein was recently determined to 3.3 A resolution. The protein consists of an N- and a C-terminal domain, each formed by a compact bundle of six transmembrane alpha-helices. The substrate-translocation pore is found at the domain interface and faces the cytoplasm. At the closed end of the pore is the substrate binding site, which is formed by two arginine residues. In combination with biochemical data, the crystal structure suggests a single binding site, alternating access mechanism for substrate translocation, namely, the substrate bound at the N- and C-terminal domain interface is transported across the membrane via a rocker-switch type of movement of the domains. Furthermore, GlpT may serve as a structural and mechanistic paradigm for other secondary active membrane transporters.
Collapse
Affiliation(s)
- M Joanne Lemieux
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
903
|
Hong HJ, Hutchings MI, Hill LM, Buttner MJ. The role of the novel Fem protein VanK in vancomycin resistance in Streptomyces coelicolor. J Biol Chem 2005; 280:13055-61. [PMID: 15632111 DOI: 10.1074/jbc.m413801200] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The non-pathogenic, non-glycopeptide-producing actinomycete Streptomyces coelicolor carries a cluster of seven genes (vanSRJKHAX) that confers inducible, high level resistance to vancomycin. The vanK gene has no counterpart in previously characterized vancomycin resistance clusters, yet vanK is required for vancomycin resistance in S. coelicolor. VanK belongs to the Fem family of enzymes, which add the branch amino acid(s) to the stem pentapeptide of peptidoglycan precursors. Upon exposure to vancomycin, the VanRS two-component system switches on expression of all seven van genes, and the VanHAX enzymes reprogram the cell wall such that precursors terminate D-Ala-D-lactate (Lac) rather than D-Ala-D-Ala, thus conferring resistance to vancomycin, which only binds D-Ala-D-Ala-containing precursors. Here we provide biochemical and genetic evidence that VanK is required for vancomycin resistance because the constitutively expressed FemX enzyme, encoded elsewhere on the chromosome, cannot recognize D-Lac-containing precursors as a substrate, whereas VanK can. Consistent with this view, D-Lac-containing precursors carrying the Gly branch are present in the wild type transiently exposed to vancomycin but are undetectable in a vanK mutant treated in the same way. Further, femX null mutants are viable in the presence of vancomycin but die in its absence. Because only VanK can recognize D-Lac-containing precursors, vancomycin-induced expression of VanHAX in a vanK mutant is lethal, and so vanK is required for vancomycin resistance.
Collapse
Affiliation(s)
- Hee-Jeon Hong
- Department of Molecular Microbiology, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom.
| | | | | | | |
Collapse
|
904
|
Dürfahrt T, Marahiel MA. Functional and structural basis for targeted modification of non-ribosomal peptide synthetases. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2005:79-106. [PMID: 15645717 DOI: 10.1007/3-540-27055-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- T Dürfahrt
- Fachbereich Chemie/Biochemie, Philipps-Universität Marburg, Germany
| | | |
Collapse
|
905
|
Novel multivalent mannose compounds and their inhibition of the adhesion of type 1 fimbriated uropathogenic E. coli. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.tetasy.2004.11.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
906
|
DeNap JCB, Hergenrother PJ. Bacterial death comes full circle: targeting plasmid replication in drug-resistant bacteria. Org Biomol Chem 2005; 3:959-66. [PMID: 15750634 DOI: 10.1039/b500182j] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is now common for bacterial infections to resist the preferred antibiotic treatment. In particular, hospital-acquired infections that are refractory to multiple antibiotics and ultimately result in death of the patient are prevalent. Many of the bacteria causing these infections have become resistant to antibiotics through the process of lateral gene transfer, with the newly acquired genes encoding a variety of resistance-mediating proteins. These foreign genes often enter the bacteria on plasmids, which are small, circular, extrachromosomal pieces of DNA. This plasmid-encoded resistance has been observed for virtually all classes of antibiotics and in a wide variety of Gram-positive and Gram-negative organisms; many antibiotics are no longer effective due to such plasmid-encoded resistance. The systematic removal of these resistance-mediating plasmids from the bacteria would re-sensitize bacteria to standard antibiotics. As such, plasmids offer novel targets that have heretofore been unexploited clinically. This Perspective details the role of plasmids in multi-drug resistant bacteria, the mechanisms used by plasmids to control their replication, and the potential for small molecules to disrupt plasmid replication and re-sensitize bacteria to antibiotics. An emphasis is placed on plasmid replication that is mediated by small counter-transcript RNAs, and the "plasmid addiction" systems that employ toxins and antitoxins.
Collapse
Affiliation(s)
- Johna C B DeNap
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
907
|
Vila-Perelló M, Sánchez-Vallet A, García-Olmedo F, Molina A, Andreu D. Structural Dissection of a Highly Knotted Peptide Reveals Minimal Motif with Antimicrobial Activity. J Biol Chem 2005; 280:1661-8. [PMID: 15494403 DOI: 10.1074/jbc.m410577200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The increasing occurrence of bacterial resistance to antibiotics is driving a renewed interest on antimicrobial peptides, in the hope that understanding the structural features responsible for their activity will provide leads into new anti-infective drug candidates. Most chemical studies in this field have focused on linear peptides of various eukaryotic origins, rather than on structures with complex folding patterns found also in nature. We have undertaken the structural dissection of a highly knotted, cysteine-rich plant thionin, with the aim of defining a minimal, synthetically accessible, structure that preserves the bioactive properties of the parent peptide. Using efficient strategies for directed disulfide bond formation, we have prepared a substantially simplified (45% size reduction) version with undiminished antimicrobial activity against a representative panel of pathogens. Analysis by circular dichroism shows that the downsized peptide preserves the central double alpha-helix of the parent form as an essential bioactive motif. Membrane permeability and surface plasmon resonance studies confirm that the mechanism of action remains unchanged.
Collapse
Affiliation(s)
- Miquel Vila-Perelló
- Department of Experimental and Health Sciences, Pompeu Fabra University, Dr. Aiguader, 80, E-08003 Barcelona, Spain
| | | | | | | | | |
Collapse
|
908
|
Abstract
Antimicrobial peptides (AMPs) of innate origin are agents of the most ancient form of defense systems. They can be found in a wide variety of species ranging from bacteria through insects to humans. Through the course of evolution, host organisms developed arsenals of AMPs that protect them against a large variety of invading pathogens including both Gram-negative and Gram-positive bacteria. At a time of increasing bacterial resistance, AMPs have been the focus of investigation in a number of laboratories worldwide. Although recent studies show that some of the peptides are likely to have intracellular targets, the vast majority of AMPs appear to act by permeabilization of the bacterial cell membrane. Their activity and selectivity are governed by the physicochemical parameters of the peptide chains as well as the properties of the membrane system itself. In this review, we will summarize some of the recent developments that provide us with a better understanding of the mode of action of this unique family of antibacterial agents. Particular attention will be given to the determinants of AMP-lipid bilayer interactions as well as to the different pore formation mechanisms. The emphasis will be on linear AMPs but representatives of cysteine-bridged AMPs will also be discussed.
Collapse
Affiliation(s)
- Orsolya Toke
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
909
|
Abstract
Bacteria and fungi use large multifunctional enzymes, the so-called nonribosomal peptide synthetases (NRPSs), to produce peptides of broad structural and biological activity. Biochemical studies have contributed substantially to the understanding of the key principles of these modular enzymes that can draw on a much larger number of catalytic tools for the incorporation of unusual features compared with the ribosomal system. Several crystal structures of NRPS-domains have yielded deep insight into the catalytic mechanisms involved and have led to a better prediction of the products assembled and to the construction of hybrid enzymes. In addition to the structure-function relationship of the core- and tailoring-domains of NRPSs, which is the main focus of this review, different biosynthetic strategies and essential enzymes for posttranslational modification and editing are discussed.
