901
|
Luo D, Ge W, Hu X, Li C, Lee CM, Zhou L, Wu Z, Yu J, Lin S, Yu J, Xu W, Chen L, Zhang C, Jiang K, Zhu X, Li H, Gao X, Geng Y, Jing B, Wang Z, Zheng C, Zhu R, Yan Q, Lin Q, Ye K, Sun YE, Cheng L. Unbiased transcriptomic analyses reveal distinct effects of immune deficiency in CNS function with and without injury. Protein Cell 2019; 10:566-582. [PMID: 29956125 PMCID: PMC6626597 DOI: 10.1007/s13238-018-0559-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 05/26/2018] [Indexed: 02/07/2023] Open
Abstract
The mammalian central nervous system (CNS) is considered an immune privileged system as it is separated from the periphery by the blood brain barrier (BBB). Yet, immune functions have been postulated to heavily influence the functional state of the CNS, especially after injury or during neurodegeneration. There is controversy regarding whether adaptive immune responses are beneficial or detrimental to CNS injury repair. In this study, we utilized immunocompromised SCID mice and subjected them to spinal cord injury (SCI). We analyzed motor function, electrophysiology, histochemistry, and performed unbiased RNA-sequencing. SCID mice displayed improved CNS functional recovery compared to WT mice after SCI. Weighted gene-coexpression network analysis (WGCNA) of spinal cord transcriptomes revealed that SCID mice had reduced expression of immune function-related genes and heightened expression of neural transmission-related genes after SCI, which was confirmed by immunohistochemical analysis and was consistent with better functional recovery. Transcriptomic analyses also indicated heightened expression of neurotransmission-related genes before injury in SCID mice, suggesting that a steady state of immune-deficiency potentially led to CNS hyper-connectivity. Consequently, SCID mice without injury demonstrated worse performance in Morris water maze test. Taken together, not only reduced inflammation after injury but also dampened steady-state immune function without injury heightened the neurotransmission program, resulting in better or worse behavioral outcomes respectively. This study revealed the intricate relationship between immune and nervous systems, raising the possibility for therapeutic manipulation of neural function via immune modulation.
Collapse
Affiliation(s)
- Dandan Luo
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Institute of Spine and Spine Cord Injury of Tongji University, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Weihong Ge
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Xiao Hu
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Institute of Spine and Spine Cord Injury of Tongji University, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Chen Li
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Institute of Spine and Spine Cord Injury of Tongji University, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Chia-Ming Lee
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Liqiang Zhou
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zhourui Wu
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Institute of Spine and Spine Cord Injury of Tongji University, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Juehua Yu
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Sheng Lin
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Jing Yu
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Wei Xu
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Institute of Spine and Spine Cord Injury of Tongji University, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Lei Chen
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Institute of Spine and Spine Cord Injury of Tongji University, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Chong Zhang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Kun Jiang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xingfei Zhu
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Institute of Spine and Spine Cord Injury of Tongji University, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Haotian Li
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Institute of Spine and Spine Cord Injury of Tongji University, Shanghai, 200065, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xinpei Gao
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yanan Geng
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Bo Jing
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zhen Wang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Changhong Zheng
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Rongrong Zhu
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Institute of Spine and Spine Cord Injury of Tongji University, Shanghai, 200065, China
| | - Qiao Yan
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Quan Lin
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Center for neurodegeneration disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yi E Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Liming Cheng
- Division of Spine Surgery, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
- Institute of Spine and Spine Cord Injury of Tongji University, Shanghai, 200065, China.
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
902
|
Combining molecular intervention with in vivo imaging to untangle mechanisms of axon pathology and outgrowth following spinal cord injury. Exp Neurol 2019; 318:1-11. [DOI: 10.1016/j.expneurol.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/20/2019] [Accepted: 04/07/2019] [Indexed: 12/17/2022]
|
903
|
SAITSU Y, NISHIDE A, KIKUSHIMA K, SHIMIZU K, OHNUKI K. Improvement of cognitive functions by oral intake of Hericium erinaceus . Biomed Res 2019; 40:125-131. [DOI: 10.2220/biomedres.40.125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yuusuke SAITSU
- Department of Biological and Environmental Chemistry, Kindai University
| | | | - Kenji KIKUSHIMA
- Department of Optical Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine
| | - Kuniyoshi SHIMIZU
- Department of Agro-environmental Sciences, Faculty of Agriculture, Kyushu University
| | - Koichiro OHNUKI
- Department of Biological and Environmental Chemistry, Kindai University
| |
Collapse
|
904
|
Influencing neuroplasticity in stroke treatment with advanced biomaterials-based approaches. Adv Drug Deliv Rev 2019; 148:204-218. [PMID: 30579882 DOI: 10.1016/j.addr.2018.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/05/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023]
Abstract
Since the early 1990s, we have known that the adult brain is not static and has the capacity to repair itself. The delivery of various therapeutic factors and cells have resulted in some exciting pre-clinical and clinical outcomes in stroke models by targeting post-injury plasticity to enhance recovery. Developing a deeper understanding of the pathways that modulate plasticity will enable us to optimize delivery strategies for therapeutics and achieve more robust effects. Biomaterials are a key tool for the optimization of these potential treatments, owing to their biocompatibility and tunability. In this review, we identify factors and targets that impact plastic processes known to contribute to recovery, discuss the role of biomaterials in enhancing the efficacy of treatment strategies, and suggest combinatorial approaches based on the stage of injury progression.
Collapse
|
905
|
Toll-like receptor 9 antagonism modulates astrocyte function and preserves proximal axons following spinal cord injury. Brain Behav Immun 2019; 80:328-343. [PMID: 30953770 DOI: 10.1016/j.bbi.2019.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/14/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence indicates that innate immune receptors play important, yet controversial, roles in traumatic central nervous system (CNS) injury. Despite many advances, the contributions of toll-like receptors (TLRs) to spinal cord injury (SCI) remain inadequately defined. We previously reported that a toll-like receptor 9 (TLR9) antagonist, oligodeoxynucleotide 2088 (ODN 2088), administered intrathecally, improves the functional and histopathological outcomes of SCI. However, the molecular and cellular changes that occur at the injury epicenter following ODN 2088 treatment are not completely understood. Following traumatic SCI, a glial scar, consisting primarily of proliferating reactive astrocytes, forms at the injury epicenter and assumes both beneficial and detrimental roles. Increased production of chondroitin sulfate proteoglycans (CSPGs) by reactive astrocytes inhibits the regeneration of injured axons. Astrocytes express TLR9, which can be activated by endogenous ligands released by damaged cells. It is not yet known how TLR9 antagonism modifies astrocyte function at the glial scar and how this affects axonal preservation or re-growth following SCI. The present studies were undertaken to address these issues. We report that in female mice sustaining a severe mid-thoracic (T8) contusion injury, the number of proliferating astrocytes in regions rostral and caudal to the lesion border increased significantly by 30- and 24-fold, respectively, compared to uninjured controls. Intrathecal ODN 2088 treatment significantly reduced the number of proliferating astrocytes by 60% in both regions. This effect appeared to be, at least partly, mediated through the direct actions of ODN 2088 on astrocytes, since the antagonist decreased proliferation in pure SC astrocyte cultures by preventing the activation of the Erk/MAPK signaling pathway. In addition, CSPG immunoreactivity at the lesion border was more pronounced in vehicle-treated injured mice compared to uninjured controls and was significantly reduced following administration of ODN 2088 to injured mice. Moreover, ODN 2088 significantly decreased astrocyte migration in an in vitro scratch-wound assay. Anterograde tracing and quantification of corticospinal tract (CST) axons in injured mice, indicated that ODN 2088 preserves proximal axons. Taken together, these findings suggest that ODN 2088 modifies the glial scar and creates a milieu that fosters axonal protection at the injury site.
Collapse
|
906
|
Astrocytes in multiple sclerosis and experimental autoimmune encephalomyelitis: Star-shaped cells illuminating the darkness of CNS autoimmunity. Brain Behav Immun 2019; 80:10-24. [PMID: 31125711 DOI: 10.1016/j.bbi.2019.05.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/18/2022] Open
Abstract
Neuropathology in the human autoimmune disease multiple sclerosis (MS) is considered to be mediated by autoreactive leukocytes, such as T cells, B cells, and macrophages. However, the inflammation and tissue damage in MS and its animal model experimental autoimmune encephalomyelitis (EAE) is also critically regulated by astrocytes, the most abundant cell population in the central nervous system (CNS). Under physiological conditions, astrocytes are integral to the development and function of the CNS, whereas in CNS autoimmunity, astrocytes influence the pathogenesis, progression, and recovery of the diseases. In this review, we summarize recent advances in astrocytic functions in the context of MS and EAE, which are categorized into two opposite aspects, one being detrimental and the other beneficial. Inhibition of the detrimental functions and/or enhancement of the beneficial functions of astrocytes might be favorable for the treatment of MS.
Collapse
|
907
|
Effects of astrocyte conditioned medium on neuronal AChE expression upon 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure. Chem Biol Interact 2019; 309:108686. [DOI: 10.1016/j.cbi.2019.05.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/24/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
|
908
|
Kim C, Kim HJ, Lee H, Lee H, Lee SJ, Lee ST, Yang SR, Chung CK. Mesenchymal Stem Cell Transplantation Promotes Functional Recovery through MMP2/STAT3 Related Astrogliosis after Spinal Cord Injury. Int J Stem Cells 2019; 12:331-339. [PMID: 31242718 PMCID: PMC6657941 DOI: 10.15283/ijsc18133] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 01/06/2023] Open
Abstract
Background and Objectives Treatment with mesenchymal stem cells (MSC) in spinal cord injury (SCI) has been highlighted as therapeutic candidate for SCI. Although astrogliosis is a major phenomenon after SCI, the role of astrogliosis is still controversial. In this study, we determined whether acute transplantation of MSC improves the outcome of SCI through modulating astrogliosis. Methods Bone marrow derived rat MSCs were induced neural differentiation and transplanted after acute SCI rats. Matrix metalloproteinase (MMP) and neuro-inflammatory pathway were analyzed for acute astrogliosis at 1, 3 and 7 d after SCI in RT-PCR- and western blot analysis. Functional outcome was assessed serially at postoperative 1 d and weekly for 4 weeks. Histopathologic analysis was undertaken at 7 and 28 d following injury in immunohistochemistry. Results Transplantation of MSCs decreased IL-1α, CXCL-2, CXCL-10, TNF-α and TGF-β in a rat model of contusive SCI. Protein level of NF-κB p65 was slightly decreased while level of STAT-3 was increased. In immunohistochemistry, MSC transplantation increased acute astrogliosis whereas attenuated scar formation with increased sparing white matter of spinal cord lesions. In RT-PCR analysis, mRNA levels of MMP2 was significantly increased in MSC transplanted rats. In BBB locomotor scale, the rats of MSC treated group exhibited improvement of functional recovery. Conclusions Transplantation of MSC reduces the inflammatory reaction and modulates astrogliosis via MMP2/STAT3 pathway leading to improve functional recovery after SCI in rats.
