901
|
Kabbani N, Olds JL. Does COVID19 Infect the Brain? If So, Smokers Might Be at a Higher Risk. Mol Pharmacol 2020; 97:351-353. [PMID: 32238438 PMCID: PMC7237865 DOI: 10.1124/molpharm.120.000014] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
COVID19 is a devastating global pandemic with epicenters in China, Italy, Spain, and now the United States. While the majority of infected cases appear mild, in some cases, individuals present serious cardiorespiratory complications with possible long-term lung damage. Infected individuals report a range of symptoms from headaches to shortness of breath to taste and smell loss. To that end, less is known about how the virus may impact different organ systems. The SARS-CoV2 virus, which is responsible for COVID19, is highly similar to SARS-CoV. Both viruses have evolved an ability to enter host cells through direct interaction with the angiotensin converting enzyme (ACE) 2 protein at the surface of many cells. Published findings indicate that SARS-CoV can enter the human nervous system with evidence from both postmortem brains and detection in cerebrospinal fluid of infected individuals. Here, we consider the ability of SARS-CoV2 to enter and infect the human nervous system based on the strong expression of the ACE2 target throughout the brain. Moreover, we predict that nicotine exposure through various kinds of smoking (cigarettes, electronic cigarettes, or vape) can increase the risk for COVID19 neuroinfection based on known functional interactions between the nicotinic receptor and ACE2. We advocate for higher surveillance and analysis of neurocomplications in infected cases. SIGNIFICANCE STATEMENT: The COVID19 epidemic has spurred a global public health crisis. While many of the cases requiring hospitalization and intensive medical care center on cardiorespiratory treatment, a growing number of cases present neurological symptoms. Viral entry into the brain now appears a strong possibility with deleterious consequences and an urgent need for addressing.
Collapse
Affiliation(s)
- Nadine Kabbani
- School of Systems Biology, George Mason University, Fairfax, Virginia (N.K.) and Schar School of Policy and Government, George Mason University, Arlington, Virginia (J.L.O.)
| | - James L Olds
- School of Systems Biology, George Mason University, Fairfax, Virginia (N.K.) and Schar School of Policy and Government, George Mason University, Arlington, Virginia (J.L.O.)
| |
Collapse
|
902
|
Impact of SARS-CoV-2 infection on neurodegenerative and neuropsychiatric diseases: A delayed pandemic? NEUROLOGÍA (ENGLISH EDITION) 2020. [PMCID: PMC7205729 DOI: 10.1016/j.nrleng.2020.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction SARS-CoV-2 was first detected in December 2019 in the Chinese city of Wuhan and has since spread across the world. At present, the virus has infected over 1.7 million people and caused over 100 000 deaths worldwide. Research is currently focused on understanding the acute infection and developing effective treatment strategies. In view of the magnitude of the epidemic, we conducted a speculative review of possible medium- and long-term neurological consequences of SARS-CoV-2 infection, with particular emphasis on neurodegenerative and neuropsychiatric diseases of neuroinflammatory origin, based on the available evidence on neurological symptoms of acute SARS-CoV-2 infection. Development We systematically reviewed the available evidence about the pathogenic mechanisms of SARS-CoV-2 infection, the immediate and lasting effects of the cytokine storm on the central nervous system, and the consequences of neuroinflammation for the central nervous system. Conclusions SARS-CoV-2 is a neuroinvasive virus capable of triggering a cytokine storm, with persistent effects in specific populations. Although our hypothesis is highly speculative, the impact of SARS-CoV-2 infection on the onset and progression of neurodegenerative and neuropsychiatric diseases of neuroinflammatory origin should be regarded as the potential cause of a delayed pandemic that may have a major public health impact in the medium to long term. Cognitive and neuropsychological function should be closely monitored in COVID-19 survivors.
Collapse
|
903
|
Upper airway symptoms in coronavirus disease 2019 (COVID-19). Am J Otolaryngol 2020; 41:102474. [PMID: 32278470 PMCID: PMC7128936 DOI: 10.1016/j.amjoto.2020.102474] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 02/08/2023]
|
904
|
Serrano-Castro PJ, Estivill-Torrús G, Cabezudo-García P, Reyes-Bueno JA, Ciano Petersen N, Aguilar-Castillo MJ, Suárez-Pérez J, Jiménez-Hernández MD, Moya-Molina MÁ, Oliver-Martos B, Arrabal-Gómez C, Rodríguez de Fonseca F. Impact of SARS-CoV-2 infection on neurodegenerative and neuropsychiatric diseases: a delayed pandemic? Neurologia 2020; 35:245-251. [PMID: 32364119 PMCID: PMC7164900 DOI: 10.1016/j.nrl.2020.04.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION SARS-CoV-2 was first detected in December 2019 in the Chinese city of Wuhan and has since spread across the world. At present, the virus has infected over 1.7 million people and caused over 100 000 deaths worldwide. Research is currently focused on understanding the acute infection and developing effective treatment strategies. In view of the magnitude of the epidemic, we conducted a speculative review of possible medium- and long-term neurological consequences of SARS-CoV-2 infection, with particular emphasis on neurodegenerative and neuropsychiatric diseases of neuroinflammatory origin, based on the available evidence on neurological symptoms of acute SARS-CoV-2 infection. DEVELOPMENT We systematically reviewed the available evidence about the pathogenic mechanisms of SARS-CoV-2 infection, the immediate and lasting effects of the cytokine storm on the central nervous system, and the consequences of neuroinflammation for the central nervous system. CONCLUSIONS SARS-CoV-2 is a neuroinvasive virus capable of triggering a cytokine storm, with persistent effects in specific populations. Although our hypothesis is highly speculative, the impact of SARS-CoV-2 infection on the onset and progression of neurodegenerative and neuropsychiatric diseases of neuroinflammatory origin should be regarded as the potential cause of a delayed pandemic that may have a major public health impact in the medium to long term. Cognitive and neuropsychological function should be closely monitored in COVID-19 survivors.
Collapse
Affiliation(s)
- P J Serrano-Castro
- Servicio de Neurología, Hospital Regional Universitario de Málaga, Málaga, España; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, España; Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA).
| | - G Estivill-Torrús
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, España; Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA)
| | - P Cabezudo-García
- Servicio de Neurología, Hospital Regional Universitario de Málaga, Málaga, España; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, España; Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA)
| | - J A Reyes-Bueno
- Servicio de Neurología, Hospital Regional Universitario de Málaga, Málaga, España; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, España; Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA)
| | - N Ciano Petersen
- Servicio de Neurología, Hospital Regional Universitario de Málaga, Málaga, España; Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, España; Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA)
| | - M J Aguilar-Castillo
- Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA); Servicio de Análisis Clínicos, Hospital Regional Universitario de Málaga, Málaga, España
| | - J Suárez-Pérez
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, España; Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA)
| | - M D Jiménez-Hernández
- Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA); Servicio de Neurología, Hospital Universitario Virgen del Rocío, Sevilla, España
| | - M Á Moya-Molina
- Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA); Servicio de Neurología, Hospital Universitario Puerta del Mar, Cádiz, España
| | - B Oliver-Martos
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, España; Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA)
| | - C Arrabal-Gómez
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, España; Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA)
| | - F Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, España; Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA)
| |
Collapse
|
905
|
Hernández Ramos F, Palomino García A, Jiménez Hernández M. Neurology during the pandemic. Is COVID-19 changing the organisation of neurology departments? NEUROLOGÍA (ENGLISH EDITION) 2020. [PMCID: PMC7211656 DOI: 10.1016/j.nrleng.2020.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
906
|
Ogier M, Andéol G, Sagui E, Dal Bo G. How to detect and track chronic neurologic sequelae of COVID-19? Use of auditory brainstem responses and neuroimaging for long-term patient follow-up. Brain Behav Immun Health 2020; 5:100081. [PMID: 32427134 PMCID: PMC7227537 DOI: 10.1016/j.bbih.2020.100081] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 02/08/2023] Open
Abstract
This review intends to provide an overview of the current knowledge on neurologic sequelae of COVID-19 and their possible etiology, and, based on available data, proposes possible improvements in current medical care procedures. We conducted a thorough review of the scientific literature on neurologic manifestations of COVID-19, the neuroinvasive propensity of known coronaviruses (CoV) and their possible effects on brain structural and functional integrity. It appears that around one third of COVID-19 patients admitted to intensive care units (ICU) for respiratory difficulties exhibit neurologic symptoms. This may be due to progressive brain damage and dysfunction triggered by severe hypoxia and hypoxemia, heightened inflammation and SARS-CoV-2 dissemination into brain parenchyma, as suggested by current reports and analyses of previous CoV outbreaks. Viral invasion of the brain may particularly target and alter brainstem and thalamic functions and, consequently, result in sensorimotor dysfunctions and psychiatric disorders. Moreover, data collected from other structurally homologous CoV suggest that SARS-CoV-2 infection may lead to brain cell degeneration and demyelination similar to multiple sclerosis (MS). Hence, current evidence warrants further evaluation and long-term follow-up of possible neurologic sequelae in COVID-19 patients. It may be particularly relevant to evaluate brainstem integrity in recovered patients, as it is suspected that this cerebral area may particularly be dysfunctional following SARS-CoV-2 infection. Because CoV infection can potentially lead to chronic neuroinflammation and progressive demyelination, neuroimaging features and signs of MS may also be evaluated in the long term in recovered COVID-19 patients.