Collapse
Affiliation(s)
- Robert Finking
- Philipps-Universität Marburg, Fachbereich Chemie/Biochemie, Hans-Meerwein-Strasse, 35043 Marburg, Germany.
| | | |
Collapse
|
910
|
Etienne O, Picart C, Taddei C, Haikel Y, Dimarcq JL, Schaaf P, Voegel JC, Ogier JA, Egles C. Multilayer polyelectrolyte films functionalized by insertion of defensin: a new approach to protection of implants from bacterial colonization. Antimicrob Agents Chemother 2004; 48:3662-9. [PMID: 15388417 PMCID: PMC521874 DOI: 10.1128/aac.48.10.3662-3669.2004] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection of implanted materials by bacteria constitutes one of the most serious complications following prosthetic surgery. In the present study, we developed a new strategy based on the insertion of an antimicrobial peptide (defensin from Anopheles gambiae mosquitoes) into polyelectrolyte multilayer films built by the alternate deposition of polyanions and polycations. Quartz crystal microbalance and streaming potential measurements were used to follow step by step the construction of the multilayer films and embedding of the defensin within the films. Antimicrobial assays were performed with two strains: Micrococcus luteus (a gram-positive bacterium) and Escherichia coli D22 (a gram-negative bacterium). The inhibition of E. coli D22 growth at the surface of defensin-functionalized films was found to be 98% when 10 antimicrobial peptide layers were inserted in the film architecture. Noticeably, the biofunctionalization could be achieved only when positively charged poly(l-lysine) was the outermost layer of the film. On the basis of the results of bacterial adhesion experiments observed by confocal or electron microscopy, these observations could result from the close interaction of the bacteria with the positively charged ends of the films, which allows defensin to interact with the bacterial membrane structure. These results open new possibilities for the use of such easily built and functionalized architectures onto any type of implantable biomaterial. The modified surfaces are active against microbial infection and represent a novel means of local host protection.
Collapse
Affiliation(s)
- O Etienne
- Institut National de la Santé et de la Recherche Médicale, Unité 595, 11, rue Humann, 67085 Strasbourg Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
911
|
Hong HJ, Hutchings MI, Neu JM, Wright GD, Paget MSB, Buttner MJ. Characterization of an inducible vancomycin resistance system in Streptomyces coelicolor reveals a novel gene (vanK) required for drug resistance. Mol Microbiol 2004; 52:1107-21. [PMID: 15130128 DOI: 10.1111/j.1365-2958.2004.04032.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vancomycin is the front-line therapy for treating problematic infections caused by methicillin-resistant Staphylococcus aureus (MRSA), and the spread of vancomycin resistance is an acute problem. Vancomycin blocks cross-linking between peptidoglycan intermediates by binding to the D-Ala-D-Ala termini of bacterial cell wall precursors, which are the substrate of transglycosylase/transpeptidase. We have characterized a cluster of seven genes (vanSRJKHAX) in Streptomyces coelicolor that confers inducible, high-level vancomycin resistance. vanHAX are orthologous to genes found in vancomycin-resistant enterococci that encode enzymes predicted to reprogramme peptidoglycan biosynthesis such that cell wall precursors terminate in D-Ala-D-Lac rather than D-Ala-D-Ala. vanR and vanS encode a two-component signal transduction system that mediates transcriptional induction of the seven van genes. vanJ and vanK are novel genes that have no counterpart in previously characterized vancomycin resistance clusters from pathogens. VanK is a member of the Fem family of enzymes that add the cross-bridge amino acids to the stem pentapeptide of cell wall precursors, and vanK is essential for vancomycin resistance. The van genes are organized into four transcription units, vanRS, vanJ, vanK and vanHAX, and these transcripts are induced by vancomycin in a vanR-dependent manner. To develop a sensitive bioassay for inducers of the vancomycin resistance system, the promoter of vanJ was fused to a reporter gene conferring resistance to kanamycin. All the inducers identified were glycopeptide antibiotics, but teicoplanin, a membrane-anchored glycopeptide, failed to act as an inducer. Analysis of mutants defective in the vanRS and cseBC cell envelope signal transduction systems revealed significant cross-talk between the two pathways.
Collapse
Affiliation(s)
- Hee-Jeon Hong
- Department of Molecular Microbiology, John Innes Centre, Colney, Norwich NR4 7UH, UK.
| | | | | | | | | | | |
Collapse
|
912
|
Ratner DM, Adams EW, Disney MD, Seeberger PH. Tools for Glycomics: Mapping Interactions of Carbohydrates in Biological Systems. Chembiochem 2004; 5:1375-83. [PMID: 15457538 DOI: 10.1002/cbic.200400106] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The emerging field of glycomics has been challenged by difficulties associated with studying complex carbohydrates and glycoconjugates. Advances in the development of synthetic tools for glycobiology are poised to overcome some of these challenges and accelerate progress towards our understanding of the roles of carbohydrates in biology. Carbohydrate microarrays, fluorescent neoglycoconjugate probes, and aminoglycoside antibiotic microarrays are among the many new tools becoming available to glycobiologists.
Collapse
Affiliation(s)
- Daniel M Ratner
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
913
|
Kharel MK, Subba B, Basnet DB, Woo JS, Lee HC, Liou K, Sohng JK. A gene cluster for biosynthesis of kanamycin from Streptomyces kanamyceticus: comparison with gentamicin biosynthetic gene cluster. Arch Biochem Biophys 2004; 429:204-14. [PMID: 15313224 DOI: 10.1016/j.abb.2004.06.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 06/07/2004] [Indexed: 12/31/2022]
Abstract
Gene clusters for the biosynthesis of kanamycin (Km) and gentamicin (Gm) were isolated from the genomic libraries of Streptomyces kanamyceticus and Micromonospora echinospora, respectively. The sequencing of the 47 kb-region of S. kanamyceticus genomic DNA revealed 40 putative open reading frames (ORFs) encoding Km biosynthetic proteins, regulatory proteins, and resistance and transport proteins. Similarly, the sequencing of 32.6 kb genomic DNA of M. echinospora revealed a Gm biosynthetic gene cluster flanked by resistant genes. Biosynthetic pathways for the formation of Km were proposed by the comparative study of biosynthetic genes. Out of 12 putative Km biosynthetic genes, kanA was expressed in Escherichia coli and determined its function as a 2-deoxy-scyllo-inosose synthase. Furthermore, the acetylations of aminoglycoside-aminocyclitols (AmAcs) by Km acetyltransferase (KanM) were also demonstrated. The acetylated derivatives completely lost their antibacterial activities against Bacillus subtilis. The comparative genetic studies of Gm, Km, tobramycin (Tm), and butirosin (Bn) reveal their similar biosynthetic routes and provide a framework for the further biosynthetic studies.
Collapse
Affiliation(s)
- Madan K Kharel
- Institute of Biomolecule Reconstruction, SunMoon University, Asan, Chung-nam, 336-708, South Korea
| | | | | | | | | | | | | |
Collapse
|
914
|
Haug BE, Stensen W, Stiberg T, Svendsen JS. Bulky nonproteinogenic amino acids permit the design of very small and effective cationic antibacterial peptides. J Med Chem 2004; 47:4159-62. [PMID: 15293987 DOI: 10.1021/jm049582b] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rate of multidrug-resistant infections is rapidly rising. Cationic antibacterial peptides are active against resistant pathogens and have low propensity for resistance development, but because of their unfavorable medicinal properties, cationic antibacterial peptides have been a limited clinical success. We have found that introduction of nongenetically coded amino acids and other lipophilic modifications opens the opportunity for development of extremely short and highly active antibacterial peptides with improved medicinal properties.
