99901
|
Loss of CASZ1 tumor suppressor linked to oncogenic subversion of neuroblastoma core regulatory circuitry. Cell Death Dis 2022; 13:871. [PMID: 36243768 PMCID: PMC9569368 DOI: 10.1038/s41419-022-05314-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022]
Abstract
The neural crest lineage regulatory transcription factors (TFs) form a core regulatory circuitry (CRC) in neuroblastoma (NB) to specify a noradrenergic tumor phenotype. Oncogenic subversion of CRC TFs is well documented, but the role of loss of tumor suppressors plays remains unclear. Zinc-finger TF CASZ1 is a chromosome 1p36 (chr1p36) tumor suppressor. Single-cell RNA sequencing data analyses indicate that CASZ1 is highly expressed in developing chromaffin cells coincident with an expression of NB CRC TFs. In NB tumor cells, the CASZ1 tumor suppressor is silenced while CRC components are highly expressed. We find the NB CRC component HAND2 directly represses CASZ1 expression. ChIP-seq and transcriptomic analyses reveal that restoration of CASZ1 upregulates noradrenergic neuronal genes and represses expression of CRC components by remodeling enhancer activity. Our study identifies that the restored CASZ1 forms a negative feedback regulatory circuit with the established NB CRC to induce noradrenergic neuronal differentiation of NB.
Collapse
|
99902
|
Seven Fatty Acid Metabolism-Related Genes as Potential Biomarkers for Predicting the Prognosis and Immunotherapy Responses in Patients with Esophageal Cancer. Vaccines (Basel) 2022; 10:vaccines10101721. [PMID: 36298586 PMCID: PMC9610070 DOI: 10.3390/vaccines10101721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Esophageal cancer (ESCA) is a major cause of cancer-related mortality worldwide. Altered fatty acid metabolism is a hallmark of cancer. However, studies on the roles of fatty acid metabolism-related genes (FRGs) in ESCA remain limited. Method: We identified differentially expressed FRGs (DE-FRGs). Then, the DE-FRGs prognostic model was constructed and validated using a comprehensive analysis. Moreover, the correlation between the risk model and clinical characteristics was investigated. A nomogram for predicting survival was established and evaluated. Subsequently, the difference in tumor microenvironment (TME) was compared between two risk groups. The sensitivity of key DE-FRGs to chemotherapeutic interventions and their correlation with immune cells were investigated. Finally, DEGs between two risk groups were measured and the prognostic value of key DE-FRGs in ESCA was confirmed in other databases. Results: A prognostic model was constructed based on seven selected DEG-FRGs. TNM staging and CD8+ T cells were significantly correlated with high-risk groups. Low-risk groups exhibited more infiltrated M0 macrophages, an activation of type II interferon (IFN-γ) responses, and were found to be more suitable for immunotherapy. Seven key DE-FRGs with prognostic value were found to be considerably influenced by different chemotherapy drugs. Conclusion: A prognostic model based on seven DE-FRGs may efficiently predict patient prognosis and immunotherapy response, helping to develop individualized treatment strategies in ESCA.
Collapse
|
99903
|
Chen ZZ, Wang WP, Xue HM, Liang Y. The lncRNA-miRNA-integrin alpha V ceRNA network can affect the occurrence and prognosis of gastric cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2022; 15:388-402. [PMID: 36381423 PMCID: PMC9638841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES The aim of this study was to explore the role of integrin alpha V (ITGAV) and the related long noncoding RNA-microRNA-messenger RNA competing endogenous RNA (lncRNA-miRNA-mRNA ceRNA) network in the development and prognosis of cancers, especially gastric cancer (GC), through bioinformatic analysis. METHODS Pan-cancer and GC data were collected from the UCSC Xena website, and validation datasets were obtained from the Gene Expression Omnibus (GEO). R (version 3.6.3), GraphPad Prism 8, and SPSS 23.0 software were used to analyze data and prepare figures. RESULTS The expression of ITGAV in tumor tissues was higher than that of normal tissues in ten cancer types. A lower expression of ITGAV in five tumors (CESC, LGG, LIHC, MESO, and STAD) predicted better patient prognosis. In GC, the mRNA and protein expression of ITGAV in tumor tissues was higher than that of normal tissues. Patients with high ITGAV expression had poor prognosis and clinical characteristics, including worse grades and more advanced stages. Patients with higher ITGAV expression had higher immune and stromal scores and lower purity (P<0.05). In addition, seven miRNAs were found that were negatively correlated with ITGAV expression through the website; high expression of these miRNAs indicated a better prognosis. Using this correlation, the authors built the lncRNA-miRNA-ITGAV ceRNA network, to predict the prognosis of GC. CONCLUSIONS This study showed that ITGAV could be considered a prognostic factor for GC, and an lncRNA-miRNA-ITGAV ceRNA network was built to promote the exploration of the mechanism and prognosis of GC.