Collapse
Affiliation(s)
- Michael Ogier
- French Armed Forces Biomedical Research Institute, 1 place Valérie André, 91220, Brétigny sur Orge, France
| | - Guillaume Andéol
- French Armed Forces Biomedical Research Institute, 1 place Valérie André, 91220, Brétigny sur Orge, France
| | - Emmanuel Sagui
- French Armed Forces Biomedical Research Institute, 1 place Valérie André, 91220, Brétigny sur Orge, France
- European Hospital of Marseille, 6 rue Désirée Clary, 13003, Marseille, France
| | - Gregory Dal Bo
- French Armed Forces Biomedical Research Institute, 1 place Valérie André, 91220, Brétigny sur Orge, France
| |
Collapse
|
907
|
Hernández Ramos FJ, Palomino García A, Jiménez Hernández MD. Neurology during the pandemic. Is COVID-19 changing the organisation of Neurology Departments? Neurologia 2020; 35:269-271. [PMID: 32364118 PMCID: PMC7183930 DOI: 10.1016/j.nrl.2020.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 11/23/2022] Open
Affiliation(s)
- F J Hernández Ramos
- Unidad de Neurosistémicas. Unidad Clínica de Neurología y Neurofisiología, Hospital Universitario Virgen del Rocío, Sevilla, España.
| | - A Palomino García
- Unidad de Neurosistémicas. Unidad Clínica de Neurología y Neurofisiología, Hospital Universitario Virgen del Rocío, Sevilla, España
| | - M D Jiménez Hernández
- Unidad de Neurosistémicas. Unidad Clínica de Neurología y Neurofisiología, Hospital Universitario Virgen del Rocío, Sevilla, España
| |
Collapse
|
908
|
Morris M, Zohrabian VM. Neuroradiologists, Be Mindful of the Neuroinvasive Potential of COVID-19. AJNR Am J Neuroradiol 2020; 41:E37-E39. [PMID: 32354715 DOI: 10.3174/ajnr.a6551] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- M Morris
- Department of Radiology and Biomedical ImagingYale School of MedicineNew Haven, Connecticut
| | - V M Zohrabian
- Department of Radiology and Biomedical ImagingYale School of MedicineNew Haven, Connecticut
| |
Collapse
|
909
|
Yashavantha Rao HC, Jayabaskaran C. The emergence of a novel coronavirus (SARS-CoV-2) disease and their neuroinvasive propensity may affect in COVID-19 patients. J Med Virol 2020; 92:786-790. [PMID: 32320066 PMCID: PMC7264535 DOI: 10.1002/jmv.25918] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/22/2022]
Abstract
An outbreak of a novel coronavirus (SARS‐CoV‐2) infection has recently emerged and rapidly spreading in humans causing a significant threat to international health and the economy. Rapid assessment and warning are crucial for an outbreak analysis in response to serious public health. SARS‐CoV‐2 shares highly homological sequences with SARS‐CoVs causing highly lethal pneumonia with respiratory distress and clinical symptoms similar to those reported for SARS‐CoV and MERS‐CoV infections. Notably, some COVID‐19 patients also expressed neurologic signs like nausea, headache, and vomiting. Several studies have reported that coronaviruses are not only causing respiratory illness but also invade the central nervous system through a synapse‐connected route. SARS‐CoV infections are reported in both patients and experimental animals' brains. Interestingly, some COVID‐19 patients have shown the presence of SARS‐CoV‐2 virus in their cerebrospinal fluid. Considering the similarities between SARS‐CoV and SARS‐CoV‐2 in various aspects, it remains to clarify whether the potent invasion of SARS‐CoV‐2 may affect in COVID‐19 patients. All these indicate that more detailed criteria are needed for the treatment and the prevention of SARS‐CoV‐2 infected patients. In the absence of potential interventions for COVID‐19, there is an urgent need for an alternative strategy to control the spread of this disease.
Collapse
Affiliation(s)
- H C Yashavantha Rao
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Chelliah Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
910
|
Kotfis K, Williams Roberson S, Wilson JE, Dabrowski W, Pun BT, Ely EW. COVID-19: ICU delirium management during SARS-CoV-2 pandemic. Crit Care 2020; 24:176. [PMID: 32345343 PMCID: PMC7186945 DOI: 10.1186/s13054-020-02882-x] [Citation(s) in RCA: 317] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
The novel coronavirus, SARS-CoV-2-causing Coronavirus Disease 19 (COVID-19), emerged as a public health threat in December 2019 and was declared a pandemic by the World Health Organization in March 2020. Delirium, a dangerous untoward prognostic development, serves as a barometer of systemic injury in critical illness. The early reports of 25% encephalopathy from China are likely a gross underestimation, which we know occurs whenever delirium is not monitored with a valid tool. Indeed, patients with COVID-19 are at accelerated risk for delirium due to at least seven factors including (1) direct central nervous system (CNS) invasion, (2) induction of CNS inflammatory mediators, (3) secondary effect of other organ system failure, (4) effect of sedative strategies, (5) prolonged mechanical ventilation time, (6) immobilization, and (7) other needed but unfortunate environmental factors including social isolation and quarantine without family. Given early insights into the pathobiology of the virus, as well as the emerging interventions utilized to treat the critically ill patients, delirium prevention and management will prove exceedingly challenging, especially in the intensive care unit (ICU). The main focus during the COVID-19 pandemic lies within organizational issues, i.e., lack of ventilators, shortage of personal protection equipment, resource allocation, prioritization of limited mechanical ventilation options, and end-of-life care. However, the standard of care for ICU patients, including delirium management, must remain the highest quality possible with an eye towards long-term survival and minimization of issues related to post-intensive care syndrome (PICS). This article discusses how ICU professionals (e.g., physicians, nurses, physiotherapists, pharmacologists) can use our knowledge and resources to limit the burden of delirium on patients by reducing modifiable risk factors despite the imposed heavy workload and difficult clinical challenges posed by the pandemic.
Collapse
Affiliation(s)
- Katarzyna Kotfis
- Department Anaesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Shawniqua Williams Roberson
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Bioengineering, Vanderbilt University, Nashville, TN, USA
| | - Jo Ellen Wilson
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Geriatric Research, Education and Clinical Center (GRECC), Tennessee Valley Veterans Affairs Healthcare System, Nashville, TN, USA
| | - Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, Lublin, Poland
| | - Brenda T Pun
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - E Wesley Ely
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Geriatric Research, Education and Clinical Center (GRECC), Tennessee Valley Veterans Affairs Healthcare System, Nashville, TN, USA
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
911
|
Haddadi K, Ghasemian R, Shafizad M. Basal Ganglia Involvement and Altered Mental Status: A Unique Neurological Manifestation of Coronavirus Disease 2019. Cureus 2020; 12:e7869. [PMID: 32489724 PMCID: PMC7255547 DOI: 10.7759/cureus.7869] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
Like other respiratory viruses, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may enter the central nervous system (CNS) via the hematogenous or neuronal path. However, neurological complications of coronavirus disease 2019 (COVID-19) have not been reported frequently. Encephalopathy has been described as a presenting symptom or complication of COVID-19 in some reports. We report a case of a 54-year-old patient who presented with unique clinical characteristics and imaging with brain basal ganglia involvement likely due to SARS-CoV-2 infection. In our experience, the incidence of spontaneous bilateral basal ganglia hemorrhage is rare. Further study will be needed to investigate this finding of the CNS and altered mental status in patients with this new type of coronavirus infection. Based on the case presented and other cases, understanding the pathways of virus neuroinvasion is necessary to help recognize possible pathologically related consequences of infection and to evaluate new diagnostic and management approaches that will help improve SARS-CoV-2 infection treatment and control.