Collapse
Affiliation(s)
- Choonghyo Kim
- Department of Neurosurgery, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Hee Jung Kim
- Department of Neurosurgery, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Hyun Lee
- Divisions of Applied Animal Science and Animal Resource Science, Department of Animal Life Science, Kangwon National University, Chuncheon, Korea
| | - Hanbyeol Lee
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Seung Jin Lee
- Department of Neurosurgery, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Seung Tae Lee
- Divisions of Applied Animal Science and Animal Resource Science, Department of Animal Life Science, Kangwon National University, Chuncheon, Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Chun Kee Chung
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
909
|
Deng YL, Ma YL, Zhang ZL, Zhang LX, Guo H, Qin P, Hou YS, Gao ZJ, Hou WG. Astrocytic N-Myc Downstream-regulated Gene-2 Is Involved in Nuclear Transcription Factor κB-mediated Inflammation Induced by Global Cerebral Ischemia. Anesthesiology 2019; 128:574-586. [PMID: 29252510 DOI: 10.1097/aln.0000000000002044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Inflammation is a key element in the pathophysiology of cerebral ischemia. This study investigated the role of N-Myc downstream-regulated gene-2 in nuclear transcription factor κB-mediated inflammation in ischemia models. METHODS Mice (n = 6 to 12) with or without nuclear transcription factor κB inhibitor pyrrolidinedithiocarbamate pretreatment were subjected to global cerebral ischemia for 20 min. Pure astrocyte cultures or astrocyte-neuron cocultures (n = 6) with or without pyrrolidinedithiocarbamate pretreatment were exposed to oxygen-glucose deprivation for 4 h or 2 h. Astrocytic nuclear transcription factor κB and N-Myc downstream-regulated gene-2 expression, proinflammatory cytokine secretion, neuronal apoptosis and survival, and memory function were analyzed at different time points after reperfusion or reoxygenation. Proinflammatory cytokine secretion was also studied in lentivirus-transfected astrocyte lines after reoxygenation. RESULTS Astrocytic nuclear transcription factor κB and N-Myc downstream-regulated gene-2 expression and proinflammatory cytokine secretion increased after reperfusion or reoxygenation. Pyrrolidinedithiocarbamate pretreatment significantly reduced N-Myc downstream-regulated gene-2 expression and proinflammatory cytokine secretion in vivo and in vitro, reduced neuronal apoptosis induced by global cerebral ischemia/reperfusion (from 65 ± 4% to 47 ± 4%, P = 0.0375) and oxygen-glucose deprivation/reoxygenation (from 45.6 ± 0.2% to 22.0 ± 4.0%, P < 0.001), and improved memory function in comparison to vehicle-treated control animals subjected to global cerebral ischemia/reperfusion. N-Myc downstream-regulated gene-2 lentiviral knockdown reduced the oxygen-glucose deprivation-induced secretion of proinflammatory cytokines. CONCLUSIONS Astrocytic N-Myc downstream-regulated gene-2 is up-regulated after cerebral ischemia and is involved in nuclear transcription factor κB-mediated inflammation. Pyrrolidinedithiocarbamate alleviates ischemia-induced neuronal injury and hippocampal-dependent cognitive impairment by inhibiting increases in N-Myc downstream-regulated gene-2 expression and N-Myc downstream-regulated gene-2-mediated inflammation.
Collapse
Affiliation(s)
- You-Liang Deng
- From the Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (Y.D., Y.M., P.Q., Y.H., Z.G., W.H.); Anesthesia and Operation Center, People's Liberation Army of China General Hospital, Beijing, China (Y.M.); Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China (Z.Z.); First Affiliated Hospital to People's Liberation Army of China General Hospital, Beijing, China (L.Z.); and Department of Anesthesiology, People's Liberation Army of China General Hospital, Beijing, China (H.G.)
| | | | | | | | | | | | | | | | | |
Collapse
|
910
|
TGF-β Secretion by M2 Macrophages Induces Glial Scar Formation by Activating Astrocytes In Vitro. J Mol Neurosci 2019; 69:324-332. [PMID: 31327154 DOI: 10.1007/s12031-019-01361-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
Transforming growth factor-β (TGF-β) is a key factor that promotes fibrosis or scar formation, which could become an obstacle in the repair of impaired axons in the central nervous system (CNS) of the human body resulting from diseases or injuries. Considering that major pathological reactions occur during this process, we focused on TGF-secreting M2 macrophages to identify the interactions between M2 macrophages and astrocytes (AS) and verify the specific mechanism of fibrosis or glial scar formation. In the present study, we used the Transwell coculturing technique and found an increase in glial fibrillary acidic protein (GFAP), neurocan, IL-13, and TGF-β expression after incubation for 48 h; the expression of these proteins decreased when additional inhibitors of the TGF-β receptor were added. We concluded that fibrosis or glial scar formation would be enhanced by the secretion of neurocan from AS, resulting from the release of TGF-β from M2 macrophages. We also used M2 macrophage-conditioned medium to further confirm this finding in a subsequent experiment. We hope that the findings in this research could provide a foundation for locating new targets for treating CNS diseases or injuries.
Collapse
|
911
|
Steardo L, de Filippis R, Carbone EA, Segura-Garcia C, Verkhratsky A, De Fazio P. Sleep Disturbance in Bipolar Disorder: Neuroglia and Circadian Rhythms. Front Psychiatry 2019; 10:501. [PMID: 31379620 PMCID: PMC6656854 DOI: 10.3389/fpsyt.2019.00501] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022] Open
Abstract
The worldwide prevalence of sleep disorders is approximately 50%, with an even higher occurrence in a psychiatric population. Bipolar disorder (BD) is a severe mental illness characterized by shifts in mood and activity. The BD syndrome also involves heterogeneous symptomatology, including cognitive dysfunctions and impairments of the autonomic nervous system. Sleep abnormalities are frequently associated with BD and are often a good predictor of a mood swing. Preservation of stable sleep-wake cycles is therefore a key to the maintenance of stability in BD, indicating the crucial role of circadian rhythms in this syndrome. The symptom most widespread in BD is insomnia, followed by excessive daytime sleepiness, nightmares, difficulty falling asleep or maintaining sleep, poor sleep quality, sleep talking, sleep walking, and obstructive sleep apnea. Alterations in the structure or duration of sleep are reported in all phases of BD. Understanding the role of neuroglia in BD and in various aspects of sleep is in nascent state. Contributions of the different types of glial cells to BD and sleep abnormalities are discussed in this paper.
Collapse
Affiliation(s)
- Luca Steardo
- Psychiatric Unit, Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Renato de Filippis
- Psychiatric Unit, Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Elvira Anna Carbone
- Psychiatric Unit, Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Cristina Segura-Garcia
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain
| | - Pasquale De Fazio
- Psychiatric Unit, Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| |
Collapse
|
912
|
Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature 2019; 573:75-82. [PMID: 31316211 PMCID: PMC6731122 DOI: 10.1038/s41586-019-1404-z] [Citation(s) in RCA: 383] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disease with a relapsing-remitting disease course at early stages, distinct lesion characteristics in cortical gray versus subcortical white matter, and neurodegeneration at chronic stages. We assessed multilineage cell expression changes using single-nucleus RNA sequencing (snRNA-seq) and validated results using multiplex in situ hybridization in MS lesions. We found selective vulnerability and loss of excitatory CUX2-expressing projection neurons in upper cortical layers underlying meningeal inflammation; such MS neuron populations showed upregulation of stress pathway genes and long non-coding RNAs. Signatures of stressed oligodendrocytes, reactive astrocytes and activated phagocytosing cells mapped most strongly to the rim of MS plaques. Interestingly, snRNA-seq identified phagocytosing microglia and/or macrophages by their ingestion and perinuclear import of myelin transcripts, confirmed by functional mouse and human culture assays. Our findings indicate lineage- and region-specific transcriptomic changes associated with selective cortical neuron damage and glial activation contributing to MS lesion progression.
Collapse
|
913
|
Bertucci C, Koppes R, Dumont C, Koppes A. Neural responses to electrical stimulation in 2D and 3D in vitro environments. Brain Res Bull 2019; 152:265-284. [PMID: 31323281 DOI: 10.1016/j.brainresbull.2019.07.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/29/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
Electrical stimulation (ES) to manipulate the central (CNS) and peripheral nervous system (PNS) has been explored for decades, recently gaining momentum as bioelectronic medicine advances. The application of ES in vitro to modulate a variety of cellular functions, including regenerative potential, migration, and stem cell fate, are being explored to aid neural degeneration, dysfunction, and injury. This review describes the materials and approaches for the application of ES to the PNS and CNS microenvironments, towards an improved understanding of how ES can be harnessed for beneficial clinical applications. Emphasized are some recent advances in ES, including conductive polymers, methods of charge transfer, impact on neural cells, and a brief overview of alternative methodologies for cellular targeting including magneto, ultrasonic, and optogenetic stimulation. This review will examine how heterogenous cell populations, including neurons, glia, and neural stem cells respond to a wide range of conductive 2D and 3D substrates, stimulation regimes, known mechanisms of response, and how cellular sources impact the response to ES.