Collapse
Affiliation(s)
- Bengt Erik Haug
- Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway, and Lytix Biopharma AS, N-9037 Tromsø, Norway
| | | | | | | |
Collapse
|
915
|
Bae T, Banger AK, Wallace A, Glass EM, Aslund F, Schneewind O, Missiakas DM. Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc Natl Acad Sci U S A 2004; 101:12312-7. [PMID: 15304642 PMCID: PMC514475 DOI: 10.1073/pnas.0404728101] [Citation(s) in RCA: 246] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Indexed: 02/08/2023] Open
Abstract
Staphylococcus aureus is the leading cause of wound and hospital-acquired infections worldwide. The emergence of S. aureus strains with resistance to multiple antibiotics requires the identification of bacterial virulence genes and the development of novel therapeutic strategies. Herein, bursa aurealis, a mariner-based transposon, was used for random mutagenesis and for the isolation of 10,325 S. aureus variants with defined insertion sites. By screening for loss-of-function mutants in a Caenorhabditis elegans killing assay, 71 S. aureus virulence genes were identified. Some of these genes are also required for S. aureus abscess formation in a murine infection model.
Collapse
Affiliation(s)
- Taeok Bae
- Committee on Microbiology and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
916
|
Ziebuhr W, Xiao K, Coulibaly B, Schwarz R, Dandekar T. Pharmacogenomic strategies against resistance development in microbial infections. Pharmacogenomics 2004; 5:361-79. [PMID: 15165173 DOI: 10.1517/14622416.5.4.361] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
There are several promising new strategies against resistance development in microbial infections. This paper discusses typical experimental and bioinformatical strategies to study the impact of infectious challenges on host–pathogen interaction, followed by several novel approaches and sources for new pharmaceutical strategies against resistance development. Genomics reveals promising new targets by providing a better understanding of cellular pathways, through the identification of new pathways, and by identifying new intervention areas, such as phospholipids, glycolipids, innate immunity, and antibiotic peptides. Additional antibiotic resources come from new genomes, including marine organisms, lytic phages and probiotic strategies. A system perspective regards all interactions between the host, pathogen and environment to develop new pharmacogenomic strategies against resistance development.
Collapse
Affiliation(s)
- Wilma Ziebuhr
- Institut für Molekulare Infektionsbiologie, Würzburg, Germany
| | | | | | | | | |
Collapse
|
917
|
Gherman BF, Goldberg SD, Cornish VW, Friesner RA. Mixed Quantum Mechanical/Molecular Mechanical (QM/MM) Study of the Deacylation Reaction in a Penicillin Binding Protein (PBP) versus in a Class C β-Lactamase. J Am Chem Soc 2004; 126:7652-64. [PMID: 15198613 DOI: 10.1021/ja036879a] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The origin of the substantial difference in deacylation rates for acyl-enzyme intermediates in penicillin-binding proteins (PBPs) and beta-lactamases has remained an unsolved puzzle whose solution is of great importance to understanding bacterial antibiotic resistance. In this work, accurate, large-scale mixed ab initio quantum mechanical/molecular mechanical (QM/MM) calculations have been used to study the hydrolysis of acyl-enzyme intermediates formed between cephalothin and the dd-peptidase of Streptomyces sp. R61, a PBP, and the Enterobacter cloacae P99 cephalosporinase, a class C beta-lactamase. Qualitative and, in the case of P99, quantitative agreement was achieved with experimental kinetics. The faster rate of deacylation in the beta-lactamase is attributed to a more favorable electrostatic environment around Tyr150 in P99 (as compared to that for Tyr159 in R61) which facilitates this residue's function as the general base. This is found to be in large part accomplished by the ability of P99 to covalently bind the ligand without concurrent elimination of hydrogen bonds to Tyr150, which proves not to be the case with Tyr159 in R61. This work provides an essential foundation for further work in this area, such as selecting mutations capable of converting the PBP into a beta-lactamase.
Collapse
Affiliation(s)
- Benjamin F Gherman
- Department of Chemistry and Center for Biomolecular Simulation, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
918
|
Wei P, Kaatz GW, Kerns RJ. Structural differences between paroxetine and femoxetine responsible for differential inhibition of Staphylococcus aureus efflux pumps. Bioorg Med Chem Lett 2004; 14:3093-7. [PMID: 15149651 DOI: 10.1016/j.bmcl.2004.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 04/08/2004] [Accepted: 04/10/2004] [Indexed: 11/28/2022]
Abstract
In this study the chemical modification of paroxetine was employed to determine which structural differences between the paroxetine-like and femoxetine-like selective serotonin reuptake inhibitors is responsible for the differential potency of these agents in the inhibition of Staphylococcus aureus multidrug efflux pump systems.
Collapse
Affiliation(s)
- Peng Wei
- Division of Medicinal and Natural Products Chemistry, The University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
919
|
Bouhss A, Crouvoisier M, Blanot D, Mengin-Lecreulx D. Purification and characterization of the bacterial MraY translocase catalyzing the first membrane step of peptidoglycan biosynthesis. J Biol Chem 2004; 279:29974-80. [PMID: 15131133 DOI: 10.1074/jbc.m314165200] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MraY translocase catalyzes the first membrane step of bacterial cell wall peptidoglycan synthesis (i.e. the transfer of the phospho-N-acetylmuramoyl-pentapeptide motif onto the undecaprenyl phosphate carrier lipid), a reversible reaction yielding undecaprenylpyrophosphoryl-N-acetylmuramoyl-pentapeptide (lipid intermediate I). This essential integral membrane protein, which is considered as a very promising target for the search of new antibacterial compounds, has thus far been clearly underexploited due to its intrinsic refractory nature to overexpression and purification. We here report conditions for the high level overproduction and for the first time the purification to homogeneity of milligram quantities of MraY protein. The kinetic parameters and effects of pH, salts, cations, and detergents on enzyme activity are described, taking the Bacillus subtilis MraY translocase as a model.
Collapse
Affiliation(s)
- Ahmed Bouhss
- Enveloppes Bactériennes et Antibiotiques, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, UMR 8619 CNRS, Université Paris-Sud, Bât. 430, 91405 Orsay, France.
| | | | | | | |
Collapse
|
920
|
Pakhomova S, Rife CL, Armstrong RN, Newcomer ME. Structure of fosfomycin resistance protein FosA from transposon Tn2921. Protein Sci 2004; 13:1260-5. [PMID: 15075406 PMCID: PMC2286755 DOI: 10.1110/ps.03585004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 02/04/2004] [Accepted: 02/04/2004] [Indexed: 10/26/2022]
Abstract
The crystal structure of fosfomycin resistance protein FosA from transposon Tn2921 has been established at a resolution of 2.5 A. The protein crystallized without bound Mn(II) and K+, ions crucial for efficient catalysis, providing a structure of the apo enzyme. The protein maintains the three-dimensional domain-swapped arrangement of the paired betaalphabetabetabeta-motifs observed in the genomically encoded homologous enzyme from Pseudomonas aeruginosa (PA1129). The basic architecture of the active site is also maintained, despite the absence of the catalytically essential Mn(II). However, the absence of K+, which has been shown to enhance enzymatic activity, appears to contribute to conformational heterogeneity in the K(+)-binding loops.