Collapse
Affiliation(s)
- Kaveh Haddadi
- Neurological Surgery, Orthopedic Research Center, Mazandaran University of Medical Sciences, Sari, IRN
| | - Roya Ghasemian
- Infectious Diseases, Antimicrobial Resistance Research Center, Mazandaran University of Medical Sciences, Sari, IRN
| | - Misagh Shafizad
- Neurological Surgery, Orthopedic Research Center, Mazandaran University of Medical Sciences, Sari, IRN
| |
Collapse
|
912
|
Affiliation(s)
- Pauline Vetter
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, 1211 Geneva 14, Switzerland
- Division of Infectious Diseases, Geneva University Hospitals, 1211 Geneva 14, Switzerland
- Laboratory of Virology, Geneva University Hospitals, 1211 Geneva 14, Geneva, Switzerland
| | - Diem Lan Vu
- Division of Infectious Diseases, Geneva University Hospitals, 1211 Geneva 14, Switzerland
- Laboratory of Virology, Geneva University Hospitals, 1211 Geneva 14, Geneva, Switzerland
- University of Geneva, Faculty of Medicine, 1205 Geneva, Switzerland
| | - Arnaud G L'Huillier
- Laboratory of Virology, Geneva University Hospitals, 1211 Geneva 14, Geneva, Switzerland
- Pediatric Infectious Diseases Unit, Department of Child and Adolescent Medicine, Geneva University Hospitals and Medical School, Geneva, Switzerland
| | - Manuel Schibler
- Division of Infectious Diseases, Geneva University Hospitals, 1211 Geneva 14, Switzerland
- Laboratory of Virology, Geneva University Hospitals, 1211 Geneva 14, Geneva, Switzerland
- University of Geneva, Faculty of Medicine, 1205 Geneva, Switzerland
| | - Laurent Kaiser
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, 1211 Geneva 14, Switzerland
- Division of Infectious Diseases, Geneva University Hospitals, 1211 Geneva 14, Switzerland
- Laboratory of Virology, Geneva University Hospitals, 1211 Geneva 14, Geneva, Switzerland
- University of Geneva, Faculty of Medicine, 1205 Geneva, Switzerland
| | - Frederique Jacquerioz
- Laboratory of Virology, Geneva University Hospitals, 1211 Geneva 14, Geneva, Switzerland
- Division of Tropical and Humanitarian Medicine, Geneva University Hospitals, 1211 Geneva 14, Geneva, Switzerland
- Primary Care Division, Geneva University Hospitals, 1211 Geneva 14, Geneva, Switzerland
| |
Collapse
|
913
|
Stoessl AJ, Bhatia KP, Merello M. Movement Disorders in the World of COVID-19. Mov Disord 2020; 35:709-710. [PMID: 32250468 DOI: 10.1002/mds.28069] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/28/2022] Open
Affiliation(s)
- A Jon Stoessl
- Pacific Parkinson's Research Centre & Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Marcello Merello
- Raul Carrea Institute of Neurological Research, Movement Disorders Unit, FLENI, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
914
|
Stoessl AJ, Bhatia KP, Merello M. Movement Disorders in the World of COVID-19. Mov Disord Clin Pract 2020; 7:355-356. [PMID: 32373650 DOI: 10.1002/mdc3.12952] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 11/07/2022] Open
Affiliation(s)
- A Jon Stoessl
- Pacific Parkinson's Research Centre & Djavad Mowafaghian Centre for Brain Health University of British Columbia Vancouver BC Columbia
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences UCL Queen Square Institute of Neurology London United Kingdom
| | - Marcelo Merello
- Raul Carrea Institute of Neurological Research, Movement Disorders Unit, FLENI Ciudad Autónoma de Buenos Aires Argentina
| |
Collapse
|
915
|
Toljan K. Letter to the Editor Regarding the Viewpoint "Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanism". ACS Chem Neurosci 2020; 11:1192-1194. [PMID: 32233443 PMCID: PMC7153046 DOI: 10.1021/acschemneuro.0c00174] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Karlo Toljan
- Department of Neurology,
Neurological Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| |
Collapse
|
916
|
Lovato A, de Filippis C. Clinical Presentation of COVID-19: A Systematic Review Focusing on Upper Airway Symptoms. EAR, NOSE & THROAT JOURNAL 2020; 99:569-576. [PMID: 32283980 DOI: 10.1177/0145561320920762] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AIM Pharyngodynia, nasal congestion, rhinorrhea, smell, and taste dysfunctions could be the presenting symptoms of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2. The aim was to perform a systematic review of current evidences on clinical presentation of COVID-19, focusing on upper airway symptoms in order to help otolaryngologists identifying suspected cases. METHODS We searched PubMed and Web of Science electronic databases. RESULTS We included 5 retrospective clinical studies for a total of 1556 hospitalized patients with COVID-19, 57.5% were male and mean age was 49.1 years. Pooled data revealed that pharyngodynia was present in 12.4% of patients, nasal congestion in 3.7%, and rhinorrhea was rare. No reports on COVID-19 and olfactory/gustative disorders matched inclusion criteria but preliminary evidences suggested they could be present. Common symptoms were fever (85.6%), cough (68.7%), and fatigue (39.4%). Frequent comorbidities were hypertension (17.4%), diabetes (3.8%), and coronary heart disease (3.8%); 83% of patients had alterations on chest computed tomography that were bilateral in 89.5% of cases. Ground-glass opacity was the most common finding (50%). Lymphopenia (77.2%) and leucopenia (30.1%) were common. Critical cases with complications were 9%, intensive care unit admission was required in 7.3%, invasive ventilation in 3.4%, and mortality was 2.4%. CONCLUSION Otolaryngologists should know that pharyngodynia, nasal congestion, olfactory, and gustative disorders could be the presenting symptoms of COVID-19. Clinical presentation together with radiological and laboratory findings could help to identify suspected cases.
Collapse
Affiliation(s)
- Andrea Lovato
- Department of Neurosciences, 60242University of Padova, Audiology Unit at Treviso Hospital, Treviso, Italy
| | - Cosimo de Filippis
- Department of Neurosciences, 60242University of Padova, Audiology Unit at Treviso Hospital, Treviso, Italy
| |
Collapse
|
917
|
Li Y, Bai W, Hashikawa T. Response to Commentary on "The neuroinvasive potential of SARS-CoV-2 may play a role in the respiratory failure of COVID-19 patients". J Med Virol 2020; 92:707-709. [PMID: 32246783 PMCID: PMC7228344 DOI: 10.1002/jmv.25824] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/04/2023]
Abstract
In a recent review, we have suggested a neuroinvasive potential of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) and its possible role in the causation of acute respiratory failure of coronavirus disease 2019 (COVID‐19) patients (J Med Viol doi: 10.1002/jmv.25728), based upon the clinical and experimental data available on the past SARS‐CoV‐1 and the recent SARS‐CoV‐2 pandemic. In this article, we provide new evidence recently reported regarding the neurotropic potential of SARS‐CoV‐2 and respond to several comments on our previously published article. In addition, we also discuss the peculiar manifestations of respiratory failure in COVID‐19 patients and the possible involvement of nervous system. New evidence has been available for the neurotropism of SARS‐CoV‐2. Muscular injuries and reduced sensitivity of nerves may play a role in the respiratory failure. Potential neuroinvasion of SARS‐CoV‐2 indicates a possible involvement of central factors.
Collapse
Affiliation(s)
- Yan‐Chao Li
- Department of Histology and Embryology, College of Basic Medical SciencesNorman Bethune College of Medicine, Jilin UniversityChangchunJilinChina
| | - Wan‐Zhu Bai
- Institute of Acupuncture and MoxibustionChina Academy of Chinese Medical ScienceBeijingChina
| | - Tsutomu Hashikawa
- Neural Architecture, Advanced Technology Development Group, RIKEN Brain Science InstituteSaitamaJapan
| |
Collapse
|
918
|
Baig AM. Neurological manifestations in COVID-19 caused by SARS-CoV-2. CNS Neurosci Ther 2020; 26:499-501. [PMID: 32266761 PMCID: PMC7163592 DOI: 10.1111/cns.13372] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/14/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Abdul Mannan Baig
- Department of Biological & Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
919
|
Perspectives: potential therapeutic options for SARS-CoV-2 patients based on feline infectious peritonitis strategies: central nervous system invasion and drug coverage. Int J Antimicrob Agents 2020; 55:105964. [PMID: 32251732 PMCID: PMC7195338 DOI: 10.1016/j.ijantimicag.2020.105964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 12/23/2022]
|
920
|
Abstract
A pandemic due to novel coronavirus arose in mid-December 2019 in Wuhan, China, and in 3 months' time swept the world. The disease has been referred to as COVID-19, and the causative agent has been labelled SARS-CoV-2 due to its genetic similarities to the virus (SARS-CoV-1) responsible for the severe acute respiratory syndrome (SARS) epidemic nearly 20 years earlier. The spike proteins of both viruses dictate tissue tropism using the angiotensin-converting enzyme type 2 (ACE-2) receptor to bind to cells. The ACE-2 receptor can be found in nervous system tissue and endothelial cells among the tissues of many other organs.Neurological complications have been observed with COVID-19. Myalgia and headache are relatively common, but serious neurological disease appears to be rare. No part of the neuraxis is spared. The neurological disorders occurring with COVID-19 may have many pathophysiological underpinnings. Some appear to be the consequence of direct viral invasion of the nervous system tissue, others arise as a postviral autoimmune process, and still others are the result of metabolic and systemic complications due to the associated critical illness. This review addresses the preliminary observations regarding the neurological disorders reported with COVID-19 to date and describes some of the disorders that are anticipated from prior experience with similar coronaviruses.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2
- Betacoronavirus/genetics
- Betacoronavirus/metabolism
- Betacoronavirus/pathogenicity
- COVID-19
- Coronavirus Infections/complications
- Coronavirus Infections/diagnosis
- Coronavirus Infections/epidemiology
- Coronavirus Infections/virology
- Encephalitis, Viral/complications
- Encephalitis, Viral/diagnosis
- Encephalitis, Viral/epidemiology
- Encephalitis, Viral/virology
- Headache/complications
- Headache/diagnosis
- Headache/epidemiology
- Headache/virology
- Host-Pathogen Interactions/genetics
- Humans
- Meningitis/complications
- Meningitis/diagnosis
- Meningitis/epidemiology
- Meningitis/virology
- Myalgia/complications
- Myalgia/diagnosis
- Myalgia/epidemiology
- Myalgia/virology
- Myositis/complications
- Myositis/diagnosis
- Myositis/epidemiology
- Myositis/virology
- Nervous System/pathology
- Nervous System/virology
- Pandemics
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/metabolism
- Pneumonia, Viral/complications
- Pneumonia, Viral/diagnosis
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/virology
- Protein Binding
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/metabolism
- Stroke/complications
- Stroke/diagnosis
- Stroke/epidemiology
- Stroke/virology
- Virus Internalization
Collapse
Affiliation(s)
- Joseph R Berger
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, Perelman School of Medicine, Perelman Center for Advanced Medicine, Room 765 South Tower, Philadelphia, PA, 19104, USA.
| |
Collapse
|
921
|
Butala N. Neurological Aspects of Coronavirus Infectious Disease 2019 (COVID-19). INNOVATIONS IN CLINICAL NEUROSCIENCE 2020; 17:13-15. [PMID: 32802586 PMCID: PMC7413336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Background. Coronavirus infectious disease 2019 (COVID-19) has spread rapidly around the world and has been declared a pandemic by World Health Organization. Neurological manifestations are being reported in patients with COVID-19 but clinical guidelines and effective treatments remain unclear. Objective: In this brief review, the authors examine the latest available evidence to date regarding the neurological implications of COVID-19 and how the novel coronavirus might possibly impact patients with pre-existing neurological conditions. COVID-19-specific recommendations from the American Academy of Neurology and and other neurologic disease-specific organizations are summarized. Results: Current retrospective case series and cohort studies from Wuhan, China, are indicating that almost one-third of the patients with COVID-19 have shown neurological manifestations; older age and comorbid conditions are associated worsened outcomes. Abnormal laboratory findings are being reported in acute cases of patients with COVID-19. Summary: Understanding the spectrum of neurological manifestations of COVID-19 and the impact of COVID-19 on patients with underlying neurological conditions might help to improve outcomes.