Collapse
Affiliation(s)
- Christopher Bertucci
- Northeastern University, Department of Chemical Engineering, Boston, MA, 02115, United States.
| | - Ryan Koppes
- Northeastern University, Department of Chemical Engineering, Boston, MA, 02115, United States.
| | - Courtney Dumont
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, 33146, United States.
| | - Abigail Koppes
- Northeastern University, Department of Chemical Engineering, Boston, MA, 02115, United States; Department of Biology, Boston, 02115, MA, United States.
| |
Collapse
|
914
|
Unal DB, Caliari SR, Lampe KJ. Engineering biomaterial microenvironments to promote myelination in the central nervous system. Brain Res Bull 2019; 152:159-174. [PMID: 31306690 DOI: 10.1016/j.brainresbull.2019.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 06/09/2019] [Accepted: 07/08/2019] [Indexed: 01/01/2023]
Abstract
Promoting remyelination and/or minimizing demyelination are key therapeutic strategies under investigation for diseases and injuries like multiple sclerosis (MS), spinal cord injury, stroke, and virus-induced encephalopathy. Myelination is essential for efficacious neuronal signaling. This myelination process is originated by oligodendrocyte progenitor cells (OPCs) in the central nervous system (CNS). Resident OPCs are capable of both proliferation and differentiation, and also migration to demyelinated injury sites. OPCs can then engage with these unmyelinated or demyelinated axons and differentiate into myelin-forming oligodendrocytes (OLs). However this process is frequently incomplete and often does not occur at all. Biomaterial strategies can now be used to guide OPC and OL development with the goal of regenerating healthy myelin sheaths in formerly damaged CNS tissue. Growth and neurotrophic factors delivered from such materials can promote proliferation of OPCs or differentiation into OLs. While cell transplantation techniques have been used to replace damaged cells in wound sites, they have also resulted in poor transplant cell viability, uncontrollable differentiation, and poor integration into the host. Biomaterial scaffolds made from extracellular matrix (ECM) mimics that are naturally or synthetically derived can improve transplanted cell survival, support both transplanted and endogenous cell populations, and direct their fate. In particular, stiffness and degradability of these scaffolds are two parameters that can influence the fate of OPCs and OLs. The future outlook for biomaterials research includes 3D in vitro models of myelination / remyelination / demyelination to better mimic and study these processes. These models should provide simple relationships of myelination to microenvironmental biophysical and biochemical properties to inform improved therapeutic approaches.
Collapse
Affiliation(s)
- Deniz B Unal
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, United States
| | - Steven R Caliari
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, United States; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, United States
| | - Kyle J Lampe
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, United States.
| |
Collapse
|
915
|
The astrocyte transcriptome in EAE optic neuritis shows complement activation and reveals a sex difference in astrocytic C3 expression. Sci Rep 2019; 9:10010. [PMID: 31292459 PMCID: PMC6620300 DOI: 10.1038/s41598-019-46232-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/25/2019] [Indexed: 01/30/2023] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory multifocal disorder. Optic neuritis is common in MS and leads to visual disability. No current treatments repair this damage. Discerning gene expression changes within specific cell types in optic nerve (ON) may suggest new treatment targets for visual disability in MS. Astrocytes are pivotal regulators of neuroinflammation, playing either detrimental or beneficial roles. Here, we used RiboTag technology to characterize the astrocyte-specific transcriptome in ON in the experimental autoimmune encephalomyelitis (EAE) model of MS. RNA sequencing analysis showed the Complement Cascade and Cholesterol Biosynthesis Pathways as the most enriched and de-enriched pathways, respectively, in ON astrocytes in EAE. Expression of complement component 3 (C3) was confirmed to be increased in ON astrocytes at the protein level during EAE. A bigger increase in C3 expressing ON astrocytes was found in EAE females versus healthy females, as compared to that in EAE males versus healthy males. Also, there was worse retinal ganglion cell (RGC) and axonal loss in EAE females. Regression analyses showed a negative correlation between C3 expressing astrocytes and RGC density. This cell-specific and sex-specific investigation of the optic nerve provides targets for the development of therapeutic strategies tailored for optic neuritis in MS.
Collapse
|
916
|
Li T, Chen X, Zhang C, Zhang Y, Yao W. An update on reactive astrocytes in chronic pain. J Neuroinflammation 2019; 16:140. [PMID: 31288837 PMCID: PMC6615111 DOI: 10.1186/s12974-019-1524-2] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022] Open
Abstract
Chronic pain is a critical clinical problem with an increasing prevalence. However, there are limited effective prevention measures and treatments for chronic pain. Astrocytes are the most abundant glial cells in the central nervous system and play important roles in both physiological and pathological conditions. Over the past few decades, a growing body of evidence indicates that astrocytes are involved in the regulation of chronic pain. Recently, reactive astrocytes were further classified into A1 astrocytes and A2 astrocytes according to their functions. After nerve injury, A1 astrocytes can secrete neurotoxins that induce rapid death of neurons and oligodendrocytes, whereas A2 astrocytes promote neuronal survival and tissue repair. These findings can well explain the dual effects of reactive astrocytes in central nervous injury and diseases. In this review, we will summarise the (1) changes in the morphology and function of astrocytes after noxious stimulation and nerve injury, (2) molecular regulators and signalling mechanisms involved in the activation of astrocytes and chronic pain, (3) the role of spinal and cortical astrocyte activation in chronic pain, and (4) the roles of different subtypes of reactive astrocytes (A1 and A2 phenotypes) in nerve injury that is associated with chronic pain. This review provides updated information on the role of astrocytes in the regulation of chronic pain. In particular, we discuss recent findings about A1 and A2 subtypes of reactive astrocytes and make several suggestions for potential therapeutic targets for chronic pain.
Collapse
Affiliation(s)
- Ting Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuhui Chen
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chuanhan Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenlong Yao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
917
|
Kroner A, Rosas Almanza J. Role of microglia in spinal cord injury. Neurosci Lett 2019; 709:134370. [PMID: 31283964 DOI: 10.1016/j.neulet.2019.134370] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
Myeloid cells are important effector cells in the injured spinal cord tissue. Microglia and monocyte-derived macrophages serve important functions in the injured spinal cord, and their distinctive roles can now be studied more efficiently with the help of reporter mice and cell specific markers that were described in recent years. Focusing on microglia, this review discusses the microglial response to injury, microglia specific effects and the interaction between microglia and other cell types in the injured spinal cord.
Collapse
Affiliation(s)
- Antje Kroner
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States; Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, United States.
| | - Jose Rosas Almanza
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States; Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, United States
| |
Collapse
|
918
|
Su Y, Chen Z, Du H, Liu R, Wang W, Li H, Ning B. Silencing miR-21 induces polarization of astrocytes to the A2 phenotype and improves the formation of synapses by targeting glypican 6 via the signal transducer and activator of transcription-3 pathway after acute ischemic spinal cord injury. FASEB J 2019; 33:10859-10871. [PMID: 31266356 DOI: 10.1096/fj.201900743r] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ischemic spinal cord injury (ISCI) results in the motor sensory dysfunction of the limbs below the injury site. In response to the injury, astrocytes develop into neuroprotective astrocytes [(neurotrophic reactive astrocytes (A2s)] to mitigate the damage. MicroRNA (miR)-21 can promote the development of neuroinflammation in previous studies. Our aim was to investigate the effect of miR-21 on its polarization. We used the abdominal aortic occlusion model in vivo. Immunohistochemistry was used to detect the distribution of A2s in the spinal cord. We used an oxygen glucose deprivation method to model astrocytes ischemia in vitro and tested proliferation, migration, and excitability of A2s using an 5-ethynyl -2'-deoxyuridine kit, wound scratch assay, and calcium-ion probe. After adjustment, we detected the model and target genes of A2s using PCR, Western blot, immunofluorescence, and chromatin immunoprecipitation. We demonstrated in vivo that naive astrocytes were transformed into A2s by ischemia. And in vitro miR-21, which can regulate the signal transducer and activator of transcription-3 pathway, can transform neurotoxic reactive astrocyte into A2. Moreover, we also verified the mechanism of A2s promoting synaptic formation and nerve growth. miR-21 is a switch to regulate the polarization of reactive astrocyte, and it promoted synapsis formation and nerites growth after acute ISCI.-Su, Y., Chen, Z., Du, H., Liu, R., Wang, W., Li, H., Ning, B. Silencing miR-21 induces polarization of astrocytes to the A2 phenotype and improves the formation of synapses by targeting glypican 6 via the signal transducer and activator of transcription-3 pathway after acute ischemic spinal cord injury.
Collapse
Affiliation(s)
- Yanlin Su
- Jinan Central Hospital, Shandong University, Jinan, China.,Shandong First Medical University, Taian, China
| | - Zhe Chen
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Hongxia Du
- Jinan Central Hospital, Shandong University, Jinan, China
| | - Ronghan Liu
- Jinan Central Hospital, Shandong University, Jinan, China
| | - Wenzhao Wang
- Jinan Central Hospital, Shandong University, Jinan, China
| | - Hongfei Li
- Jinan Central Hospital, Shandong University, Jinan, China
| | - Bin Ning
- Jinan Central Hospital, Shandong University, Jinan, China
| |
Collapse
|
919
|
Effects of Athermal Shortwave Diathermy Treatment on Somatosensory Evoked Potentials and Motor Evoked Potentials in Rats With Spinal Cord Injury. Spine (Phila Pa 1976) 2019; 44:E749-E758. [PMID: 31205164 DOI: 10.1097/brs.0000000000002980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A study on shortwave diathermy (SWD) versus no treatment following induced spinal cord injury (SCI) in rats. OBJECTIVE To investigate the effects of athermal SWD treatment on somatosensory evoked potentials (SEPs) and motor evoked potentials (MEPs) and hindlimb movements in rats with SCI. SUMMARY OF BACKGROUND DATA SWD has been proven to improve vascular circulation and reduce inflammation. However, there have been few studies on neuroprotective effect of SWD on SCI. METHODS Twenty-four female Sprague-Dawley (SD) rats were randomly divided into four groups: sham, SCI, SWD, and intact groups. The SCI model was established using the modified Allen weight-drop method. The SWD group received 15 sessions of athermal SWD treatment over a 3-week period of time at 24 hours after SCI. While the sham group and SCI group received no treatment after surgery. Hindlimb movements were evaluated by the Basso, Beattie, and Bresnahan (BBB) scale before surgery, and on days 1, 7, 14, and 21 after the surgery, respectively. The SEP and MEP measurements were simultaneously performed to detect the responses of neural conduction. RESULTS The week-by-week BBB scores showed a gradual improvement in the rats of both SCI and SWD groups from the first week to the end of the study; however, the BBB scores of the SWD group were higher than those of the SCI group over the course of 3 weeks. Data from the SEP and MEP measurements showed a significant improvement in the SWD group compared with the SCI group at each time point of observation, with a more prominent increase of amplitude and a more evident reduction of latency. There was a linear correlation between the BBB scores and the latency and amplitude of SEPs or MEPs. CONCLUSION Athermal SWD treatment might facilitate the recovery of locomotor function and exert neuroprotective effect on the SCI. LEVEL OF EVIDENCE N/A.