Collapse
Affiliation(s)
- Svetlana Pakhomova
- Departments of Biological Sciences and Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | | | | | |
Collapse
|
921
|
Abstract
Dermatologic infections are treated to improve the elderly patient's quality of life and prevent disability and death. Pharmacokinetic changes, social issues, and the risk for adverse effects and drug interactions, however, increase the challenge to achieve successful treatment of those over age 65 as compared with younger patients. This challenge grows ever larger when coupled with the increasing trends of resistance among bacteria and fungi. The clinician can effectively face this challenge through careful consideration of diagnosis, patient risk factors, antimicrobial pharmacology, and resistance patterns.
Collapse
Affiliation(s)
- Lisa C Hutchison
- College of Pharmacy, University of Arkansas for Medical Sciences, 4301 West Markham Street, No. 522, Little Rock, AR 72205, USA.
| |
Collapse
|
922
|
Nair BM, Cheung KJ, Griffith A, Burns JL. Salicylate induces an antibiotic efflux pump in Burkholderia cepacia complex genomovar III (B. cenocepacia). J Clin Invest 2004; 113:464-73. [PMID: 14755343 PMCID: PMC324543 DOI: 10.1172/jci19710] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Accepted: 11/25/2003] [Indexed: 11/17/2022] Open
Abstract
An antibiotic efflux gene cluster that confers resistance to chloramphenicol, trimethoprim, and ciprofloxacin has been identified in Burkholderia cenocepacia (genomovar III), an important cystic fibrosis pathogen. Five open reading frames have been identified in the cluster. There is apparently a single transcriptional unit, with llpE encoding a lipase-like protein, ceoA encoding a putative periplasmic linker protein, ceoB encoding a putative cytoplasmic membrane protein, and opcM encoding a previously described outer membrane protein. A putative LysR-type transcriptional regulatory gene, ceoR, is divergently transcribed upstream of the structural gene cluster. Experiments using radiolabeled chloramphenicol and salicylate demonstrated active efflux of both compounds in the presence of the gene cluster. Salicylate is an important siderophore produced by B. cepacia complex isolates, and both extrinsic salicylate and iron starvation appear to upregulate ceoR promoter activity, as does chloramphenicol. These results suggest that salicylate is a natural substrate for the efflux pump in B. cenocepacia and imply that the environment of low iron concentration in the cystic fibrosis lung can induce efflux-mediated resistance, even in the absence of antibiotic selective pressure.
Collapse
Affiliation(s)
- Bindu M Nair
- Division of Infectious Disease, Children's Hospital and Regional Medical Center, Seattle, Washington 98105, USA
| | | | | | | |
Collapse
|
923
|
Sarno R, Ha H, Weinsetel N, Tolmasky ME. Inhibition of aminoglycoside 6'-N-acetyltransferase type Ib-mediated amikacin resistance by antisense oligodeoxynucleotides. Antimicrob Agents Chemother 2004; 47:3296-304. [PMID: 14506044 PMCID: PMC201158 DOI: 10.1128/aac.47.10.3296-3304.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amikacin has been very useful in the treatment of infections caused by multiresistant bacteria because it is refractory to the actions of most modifying enzymes. However, the spread of AAC(6')-I-type acetyltransferases, enzymes capable of catalyzing inactivation of amikacin, has rendered this antibiotic all but useless in some parts of the world. The aminoglycoside 6'-N-acetyltransferase type Ib, which is coded for by the aac(6')-Ib gene, mediates resistance to amikacin and other aminoglycosides. RNase H mapping and computer prediction of the secondary structure led to the identification of five regions accessible for interaction with antisense oligodeoxynucleotides in the aac(6')-Ib mRNA. Oligodeoxynucleotides targeting these regions could bind to native mRNA with different efficiencies and mediated RNase H digestion. Selected oligodeoxynucleotides inhibited AAC(6')-Ib synthesis in cell-free coupled transcription-translation assays. After their introduction into an Escherichia coli strain harboring aac(6')-Ib by electroporation, some of these oligodeoxynucleotides decreased the level of resistance to amikacin. Our results indicate that use of antisense compounds could be a viable strategy to preserve the efficacies of existing antibiotics to which bacteria are becoming increasingly resistant.
Collapse
MESH Headings
- Acetyltransferases/antagonists & inhibitors
- Acetyltransferases/genetics
- Acetyltransferases/metabolism
- Amikacin/pharmacology
- Base Sequence
- Binding Sites
- Cell-Free System
- Colony Count, Microbial
- Drug Resistance, Multiple, Bacterial/drug effects
- Drug Resistance, Multiple, Bacterial/genetics
- Drug Resistance, Multiple, Bacterial/physiology
- Enzyme Inhibitors/pharmacology
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Molecular Sequence Data
- Nucleic Acid Conformation
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Oligonucleotides, Antisense/pharmacology
- Protein Biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Ribonuclease H/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Renee Sarno
- Department of Biological Science, College of Natural Science and Mathematics, California State University Fullerton, Fullerton, California 92834-6850, USA
| | | | | | | |
Collapse
|
924
|
Ubarretxena-Belandia I, Tate CG. New insights into the structure and oligomeric state of the bacterial multidrug transporter EmrE: an unusual asymmetric homo-dimer. FEBS Lett 2004; 564:234-8. [PMID: 15111102 DOI: 10.1016/s0014-5793(04)00228-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Accepted: 02/23/2004] [Indexed: 11/20/2022]
Abstract
EmrE is a small multidrug transporter that contains 110 amino acid residues that form four transmembrane alpha-helices. The three-dimensional structure of EmrE has been determined from two-dimensional crystals by electron cryo-microscopy. EmrE is an asymmetric homo-dimer with one substrate molecule bound in a chamber accessible laterally from one leaflet of the lipid bilayer. Evidence from substrate binding analyses and analytical ultracentrifugation of detergent-solubilised EmrE shows that the minimum functional unit for substrate binding is a dimer. However, it is possible that EmrE exists as a tetramer in vivo and plausible models are suggested based upon analyses of two-dimensional crystals.
Collapse
|
925
|
Foloppe N, Chen IJ, Davis B, Hold A, Morley D, Howes R. A structure-based strategy to identify new molecular scaffolds targeting the bacterial ribosomal A-site. Bioorg Med Chem 2004; 12:935-47. [PMID: 14980606 DOI: 10.1016/j.bmc.2003.12.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Accepted: 12/16/2003] [Indexed: 01/05/2023]
Abstract
The need for novel antibiotics is widely recognized. A well validated target of antibiotics is the bacterial ribosome. Recent X-ray structures of the ribosome bound to antibiotics have shed new light on the binding sites of these antibiotics, providing fresh impetus for structure-based strategies aiming at identifying new ribosomal ligands. In that respect, the ribosomal decoding region of the aminoacyl-tRNA acceptor site (A-site) is of particular interest because oligonucleotide model systems of this site are available for crystallography, NMR and compound binding assays. This work presents how these different resources can be combined in a hierarchical screening strategy which has led to the identification of new A-site ligands. The approach exploits an X-ray structure of the A-site against which large and diverse libraries of compounds were computationally docked. The complementarity of the compounds to the A-site was assessed using a scoring function specifically calibrated for RNA targets. Starting from approximately 1 million compounds, the computational selection of candidate ligands allowed us to focus the experimental work on 129 compounds, 34 of which showed affinity for the A-site in a FRET-based binding assay. NMR experiments confirmed binding to the A-site for some compounds. For the most potent compound in the FRET assay, a tentative binding mode is suggested, which is compatible with the NMR data and the limited SAR in this series. Overall, the results validate the screening strategy.