Collapse
Affiliation(s)
- Nitin Butala
- Dr. Butala is a Neurologist and Neurophysiologist at Baptist Health in Jacksonville, Florida and an Assistant professor of Neurology at the Lake Erie College of Osteopathic Medicine in Bradenton, Florida
| |
Collapse
|
922
|
Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem Neurosci 2020; 11:995-998. [PMID: 32167747 PMCID: PMC7094171 DOI: 10.1021/acschemneuro.0c00122] [Citation(s) in RCA: 1398] [Impact Index Per Article: 279.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 11/28/2022] Open
Abstract
The recent outbreak of coronavirus infectious disease 2019 (COVID-19) has gripped the world with apprehension and has evoked a scare of epic proportion regarding its potential to spread and infect humans worldwide. As we are in the midst of an ongoing pandemic of COVID-19, scientists are struggling to understand how it resembles and differs from the severe acute respiratory syndrome coronavirus (SARS-CoV) at the genomic and transcriptomic level. In a short time following the outbreak, it has been shown that, similar to SARS-CoV, COVID-19 virus exploits the angiotensin-converting enzyme 2 (ACE2) receptor to gain entry inside the cells. This finding raises the curiosity of investigating the expression of ACE2 in neurological tissue and determining the possible contribution of neurological tissue damage to the morbidity and mortality caused by COIVD-19. Here, we investigate the density of the expression levels of ACE2 in the CNS, the host-virus interaction and relate it to the pathogenesis and complications seen in the recent cases resulting from the COVID-19 outbreak. Also, we debate the need for a model for staging COVID-19 based on neurological tissue involvement.
Collapse
Affiliation(s)
- Abdul Mannan Baig
- Department
of Biological and Biomedical Sciences, Aga
Khan University, Karachi 74800, Pakistan
| | - Areeba Khaleeq
- Department
of Biological and Biomedical Sciences, Aga
Khan University, Karachi 74800, Pakistan
| | - Usman Ali
- Medical
College, Aga Khan University, Karachi 74800, Pakistan
| | - Hira Syeda
- Department
of Biosciences, Mohammad Ali Jinnah University, Karachi 75400, Pakistan
| |
Collapse
|
923
|
Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host–Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem Neurosci 2020. [DOI: 78495111110.1021/acschemneuro.0c00122' target='_blank'>'"<>78495111110.1021/acschemneuro.0c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [78495111110.1021/acschemneuro.0c00122','', '10.1128/jvi.00737-08')">Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
78495111110.1021/acschemneuro.0c00122" />
Affiliation(s)
- Abdul Mannan Baig
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | - Areeba Khaleeq
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan
| | - Usman Ali
- Medical College, Aga Khan University, Karachi 74800, Pakistan
| | - Hira Syeda
- Department of Biosciences, Mohammad Ali Jinnah University, Karachi 75400, Pakistan
| |
Collapse
|
924
|
Suri V, Suri K, Jain S, Suri K. Neurological manifestations of COVID-19 (severe acute respiratory syndrome coronavirus 2). APOLLO MEDICINE 2020. [DOI: 10.4103/am.am_63_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
925
|
Beauchamp LC, Finkelstein DI, Bush AI, Evans AH, Barnham KJ. Parkinsonism as a Third Wave of the COVID-19 Pandemic? JOURNAL OF PARKINSON'S DISEASE 2020; 10:1343-1353. [PMID: 32986683 PMCID: PMC7683045 DOI: 10.3233/jpd-202211] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 08/27/2020] [Indexed: 12/16/2022]
Abstract
Since the initial reports of COVID-19 in December 2019, the world has been gripped by the disastrous acute respiratory disease caused by the SARS-CoV-2 virus. There are an ever-increasing number of reports of neurological symptoms in patients, from severe (encephalitis), to mild (hyposmia), suggesting the potential for neurotropism of SARS-CoV-2. This Perspective investigates the hypothesis that the reliance on self-reporting of hyposmia has resulted in an underestimation of neurological symptoms in COVID-19 patients. While the acute effect of the virus on the nervous system function is vastly overshadowed by the respiratory effects, we propose that it will be important to monitor convalescent individuals for potential long-term implications that may include neurodegenerative sequelae such as viral-associated parkinsonism. As it is possible to identify premorbid harbingers of Parkinson's disease, we propose long-term screening of SARS-CoV-2 cases post-recovery for these expressions of neurodegenerative disease. An accurate understanding of the incidence of neurological complications in COVID-19 requires long-term monitoring for sequelae after remission and a strategized health policy to ensure healthcare systems all over the world are prepared for a third wave of the virus in the form of parkinsonism.
Collapse
Affiliation(s)
- Leah C. Beauchamp
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Australia
| | | | - Ashley I. Bush
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- Melbourne Dementia Research Centre, Parkville, Australia
| | - Andrew H. Evans
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Australia
| | - Kevin J. Barnham
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Australia
- Melbourne Dementia Research Centre, Parkville, Australia
| |
Collapse
|
926
|
Victorino DB, Guimarães-Marques M, Nejm M, Scorza FA, Scorza CA. COVID-19 and Parkinson's Disease: Are We Dealing with Short-term Impacts or Something Worse? JOURNAL OF PARKINSON'S DISEASE 2020; 10:899-902. [PMID: 32390643 PMCID: PMC7458522 DOI: 10.3233/jpd-202073] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Daniella Balduino Victorino
- Department of Neurology and Neurosurgery, Discipline of Neuroscience, Federal University of São Paulo/Paulista Medical School, São Paulo, SP, Brazil
| | - Marcia Guimarães-Marques
- Department of Neurology and Neurosurgery, Discipline of Neuroscience, Federal University of São Paulo/Paulista Medical School, São Paulo, SP, Brazil
| | - Mariana Nejm
- Department of Neurology and Neurosurgery, Discipline of Neuroscience, Federal University of São Paulo/Paulista Medical School, São Paulo, SP, Brazil
| | - Fulvio Alexandre Scorza
- Department of Neurology and Neurosurgery, Discipline of Neuroscience, Federal University of São Paulo/Paulista Medical School, São Paulo, SP, Brazil
| | - Carla Alessandra Scorza
- Department of Neurology and Neurosurgery, Discipline of Neuroscience, Federal University of São Paulo/Paulista Medical School, São Paulo, SP, Brazil
| |
Collapse
|
927
|
Rider F, Lebedeva A, Mkrtchyan V, Guekht A. Epilepsy and COVID-19: patient management and optimization of antiepileptic therapy during pandemic. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:100-107. [DOI: 10.17116/jnevro2020120101100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
928
|
Liang Z. COVID-19’s Pathways to Human Central Nervous System and Relevant Drug Treatment. E3S WEB OF CONFERENCES 2020; 218:03009. [DOI: 10.1051/e3sconf/202021803009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
COVID-19, also known as Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV2), is a severe disease. It can cause different types of symptoms including shortness of breath, fever, cough, fatigue and sore throat. Older adults and people who have severe underlying medical conditions like heart or lung disease or diabetes seem to be at higher risk to develop more complex complications due to the infection. Until August 6th, 2020, COVID-19 has caused 700, 000 deaths across the Earth; however, the actual death number could be higher than 700,000. COVID-19’s origin is still remained unknown, but the speculation is targeted to bats or pangolins. Although COVID-19 is a disease target human’s respiratory system, based on the research and clinical cases of COVID-19, evidence shows that COVID-19 can also invade human’s central nervous system (CNS).
Collapse
|
929
|
Gusev E, Martynov M, Boyko A, Voznyuk I, Latsh N, Sivertseva S, Spirin N, Shamalov N. Novel coronavirus infection (COVID-19) and nervous system involvement: pathogenesis, clinical manifestations, organization of neurological care. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:7-16. [DOI: 10.17116/jnevro20201200617] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
930
|
Cevik L, Alves MJ, Otero JJ. Neuropathologists play a key role in establishing the extent of COVID-19 in human patients. FREE NEUROPATHOLOGY 2020; 1:11. [PMID: 37283681 PMCID: PMC10209904 DOI: 10.17879/freeneuropathology-2020-2736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 06/08/2023]
Abstract
SARS-CoV2 infection causes COVID-19, and represents the most emergent health care crisis of our generation. Ample evidence in the scientific literature suggests that SARS-CoV, MERS-CoV, and endemic human coronaviruses infect brain cells. We delineate a rationale for encouraging evaluation of the brain, and in particular the brainstem, in COVID-19 so that potential neuropathological mechanisms can be delineated.