Collapse
|
920
|
Refolo V, Stefanova N. Neuroinflammation and Glial Phenotypic Changes in Alpha-Synucleinopathies. Front Cell Neurosci 2019; 13:263. [PMID: 31263402 PMCID: PMC6585624 DOI: 10.3389/fncel.2019.00263] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/28/2019] [Indexed: 01/10/2023] Open
Abstract
The role of neuroinflammation has been increasingly recognized in the field of neurodegenerative diseases. Many studies focusing on the glial cells involved in the inflammatory responses of the brain, namely microglia and astroglia, have over the years pointed out the dynamic and changing behavior of these cells, accompanied by different morphologies and activation forms. This is particularly evident in diseased conditions, where glia react to any shift from homeostasis, acquiring different phenotypes. Particularly for microglia, it has soon become clear that such phenotypes are multiple, as multiple are the functions related to them. Several approaches have over time revealed different facets of microglial phenotypic diversity, and advanced genetic analyses, in recent years, have added new insights into microglial heterogeneity, opening novel scenarios that researchers have just started to explore. Among neurodegenerative diseases, an important section is represented by alpha-synucleinopathies. Here alpha-synuclein accumulates abnormally in the brain and, depending on its pattern of distribution, leads to the development of different clinical conditions. Also for these proteinopathies, neuroinflammation and glial activation have been identified as constant and crucial factors during disease development. In the present review we will address the current literature about glial phenotypic changes with respect to alpha-synucleinopathies, as well as consider the pathophysiological and therapeutic implications of such a dynamic cellular behavior.
Collapse
Affiliation(s)
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
921
|
Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma. Nat Commun 2019; 10:2541. [PMID: 31186414 PMCID: PMC6559986 DOI: 10.1038/s41467-019-10493-6] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 05/14/2019] [Indexed: 02/06/2023] Open
Abstract
Reactive astrocytes evolve after brain injury, inflammatory and degenerative diseases, whereby they undergo transcriptomic re-programming. In malignant brain tumors, their function and crosstalk to other components of the environment is poorly understood. Here we report a distinct transcriptional phenotype of reactive astrocytes from glioblastoma linked to JAK/STAT pathway activation. Subsequently, we investigate the origin of astrocytic transformation by a microglia loss-of-function model in a human organotypic slice model with injected tumor cells. RNA-seq based gene expression analysis of astrocytes reveals a distinct astrocytic phenotype caused by the coexistence of microglia and astrocytes in the tumor environment, which leads to a large release of anti-inflammatory cytokines such as TGFβ, IL10 and G-CSF. Inhibition of the JAK/STAT pathway shifts the balance of pro- and anti-inflammatory cytokines towards a pro-inflammatory environment. The complex interaction of astrocytes and microglia cells promotes an immunosuppressive environment, suggesting that tumor-associated astrocytes contribute to anti-inflammatory responses. Astrocytes play important roles in neuroinflammatory diseases. Here the authors characterize human glioblastoma-associated astrocytes by gene expression and demonstrate their immunosuppressive role promoted by interactions with tumor and microglia cells in an organotypic model.
Collapse
|
922
|
Priego N, Valiente M. The Potential of Astrocytes as Immune Modulators in Brain Tumors. Front Immunol 2019; 10:1314. [PMID: 31244853 PMCID: PMC6579886 DOI: 10.3389/fimmu.2019.01314] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022] Open
Abstract
The neuro-immune axis has emerged as a key aspect to understand the normal function of the Central Nervous System (CNS) as well as the pathophysiology of many brain disorders. As such, it may represent a promising source for novel therapeutic targets. Glial cells, and in particular the extensively studied microglia, play important roles in brain disorders. Astrocytes, in their reactive state, have been shown to positively and negatively modulate the progression of multiple CNS disorders. These seemingly opposing effects, might stem from their underlying heterogeneity, an aspect that has recently come to light. In this article we will discuss the link between reactive astrocytes and the neuro-immune axis with a perspective on their potential importance in brain tumors. Based on the gained knowledge from studies in other CNS disorders, reactive astrocytes are undoubtfully emerging as a key component of the neuro-immune axis, with ability to modulate both the innate and adaptive branches of the immune system. Lastly, we will discuss how we can exploit our improved understanding of the basic biology of astrocytes to further enhance the efficacy of emerging immune-based therapies in primary brain tumors and brain metastasis.
Collapse
Affiliation(s)
- Neibla Priego
- Brain Metastasis Group, Molecular Oncology Programme, National Cancer Research Center (CNIO), Madrid, Spain
| | - Manuel Valiente
- Brain Metastasis Group, Molecular Oncology Programme, National Cancer Research Center (CNIO), Madrid, Spain
| |
Collapse
|
923
|
Katoh H, Yokota K, Fehlings MG. Regeneration of Spinal Cord Connectivity Through Stem Cell Transplantation and Biomaterial Scaffolds. Front Cell Neurosci 2019; 13:248. [PMID: 31244609 PMCID: PMC6563678 DOI: 10.3389/fncel.2019.00248] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/17/2019] [Indexed: 12/20/2022] Open
Abstract
Significant progress has been made in the treatment of spinal cord injury (SCI). Advances in post-trauma management and intensive rehabilitation have significantly improved the prognosis of SCI and converted what was once an “ailment not to be treated” into a survivable injury, but the cold hard fact is that we still do not have a validated method to improve the paralysis of SCI. The irreversible functional impairment of the injured spinal cord is caused by the disruption of neuronal transduction across the injury lesion, which is brought about by demyelination, axonal degeneration, and loss of synapses. Furthermore, refractory substrates generated in the injured spinal cord inhibit spontaneous recovery. The discovery of the regenerative capability of central nervous system neurons in the proper environment and the verification of neural stem cells in the spinal cord once incited hope that a cure for SCI was on the horizon. That hope was gradually replaced with mounting frustration when neuroprotective drugs, cell transplantation, and strategies to enhance remyelination, axonal regeneration, and neuronal plasticity demonstrated significant improvement in animal models of SCI but did not translate into a cure in human patients. However, recent advances in SCI research have greatly increased our understanding of the fundamental processes underlying SCI and fostered increasing optimism that these multiple treatment strategies are finally coming together to bring about a new era in which we will be able to propose encouraging therapies that will lead to appreciable improvements in SCI patients. In this review, we outline the pathophysiology of SCI that makes the spinal cord refractory to regeneration and discuss the research that has been done with cell replacement and biomaterial implantation strategies, both by itself and as a combined treatment. We will focus on the capacity of these strategies to facilitate the regeneration of neural connectivity necessary to achieve meaningful functional recovery after SCI.
Collapse
Affiliation(s)
- Hiroyuki Katoh
- Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada.,Department of Orthopaedic Surgery - Surgical Sciences, School of Medicine, Tokai University, Tokyo, Japan
| | - Kazuya Yokota
- Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada.,Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, University of Toronto, Toronto, ON, Canada.,Spine Program, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
924
|
Zhou X, Wu Q, Lu Y, Zhang X, Lv S, Shao J, Zhou Y, Chen J, Hou L, Huang C, Zhang X. Crosstalk between soluble PDGF-BB and PDGFRβ promotes astrocytic activation and synaptic recovery in the hippocampus after subarachnoid hemorrhage. FASEB J 2019; 33:9588-9601. [PMID: 31162947 DOI: 10.1096/fj.201900195r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Platelet-derived growth factor receptor β (PDGFRβ) dynamically changes after brain injury, possibly mediating the neuroprotective role of soluble homodimers of the platelet-derived growth factor β subunit (PDGF-BB) that is secreted by microcirculation cells. The aim of this study was to determine whether binding of PDGF-BB to astrocytic PDGFRβ enhanced crosstalk among the various components of the neurovascular unit, leading to synaptic recovery after subarachnoid hemorrhage (SAH). The soluble PDGF-BB from the cerebrospinal fluid (CSF) of patients with SAH was measured. The relationship between PDGF-BB treatment and astrocytic PDGFRβ signaling was further explored in vivo and in vitro in experimental SAH models. Compared with the levels in the control samples, the PDGF-BB protein levels in the CSF of patients with SAH were significantly increased. After the generation of experimental SAH, astrocyte activation markers were markedly induced by the binding of PDGF-BB to astrocytic PDGFRβ, accompanied by improved levels of synaptic recovery and cognitive function. Soluble PDGF-BB and astrocytic PDGFRβ signaling are essential for the neuroprotective effect in the hippocampus and the coculture system in vitro after SAH that otherwise leads to cognitive dysfunction and neuronal damage.-Zhou, X., Wu, Q., Lu, Y., Zhang, X., Lv, S., Shao, J., Zhou, Y., Chen, J., Hou, L., Huang, C., Zhang, X. Crosstalk between soluble PDGF-BB and PDGFRβ promotes astrocytic activation and synaptic recovery in the hippocampus after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Xiaoming Zhou
- Department of Neurosurgery, Changzheng Hospital-Second Military Medical University, Shanghai, China
| | - Qi Wu
- Department of Neurosurgery, Jinling Hospital,Drum Tower Hospital-Medical School of Nanjing University, Nanjing, China
| | - Yue Lu
- Department of Neurosurgery, Drum Tower Hospital-Medical School of Nanjing University, Nanjing, China; and
| | - Xiangsheng Zhang
- Department of Neurosurgery, Jinling Hospital,Drum Tower Hospital-Medical School of Nanjing University, Nanjing, China
| | - Shengyin Lv
- Department of Neurosurgery, Jinling Hospital-School of Medicine, Southern Medical University, Nanjing, China
| | - Jiang Shao
- Department of Neurosurgery, Jinling Hospital-School of Medicine, Southern Medical University, Nanjing, China
| | - Yuan Zhou
- Department of Neurosurgery, Jinling Hospital,Drum Tower Hospital-Medical School of Nanjing University, Nanjing, China
| | - Jigang Chen
- Department of Neurosurgery, Changzheng Hospital-Second Military Medical University, Shanghai, China
| | - Lijun Hou
- Department of Neurosurgery, Changzheng Hospital-Second Military Medical University, Shanghai, China
| | - Chengguang Huang
- Department of Neurosurgery, Changzheng Hospital-Second Military Medical University, Shanghai, China
| | - Xin Zhang
- Department of Neurosurgery, Jinling Hospital,Drum Tower Hospital-Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
925
|
Mukhamedshina Y, Povysheva T, Nikolenko V, Kuznecov M, Rizvanov A, Chelyshev Y. Upregulation of proteoglycans in the perilesion perimeter in ventral horns after spinal cord injury. Neurosci Lett 2019; 704:220-228. [DOI: 10.1016/j.neulet.2019.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/05/2019] [Accepted: 04/02/2019] [Indexed: 12/18/2022]
|
926
|
Courtine G, Sofroniew MV. Spinal cord repair: advances in biology and technology. Nat Med 2019; 25:898-908. [PMID: 31160817 DOI: 10.1038/s41591-019-0475-6] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
Individuals with spinal cord injury (SCI) can face decades with permanent disabilities. Advances in clinical management have decreased morbidity and improved outcomes, but no randomized clinical trial has demonstrated the efficacy of a repair strategy for improving recovery from SCI. Here, we summarize recent advances in biological and engineering strategies to augment neuroplasticity and/or functional recovery in animal models of SCI that are pushing toward clinical translation.