Collapse
Affiliation(s)
- Nicolas Foloppe
- Vernalis (R&D) Ltd, Granta Park, Abington, Cambridge CB1 6GB, UK.
| | | | | | | | | | | |
Collapse
|
926
|
Garbom S, Forsberg A, Wolf-Watz H, Kihlberg BM. Identification of novel virulence-associated genes via genome analysis of hypothetical genes. Infect Immun 2004; 72:1333-40. [PMID: 14977936 PMCID: PMC355990 DOI: 10.1128/iai.72.3.1333-1340.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2003] [Revised: 08/11/2003] [Accepted: 11/13/2003] [Indexed: 11/20/2022] Open
Abstract
The sequencing of bacterial genomes has opened new perspectives for identification of targets for treatment of infectious diseases. We have identified a set of novel virulence-associated genes (vag genes) by comparing the genome sequences of six human pathogens that are known to cause persistent or chronic infections in humans: Yersinia pestis, Neisseria gonorrhoeae, Helicobacter pylori, Borrelia burgdorferi, Streptococcus pneumoniae, and Treponema pallidum. This comparison was limited to genes annotated as hypothetical in the T. pallidum genome project. Seventeen genes with unknown functions were found to be conserved among these pathogens. Insertional inactivation of 14 of these genes generated nine mutants that were attenuated for virulence in a mouse infection model. Out of these nine genes, five were found to be specifically associated with virulence in mice as demonstrated by infection with Yersinia pseudotuberculosis in-frame deletion mutants. In addition, these five vag genes were essential only in vivo, since all the mutants were able to grow in vitro. These genes are broadly conserved among bacteria. Therefore, we propose that the corresponding vag gene products may constitute novel targets for antimicrobial therapy and that some vag mutants could serve as carrier strains for live vaccines.
Collapse
Affiliation(s)
- Sara Garbom
- Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
927
|
Nair BM, Cheung KJ, Griffith A, Burns JL. Salicylate induces an antibiotic efflux pump in Burkholderia cepacia complex genomovar III (B. cenocepacia). J Clin Invest 2004. [DOI: 10.1172/jci200419710] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
928
|
Pathak AK, Pathak V, Riordan JM, Gurcha SS, Besra GS, Reynolds RC. Synthesis of mannopyranose disaccharides as photoaffinity probes for mannosyltransferases in Mycobacterium tuberculosis. Carbohydr Res 2004; 339:683-91. [PMID: 15013406 DOI: 10.1016/j.carres.2003.10.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Accepted: 10/30/2003] [Indexed: 11/21/2022]
Abstract
Mannosyltransferases play a crucial role in mycobacterial cell-wall biosynthesis and are potential new drug targets for the treatment of tuberculosis. Herein, we describe the synthesis of alpha-(1-->2)- and alpha-(1-->6)-linked mannopyranosyl disaccharides possessing a 5-azidonaphthlene-1-sulfonamidoethyl group as photoaffinity probes for active-site labeling studies of mannosyltransferases in Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Ashish K Pathak
- Drug Discovery Division, Southern Research Institute, PO Box 55305, Birmingham, AL 35225-5305, USA
| | | | | | | | | | | |
Collapse
|
929
|
Burse A, Weingart H, Ullrich MS. NorM, an Erwinia amylovora multidrug efflux pump involved in in vitro competition with other epiphytic bacteria. Appl Environ Microbiol 2004; 70:693-703. [PMID: 14766544 PMCID: PMC348922 DOI: 10.1128/aem.70.2.693-703.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Accepted: 11/07/2003] [Indexed: 11/20/2022] Open
Abstract
Blossoms are important sites of infection for Erwinia amylovora, the causal agent of fire blight of rosaceous plants. Before entering the tissue, the pathogen colonizes the stigmatic surface and has to compete for space and nutrient resources within the epiphytic community. Several epiphytes are capable of synthesizing antibiotics with which they antagonize phytopathogenic bacteria. Here, we report that a multidrug efflux transporter, designated NorM, of E. amylovora confers tolerance to the toxin(s) produced by epiphytic bacteria cocolonizing plant blossoms. According to sequence comparisons, the single-component efflux pump NorM is a member of the multidrug and toxic compound extrusion protein family. The corresponding gene is widely distributed among E. amylovora strains and related plant-associated bacteria. NorM mediated resistance to the hydrophobic cationic compounds norfloxacin, ethidium bromide, and berberine. A norM mutant was constructed and exhibited full virulence on apple rootstock MM 106. However, it was susceptible to antibiotics produced by epiphytes isolated from apple and quince blossoms. The epiphytes were identified as Pantoea agglomerans by 16S rRNA analysis and were isolated from one-third of all trees examined. The promoter activity of norM was twofold greater at 18 degrees C than at 28 degrees C. The lower temperature seems to be beneficial for host infection because of the availability of moisture necessary for movement of the pathogen to the infection sites. Thus, E. amylovora might employ NorM for successful competition with other epiphytic microbes to reach high population densities, particularly at a lower temperature.
Collapse
Affiliation(s)
- Antje Burse
- School of Engineering and Sciences, International University of Bremen, 28759 Bremen, Germany
| | | | | |
Collapse
|
930
|
Abstract
Antimicrobial peptides are part of the natural defense against infections in all phyla, including humans. Antimicrobial peptides are considered to be promising alternatives to conventional antimicrobials. Antimicrobial peptides are active against a wide spectrum of pathogens, including multidrug-resistant bacteria, fungi, viruses and parasites. Thus, they are promising candidates for treatment of various skin infections, also infections caused by bacteria such as methicillin resistant Staphylococcus aureus and vancomycin resistant enterococci. However, there are some obstacles, e.g. low tissue penetrability, high production costs, and unknown cytotoxicity, to overcome before antimicrobial peptides will be readily available for the treatment of infectious diseases. Topical administration may solve some of these problems. Some antimicrobial peptides are currently in clinical trials, including peptides developed for treatment of skin infections.
Collapse
Affiliation(s)
- Hilde Ulvatne
- Department Medical Microbiology, University Hospital of North Norway, Tromsø, Norway.
| |
Collapse
|
931
|
A versatile scaffold for a library of liposidomycins analogues: a crucial and potent glycosylation step. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.tetasy.2003.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
932
|
Burse A, Weingart H, Ullrich MS. The phytoalexin-inducible multidrug efflux pump AcrAB contributes to virulence in the fire blight pathogen, Erwinia amylovora. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:43-54. [PMID: 14714867 DOI: 10.1094/mpmi.2004.17.1.43] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The enterobacterium Erwinia amylovora causes fire blight on members of the family Rosaceae, with economic importance on apple and pear. During pathogenesis, the bacterium is exposed to a variety of plant-borne antimicrobial compounds. In plants of Rosaceae, many constitutively synthesized isoflavonoids affecting microorganisms were identified. Bacterial multidrug efflux transporters which mediate resistance toward structurally unrelated compounds might confer tolerance to these phytoalexins. To prove this hypothesis, we cloned the acrAB locus from E. amylovora encoding a resistance nodulation division-type transport system. In Escherichia coli, AcrAB of E. amylovora conferred resistance to hydrophobic and amphiphilic toxins. An acrB-deficient E. amylovora mutant was impaired in virulence on apple rootstock MM 106. Furthermore, it was susceptible toward extracts of leaves of MM 106 as well as to the apple phytoalexins phloretin, naringenin, quercetin, and (+)-catechin. The expression of acrAB was determined using the promoterless reporter gene egfp. The acrAB operon was up-regulated in vitro by the addition of phloretin and naringenin. The promoter activity of acrR, encoding a regulatory protein involved in acrAB expression, was increased by naringenin. In planta, an induction of acrAB was proved by confocal laser scanning microscopy. Our results strongly suggest that the AcrAB transport system plays an important role as a protein complex required for virulence of E. amylovora in resistance toward apple phytoalexins and that it is required for successful colonization of a host plant.