Collapse
Affiliation(s)
- Ze-Zhong Chen
- General Surgery Department, No. 1 People's Hospital of Ningyang County 872 Jinyang Street, Ningyang 271400, Shandong Province, China
| | - Wen-Peng Wang
- General Surgery Department, No. 1 People's Hospital of Ningyang County 872 Jinyang Street, Ningyang 271400, Shandong Province, China
| | - Hong-Mei Xue
- General Surgery Department, No. 1 People's Hospital of Ningyang County 872 Jinyang Street, Ningyang 271400, Shandong Province, China
| | - Yu Liang
- General Surgery Department, No. 1 People's Hospital of Ningyang County 872 Jinyang Street, Ningyang 271400, Shandong Province, China
| |
Collapse
|
99904
|
Zhou X, Li Y, Li X, Huang J, Kong R, Liu L, Cheng H. Carrier free nanomedicine to reverse anti-apoptosis and elevate endoplasmic reticulum stress for enhanced photodynamic therapy. Acta Biomater 2022; 152:507-518. [PMID: 36030050 DOI: 10.1016/j.actbio.2022.08.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/04/2022] [Accepted: 08/19/2022] [Indexed: 11/01/2022]
Abstract
As a first studied and generally accepted programmed cell death regulator, Bcl-2 has been identified to overexpress in many types of cancer promoting tumor proliferation and progression. Herein, inspired by drug self-delivery systems, a self-assembled nanomedicine (designated as GosCe) was designed based on the hydrophobic interaction between chlorin e6 (Ce6) and gossypol (Gos). Without extra carriers, GosCe exhibited high drug loading rates, favorable size distribution, and a long-term stability at aqueous phase. More importantly, GosCe could be internalized by tumor cells more effectively than free Ce6, which brought about its multiple toxicity. Upon intravenous injection, GosCe preferred to accumulate in tumor site through enhanced permeability and retention (EPR) effect. After cellular internalization, Gos contributed to increasing the lethality of Ce6-guided photodynamic therapy (PDT) by down-regulating Bcl-2 protein expression and inducing endoplasmic reticulum (ER) stress. Both in vitro and in vivo investigations indicated that the Gos-assisted PDT greatly inhibit cell proliferation and tumor growth. This study might shed light on developing carrier free nanomedicine for PDT-based synergistic tumor therapy. STATEMENT OF SIGNIFICANCE: Metabolic abnormalities of tumor cells create defensive microenvironments which induce a therapeutic resistance against photodynamic therapy (PDT). Among which, the upregulated B-cell lymphoma (Bcl-2) in tumors could inhibit the PDT-induced cell apoptosis. In this work, a self-delivery nanomedicine (GosCe) was developed based on a Bcl-2 inhibitor and photosensitizer through intermolecular interactions, which had favorable size distribution, high drug contents and improved drug delivery efficiency. Importantly, GosCe increased the PDT efficacy by Bcl-2 inhibition and endoplasmic reticulum stress elevation. Thus, GosCe greatly inhibited the tumor growth while caused a reduced side effect in vivo. This carrier free nanomedicine with tumor microenvironment regulation would advance the development of photodynamic nanoplatform in tumor treatment.