Collapse
Affiliation(s)
- Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland. .,Department of Neurosurgery, University Hospital Lausanne (CHUV), Lausanne, Switzerland.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
927
|
Cohen J, Torres C. Astrocyte senescence: Evidence and significance. Aging Cell 2019; 18:e12937. [PMID: 30815970 PMCID: PMC6516680 DOI: 10.1111/acel.12937] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/14/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Astrocytes participate in numerous aspects of central nervous system (CNS) physiology ranging from ion balance to metabolism, and disruption of their physiological roles can therefore be a contributor to CNS dysfunction and pathology. Cellular senescence, one of the mechanisms of aging, has been proposed as a central component of the age dependency of neurodegenerative disorders. Cumulative evidence supports an integral role of astrocytes in the initiation and progression of neurodegenerative disease and cognitive decline with aging. The loss of astrocyte function or the gain of neuroinflammatory function as a result of cellular senescence could have profound implications for the aging brain and neurodegenerative disorders, and we propose the term “astrosenescence” to describe this phenotype. This review summarizes the current evidence pertaining to astrocyte senescence from early evidence, in vitro characterization and relationship to age‐related neurodegenerative disease. We discuss the significance of targeting senescent astrocytes as a novel approach toward therapies for age‐associated neurodegenerative disease.
Collapse
Affiliation(s)
- Justin Cohen
- Department of Pathology and Laboratory Medicine Drexel University College of Medicine Philadelphia Pennsylvania
| | - Claudio Torres
- Department of Pathology and Laboratory Medicine Drexel University College of Medicine Philadelphia Pennsylvania
| |
Collapse
|
928
|
Ge XL, Wang JL, Liu X, Zhang J, Liu C, Guo L. Inhibition of miR-19a protects neurons against ischemic stroke through modulating glucose metabolism and neuronal apoptosis. Cell Mol Biol Lett 2019; 24:37. [PMID: 31168302 PMCID: PMC6545018 DOI: 10.1186/s11658-019-0160-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
Background Accumulating evidence has shown that altered microRNA (miR) modulation is implicated in the pathologies of ischemic stroke. However, it is unclear whether and how hsa-miR-19a-3p mediates cerebral ischemic injury. Herein, we investigated the functional role of miR-19a-3p in cerebral ischemic injury and explored its underlying regulatory mechanism. Methods In vivo ischemic/reperfusion (I/R) neuronal injury and in vitro oxygen-glucose deprivation (OGD) were established. Expression of miR-19a-3p was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Glucose uptake, lactate production, and apoptosis were determined. ADIPOR2 was predicted as a target of miR-19a-3p in silico and experimentally validated by qRT-PCR, Western blot analysis and luciferase assay assays. Results MiR-19a expression was significantly downregulated and upregulated in rat neurons and astrocytes, respectively (P < 0.01). A significantly elevated level of miR-19a-3p was found in I/R and OGD models in comparison to sham/control groups (P < 0.01). Expression of the glycolysis enzyme markers LDHA, PKM2, HK2, Glut1 and PDK1, apoptosis-related factors levels, apoptosis, glucose uptake, and lactate production were significantly repressed by both I/R and OGD (P < 0.01 in each case). Moreover, miR-19a-3p mimic aggravated, while miR-19a-3p inhibitor alleviated, the above observations. Adipor2 was predicted and confirmed to be a direct target of miR-19a. Furthermore, restoration of Adipor2 reversed miR-19a-3p-induced effects. Conclusions Collectively, our results indicate that elevated miR-19a-3p mediates cerebral ischemic injury by targeting ADIPOR2. MiR-19a-3p attenuation thus might offer hope of a novel therapeutic target for ischemic stroke injury treatment.
Collapse
Affiliation(s)
- Xiao-Li Ge
- 1Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 China
| | - Jin-Li Wang
- 1Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 China
| | - Xin Liu
- 2Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 China
| | - Jia Zhang
- 3Department of Obstetrics, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 China
| | - Chang Liu
- 4Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 China
| | - Li Guo
- 1Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 China
| |
Collapse
|
929
|
Wellman SM, Li L, Yaxiaer Y, McNamara I, Kozai TDY. Revealing Spatial and Temporal Patterns of Cell Death, Glial Proliferation, and Blood-Brain Barrier Dysfunction Around Implanted Intracortical Neural Interfaces. Front Neurosci 2019; 13:493. [PMID: 31191216 PMCID: PMC6546924 DOI: 10.3389/fnins.2019.00493] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
Improving the long-term performance of neural electrode interfaces requires overcoming severe biological reactions such as neuronal cell death, glial cell activation, and vascular damage in the presence of implanted intracortical devices. Past studies traditionally observe neurons, microglia, astrocytes, and blood-brain barrier (BBB) disruption around inserted microelectrode arrays. However, analysis of these factors alone yields poor correlation between tissue inflammation and device performance. Additionally, these studies often overlook significant biological responses that can occur during acute implantation injury. The current study employs additional histological markers that provide novel information about neglected tissue components-oligodendrocytes and their myelin structures, oligodendrocyte precursor cells, and BBB -associated pericytes-during the foreign body response to inserted devices at 1, 3, 7, and 28 days post-insertion. Our results reveal unique temporal and spatial patterns of neuronal and oligodendrocyte cell loss, axonal and myelin reorganization, glial cell reactivity, and pericyte deficiency both acutely and chronically around implanted devices. Furthermore, probing for immunohistochemical markers that highlight mechanisms of cell death or patterns of proliferation and differentiation have provided new insight into inflammatory tissue dynamics around implanted intracortical electrode arrays.
Collapse
Affiliation(s)
- Steven M. Wellman
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
| | - Lehong Li
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yalikun Yaxiaer
- Eberly College of Science, Pennsylvania State University, University Park, PA, United States
| | - Ingrid McNamara
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Takashi D. Y. Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, United States
| |
Collapse
|
930
|
Huang LJ, Li G, Ding Y, Sun JH, Wu TT, Zhao W, Zeng YS. LINGO-1 deficiency promotes nerve regeneration through reduction of cell apoptosis, inflammation, and glial scar after spinal cord injury in mice. Exp Neurol 2019; 320:112965. [PMID: 31132364 DOI: 10.1016/j.expneurol.2019.112965] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/14/2019] [Accepted: 05/23/2019] [Indexed: 12/16/2022]
Abstract
Leucine-rich repeat and immunoglobulin domain-containing protein 1 (LINGO-1) is a transmembrane protein that negatively regulates neural regeneration in the central nervous system. LINGO-1 expression is up-regulated after central nerve injury, and is accompanied by cell death. Both LINGO-1 and cell death in the injury microenvironment are thought to limit neural regeneration, but the relationship between LINGO-1 and cell death has not been characterized. To investigate whether LINGO-1 deletion improves the spinal cord microenvironment after spinal cord injury (SCI) and contributes to cell survival, we generated LINGO-1 knockout (KO) mice. These mice and wild-type control mice were subjected to spinal cord transection. Fourteen days after spinal cord transection, cell apoptosis, inflammation, glial scar, and growth of nerve fibers were evaluated by immunostaining. The results showed that LINGO-1 KO mice demonstrated a profound reduction in expression of caspase-3, transferase-mediated deoxyuridine triphosphate biotin nick end labeling (TUNEL), ionized calcium binding adapter molecule 1 (IBA1), glial fibrillary acidic protein (GFAP), and chondroitin sulfate proteoglycans (CSPGs) compared to controls. In contrast, expression of neurofilament (NF) at the SCI site in LINGO-1 KO mice was markedly increased compared to that in wild-type mice. These results suggested that LINGO-1 plays a critical role in the injury microenvironment in processes such as cell death, inflammatory response, and glial scar formation. Importantly, LINGO-1 deletion and a positive microenvironment may exert synergistic effects to promote nerve fiber regeneration. Therefore, inhibition of LINGO-1 may be a therapeutic strategy to promote neural regeneration following SCI.
Collapse
Affiliation(s)
- Li-Jun Huang
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ying Ding
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Jia-Hui Sun
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ting-Ting Wu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei Zhao
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou 510120, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
931
|
Hartmann K, Sepulveda-Falla D, Rose IVL, Madore C, Muth C, Matschke J, Butovsky O, Liddelow S, Glatzel M, Krasemann S. Complement 3 +-astrocytes are highly abundant in prion diseases, but their abolishment led to an accelerated disease course and early dysregulation of microglia. Acta Neuropathol Commun 2019; 7:83. [PMID: 31118110 PMCID: PMC6530067 DOI: 10.1186/s40478-019-0735-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/13/2019] [Indexed: 01/01/2023] Open
Abstract
Astrogliosis and activation of microglia are hallmarks of prion diseases in humans and animals. Both were viewed to be rather independent events in disease pathophysiology, with proinflammatory microglia considered to be the potential neurotoxic species at late disease stages. Recent investigations have provided substantial evidence that a proinflammatory microglial cytokine cocktail containing TNF-α, IL-1α and C1qa reprograms a subset of astrocytes to change their expression profile and phenotype, thus becoming neurotoxic (designated as A1-astrocytes). Knockout or antibody blockage of the three cytokines abolish formation of A1-astrocytes, therefore, this pathway is of high therapeutic interest in neurodegenerative diseases. Since astrocyte polarization profiles have never been investigated in prion diseases, we performed several analyses and could show that C3+-PrPSc-reactive-astrocytes, which may represent a subtype of A1-astrocytes, are highly abundant in prion disease mouse models and human prion diseases. To investigate their impact on prion disease pathophysiology and to evaluate their potential therapeutic targeting, we infected TNF-α, IL-1α, and C1qa Triple-KO mice (TKO-mice), which do not transit astrocytes into A1, with prions. Although formation of C3+-astrocytes was significantly reduced in prion infected Triple-KO-mice, this did not affect the amount of PrPSc deposition or titers of infectious prions. Detailed characterization of the astrocyte activation signature in thalamus tissue showed that astrocytes in prion diseases are highly activated, showing a mixed phenotype that is distinct from other neurodegenerative diseases and were therefore termed C3+-PrPSc-reactive-astrocytes. Unexpectedly, Triple-KO led to a significant acceleration of prion disease course. While pan-astrocyte and -microglia marker upregulation was unchanged compared to WT-brains, microglial homeostatic markers were lost early in disease in TKO-mice, pointing towards important functions of different glia cell types in prion diseases.