Collapse
Affiliation(s)
- Lokman Cevik
- Div. of Neuropathology, Dept. of Pathology, The Ohio State University School of Medicine, Columbus, OH, USA
| | - Michele Joana Alves
- Div. of Neuropathology, Dept. of Pathology, The Ohio State University School of Medicine, Columbus, OH, USA
| | - José Javier Otero
- Div. of Neuropathology, Dept. of Pathology, The Ohio State University School of Medicine, Columbus, OH, USA
| |
Collapse
|
931
|
|
932
|
Turski WA, Wnorowski A, Turski GN, Turski CA, Turski L. AhR and IDO1 in pathogenesis of Covid-19 and the "Systemic AhR Activation Syndrome:" a translational review and therapeutic perspectives. Restor Neurol Neurosci 2020; 38:343-354. [PMID: 32597823 PMCID: PMC7592680 DOI: 10.3233/rnn-201042] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covid-19 is the acute illness caused by SARS-CoV-2 with initial clinical symptoms such as cough, fever, malaise, headache, and anosmia. After entry into cells, corona viruses (CoV) activate aryl hydrocarbon receptors (AhRs) by an indoleamine 2,3-dioxygenase (IDO1)-independent mechanism, bypassing the IDO1-kynurenine-AhR pathway. The IDO1-kynurenine-AhR signaling pathway is used by multiple viral, microbial and parasitic pathogens to activate AhRs and to establish infections. AhRs enhance their own activity through an IDO1-AhR-IDO1 positive feedback loop prolonging activation induced by pathogens. Direct activation of AhRs by CoV induces immediate and simultaneous up-regulation of diverse AhR-dependent downstream effectors, and this, in turn, results in a "Systemic AhR Activation Syndrome" (SAAS) consisting of inflammation, thromboembolism, and fibrosis, culminating in multiple organ injuries, and death. Activation of AhRs by CoV may lead to diverse sets of phenotypic disease pictures depending on time after infection, overall state of health, hormonal balance, age, gender, comorbidities, but also diet and environmental factors modulating AhRs. We hypothesize that elimination of factors known to up-regulate AhRs, or implementation of measures known to down-regulate AhRs, should decrease severity of infection. Although therapies selectively down-regulating both AhR and IDO1 are currently lacking, medications in clinical use such as dexamethasone may down-regulate both AhR and IDO1 genes, as calcitriol/vitamin D3 may down-regulate the AhR gene, and tocopherol/vitamin E may down-regulate the IDO1 gene. Supplementation of calcitriol should therefore be subjected to epidemiological studies and tested in prospective trials for prevention of CoV infections, as should tocopherol, whereas dexamethasone could be tried in interventional trials. Because lack of physical exercise activates AhRs via the IDO1-kynurenine-AhR signaling pathway increasing risk of infection, physical exercise should be encouraged during quarantines and stay-at-home orders during pandemic outbreaks. Understanding which factors affect gene expression of both AhR and IDO1 may help in designing therapies to prevent and treat humans suffering from Covid-19.
Collapse
MESH Headings
- Air Pollutants/adverse effects
- Betacoronavirus/physiology
- COVID-19
- Calcitriol/therapeutic use
- Coronavirus Infections/complications
- Coronavirus Infections/drug therapy
- Coronavirus Infections/physiopathology
- Dexamethasone/therapeutic use
- Exercise
- Feedback, Physiological
- Female
- Fibrosis/etiology
- Gene Expression Regulation/drug effects
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/biosynthesis
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/physiology
- Inflammation/etiology
- Kynurenine/physiology
- Male
- Molecular Targeted Therapy
- Multiple Organ Failure/etiology
- Obstetric Labor, Premature/etiology
- Pandemics
- Pneumonia, Viral/complications
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/physiopathology
- Pregnancy
- Pregnancy Complications, Infectious/physiopathology
- Receptors, Aryl Hydrocarbon/biosynthesis
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/physiology
- SARS-CoV-2
- Sensation Disorders/etiology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Thromboembolism/etiology
- Tocopherols/therapeutic use
- COVID-19 Drug Treatment
Collapse
Affiliation(s)
- Waldemar A. Turski
- Department of Experimental and Clinical Pharmacology, Medical University, Lublin, Poland
| | - Artur Wnorowski
- Department of Biopharmacy, Faculty of Pharmacy, Medical University, Lublin, Poland
| | - Gabrielle N. Turski
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Christopher A. Turski
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | | |
Collapse
|
933
|
Human Coronaviruses and Other Respiratory Viruses: Underestimated Opportunistic Pathogens of the Central Nervous System? Viruses 2019; 12:v12010014. [PMID: 31861926 PMCID: PMC7020001 DOI: 10.3390/v12010014] [Citation(s) in RCA: 697] [Impact Index Per Article: 116.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022] Open
Abstract
Respiratory viruses infect the human upper respiratory tract, mostly causing mild diseases. However, in vulnerable populations, such as newborns, infants, the elderly and immune-compromised individuals, these opportunistic pathogens can also affect the lower respiratory tract, causing a more severe disease (e.g., pneumonia). Respiratory viruses can also exacerbate asthma and lead to various types of respiratory distress syndromes. Furthermore, as they can adapt fast and cross the species barrier, some of these pathogens, like influenza A and SARS-CoV, have occasionally caused epidemics or pandemics, and were associated with more serious clinical diseases and even mortality. For a few decades now, data reported in the scientific literature has also demonstrated that several respiratory viruses have neuroinvasive capacities, since they can spread from the respiratory tract to the central nervous system (CNS). Viruses infecting human CNS cells could then cause different types of encephalopathy, including encephalitis, and long-term neurological diseases. Like other well-recognized neuroinvasive human viruses, respiratory viruses may damage the CNS as a result of misdirected host immune responses that could be associated with autoimmunity in susceptible individuals (virus-induced neuro-immunopathology) and/or viral replication, which directly causes damage to CNS cells (virus-induced neuropathology). The etiological agent of several neurological disorders remains unidentified. Opportunistic human respiratory pathogens could be associated with the triggering or the exacerbation of these disorders whose etiology remains poorly understood. Herein, we present a global portrait of some of the most prevalent or emerging human respiratory viruses that have been associated with possible pathogenic processes in CNS infection, with a special emphasis on human coronaviruses.
Collapse
|
934
|
Niu J, Shen L, Huang B, Ye F, Zhao L, Wang H, Deng Y, Tan W. Non-invasive bioluminescence imaging of HCoV-OC43 infection and therapy in the central nervous system of live mice. Antiviral Res 2019; 173:104646. [PMID: 31705922 PMCID: PMC7114176 DOI: 10.1016/j.antiviral.2019.104646] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 11/27/2022]
Abstract
Human coronaviruses (HCoVs) are important pathogens that cause upper respiratory tract infections and have neuroinvasive abilities; however, little is known about the dynamic infection process of CoVs in vivo, and there are currently no specific antiviral drugs to prevent or treat HCoV infection. Here, we verified the replication ability and pathogenicity of a reporter HCoV-OC43 strain expressing Renilla luciferase (Rluc; rOC43-ns2DelRluc) in mice with different genetic backgrounds (C57BL/6 and BALB/c). Additionally, we monitored the spatial and temporal progression of HCoV-OC43 through the central nervous system (CNS) of live BALB/c mice after intranasal or intracerebral inoculation with rOC43-ns2DelRluc. We found that rOC43-ns2DelRluc was fatal to suckling mice after intranasal inoculation, and that viral titers and Rluc expression were detected in the brains and spinal cords of mice infected with rOC43-ns2DelRluc. Moreover, viral replication was initially observed in the brain by non-invasive bioluminescence imaging before the infection spread to the spinal cord of BALB/c mice, consistent with its tropism in the CNS. Furthermore, the Rluc readout correlated with the HCoV replication ability and protein expression, which allowed quantification of antiviral activity in live mice. Additionally, we validated that chloroquine strongly inhibited rOC43-ns2DelRluc replication in vivo. These results provide new insights into the temporal and spatial dissemination of HCoV-OC43 in the CNS, and our methods provide an extremely sensitive platform for evaluating the efficacy of antiviral therapies to treat neuroinvasive HCoVs in live mice. We verified the pathogenicity of a reporter HCoV-OC43 strain expressing Renilla luciferase (rOC43-ns2DelRluc) in mice. HCoV-OC43 spatio-temporal progression in CNS of mice was monitored by non-invasive bioluminescence imaging (BLI). Chloroquine was validated strongly inhibited rOC43-ns2DelRluc replication in in live mice. rOC43-ns2DelRluc-based BLI was reported as a promising platform for non-invasively screening antiviral compounds in vivo.
Collapse
Affiliation(s)
- Junwei Niu
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Liang Shen
- Department of Clinical Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China; Key Laboratory of Molecular Medicine, Medical College, Hubei University of Arts and Science, Xiangyang, 441053, China
| | - Baoying Huang
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Fei Ye
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Li Zhao
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Huijuan Wang
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Yao Deng
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Wenjie Tan
- Key Laboratory of Biosafety, National Health Commissions, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, China.
| |
Collapse
|
935
|
Santos RAS. Genetic Models. ANGIOTENSIN-(1-7) 2019. [PMCID: PMC7120897 DOI: 10.1007/978-3-030-22696-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetically altered rat and mouse models have been instrumental in the functional analysis of genes in a physiological context. In particular, studies on the renin-angiotensin system (RAS) have profited from this technology in the past. In this review, we summarize the existing animal models for the protective axis of the RAS consisting of angiotensin-converting enzyme 2 (ACE2), angiotensin-(1-7)(Ang-(1-7), and its receptor Mas. With the help of models with altered expression of the components of this axis in the brain and cardiovascular organs, its physiological and pathophysiological functions have been elucidated. Thus, novel opportunities for therapeutic interventions in cardiovascular diseases were revealed targeting ACE2 or Mas.