Collapse
Affiliation(s)
- Xiang Zhou
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Yanmei Li
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Xinyu Li
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Jiaqi Huang
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Renjiang Kong
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Lingshan Liu
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, PR China
| | - Hong Cheng
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
99905
|
Lin C, Chen Y, Zhu M, Pei J, Zhou Y, Gou M, Ouyang L. A sulfhydryl blocking reagent BT-4 sensitizes cisplatin-based micelle prodrugs for efficient treatment of breast cancer. Int J Pharm 2022; 626:122187. [PMID: 36100145 DOI: 10.1016/j.ijpharm.2022.122187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
Detoxification of glutathione (GSH) and insufficient cellular uptake of cisplatin (CDDP) severely compromised the therapeutic efficacy of CDDP. Here, a nano-delivery system (BT-4@PtPPNPs) for CDDP prodrug (C16-Pt(Ⅳ)-PEG) based on a novel sulfhydryl blocking reagent methyl 2-(methylsulfonyl) benzothiazole-6-carboxylate (BT-4) was developed. On the one hand, BT-4 can deplete GSH in tumor cells by directly interacting with reactive sulfhydryl group on GSH, thereby increasing the cytotoxicity of CDDP. On the other hand, the CDDP prodrug carrier C16-Pt(IV)-PEG can promote the distribution of CDDP in tumors, reduce the probability of unexpected inactivation of CDDP, and reduce the content of GSH in tumor cells during the conversion to CDDP, thereby making CDDP more effective for treatment. The results showed that the optimized BT-4@PtPPNPs with a small particle size (130 nm) exhibited notable cytotoxicity and apoptosis of 4T1 cells. BT-4@PtPPNPs not only significantly improved the uptake of drugs by tumor cells, but also rapidly targeted and accumulated in the tumors for a long time. Moreover, in vivo efficacy studies showed that BT-4@PtPPNPs could effectively inhibit tumor growth, inhibiting 60.85 % of tumors in a 4T1 breast cancer mice model, showing superior antitumor activity, which can be attributed to GSH-triggered CDDP tolerance reversal. Overall, this study provides an attractive and simple strategy to combine novel sulfhydryl blockers and CDDP prodrugs to potentiate the efficacy of CDDP in breast cancer.
Collapse
Affiliation(s)
- Congcong Lin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China.
| | - Yuxiu Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Mengli Zhu
- Core Facilities of West China Hospital, Chengdu 610041, China.
| | - Junping Pei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Yang Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
99906
|
Fico E, Rosso P, Triaca V, Segatto M, Lambiase A, Tirassa P. NGF Prevents Loss of TrkA/VEGFR2 Cells, and VEGF Isoform Dysregulation in the Retina of Adult Diabetic Rats. Cells 2022; 11:cells11203246. [PMID: 36291113 PMCID: PMC9600509 DOI: 10.3390/cells11203246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Among the factors involved in diabetic retinopathy (DR), nerve growth factor (NGF) and vascular endothelial growth factor A (VEGFA) have been shown to affect both neuronal survival and vascular function, suggesting that their crosstalk might influence DR outcomes. To address this question, the administration of eye drops containing NGF (ed-NGF) to adult Sprague Dawley rats receiving streptozotocin (STZ) intraperitoneal injection was used as an experimental paradigm to investigate NGF modulation of VEGFA and its receptor VEGFR2 expression. We show that ed-NGF treatment prevents the histological and vascular alterations in STZ retina, VEGFR2 expression decreased in GCL and INL, and preserved the co-expression of VEGFR2 and NGF-tropomyosin-related kinase A (TrkA) receptor in retinal ganglion cells (RGCs). The WB analysis confirmed the NGF effect on VEGFR2 expression and activation, and showed a recovery of VEGF isoform dysregulation by suppressing STZ-induced VEGFA121 expression. Reduction in inflammatory and pro-apoptotic intracellular signals were also found in STZ+NGF retina. These findings suggest that ed-NGF administration might favor neuroretina protection, and in turn counteract the vascular impairment by regulating VEGFR2 and/or VEGFA isoform expression during the early stages of the disease. The possibility that an increase in the NGF availability might contribute to the switch from the proangiogenic/apoptotic to the neuroprotective action of VEGF is discussed.
Collapse
Affiliation(s)
- Elena Fico
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
- Correspondence: (E.F.); (P.T.)
| | - Pamela Rosso
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati Traverso, Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Alessandro Lambiase
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
- Correspondence: (E.F.); (P.T.)
| |
Collapse
|
99907
|
Morales A, Andrews MG. Approaches to investigating metabolism in human neurodevelopment using organoids: insights from intestinal and cancer studies. Development 2022; 149:dev200506. [PMID: 36255366 PMCID: PMC9720749 DOI: 10.1242/dev.200506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Interrogating the impact of metabolism during development is important for understanding cellular and tissue formation, organ and systemic homeostasis, and dysregulation in disease states. To evaluate the vital functions metabolism coordinates during human brain development and disease, pluripotent stem cell-derived models, such as organoids, provide tractable access to neurodevelopmental processes. Despite many strengths of neural organoid models, the extent of their replication of endogenous metabolic programs is currently unclear and requires direct investigation. Studies in intestinal and cancer organoids that functionally evaluate dynamic bioenergetic changes provide a framework that can be adapted for the study of neural metabolism. Validation of in vitro models remains a significant challenge; investigation using in vivo models and primary tissue samples is required to improve our in vitro model systems and, concomitantly, improve our understanding of human development.