Collapse
|
932
|
Nagai J, Rajbhandari AK, Gangwani MR, Hachisuka A, Coppola G, Masmanidis SC, Fanselow MS, Khakh BS. Hyperactivity with Disrupted Attention by Activation of an Astrocyte Synaptogenic Cue. Cell 2019; 177:1280-1292.e20. [PMID: 31031006 PMCID: PMC6526045 DOI: 10.1016/j.cell.2019.03.019] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/08/2019] [Accepted: 03/07/2019] [Indexed: 11/19/2022]
Abstract
Hyperactivity and disturbances of attention are common behavioral disorders whose underlying cellular and neural circuit causes are not understood. We report the discovery that striatal astrocytes drive such phenotypes through a hitherto unknown synaptic mechanism. We found that striatal medium spiny neurons (MSNs) triggered astrocyte signaling via γ-aminobutyric acid B (GABAB) receptors. Selective chemogenetic activation of this pathway in striatal astrocytes in vivo resulted in acute behavioral hyperactivity and disrupted attention. Such responses also resulted in upregulation of the synaptogenic cue thrombospondin-1 (TSP1) in astrocytes, increased excitatory synapses, enhanced corticostriatal synaptic transmission, and increased MSN action potential firing in vivo. All of these changes were reversed by blocking TSP1 effects. Our data identify a form of bidirectional neuron-astrocyte communication and demonstrate that acute reactivation of a single latent astrocyte synaptogenic cue alters striatal circuits controlling behavior, revealing astrocytes and the TSP1 pathway as therapeutic targets in hyperactivity, attention deficit, and related psychiatric disorders.
Collapse
Affiliation(s)
- Jun Nagai
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Abha K Rajbhandari
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Mohitkumar R Gangwani
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Ayaka Hachisuka
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Giovanni Coppola
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Sotiris C Masmanidis
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Michael S Fanselow
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA
| | - Baljit S Khakh
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA; Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095-1751, USA.
| |
Collapse
|
933
|
Riew TR, Kim S, Jin X, Kim HL, Lee JH, Lee MY. Osteopontin and its spatiotemporal relationship with glial cells in the striatum of rats treated with mitochondrial toxin 3-nitropropionic acid: possible involvement in phagocytosis. J Neuroinflammation 2019; 16:99. [PMID: 31088570 PMCID: PMC6518780 DOI: 10.1186/s12974-019-1489-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022] Open
Abstract
Background Osteopontin (OPN, SPP1) is upregulated in response to acute brain injury, and based on its immunoreactivity, two distinct forms have been identified: intracellular OPN within brain macrophages and small granular OPN, identified as OPN-coated degenerated neurites. This study investigates the spatiotemporal relationship between punctate OPN deposition and astroglial and microglial reactions elicited by 3-nitropropionic acid (3-NP). Methods Male Sprague-Dawley rats were intraperitoneally injected with mitochondrial toxin 3-NP and euthanized at 3, 7, 14, and 28 days. Quantitative and qualitative light and electron microscopic techniques were used to assess the relationship between OPN and glial cells. Statistical significance was determined by Student’s t test or a one-way analysis of variance followed by Tukey’s multiple comparisons test. Results Punctate OPN-immunoreactive profiles were synthesized and secreted by amoeboid-like brain macrophages in the lesion core, but not by reactive astrocytes and activated microglia with a stellate shape in the peri-lesional area. Punctate OPN accumulation was detected only in the lesion core away from reactive astrocytes in the peri-lesional area at day 3, but had direct contact with, and even overlapped with astroglial processes at day 7. The distance between the OPN-positive area and the astrocytic scar significantly decreased from days 3 to 7. By days 14 and 28 post-lesion, when the glial scar was fully formed, punctate OPN distribution mostly overlapped with the astrocytic scar. Three-dimensional reconstructions and quantitative image analysis revealed numerous granular OPN puncta inside the cytoplasm of reactive astrocytes and brain macrophages. Reactive astrocytes showed prominent expression of the lysosomal marker lysosomal-associated membrane protein 1, and ultrastructural analysis confirmed OPN-coated degenerating neurites inside astrocytes, suggesting the phagocytosis of OPN puncta by reactive astrocytes after injury. Conclusions Punctate OPN-immunoreactive profiles corresponded to OPN-coated degenerated neurites, which were closely associated with, or completely engulfed by, the reactive astrocytes forming the astroglial scar in 3-NP lesioned striatum, suggesting that OPN may cause astrocytes to migrate towards these degenerated neurites in the lesion core to establish physical contact with, and possibly, to phagocytose them. Our results provide novel insights essential to understanding the recovery and repair of the central nervous system tissue. Electronic supplementary material The online version of this article (10.1186/s12974-019-1489-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 06591, Republic of Korea
| | - Soojin Kim
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 06591, Republic of Korea
| | - Xuyan Jin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 06591, Republic of Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 06591, Republic of Korea. .,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
934
|
Liu S, Chen Z. Employing Endogenous NSCs to Promote Recovery of Spinal Cord Injury. Stem Cells Int 2019; 2019:1958631. [PMID: 31191666 PMCID: PMC6525819 DOI: 10.1155/2019/1958631] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/07/2019] [Indexed: 12/15/2022] Open
Abstract
Endogenous neural stem cells (NSCs) exist in the central canal of mammalian spinal cords. Under normal conditions, these NSCs remain quiescent and express FoxJ1. After spinal cord injury (SCI), the endogenous NSCs of a heterogeneous nature are activated and proliferate and migrate towards the lesion site and mainly differentiate into astrocytes to repair the injured tissue. In vitro, spinal cord NSCs are multipotent and can differentiate into neurons, astrocytes, and oligodendrocytes. The altered microenvironments after SCI play key roles on the fate determination of activated NSCs, especially on the neuronal specification potential. Studies show that the activated spinal cord NSCs can generate interneurons when transplanted into the adult hippocampus. In addition, the spinal cord NSCs exhibit low immunogenicity in a transplantation context, thus implicating a promising therapeutic potential on SCI recovery. Here, we summarize the characteristics of spinal cord NSCs, especially their properties after injury. With a better understanding of endogenous NSCs under normal and SCI conditions, we may be able to employ endogenous NSCs for SCI repair in the future.
Collapse
Affiliation(s)
- Sumei Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing 100069, China
| |
Collapse
|
935
|
Calvert JS, Grahn PJ, Strommen JA, Lavrov IA, Beck LA, Gill ML, Linde MB, Brown DA, Van Straaten MG, Veith DD, Lopez C, Sayenko DG, Gerasimenko YP, Edgerton VR, Zhao KD, Lee KH. Electrophysiological Guidance of Epidural Electrode Array Implantation over the Human Lumbosacral Spinal Cord to Enable Motor Function after Chronic Paralysis. J Neurotrauma 2019; 36:1451-1460. [PMID: 30430902 PMCID: PMC6482916 DOI: 10.1089/neu.2018.5921] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epidural electrical stimulation (EES) of the spinal cord has been shown to restore function after spinal cord injury (SCI). Characterization of EES-evoked motor responses has provided a basic understanding of spinal sensorimotor network activity related to EES-enabled motor activity of the lower extremities. However, the use of EES-evoked motor responses to guide EES system implantation over the spinal cord and their relation to post-operative EES-enabled function in humans with chronic paralysis attributed to SCI has yet to be described. Herein, we describe the surgical and intraoperative electrophysiological approach used, followed by initial EES-enabled results observed in 2 human subjects with motor complete paralysis who were enrolled in a clinical trial investigating the use of EES to enable motor functions after SCI. The 16-contact electrode array was initially positioned under fluoroscopic guidance. Then, EES-evoked motor responses were recorded from select leg muscles and displayed in real time to determine electrode array proximity to spinal cord regions associated with motor activity of the lower extremities. Acceptable array positioning was determined based on achievement of selective proximal or distal leg muscle activity, as well as bilateral muscle activation. Motor response latencies were not significantly different between intraoperative recordings and post-operative recordings, indicating that array positioning remained stable. Additionally, EES enabled intentional control of step-like activity in both subjects within the first 5 days of testing. These results suggest that the use of EES-evoked motor responses may guide intraoperative positioning of epidural electrodes to target spinal cord circuitry to enable motor functions after SCI.