Collapse
|
936
|
Weinhart M, Hocke A, Hippenstiel S, Kurreck J, Hedtrich S. 3D organ models-Revolution in pharmacological research? Pharmacol Res 2019; 139:446-451. [PMID: 30395949 PMCID: PMC7129286 DOI: 10.1016/j.phrs.2018.11.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 01/15/2023]
Abstract
3D organ models have gained increasing attention as novel preclinical test systems and alternatives to animal testing. Over the years, many excellent in vitro tissue models have been developed. In parallel, microfluidic organ-on-a-chip tissue cultures have gained increasing interest for their ability to house several organ models on a single device and interlink these within a human-like environment. In contrast to these advancements, the development of human disease models is still in its infancy. Although major advances have recently been made, efforts still need to be intensified. Human disease models have proven valuable for their ability to closely mimic disease patterns in vitro, permitting the study of pathophysiological features and new treatment options. Although animal studies remain the gold standard for preclinical testing, they have major drawbacks such as high cost and ongoing controversy over their predictive value for several human conditions. Moreover, there is growing political and social pressure to develop alternatives to animal models, clearly promoting the search for valid, cost-efficient and easy-to-handle systems lacking interspecies-related differences. In this review, we discuss the current state of the art regarding 3D organ as well as the opportunities, limitations and future implications of their use.
Collapse
Affiliation(s)
- Marie Weinhart
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Andreas Hocke
- Dept. of Infectious and Respiratory Diseases, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Stefan Hippenstiel
- Dept. of Infectious and Respiratory Diseases, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Jens Kurreck
- Technical University Berlin, Institute for Biotechnology, Berlin, Germany
| | - Sarah Hedtrich
- Freie Universität Berlin, Institute for Pharmacy, Pharmacology & Toxicology, Königin-Luise-Str. 2-4, Berlin, 14195, Germany.
| |
Collapse
|
937
|
Alenina N, Bader M. ACE2 in Brain Physiology and Pathophysiology: Evidence from Transgenic Animal Models. Neurochem Res 2018; 44:1323-1329. [PMID: 30443713 PMCID: PMC7089194 DOI: 10.1007/s11064-018-2679-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/15/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a protein consisting of two domains, the N-terminus is a carboxypeptidase homologous to ACE and the C-terminus is homologous to collectrin and responsible for the trafficking of the neutral amino acid transporter B(0)AT1 to the plasma membrane of gut epithelial cells. The carboxypeptidase domain not only metabolizes angiotensin II to angiotensin-(1–7), but also other peptide substrates, such as apelin, kinins and morphins. In addition, the collectrin domain regulates the levels of some amino acids in the blood, in particular of tryptophan. Therefore it is of no surprise that animals with genetic alterations in the expression of ACE2 develop a diverse pattern of phenotypes ranging from hypertension, metabolic and behavioural dysfunctions, to impairments in serotonin synthesis and neurogenesis. This review summarizes the phenotypes of such animals with a particular focus on the central nervous system.
Collapse
Affiliation(s)
- Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
- Berlin Institute of Health (BIH), Berlin, Germany.
- Charité - University Medicine, Berlin, Germany.
- Institute for Biology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
938
|
Cockrell AS, Leist SR, Douglas MG, Baric RS. Modeling pathogenesis of emergent and pre-emergent human coronaviruses in mice. Mamm Genome 2018; 29:367-383. [PMID: 30043100 PMCID: PMC6132729 DOI: 10.1007/s00335-018-9760-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/17/2018] [Indexed: 12/21/2022]
Abstract
The emergence of highly pathogenic human coronaviruses (hCoVs) in the last two decades has illuminated their potential to cause high morbidity and mortality in human populations and disrupt global economies. Global pandemic concerns stem from their high mortality rates, capacity for human-to-human spread by respiratory transmission, and complete lack of approved therapeutic countermeasures. Limiting disease may require the development of virus-directed and host-directed therapeutic strategies due to the acute etiology of hCoV infections. Therefore, understanding how hCoV–host interactions cause pathogenic outcomes relies upon mammalian models that closely recapitulate the pathogenesis of hCoVs in humans. Pragmatism has largely been the driving force underpinning mice as highly effective mammalian models for elucidating hCoV–host interactions that govern pathogenesis. Notably, tractable mouse genetics combined with hCoV reverse genetic systems has afforded the concomitant manipulation of virus and host genetics to evaluate virus–host interaction networks in disease. In addition to assessing etiologies of known hCoVs, mouse models have clinically predictive value as tools to appraise potential disease phenotypes associated with pre-emergent CoVs. Knowledge of CoV pathogenic potential before it crosses the species barrier into the human population provides a highly desirable preclinical platform for addressing global pathogen preparedness, an overarching directive of the World Health Organization. Although we recognize that results obtained in robust mouse models require evaluation in non-human primates, we focus this review on the current state of hCoV mouse models, their use as tractable complex genetic organisms for untangling complex hCoV–host interactions, and as pathogenesis models for preclinical evaluation of novel therapeutic interventions.
Collapse
Affiliation(s)
- Adam S Cockrell
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Madeline G Douglas
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
939
|
Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7). Physiol Rev 2018; 98:505-553. [PMID: 29351514 PMCID: PMC7203574 DOI: 10.1152/physrev.00023.2016] [Citation(s) in RCA: 768] [Impact Index Per Article: 109.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 05/09/2017] [Accepted: 06/18/2017] [Indexed: 12/16/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key player in the control of the cardiovascular system and hydroelectrolyte balance, with an influence on organs and functions throughout the body. The classical view of this system saw it as a sequence of many enzymatic steps that culminate in the production of a single biologically active metabolite, the octapeptide angiotensin (ANG) II, by the angiotensin converting enzyme (ACE). The past two decades have revealed new functions for some of the intermediate products, beyond their roles as substrates along the classical route. They may be processed in alternative ways by enzymes such as the ACE homolog ACE2. One effect is to establish a second axis through ACE2/ANG-(1-7)/MAS, whose end point is the metabolite ANG-(1-7). ACE2 and other enzymes can form ANG-(1-7) directly or indirectly from either the decapeptide ANG I or from ANG II. In many cases, this second axis appears to counteract or modulate the effects of the classical axis. ANG-(1-7) itself acts on the receptor MAS to influence a range of mechanisms in the heart, kidney, brain, and other tissues. This review highlights the current knowledge about the roles of ANG-(1-7) in physiology and disease, with particular emphasis on the brain.
Collapse
Affiliation(s)
- Robson Augusto Souza Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Walkyria Oliveira Sampaio
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Andreia C Alzamora
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Daisy Motta-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Natalia Alenina
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Michael Bader
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Maria Jose Campagnole-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| |
Collapse
|
940
|
Abstract
Outbreaks from zoonotic sources represent a threat to both human disease as well as the global economy. Despite a wealth of metagenomics studies, methods to leverage these datasets to identify future threats are underdeveloped. In this study, we describe an approach that combines existing metagenomics data with reverse genetics to engineer reagents to evaluate emergence and pathogenic potential of circulating zoonotic viruses. Focusing on the severe acute respiratory syndrome (SARS)-like viruses, the results indicate that the WIV1-coronavirus (CoV) cluster has the ability to directly infect and may undergo limited transmission in human populations. However, in vivo attenuation suggests additional adaptation is required for epidemic disease. Importantly, available SARS monoclonal antibodies offered success in limiting viral infection absent from available vaccine approaches. Together, the data highlight the utility of a platform to identify and prioritize prepandemic strains harbored in animal reservoirs and document the threat posed by WIV1-CoV for emergence in human populations.
Collapse
|
941
|
Arabi YM, Harthi A, Hussein J, Bouchama A, Johani S, Hajeer AH, Saeed BT, Wahbi A, Saedy A, AlDabbagh T, Okaili R, Sadat M, Balkhy H. Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV). Infection 2015; 43:495-501. [PMID: 25600929 PMCID: PMC4521086 DOI: 10.1007/s15010-015-0720-y] [Citation(s) in RCA: 305] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/04/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Since the identification of the first case of infection with the Middle East respiratory syndrome corona virus (MERS-CoV) in Saudi Arabia in June 2012, the number of laboratory-confirmed cases has exceeded 941 cases globally, of which 347 died. The disease presents as severe respiratory infection often with shock, acute kidney injury, and coagulopathy. Recently, we observed three cases who presented with neurologic symptoms. These are so far the first reported cases of neurologic injury associated with MERS-CoV infection. METHODS Data was retrospectively collected from three patients admitted with MERS-CoV infection to Intensive Care unit (ICU) at King Abdulaziz Medical City, Riyadh. They were managed separately in three different wards prior to their admission to ICU. FINDING The three patients presented with severe neurologic syndrome which included altered level of consciousness ranging from confusion to coma, ataxia, and focal motor deficit. Brain MRI revealed striking changes characterized by widespread, bilateral hyperintense lesions on T2-weighted imaging within the white matter and subcortical areas of the frontal, temporal, and parietal lobes, the basal ganglia, and corpus callosum. None of the lesions showed gadolinium enhancement. INTERPRETATION CNS involvement should be considered in patients with MERS-CoV and progressive neurological disease, and further elucidation of the pathophysiology of this virus is needed.