Collapse
Affiliation(s)
- Antje Burse
- School of Engineering and Sciences, International University Bremen, Campusring 1, 28759 Bremen, Germany
| | | | | |
Collapse
|
933
|
Malléa M, Mahamoud A, Chevalier J, Alibert-Franco S, Brouant P, Barbe J, Pagès JM. Alkylaminoquinolines inhibit the bacterial antibiotic efflux pump in multidrug-resistant clinical isolates. Biochem J 2003; 376:801-5. [PMID: 12959639 PMCID: PMC1223807 DOI: 10.1042/bj20030963] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Revised: 08/26/2003] [Accepted: 09/05/2003] [Indexed: 11/17/2022]
Abstract
Over the last decade, MDR (multidrug resistance) has increased worldwide in microbial pathogens by efflux mechanisms, leading to treatment failures in human infections. Several Gram-negative bacteria efflux pumps have been described. These proteinaceous channels are capable of expelling structurally different drugs across the envelope and conferring antibiotic resistance in various bacterial pathogens. Combating antibiotic resistance is an urgency and the blocking of efflux pumps is an attractive response to the emergence of MDR phenotypes in infectious bacteria. In the present study, various alkylaminoquinolines were tested as potential inhibitors of drug transporters. We showed that alkylaminoquinolines are capable of restoring susceptibilities to structurally unrelated antibiotics in clinical isolates of MDR Gram-negative bacteria. Antibiotic efflux studies indicated that 7-nitro-8-methyl-4-[2'-(piperidino)ethyl]aminoquinoline acts as an inhibitor of the AcrAB-TolC efflux pump and restores a high level of intracellular drug concentration. Inhibitory activity of this alkylaminoquinoline is observed on clinical isolates showing different resistance phenotypes.
Collapse
Affiliation(s)
- Monique Malléa
- EA2197, IFR48, Faculté de Médecine, Université de la Méditerranée, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
934
|
Xing B, Yu CW, Ho PL, Chow KH, Cheung T, Gu H, Cai Z, Xu B. Multivalent Antibiotics via Metal Complexes: Potent Divalent Vancomycins against Vancomycin-Resistant Enterococci. J Med Chem 2003; 46:4904-9. [PMID: 14584941 DOI: 10.1021/jm030417q] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dimers of vancomycin (Van), linked by a rigid metal complex, [Pt(en)(H(2)O)(2)](2+), exhibit potent activities (MIC approximately 0.8 mug/mL, approximately 720 times more potent than that of Van itself) against vancomycin-resistant enterococci (VRE). The result suggests that combining metal complexation and receptor/ligand interaction offers a useful method to construct multivalent inhibitors.
Collapse
Affiliation(s)
- Bengang Xing
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
935
|
Abstract
Through billions of years of evolution, microbes have developed myriad defense mechanisms designed to ensure their survival. This protection is readily transferred to their fellow life forms via transposable elements. Despite very early warnings, humans have chosen to abuse the gift of antibiotics and have created a situation where all microorganisms are resistant to some antibiotics and some microorganisms are resistant to all antibiotics. When antibiotics are used, six events may occur with only one being beneficial: when the antibiotic aids the host defenses to gain control and eliminate the infection. Alternatively, the antibiotic may cause toxicity or allergy, initiate a superinfection with resistant bacteria, promote microbial chromosomal mutations to resistance, encourage resistance gene transfer to susceptible species, or promote the expression of dormant resistance genes.
Collapse
Affiliation(s)
- Thomas J Pallasch
- School of Dentistry, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
936
|
Oliva M, Dideberg O, Field MJ. Understanding the acylation mechanisms of active-site serine penicillin-recognizing proteins: a molecular dynamics simulation study. Proteins 2003; 53:88-100. [PMID: 12945052 DOI: 10.1002/prot.10450] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Beta-lactam antibiotics inhibit enzymes involved in the last step of peptidoglycan synthesis. These enzymes, also identified as penicillin-binding proteins (PBPs), form a long-lived acyl-enzyme complex with beta-lactams. Antibiotic resistance is mainly due to the production of beta-lactamases, which are enzymes that hydrolyze the antibiotics and so prevent them reaching and inactivating their targets, and to mutations of the PBPs that decrease their affinity for the antibiotics. In this study, we present a theoretical study of several penicillin-recognizing proteins complexed with various beta-lactam antibiotics. Hybrid quantum mechanical/molecular mechanical potentials in conjunction with molecular dynamics simulations have been performed to understand the role of several residues, and pK(a) calculations have also been done to determine their protonation state. We analyze the differences between the beta-lactamase TEM-1, the membrane-bound PBP2x of Streptococcus pneumoniae, and the soluble DD-transpeptidase of Streptomyces K15.
Collapse
Affiliation(s)
- Mónica Oliva
- Laboratoire de Dynamique Moléculaire, Institut de Biologie Structurale Jean-Pierre Ebel, CEA/CNRS Grenoble, France
| | | | | |
Collapse
|
937
|
Komp Lindgren P, Karlsson A, Hughes D. Mutation rate and evolution of fluoroquinolone resistance in Escherichia coli isolates from patients with urinary tract infections. Antimicrob Agents Chemother 2003; 47:3222-32. [PMID: 14506034 PMCID: PMC201150 DOI: 10.1128/aac.47.10.3222-3232.2003] [Citation(s) in RCA: 298] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2003] [Revised: 07/08/2003] [Accepted: 07/11/2003] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli strains from patients with uncomplicated urinary tract infections were examined by DNA sequencing for fluoroquinolone resistance-associated mutations in six genes: gyrA, gyrB, parC, parE, marOR, and acrR. The 54 strains analyzed had a susceptibility range distributed across 15 dilutions of the fluoroquinolone MICs. There was a correlation between the fluoroquinolone MIC and the number of resistance mutations that a strain carried, with resistant strains having mutations in two to five of these genes. Most resistant strains carried two mutations in gyrA and one mutation in parC. In addition, many resistant strains had mutations in parE, marOR, and/or acrR. No (resistance) mutation was found in gyrB. Thus, the evolution of fluoroquinolone resistance involves the accumulation of multiple mutations in several genes. The spontaneous mutation rate in these clinical strains varied by 2 orders of magnitude. A high mutation rate correlated strongly with a clinical resistance phenotype. This correlation suggests that an increased general mutation rate may play a significant role in the development of high-level resistance to fluoroquinolones by increasing the rate of accumulation of rare new mutations.