Collapse
Affiliation(s)
- Jonathan S. Calvert
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | - Peter J. Grahn
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Jeffrey A. Strommen
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota
| | - Igor A. Lavrov
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Lisa A. Beck
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota
| | - Megan L. Gill
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota
| | - Margaux B. Linde
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota
| | - Desmond A. Brown
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Meegan G. Van Straaten
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota
| | - Daniel D. Veith
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota
| | - Cesar Lopez
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota
| | - Dimitry G. Sayenko
- Department of Integrative Biology and Physiology University of California Los Angeles, Los Angeles, California
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, Texas
| | - Yury P. Gerasimenko
- Department of Integrative Biology and Physiology University of California Los Angeles, Los Angeles, California
- Pavlov Institute of Physiology, St. Petersburg, Russia
| | - V. Reggie Edgerton
- Department of Integrative Biology and Physiology University of California Los Angeles, Los Angeles, California
- Department of Neurobiology, University of California Los Angeles, Los Angeles, California
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California
- Brain Research Institute, University of California Los Angeles, Los Angeles, California
- Institut Guttmann, Hospital de Neurorehabilitació, Institut Universitari adscrit a la Universitat Autònoma de Barcelona, Barcelona, Badalona, Spain
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Kristin D. Zhao
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Kendall H. Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
936
|
The contribution of astrocytes to the neuroinflammatory response in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol 2019; 137:757-783. [PMID: 30847559 DOI: 10.1007/s00401-019-01980-7] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 02/06/2023]
Abstract
Neuroinflammation is the coordinated response of the central nervous system (CNS) to threats to its integrity posed by a variety of conditions, including autoimmunity, pathogens and trauma. Activated astrocytes, in concert with other cellular elements of the CNS and immune system, are important players in the modulation of the neuroinflammatory response. During neurological disease, they produce and respond to cellular signals that often lead to dichotomous processes, which can promote further damage or contribute to repair. This occurs also in multiple sclerosis (MS), where astrocytes are now recognized as key components of its immunopathology. Evidence supporting this role has emerged not only from studies in MS patients, but also from animal models, among which the experimental autoimmune encephalomyelitis (EAE) model has proved especially instrumental. Based on this premise, the purpose of the present review is to summarize the current knowledge of astrocyte behavior in MS and EAE. Following a brief description of the pathological characteristics of the two diseases and the main functional roles of astrocytes in CNS physiology, we will delve into the specific responses of this cell population, analyzing MS and EAE in parallel. We will define the temporal and anatomical profile of astroglial activation, then focus on key processes they participate in. These include: (1) production and response to soluble mediators (e.g., cytokines and chemokines), (2) regulation of oxidative stress, and (3) maintenance of BBB integrity and function. Finally, we will review the state of the art on the available methods to measure astroglial activation in vivo in MS patients, and how this could be exploited to optimize diagnosis, prognosis and treatment decisions. Ultimately, we believe that integrating the knowledge obtained from studies in MS and EAE may help not only better understand the pathophysiology of MS, but also uncover new signals to be targeted for therapeutic intervention.
Collapse
|
937
|
Gene expression in oligodendrocytes during remyelination reveals cholesterol homeostasis as a therapeutic target in multiple sclerosis. Proc Natl Acad Sci U S A 2019; 116:10130-10139. [PMID: 31040210 PMCID: PMC6525478 DOI: 10.1073/pnas.1821306116] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Regional differences in neurons, astrocytes, oligodendrocytes, and microglia exist in the brain during health, and regional differences in the transcriptome may occur for each cell type during neurodegeneration. Multiple sclerosis (MS) is multifocal, and regional differences in the astrocyte transcriptome occur in experimental autoimmune encephalomyelitis (EAE), an MS model. MS and EAE are characterized by inflammation, demyelination, and axonal damage, with minimal remyelination. Here, RNA-sequencing analysis of MS tissues from six brain regions suggested a focus on oligodendrocyte lineage cells (OLCs) in corpus callosum. Olig1-RiboTag mice were used to determine the translatome of OLCs in vivo in corpus callosum during the remyelination phase of a chronic cuprizone model with axonal damage. Cholesterol-synthesis gene pathways dominated as the top up-regulated pathways in OLCs during remyelination. In EAE, remyelination was induced with estrogen receptor-β (ERβ) ligand treatment, and up-regulation of cholesterol-synthesis gene expression was again observed in OLCs. ERβ-ligand treatment in the cuprizone model further increased cholesterol synthesis gene expression and enhanced remyelination. Conditional KOs of ERβ in OLCs demonstrated that increased cholesterol-synthesis gene expression in OLCs was mediated by direct effects in both models. To address this direct effect, ChIP assays showed binding of ERβ to the putative estrogen-response element of a key cholesterol-synthesis gene (Fdps). As fetal OLCs are exposed in utero to high levels of estrogens in maternal blood, we discuss how remyelinating properties of estrogen treatment in adults during injury may recapitulate normal developmental myelination through targeting cholesterol homeostasis in OLCs.
Collapse
|
938
|
Pereira IM, Marote A, Salgado AJ, Silva NA. Filling the Gap: Neural Stem Cells as A Promising Therapy for Spinal Cord Injury. Pharmaceuticals (Basel) 2019; 12:ph12020065. [PMID: 31035689 PMCID: PMC6631328 DOI: 10.3390/ph12020065] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) can lead to severe motor, sensory and social impairments having a huge impact on patients’ lives. The complex and time-dependent SCI pathophysiology has been hampering the development of novel and effective therapies. Current treatment options include surgical interventions, to stabilize and decompress the spinal cord, and rehabilitative care, without providing a cure for these patients. Novel therapies have been developed targeting different stages during trauma. Among them, cell-based therapies hold great potential for tissue regeneration after injury. Neural stem cells (NSCs), which are multipotent cells with inherent differentiation capabilities committed to the neuronal lineage, are especially relevant to promote and reestablish the damaged neuronal spinal tracts. Several studies demonstrate the regenerative effects of NSCs in SCI after transplantation by providing neurotrophic support and restoring synaptic connectivity. Therefore, human clinical trials have already been launched to assess safety in SCI patients. Here, we review NSC-based experimental studies in a SCI context and how are they currently being translated into human clinical trials.
Collapse
Affiliation(s)
- Inês M Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Ana Marote
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
939
|
Li J, Khankan RR, Caneda C, Godoy MI, Haney MS, Krawczyk MC, Bassik MC, Sloan SA, Zhang Y. Astrocyte-to-astrocyte contact and a positive feedback loop of growth factor signaling regulate astrocyte maturation. Glia 2019; 67:1571-1597. [PMID: 31033049 PMCID: PMC6557696 DOI: 10.1002/glia.23630] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 03/31/2019] [Accepted: 04/05/2019] [Indexed: 01/09/2023]
Abstract
Astrocytes are critical for the development and function of the central nervous system. In developing brains, immature astrocytes undergo morphological, molecular, cellular, and functional changes as they mature. Although the mechanisms that regulate the maturation of other major cell types in the central nervous system such as neurons and oligodendrocytes have been extensively studied, little is known about the cellular and molecular mechanisms that control astrocyte maturation. Here, we identified molecular markers of astrocyte maturation and established an in vitro assay for studying the mechanisms of astrocyte maturation. Maturing astrocytes in vitro exhibit similar molecular changes and represent multiple molecular subtypes of astrocytes found in vivo. Using this system, we found that astrocyte‐to‐astrocyte contact strongly promotes astrocyte maturation. In addition, secreted signals from microglia, oligodendrocyte precursor cells, or endothelial cells affect a small subset of astrocyte genes but do not consistently change astrocyte maturation. To identify molecular mechanisms underlying astrocyte maturation, we treated maturing astrocytes with molecules that affect the function of tumor‐associated genes. We found that a positive feedback loop of heparin‐binding epidermal growth factor‐like growth factor (HBEGF) and epidermal growth factor receptor (EGFR) signaling regulates astrocytes maturation. Furthermore, HBEGF, EGFR, and tumor protein 53 (TP53) affect the expression of genes important for cilium development, the circadian clock, and synapse function. These results revealed cellular and molecular mechanisms underlying astrocytes maturation with implications for the understanding of glioblastoma.
Collapse
Affiliation(s)
- Jiwen Li
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Rana R Khankan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Christine Caneda
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Marlesa I Godoy
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Michael S Haney
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Mitchell C Krawczyk
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Ye Zhang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California, Los Angeles, California.,Intellectual and Developmental Disabilities Research Center at UCLA, Los Angeles, California.,Brain Research Institute at UCLA, Los Angeles, California.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, Los Angeles, California.,Molecular Biology Institute at UCLA, Los Angeles, California
| |
Collapse
|
940
|
Kostuk EW, Cai J, Iacovitti L. Subregional differences in astrocytes underlie selective neurodegeneration or protection in Parkinson's disease models in culture. Glia 2019; 67:1542-1557. [PMID: 31025779 DOI: 10.1002/glia.23627] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/20/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is characterized by the selective degeneration of dopamine (DA) neurons of the substantia nigra pars compacta (SN), while the neighboring ventral tegmental area (VTA) is relatively spared. The mechanisms underlying this selectivity are not fully understood. Here, we demonstrate a vital role for subregional astrocytes in the protection of VTA DA neurons. We found that elimination of astrocytes in vitro exposes a novel vulnerability of presumably protected VTA DA neurons to the PD mimetic toxin MPP+ , as well as exacerbation of SN DA neuron vulnerability. Conversely, VTA astrocytes protected both VTA and SN DA neurons from MPP+ toxicity in a dose dependent manner, and this protection was mediated via a secreted molecule. RNAseq analysis of isolated VTA and SN astrocytes demonstrated a vast array of transcriptional differences between these two closely related populations demonstrating regional heterogeneity of midbrain astrocytes. We found that GDF15, a member of the TGFβ superfamily which is expressed 230-fold higher in VTA astrocytes than SN, recapitulates neuroprotection of both rat midbrain and iPSC-derived DA neurons, whereas its knockdown conversely diminished this effect. Neuroprotection was likely mediated through the GRFAL receptor expressed on DA neurons. Together; these results suggest that subregional differences in astrocytes underlie the selective degeneration or protection of DA neurons in PD.
Collapse
Affiliation(s)
- Eric Wildon Kostuk
- Department of Neuroscience, Thomas Jefferson University, Farber Institute for Neurosciences, Philadelphia, Pennsylvania
| | - Jingli Cai
- Department of Neuroscience, Thomas Jefferson University, Farber Institute for Neurosciences, Philadelphia, Pennsylvania
| | - Lorraine Iacovitti
- Department of Neuroscience, Thomas Jefferson University, Farber Institute for Neurosciences, Philadelphia, Pennsylvania.,Department of Neurology, Thomas Jefferson University, Farber Institute for Neurosciences, Philadelphia, Pennsylvania.,Department of Neurosurgery, Thomas Jefferson University, Farber Institute for Neurosciences, Philadelphia, Pennsylvania
| |
Collapse
|
941
|
Nelson CM, Lennon VA, Lee H, Krug RG, Kamalova A, Madigan NN, Clark KJ, Windebank AJ, Henley JR. Glucocorticoids Target Ependymal Glia and Inhibit Repair of the Injured Spinal Cord. Front Cell Dev Biol 2019; 7:56. [PMID: 31069223 PMCID: PMC6491705 DOI: 10.3389/fcell.2019.00056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/29/2019] [Indexed: 01/16/2023] Open
Abstract
Following injury, the mammalian spinal cord forms a glial scar and fails to regenerate. In contrast, vertebrate fish spinal cord tissue regenerates significantly to restore function. Cord transection in zebrafish (Danio rerio) initially causes paralysis and neural cell death. Subsequently, ependymal glia proliferate, bipolar glia extend across the lesion, and new neurons are born; axons from spared and nascent neurons extend along trans-lesional glial bridges to restore functional connectivity. Here we report that glucocorticoids, used in the clinical management of spinal cord injury, directly inhibit neural repair by targeting ependymal glia independently of hematogenous cells and microglia. After transecting injury, the glucocorticoid receptor in ependymal glia is regulated differentially in zebrafish (becoming inactive) vs. the rat (becoming active). Glucocorticoid blockade of neural regeneration via a direct effect on ependymal glia has important therapeutic implications for the putative benefit of corticosteroids in early management of spinal cord injury.