Collapse
Affiliation(s)
- Y. M. Arabi
- Intensive Care Department, MC-1425, Respiratory Services, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center (KAIMRC), P.O. Box 22490, Riyadh, 11426 Kingdom of Saudi Arabia
| | - A. Harthi
- Neuro Physiology Services, Neurology Division, Department of Medicine, King Abdulaziz Medical City, Riyadh, 11426 Saudi Arabia
| | - J. Hussein
- Neuro Radiology Section, Medical Imaging Department, King Abdulaziz Medical City, Riyadh, 11426 Saudi Arabia
| | - A. Bouchama
- Intensive Care Unit, Experimental Medicine Department, King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, Riyadh, 11426 Saudi Arabia
| | - S. Johani
- Microbiology, Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh, 11426 Saudi Arabia
| | - A. H. Hajeer
- Basic Medical Sciences, Microbiology, Pathology and Laboratory Department, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, 11426 Saudi Arabia
| | - B. T. Saeed
- Cardiac Sciences Department, King Abdulaziz Medical City, Riyadh, 11426 Saudi Arabia
| | - A. Wahbi
- Vascular Surgery, Department of Surgery, King Abdulaziz Medical City, Riyadh, 11426 Saudi Arabia
| | - A. Saedy
- Infectious Disease Section, Department of Medicine, King Abdulaziz Medical City, Riyadh, 11426 Saudi Arabia
| | - T. AlDabbagh
- Intensive Care Unit, King Abdulaziz Medical City, Riyadh, 11426 Saudi Arabia
| | - R. Okaili
- Neuro Radiology, Nuero Interventionalist, Medical Imaging Department, King Abdulaziz Medical City, Riyadh, 11426 Saudi Arabia
| | - M. Sadat
- Intensive Care Unit, King Abdulaziz Medical City, Riyadh, 11426 Saudi Arabia
| | - H. Balkhy
- Infection Prevention and Control Program, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, Riyadh, 11426 Saudi Arabia
| |
Collapse
|
942
|
Brain Invasion by Mouse Hepatitis Virus Depends on Impairment of Tight Junctions and Beta Interferon Production in Brain Microvascular Endothelial Cells. J Virol 2015. [PMID: 26202229 DOI: 10.1128/jvi.01501-15] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Coronaviruses (CoVs) have shown neuroinvasive properties in humans and animals secondary to replication in peripheral organs, but the mechanism of neuroinvasion is unknown. The major aim of our work was to evaluate the ability of CoVs to enter the central nervous system (CNS) through the blood-brain barrier (BBB). Using the highly hepatotropic mouse hepatitis virus type 3 (MHV3), its attenuated variant, 51.6-MHV3, which shows low tropism for endothelial cells, and the weakly hepatotropic MHV-A59 strain from the murine coronavirus group, we investigated the virus-induced dysfunctions of BBB in vivo and in brain microvascular endothelial cells (BMECs) in vitro. We report here a MHV strain-specific ability to cross the BBB during acute infection according to their virulence for liver. Brain invasion was observed only in MHV3-infected mice and correlated with enhanced BBB permeability associated with decreased expression of zona occludens protein 1 (ZO-1), VE-cadherin, and occludin, but not claudin-5, in the brain or in cultured BMECs. BBB breakdown in MHV3 infection was not related to production of barrier-dysregulating inflammatory cytokines or chemokines by infected BMECs but rather to a downregulation of barrier protective beta interferon (IFN-β) production. Our findings highlight the importance of IFN-β production by infected BMECs in preserving BBB function and preventing access of blood-borne infectious viruses to the brain. IMPORTANCE Coronaviruses (CoVs) infect several mammals, including humans, and are associated with respiratory, gastrointestinal, and/or neurological diseases. There is some evidence that suggest that human respiratory CoVs may show neuroinvasive properties. Indeed, the severe acute respiratory syndrome coronavirus (SARS-CoV), causing severe acute respiratory syndrome, and the CoVs OC43 and 229E were found in the brains of SARS patients and multiple sclerosis patients, respectively. These findings suggest that hematogenously spread CoVs may gain access to the CNS at the BBB level. Herein we report for the first time that CoVs exhibit the ability to cross the BBB according to strain virulence. BBB invasion by CoVs correlates with virus-induced disruption of tight junctions on BMECs, leading to BBB dysfunction and enhanced permeability. We provide evidence that production of IFN-β by BMECs during CoV infection may prevent BBB breakdown and brain viral invasion.
Collapse
|
943
|
Sutton TC, Subbarao K. Development of animal models against emerging coronaviruses: From SARS to MERS coronavirus. Virology 2015; 479-480:247-58. [PMID: 25791336 PMCID: PMC4793273 DOI: 10.1016/j.virol.2015.02.030] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/30/2015] [Accepted: 02/16/2015] [Indexed: 12/16/2022]
Abstract
Two novel coronaviruses have emerged to cause severe disease in humans. While bats may be the primary reservoir for both viruses, SARS coronavirus (SARS-CoV) likely crossed into humans from civets in China, and MERS coronavirus (MERS-CoV) has been transmitted from camels in the Middle East. Unlike SARS-CoV that resolved within a year, continued introductions of MERS-CoV present an on-going public health threat. Animal models are needed to evaluate countermeasures against emerging viruses. With SARS-CoV, several animal species were permissive to infection. In contrast, most laboratory animals are refractory or only semi-permissive to infection with MERS-CoV. This host-range restriction is largely determined by sequence heterogeneity in the MERS-CoV receptor. We describe animal models developed to study coronaviruses, with a focus on host-range restriction at the level of the viral receptor and discuss approaches to consider in developing a model to evaluate countermeasures against MERS-CoV.
Collapse
Affiliation(s)
- Troy C Sutton
- Laboratory of Infectious Disease, NIAID, NIH, United States
| | - Kanta Subbarao
- Laboratory of Infectious Disease, NIAID, NIH, United States.
| |
Collapse
|
944
|
Animal Models with a Genetic Alteration of the ACE2/Ang-(1-7)/Mas Axis. THE PROTECTIVE ARM OF THE RENIN ANGIOTENSIN SYSTEM (RAS) 2015. [PMCID: PMC7150279 DOI: 10.1016/b978-0-12-801364-9.00022-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this chapter is to describe the animal models generated by transgenic technology for the functional analysis of the protective axis of the renin–angiotensin system, consisting of angiotensin-converting enzyme 2 (ACE2), angiotensin (Ang)-(1-7), and Mas. Transgenic overexpression of the components of this axis in general led to an ameliorated cardiac and vascular damage in disease states and to an improved metabolic profile. Knockout models for ACE2 and Mas, however, show aggravated cardiovascular pathologies and a metabolic syndrome-like state. In particular, the local production of Ang-(1-7) in the vascular wall, in the heart, and in the brain was found to be of high physiological relevance by the use of transgenic animals overexpressing ACE2 or Ang-(1-7) in these tissues.
Collapse
|
945
|
DeDiego ML, Nieto-Torres JL, Jimenez-Guardeño JM, Regla-Nava JA, Castaño-Rodriguez C, Fernandez-Delgado R, Usera F, Enjuanes L. Coronavirus virulence genes with main focus on SARS-CoV envelope gene. Virus Res 2014; 194:124-37. [PMID: 25093995 PMCID: PMC4261026 DOI: 10.1016/j.virusres.2014.07.024] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/21/2014] [Accepted: 07/24/2014] [Indexed: 12/20/2022]
Abstract
Coronavirus (CoV) infection is usually detected by cellular sensors, which trigger the activation of the innate immune system. Nevertheless, CoVs have evolved viral proteins that target different signaling pathways to counteract innate immune responses. Some CoV proteins act as antagonists of interferon (IFN) by inhibiting IFN production or signaling, aspects that are briefly addressed in this review. After CoV infection, potent cytokines relevant in controlling virus infections and priming adaptive immune responses are also generated. However, an uncontrolled induction of these proinflammatory cytokines can lead to pathogenesis and disease severity as described for SARS-CoV and MERS-CoV. The cellular pathways mediated by interferon regulatory factor (IRF)-3 and -7, activating transcription factor (ATF)-2/jun, activator protein (AP)-1, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nuclear factor of activated T cells (NF-AT), are the main drivers of the inflammatory response triggered after viral infections, with NF-κB pathway the most frequently activated. Key CoV proteins involved in the regulation of these pathways and the proinflammatory immune response are revisited in this manuscript. It has been shown that the envelope (E) protein plays a variable role in CoV morphogenesis, depending on the CoV genus, being absolutely essential in some cases (genus α CoVs such as TGEV, and genus β CoVs such as MERS-CoV), but not in others (genus β CoVs such as MHV or SARS-CoV). A comprehensive accumulation of data has shown that the relatively small E protein elicits a strong influence on the interaction of SARS-CoV with the host. In fact, after infection with viruses in which this protein has been deleted, increased cellular stress and unfolded protein responses, apoptosis, and augmented host immune responses were observed. In contrast, the presence of E protein activated a pathogenic inflammatory response that may cause death in animal models and in humans. The modification or deletion of different motifs within E protein, including the transmembrane domain that harbors an ion channel activity, small sequences within the middle region of the carboxy-terminus of E protein, and its most carboxy-terminal end, which contains a PDZ domain-binding motif (PBM), is sufficient to attenuate the virus. Interestingly, a comprehensive collection of SARS-CoVs in which these motifs have been modified elicited full and long-term protection even in old mice, making those deletion mutants promising vaccine candidates. These data indicate that despite its small size, E protein drastically influences the replication of CoVs and their pathogenicity. Although E protein is not essential for CoV genome replication or subgenomic mRNA synthesis, it affects virus morphogenesis, budding, assembly, intracellular trafficking, and virulence. In fact, E protein is responsible in a significant proportion of the inflammasome activation and the associated inflammation elicited by SARS-CoV in the lung parenchyma. This exacerbated inflammation causes edema accumulation leading to acute respiratory distress syndrome (ARDS) and, frequently, to the death of infected animal models or human patients.