Collapse
Affiliation(s)
- Patricia Komp Lindgren
- Department of Cell and Molecular Biology, Microbiology Programme, Biomedical Center, Uppsala University, S-751 24 Uppsala, Sweden
| | | | | |
Collapse
|
938
|
Brehm-Stecher BF, Johnson EA. Sensitization of Staphylococcus aureus and Escherichia coli to antibiotics by the sesquiterpenoids nerolidol, farnesol, bisabolol, and apritone. Antimicrob Agents Chemother 2003; 47:3357-60. [PMID: 14506058 PMCID: PMC201169 DOI: 10.1128/aac.47.10.3357-3360.2003] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2002] [Revised: 06/09/2003] [Accepted: 07/16/2003] [Indexed: 11/20/2022] Open
Abstract
The sesquiterpenoids nerolidol, farnesol, bisabolol, and apritone were investigated for their abilities to enhance bacterial permeability and susceptibility to exogenous antimicrobial compounds. Initially, it was observed by flow cytometry that these sesquiterpenoids promoted the intracellular accumulation of the membrane-impermeant nucleic acid stain ethidium bromide by live cells of Lactobacillus fermentum, suggesting that enhanced permeability resulted from disruption of the cytoplasmic membrane. The ability of these sesquiterpenoids to increase bacterial susceptibility to a number of clinically important antibiotics was then investigated. In disk diffusion assays, treatment with low concentrations (0.5 to 2 mM) of nerolidol, bisabolol, or apritone enhanced the susceptibility of Staphylococcus aureus to ciprofloxacin, clindamycin, erythromycin, gentamicin, tetracycline, and vancomycin. Nerolidol and farnesol also sensitized Escherichia coli to polymyxin B. Our results indicate the practical utility of sensitizing bacteria to antimicrobials with sesquiterpenoids that have traditionally been used as flavorants and aroma compounds in the food and perfume industries.
Collapse
Affiliation(s)
- Byron F Brehm-Stecher
- Departments of Food Microbiology and Toxicology. Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
939
|
MESH Headings
- Aminoglycosides/pharmacology
- Anti-Bacterial Agents/pharmacology
- Binding Sites
- Drug Delivery Systems
- Models, Molecular
- RNA/chemistry
- RNA/metabolism
- RNA, Catalytic/chemistry
- RNA, Catalytic/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/drug effects
- RNA, Ribosomal, 16S/metabolism
- Substrate Specificity
- Technology, Pharmaceutical
- Water/chemistry
Collapse
Affiliation(s)
- Quentin Vicens
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Modélisation et simulations des Acides Nucléiques, UPR 9002, Université Louis Pasteur, 15 rue René Descartes, 67084 Strasbourg, France
| | | |
Collapse
|
940
|
Abstract
Although elderly patients are at an increased risk for skin infections, the chief culprits are no different than in younger patients. However, many of these organisms have developed resistance to antibiotics. Resistance increases the morbidity, mortality, and cost of treating infections. The mechanisms by which resistance occurs include efflux of antibiotic through a cellular pump, inactivation of the antibiotic by enzymes, or changes in the target affinity for the antibiotic. For dermatologic conditions in the elderly, documented resistance is seen in staphylococci, streptococci, and enterococci. Clinicians can reduce the development of resistance by following infection control and antibiotic use guidelines. To optimize the antibiotic effect and minimize adverse effects in the elderly, pharmacokinetic changes seen with aging should guide antibiotic choice and dosing.
Collapse
Affiliation(s)
- Lisa C Hutchison
- College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | |
Collapse
|
941
|
Jain RK, Trias J, Ellman JA. D-Ala-D-lac binding is not required for the high activity of vancomycin dimers against vancomycin resistant enterococci. J Am Chem Soc 2003; 125:8740-1. [PMID: 12862465 DOI: 10.1021/ja0359761] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Covalent dimerization and oligomerization of vancomycin is an important and extensively used strategy to develop analogues active against vancomycin resistant enteroccoci (VRE). Here, we have carried out investigations to probe the role of peptide binding (Lys-d-Ala-d-Lac) in the high anti-VRE activities of covalently linked vancomycin dimers. Covalent dimers of damaged vancomycin (desleucyl) were prepared, and their anti-VRE activities and binding affinities toward various model peptides were measured. Despite the dramatic loss in affinity toward several model peptides in comparison to the corresponding intact vancomycin dimers, these damaged dimers maintained good activity against VRE. These results strongly suggest that the high anti-VRE activities of covalent vancomycin dimers are conferred from mechanisms other than Lys-d-Ala-d-Lac binding.
Collapse
Affiliation(s)
- Rishi K Jain
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
942
|
Velu SE, Cristofoli WA, Garcia GJ, Brouillette CG, Pierson MC, Luan CH, DeLucas LJ, Brouillette WJ. Tethered dimers as NAD synthetase inhibitors with antibacterial activity. J Med Chem 2003; 46:3371-81. [PMID: 12852767 DOI: 10.1021/jm030003x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The solution-phase parallel synthesis of tethered dimers was employed to identify lead inhibitors of bacterial NAD synthetase. Active dimers contained two aromatic end groups joined by a polymethylene linker, with one end group containing a permanent positive charge. Effective inhibitors of NAD synthetase also inhibited the growth of Gram-positive (but not Gram-negative) bacteria, including antibiotic-resistant strains. The desmethyl precursors of active inhibitors lacked a permanent positive charge and were inactive as either enzyme inhibitors or antibacterial agents. Similarly, a close structural analogue of the most active inhibitors contained two additional ether oxygens in the tether and was inactive in both assays. These results are consistent with the premise that NAD synthetase inhibition is responsible for the antibacterial actions and support further studies on NAD synthetase as a new target for antibacterial agents.
Collapse
Affiliation(s)
- Sadanandan E Velu
- Center for Biophysical Sciences and Engineering, 1025 18th Street South, University of Alabama at Birmingham, Birmingham, Alabama 35294-4400, USA
| | | | | | | | | | | | | | | |
Collapse
|
943
|
Mol CD, Brooun A, Dougan DR, Hilgers MT, Tari LW, Wijnands RA, Knuth MW, McRee DE, Swanson RV. Crystal structures of active fully assembled substrate- and product-bound complexes of UDP-N-acetylmuramic acid:L-alanine ligase (MurC) from Haemophilus influenzae. J Bacteriol 2003; 185:4152-62. [PMID: 12837790 PMCID: PMC164886 DOI: 10.1128/jb.185.14.4152-4162.2003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UDP-N-acetylmuramic acid:L-alanine ligase (MurC) catalyzes the addition of the first amino acid to the cytoplasmic precursor of the bacterial cell wall peptidoglycan. The crystal structures of Haemophilus influenzae MurC in complex with its substrate UDP-N-acetylmuramic acid (UNAM) and Mg(2+) and of a fully assembled MurC complex with its product UDP-N-acetylmuramoyl-L-alanine (UMA), the nonhydrolyzable ATP analogue AMPPNP, and Mn(2+) have been determined to 1.85- and 1.7-A resolution, respectively. These structures reveal a conserved, three-domain architecture with the binding sites for UNAM and ATP formed at the domain interfaces: the N-terminal domain binds the UDP portion of UNAM, and the central and C-terminal domains form the ATP-binding site, while the C-terminal domain also positions the alanine. An active enzyme structure is thus assembled at the common domain interfaces when all three substrates are bound. The MurC active site clearly shows that the gamma-phosphate of AMPPNP is positioned between two bound metal ions, one of which also binds the reactive UNAM carboxylate, and that the alanine is oriented by interactions with the positively charged side chains of two MurC arginine residues and the negatively charged alanine carboxyl group. These results indicate that significant diversity exists in binding of the UDP moiety of the substrate by MurC and the subsequent ligases in the bacterial cell wall biosynthesis pathway and that alterations in the domain packing and tertiary structure allow the Mur ligases to bind sequentially larger UNAM peptide substrates.