Collapse
Affiliation(s)
- Craig M Nelson
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Vanda A Lennon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States.,Department of Neurology, Mayo Clinic, Rochester, MN, United States.,Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Han Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Randall G Krug
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Aichurok Kamalova
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | | | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | | | - John R Henley
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Department of Physiology and Biomedical Engineering, Mayo Graduate School, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
942
|
Picoli CC, Coimbra-Campos LMC, Guerra DAP, Silva WN, Prazeres PHDM, Costa AC, Magno LAV, Romano-Silva MA, Mintz A, Birbrair A. Pericytes Act as Key Players in Spinal Cord Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1327-1337. [PMID: 31014955 DOI: 10.1016/j.ajpath.2019.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 03/08/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023]
Abstract
Spinal cord injury results in locomotor impairment attributable to the formation of an inhibitory fibrous scar, which prevents axonal regeneration after trauma. The scarcity of knowledge about the molecular and cellular mechanisms involved in scar formation after spinal cord lesion impede the design of effective therapies. Recent studies, by using state-of-the-art technologies, including genetic tracking and blockage of pericytes in combination with optogenetics, reveal that pericyte blockage facilitates axonal regeneration and neuronal integration into the local neural circuitry. Strikingly, a pericyte subset is essential during scarring after spinal cord injury, and its arrest results in motor performance improvement. The arising knowledge from current research will contribute to novel approaches to develop therapies for spinal cord injury. We review novel advances in our understanding of pericyte biology in the spinal cord.
Collapse
Affiliation(s)
- Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Daniel A P Guerra
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Pedro H D M Prazeres
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luiz A V Magno
- Department of Mental Health, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marco A Romano-Silva
- Department of Mental Health, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, New York
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil; Department of Radiology, Columbia University Medical Center, New York, New York.
| |
Collapse
|
943
|
McConnell HL, Li Z, Woltjer RL, Mishra A. Astrocyte dysfunction and neurovascular impairment in neurological disorders: Correlation or causation? Neurochem Int 2019; 128:70-84. [PMID: 30986503 DOI: 10.1016/j.neuint.2019.04.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022]
Abstract
The neurovascular unit, consisting of neurons, astrocytes, and vascular cells, has become the focus of much discussion in the last two decades and emerging literature now suggests an association between neurovascular dysfunction and neurological disorders. In this review, we synthesize the known and suspected contributions of astrocytes to neurovascular dysfunction in disease. Throughout the brain, astrocytes are centrally positioned to dynamically mediate interactions between neurons and the cerebral vasculature, and play key roles in blood-brain barrier maintenance and neurovascular coupling. It is increasingly apparent that the changes in astrocytes in response to a variety of insults to brain tissue -collectively referred to as "reactive astrogliosis" - are not just an epiphenomenon restricted to morphological alterations, but comprise functional changes in astrocytes that contribute to the phenotype of neurological diseases with both beneficial and detrimental effects. In the context of the neurovascular unit, astrocyte dysfunction accompanies, and may contribute to, blood-brain barrier impairment and neurovascular dysregulation, highlighting the need to determine the exact nature of the relationship between astrocyte dysfunction and neurovascular impairments. Targeting astrocytes may represent a new strategy in combinatorial therapeutics for preventing the mismatch of energy supply and demand that often accompanies neurological disorders.
Collapse
Affiliation(s)
- Heather L McConnell
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Zhenzhou Li
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States; Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan City, China
| | - Randall L Woltjer
- Department of Neuropathology, Oregon Health & Science University, Portland, OR, United States
| | - Anusha Mishra
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
944
|
Neuroprotection, Recovery of Function and Endogenous Neurogenesis in Traumatic Spinal Cord Injury Following Transplantation of Activated Adipose Tissue. Cells 2019; 8:cells8040329. [PMID: 30965679 PMCID: PMC6523261 DOI: 10.3390/cells8040329] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/01/2019] [Accepted: 04/06/2019] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating disease, which leads to paralysis and is associated to substantially high costs for the individual and society. At present, no effective therapies are available. Here, the use of mechanically-activated lipoaspirate adipose tissue (MALS) in a murine experimental model of SCI is presented. Our results show that, following acute intraspinal MALS transplantation, there is an engraftment at injury site with the acute powerful inhibition of the posttraumatic inflammatory response, followed by a significant progressive improvement in recovery of function. This is accompanied by spinal cord tissue preservation at the lesion site with the promotion of endogenous neurogenesis as indicated by the significant increase of Nestin-positive cells in perilesional areas. Cells originated from MALS infiltrate profoundly the recipient cord, while the extra-dural fat transplant is gradually impoverished in stromal cells. Altogether, these novel results suggest the potential of MALS application in the promotion of recovery in SCI.
Collapse
|
945
|
Nedeljkovic N. Complex regulation of ecto-5'-nucleotidase/CD73 and A 2AR-mediated adenosine signaling at neurovascular unit: A link between acute and chronic neuroinflammation. Pharmacol Res 2019; 144:99-115. [PMID: 30954629 DOI: 10.1016/j.phrs.2019.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/20/2022]
Abstract
The review summarizes available data regarding the complex regulation of CD73 at the neurovascular unit (NVU) during neuroinflammation. Based on available data we propose the biphasic pattern of CD73 regulation at NVU, with an early attenuation and a postponed up-regulation of CD73 activity. Transient attenuation of CD73 activity on leukocyte/vascular endothelium and leukocyte/astrocyte surface, required for the initiation of a neuroinflammatory response, may be effectuated either by catalytic inhibition of CD73 and/or by shedding of the CD73 molecule from the cell surface, while postponed induction of CD73 is effectuated by transcriptional up-regulation of Nt5e and posttranslational modifications. Neuroinflammatory conditions are also associated with significant enhancement and gain-of-function of A2AR-mediated adenosine signaling. However, in contrast to the temporary prevalence of A2AR over A1R signaling during an acute inflammatory response, prolonged induction of A2AR and resulting perpetual CD73/A2AR coupling may be a contributing factors in the transition between acute and chronic neuroinflammation. Thus, pharmacological targeting of the CD73/A2AR axis may attenuate inflammatory response and ameliorate neurological deficits in chronic neuroinflammatory conditions.
Collapse
Affiliation(s)
- Nadezda Nedeljkovic
- Department of General Physiology and Biophysics, Faculty of Biology University of Belgrade, Studentski trg 3, Belgrade 11001, Serbia.
| |
Collapse
|
946
|
Dickson RG, Lall VK, Ichiyama RM. Enhancing plasticity in spinal sensorimotor circuits following injuries to facilitate recovery of motor control. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
947
|
Astrocytes migrate from human neural stem cell grafts and functionally integrate into the injured rat spinal cord. Exp Neurol 2019; 314:46-57. [DOI: 10.1016/j.expneurol.2019.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/13/2018] [Accepted: 01/12/2019] [Indexed: 11/21/2022]
|
948
|
Affiliation(s)
- Shane A Liddelow
- Neuroscience Institute, NYU School of Medicine, New York, NY, USA.
- Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, USA.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
949
|
Chen HI, Jgamadze D, Lim J, Mensah-Brown K, Wolf JA, Mills JA, Smith DH. Functional Cortical Axon Tracts Generated from Human Stem Cell-Derived Neurons. Tissue Eng Part A 2019; 25:736-745. [PMID: 30648482 DOI: 10.1089/ten.tea.2018.0270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
IMPACT STATEMENT Axon regeneration is negligible in the adult mammalian brain, and thus, white matter damage often leads to permanent neurological deficits. A novel approach for axon repair is the generation of axon tracts in the laboratory setting followed by transplantation of these constructs. This article details a human substrate for this repair strategy. Using the technique of axon stretch growth, functional cortical axon tracts are generated from human pluripotent stem cells at rates of up to 1 mm/day. These results form the basis of a potential patient-specific protocol for cerebral axon transplantation after injury.
Collapse
Affiliation(s)
- H Isaac Chen
- 1 Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,2 Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Dennis Jgamadze
- 1 Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - James Lim
- 1 Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kobina Mensah-Brown
- 1 Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John A Wolf
- 1 Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,2 Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Jason A Mills
- 3 Center for Advanced Retinal and Ocular Therapeutics, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Douglas H Smith
- 1 Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
950
|
Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front Neurol 2019; 10:282. [PMID: 30967837 PMCID: PMC6439316 DOI: 10.3389/fneur.2019.00282] [Citation(s) in RCA: 737] [Impact Index Per Article: 122.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/05/2019] [Indexed: 12/11/2022] Open
Abstract
Traumatic spinal cord injury (SCI) is a life changing neurological condition with substantial socioeconomic implications for patients and their care-givers. Recent advances in medical management of SCI has significantly improved diagnosis, stabilization, survival rate and well-being of SCI patients. However, there has been small progress on treatment options for improving the neurological outcomes of SCI patients. This incremental success mainly reflects the complexity of SCI pathophysiology and the diverse biochemical and physiological changes that occur in the injured spinal cord. Therefore, in the past few decades, considerable efforts have been made by SCI researchers to elucidate the pathophysiology of SCI and unravel the underlying cellular and molecular mechanisms of tissue degeneration and repair in the injured spinal cord. To this end, a number of preclinical animal and injury models have been developed to more closely recapitulate the primary and secondary injury processes of SCI. In this review, we will provide a comprehensive overview of the recent advances in our understanding of the pathophysiology of SCI. We will also discuss the neurological outcomes of human SCI and the available experimental model systems that have been employed to identify SCI mechanisms and develop therapeutic strategies for this condition.
Collapse
Affiliation(s)
- Arsalan Alizadeh
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Spinal Cord Research Center, University of Manitoba, Winnipeg, MB, Canada
| | - Scott Matthew Dyck
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Spinal Cord Research Center, University of Manitoba, Winnipeg, MB, Canada
| | - Soheila Karimi-Abdolrezaee
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Spinal Cord Research Center, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|