Collapse
Affiliation(s)
- Marta L DeDiego
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Jose L Nieto-Torres
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Jose M Jimenez-Guardeño
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Jose A Regla-Nava
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Carlos Castaño-Rodriguez
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Raul Fernandez-Delgado
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Fernando Usera
- Department of Biosafety, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autonoma de Madrid, Madrid, Spain.
| |
Collapse
|
946
|
Desforges M, Le Coupanec A, Stodola JK, Meessen-Pinard M, Talbot PJ. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res 2014; 194:145-58. [PMID: 25281913 PMCID: PMC7114389 DOI: 10.1016/j.virusres.2014.09.011] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/15/2022]
Abstract
Human coronavirus (HCoV) are naturally neuroinvasive in both mice and humans. Both transneuronal and hematogenous route may allow virus invasion of the CNS. Infection of neurons leads to excitotoxicity, neurodegeneration and cell-death. HCoV are potentially associated with human neurological disorders.
Among the various respiratory viruses infecting human beings, coronaviruses are important pathogens, which usually infect the upper respiratory tract, where they are mainly associated with common colds. However, in more vulnerable populations, such as newborns, infants, the elderly and immune-compromised individuals, these opportunistic pathogens can also affect the lower respiratory tract, leading to pneumonia, exacerbations of asthma, and various types of respiratory distress syndrome. The respiratory involvement of human coronaviruses has been clearly established since the 1960s. Nevertheless, for almost three decades now, data reported in the scientific literature has also demonstrated that, like it was described for other human viruses, coronaviruses have neuroinvasive capacities since they can spread from the respiratory tract to the central nervous system (CNS). Once there, infection of CNS cells (neurotropism) could lead to human health problems, such as encephalitis and long-term neurological diseases. Neuroinvasive coronaviruses could damage the CNS as a result of misdirected host immune responses that could be associated with autoimmunity in susceptible individuals (virus-induced neuroimmunopathology) and/or viral replication, which directly induces damage to CNS cells (virus-induced neuropathology). Given all these properties, it has been suggested that these opportunistic human respiratory pathogens could be associated with the triggering or the exacerbation of neurologic diseases for which the etiology remains poorly understood. Herein, we present host and viral factors that participate in the regulation of the possible pathogenic processes associated with CNS infection by human coronaviruses and we try to decipher the intricate interplay between virus and host target cells in order to characterize their role in the virus life cycle as well as in the capacity of the cell to respond to viral invasion.
Collapse
Affiliation(s)
- Marc Desforges
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7.
| | - Alain Le Coupanec
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Jenny K Stodola
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Mathieu Meessen-Pinard
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Pierre J Talbot
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7.
| |
Collapse
|
947
|
Adhikari R, Thapa S. Neuroinvasive and neurotropic human respiratory coronaviruses: potential neurovirulent agents in humans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 807:75-96. [PMID: 24619619 PMCID: PMC7121612 DOI: 10.1007/978-81-322-1777-0_6] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In humans, viral infections of the respiratory tract are a leading cause of morbidity and mortality worldwide. Several recognized respiratory viral agents have a neuroinvasive capacity since they can spread from the respiratory tract to the central nervous system (CNS). Once there, infection of CNS cells (neurotropism) could lead to human health problems, such as encephalitis and long-term neurological diseases. Among the various respiratory viruses, coronaviruses are important pathogens of humans and animals. Human Coronaviruses (HCoV) usually infect the upper respiratory tract, where they are mainly associated with common colds. However, in more vulnerable populations, such as newborns, infants, the elderly, and immune-compromised individuals, they can also affect the lower respiratory tract, leading to pneumonia, exacerbations of asthma, respiratory distress syndrome, or even severe acute respiratory syndrome (SARS). The respiratory involvement of HCoV has been clearly established since the 1960s. In addition, for almost three decades now, the scientific literature has also demonstrated that HCoV are neuroinvasive and neurotropic and could induce an overactivation of the immune system, in part by participating in the activation of autoreactive immune cells that could be associated with autoimmunity in susceptible individuals. Furthermore, it was shown that in the murine CNS, neurons are the main target of infection, which causes these essential cells to undergo degeneration and eventually die by some form of programmed cell death after virus infection. Moreover, it appears that the viral surface glycoprotein (S) represents an important factor in the neurodegenerative process. Given all these properties, it has been suggested that these recognized human respiratory pathogens could be associated with the triggering or the exacerbation of neurological diseases for which the etiology remains unknown or poorly understood.
Collapse
Affiliation(s)
| | - Santosh Thapa
- Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| |
Collapse
|
948
|
Louz D, Bergmans HE, Loos BP, Hoeben RC. Animal models in virus research: their utility and limitations. Crit Rev Microbiol 2012; 39:325-61. [PMID: 22978742 DOI: 10.3109/1040841x.2012.711740] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Viral diseases are important threats to public health worldwide. With the number of emerging viral diseases increasing the last decades, there is a growing need for appropriate animal models for virus studies. The relevance of animal models can be limited in terms of mimicking human pathophysiology. In this review, we discuss the utility of animal models for studies of influenza A viruses, HIV and SARS-CoV in light of viral emergence, assessment of infection and transmission risks, and regulatory decision making. We address their relevance and limitations. The susceptibility, immune responses, pathogenesis, and pharmacokinetics may differ between the various animal models. These complexities may thwart translating results from animal experiments to the humans. Within these constraints, animal models are very informative for studying virus immunopathology and transmission modes and for translation of virus research into clinical benefit. Insight in the limitations of the various models may facilitate further improvements of the models.
Collapse
Affiliation(s)
- Derrick Louz
- National Institute for Public Health and the Environment (RIVM), GMO Office , Bilthoven , The Netherlands
| | | | | | | |
Collapse
|
949
|
Abstract
Coronaviruses infect many species of animals including humans, causing acute and chronic diseases. This review focuses primarily on the pathogenesis of murine coronavirus mouse hepatitis virus (MHV) and severe acute respiratory coronavirus (SARS-CoV). MHV is a collection of strains, which provide models systems for the study of viral tropism and pathogenesis in several organs systems, including the central nervous system, the liver, and the lung, and has been cited as providing one of the few animal models for the study of chronic demyelinating diseases such as multiple sclerosis. SARS-CoV emerged in the human population in China in 2002, causing a worldwide epidemic with severe morbidity and high mortality rates, particularly in older individuals. We review the pathogenesis of both viruses and the several reverse genetics systems that made much of these studies possible. We also review the functions of coronavirus proteins, structural, enzymatic, and accessory, with an emphasis on roles in pathogenesis. Structural proteins in addition to their roles in virion structure and morphogenesis also contribute significantly to viral spread in vivo and in antagonizing host cell responses. Nonstructural proteins include the small accessory proteins that are not at all conserved between MHV and SARS-CoV and the 16 conserved proteins encoded in the replicase locus, many of which have enzymatic activities in RNA metabolism or protein processing in addition to functions in antagonizing host response.
Collapse
Affiliation(s)
- Susan R Weiss
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, USA
| | | |
Collapse
|
950
|
Moldofsky H, Patcai J. Chronic widespread musculoskeletal pain, fatigue, depression and disordered sleep in chronic post-SARS syndrome; a case-controlled study. BMC Neurol 2011; 11:37. [PMID: 21435231 PMCID: PMC3071317 DOI: 10.1186/1471-2377-11-37] [Citation(s) in RCA: 393] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 03/24/2011] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The long term adverse effects of Severe Acute Respiratory Syndrome (SARS), a viral disease, are poorly understood. METHODS Sleep physiology, somatic and mood symptoms of 22 Toronto subjects, 21 of whom were healthcare workers, (19 females, 3 males, mean age 46.29 yrs.+/- 11.02) who remained unable to return to their former occupation (mean 19.8 months, range: 13 to 36 months following SARS) were compared to 7 healthy female subjects. Because of their clinical similarities to patients with fibromyalgia syndrome (FMS) these post-SARS subjects were similarly compared to 21 drug free female patients, (mean age 42.4 +/- 11.8 yrs.) who fulfilled criteria for fibromyalgia. RESULTS Chronic post-SARS is characterized by persistent fatigue, diffuse myalgia, weakness, depression, and nonrestorative sleep with associated REM-related apneas/hypopneas, an elevated sleep EEG cyclical alternating pattern, and alpha EEG sleep anomaly. Post- SARS patients had symptoms of pre and post-sleep fatigue and post sleep sleepiness that were similar to the symptoms of patients with FMS, and similar to symptoms of patients with chronic fatigue syndrome. Both post-SARS and FMS groups had sleep instability as indicated by the high sleep EEG cyclical alternating pattern rate. The post-SARS group had a lower rating of the alpha EEG sleep anomaly as compared to the FMS patients. The post-SARS group also reported less pre-sleep and post-sleep musculoskeletal pain symptoms. CONCLUSIONS The clinical and sleep features of chronic post-SARS form a syndrome of chronic fatigue, pain, weakness, depression and sleep disturbance, which overlaps with the clinical and sleep features of FMS and chronic fatigue syndrome.
Collapse
Affiliation(s)
- Harvey Moldofsky
- Sleep Disorders Clinic of the Centre for Sleep and Chronobiology, 340 College St., Suite 580, Toronto, ON M5T 3A9, Canada
| | - John Patcai
- St. John's Rehab Hospital, 285 Cummer Ave, Toronto, ON M2M 2G1, Canada
- Department of Medicine, University of Toronto, #3S805 - 200 Elizabeth Street, Toronto, ON M5G 2C4 Canada
| |
Collapse
|