Collapse
|
944
|
Gottenbos B, van der Mei HC, Klatter F, Grijpma DW, Feijen J, Nieuwenhuis P, Busscher HJ. Positively charged biomaterials exert antimicrobial effects on gram-negative bacilli in rats. Biomaterials 2003; 24:2707-10. [PMID: 12711516 DOI: 10.1016/s0142-9612(03)00083-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Biomaterial-centered infection is a much-dreaded complication associated with the use of biomedical implants. Although positively charged biomaterial surfaces stimulate bacterial adhesion, it has been suggested that surface growth of adhering Gram-negative bacilli is inhibited on positively charged surfaces. In the present paper, we determined the infection rate of differently charged poly(methacrylates) in rats. To this end, 2 x 10(6)/cm(2) Escherichia coli O2K2 or 2 x 10(4)/cm(2) Pseudomonas aeruginosa AK1 were seeded on glass discs coated with three differently charged poly(methacrylates) coatings in a parallel plate flow chamber. Three rats received six subcutaneous discs (two discs of each charge variant) seeded with E. coli, while three other rats received discs seeded with P. aeruginosa. The numbers of viable bacteria on the surfaces were determined 48h after implantation. On 50% of all positively charged discs viable E. coli were absent, while the negatively charged discs were all colonized by E. coli. P. aeruginosa, however, were isolated from both positively and negatively charged discs. Probably, P. aeruginosa can circumvent the antimicrobial effect of the positive charge through the formation of extracellular polysaccharides.
Collapse
Affiliation(s)
- Bart Gottenbos
- Department of Biomedical Engineering, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
945
|
Vendruscolo M, Zurdo J, MacPhee CE, Dobson CM. Protein folding and misfolding: a paradigm of self-assembly and regulation in complex biological systems. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2003; 361:1205-1222. [PMID: 12816607 DOI: 10.1098/rsta.2003.1194] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Understanding biological complexity is one of the grand scientific challenges for the future. A living organism is a highly evolved system made up of a large number of interwoven molecular networks. These networks primarily involve proteins, the macromolecules that enable and control virtually every chemical process that takes place in the cell. Proteins are also key elements in the essential characteristic of living systems, their ability to function and replicate themselves through controlled molecular interactions. Recent progress in understanding the most fundamental aspect of polypeptide self-organization, the process by which proteins fold to attain their active conformations, provides a global platform to gain knowledge about the function of biological systems and the regulatory mechanisms that underpin their ability to adapt to changing conditions. In order to exploit such progress effectively, we are developing a variety of approaches, including procedures that use experimental data to restrain the properties of complex systems in computer simulations, to describe their behaviour under a wide variety of conditions. We believe that such approaches can lead to significant advances in understanding biological complexity, in general, and protein folding and misfolding in particular. These advances would contribute to: a more effective exploitation of the information from genome sequences; more rational therapeutic approaches to diseases, particularly those associated with ageing; the responsible control of our own evolution; and the development of new technologies based on mimicking the principles of biological self-assembly, for instance in nanotechnology. More fundamentally, we believe that this research will result in a more coherent understanding of the origin, evolution and functional properties of living systems.
Collapse
Affiliation(s)
- Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | | |
Collapse
|
946
|
Abstract
To address the worsening problem of antibiotic-resistant bacteria there is an urgent need to develop new antibiotics. Comparative genomics and molecular genetics are being applied to produce lists of essential new targets for compound screening programmes. Combinatorial chemistry and structural biology are being applied to rapidly explore and optimize the interactions between lead compounds and their biological targets. Several compounds that have been identified from target-based screens are now in development, but technical and economic constraints might result in a trickle, rather than a flood, of new antibiotics onto the market in the near future.
Collapse
Affiliation(s)
- Diarmaid Hughes
- Department of Cell and Molecular Biology, Box 596, The Biomedical Center, Uppsala University, S-751 24 Uppsala, Sweden.
| |
Collapse
|
947
|
Abstract
The availability of genome sequences is revolutionizing the field of microbiology. Genetic methods are being modified to facilitate rapid analysis at a genome-wide level and are blossoming for human pathogens that were previously considered intractable. This revolution coincided with a growing concern about the emergence of microbial drug resistance, compelling the pharmaceutical industry to search for new antimicrobial agents. The availability of the new technologies, combined with many genetic strategies, has changed the way that researchers approach antibacterial drug discovery.
Collapse
Affiliation(s)
- Lynn Miesel
- Department of Antimicrobial Therapy, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, New Jersey 07033-0530, USA.
| | | | | |
Collapse
|
948
|
Ahrendt KA, Olsen JA, Wakao M, Trias J, Ellman JA. Identification of potent and broad-spectrum antibiotics from SAR studies of a synthetic vancomycin analogue. Bioorg Med Chem Lett 2003; 13:1683-6. [PMID: 12729641 DOI: 10.1016/s0960-894x(03)00243-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dimeric vancomycin analogues based on a lead compound identified from a library of synthetic analogues of vancomycin have up to 60-fold greater activity than vancomycin against vancomycin-resistant Enterococcus faecium (VRE, VanA phenotype). Simplified analogues have also been prepared and found to maintain activity against VRE and have broad-spectrum antibiotic activity.
Collapse
Affiliation(s)
- Kateri A Ahrendt
- Center for New Directions in Organic Synthesis, Department of Chemistry, University of California, Berkeley 94720, USA
| | | | | | | | | |
Collapse
|
949
|
Seth PP, Jefferson EA, Risen LM, Osgood SA. Identification of 2-aminobenzimidazole dimers as antibacterial agents. Bioorg Med Chem Lett 2003; 13:1669-72. [PMID: 12729638 DOI: 10.1016/s0960-894x(03)00245-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The preparation and evaluation of 2-aminobenzimidazole dimers as antibacterial agents is described. Biological screening of the dimers indicated that compounds with multiple chloro substituents possessed optimal antibacterial activity.
Collapse
Affiliation(s)
- Punit P Seth
- Ibis Therapeutics, A Division of Isis Pharmaceuticals, Inc., 2292 Faraday Avenue, Carlsbad, CA 92008, USA.
| | | | | | | |
Collapse
|
950
|
Remy S, Gabriel S, Urban BW, Dietrich D, Lehmann TN, Elger CE, Heinemann U, Beck H. A novel mechanism underlying drug resistance in chronic epilepsy. Ann Neurol 2003; 53:469-79. [PMID: 12666114 DOI: 10.1002/ana.10473] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The development of resistance to pharmacological treatment is common to many human diseases. In chronic epilepsy, many patients develop resistance to anticonvulsant drug treatment during the course of their disease, with the underlying mechanisms remaining unclear. We have studied cellular mechanisms underlying drug resistance in resected hippocampal tissue from patients with temporal lobe epilepsy by comparing two groups of patients, the first displaying a clinical response to the anticonvulsant carbamazepine and a second group with therapy-resistant seizures. Using patch-clamp recordings, we show that the mechanism of action of carbamazepine, use-dependent block of voltage-dependent Na(+) channels, is completely lost in carbamazepine-resistant patients. Likewise, seizure activity elicited in human hippocampal slices is insensitive to carbamazepine. In marked contrast, carbamazepine-induced use-dependent block of Na(+) channels and blocked seizure activity in vitro in patients clinically responsive to this drug. Consistent with these results in human patients, we also show that use-dependent block of Na(+) channels by carbamazepine is absent in chronic experimental epilepsy. Taken together, these data suggest that a loss of Na(+) channel drug sensitivity may constitute a novel mechanism underlying the development of drug-resistant epilepsy.
Collapse
Affiliation(s)
- Stefan Remy
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|