Collapse
Affiliation(s)
- Alexandria Morales
- Schoolof Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
- Biomedical Engineering Graduate Program, Arizona State University, Tempe, AZ 85281, USA
| | - Madeline G. Andrews
- Schoolof Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
99908
|
Le Coq J, Acebrón I, Rodrigo Martin B, López Navajas P, Lietha D. New insights into FAK structure and function in focal adhesions. J Cell Sci 2022; 135:277381. [PMID: 36239192 DOI: 10.1242/jcs.259089] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Focal adhesion kinase (FAK; also known as PTK2) was discovered three decades ago and is now recognised as a key player in the regulation of cell-matrix adhesion and mesenchymal cell migration. Although it is essential during development, FAK also drives invasive cancer progression and metastasis. On a structural level, the basic building blocks of FAK have been described for some time. However, a picture of how FAK integrates into larger assemblies in various cellular environments, including one of its main cellular locations, the focal adhesion (FA) complex, is only beginning to emerge. Nano-resolution data from cellular studies, as well as atomic structures from reconstituted systems, have provided first insights, but also point to challenges that remain for obtaining a full structural understanding of how FAK is integrated in the FA complex and the structural changes occurring at different stages of FA maturation. In this Review, we discuss the known structural features of FAK, the interactions with its partners within the FA environment on the cell membrane and propose how its initial assembly in nascent FAs might change during FA maturation under force.
Collapse
Affiliation(s)
- Johanne Le Coq
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Iván Acebrón
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Bárbara Rodrigo Martin
- Structural and Chemical Biology, Margarita Salas Center for Biological Research (CIB), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Pilar López Navajas
- Structural and Chemical Biology, Margarita Salas Center for Biological Research (CIB), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Daniel Lietha
- Structural and Chemical Biology, Margarita Salas Center for Biological Research (CIB), Spanish National Research Council (CSIC), 28040 Madrid, Spain
| |
Collapse
|
99909
|
Sun X, Li Z, Meng F, Huang X, Wang J, Song J, Sun L, Zhang P. Cuproptosis associated genes affect prognosis and tumor microenvironment infiltration characterization in lung adenocarcinoma. Am J Cancer Res 2022; 12:4545-4565. [PMID: 36381320 PMCID: PMC9641400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023] Open
Abstract
Cuproptosis, a newly discovered mechanism of programmed cell death, is important for detailing the metabolic aspects of cancer progression and thereby guiding cancer therapy. An exciting era of translational medicine has led to the rapid development of countless immunotherapeutic strategies. The existing successful cancer immunotherapies have sparked new hope for patients with solid and hematologic malignancies. Hence, it is important to characterize the link between the cuproptosis process and the immunity status in the tumor microenvironment (TME) in Lung Adenocarcinoma (LUAD), which may be able to predict patient's prognosis. In this study, we systematically assessed 10 cuproptosis-associated genes (CAGs) and comprehensively characterized the relationship between cuproptosis and the molecular characteristics and immune cell infiltration of tumor tissue, prognosis and clinical treatment of patients. Subsequently, the CAG_score for predicting overall survival (OS) was established and its reliable predictive ability in LUAD patients was confirmed. Next, we created a highly reliable nomogram to facilitate the clinical viability of the CAG_score. The low CAG_score group, with lower immune cell infiltration, and mutation burden, had a significantly superior OS, which was associated with a better response to immunotherapy. The present study revealed that cuproptosis play a significant role in TME regulation in LUAD. Collectively, we identified a prognostic CAGs-related signature for LUAD patients. This signature may contribute to clarifying the characteristics of TME and enable the exploration of more potent immunotherapy strategies.
Collapse
Affiliation(s)
- Xinti Sun
- Department of Thoracic Surgery, Tianjin Medical University General HospitalTianjin, China
| | - Zesheng Li
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General HospitalTianjin, China
| | - Fei Meng
- Department of Thoracic Surgery, Tianjin Medical University General HospitalTianjin, China
| | - Xingqi Huang
- Department of Neurosurgery, Tianjin Medical University General HospitalTianjin, China
| | - Jianyao Wang
- Department of Thoracic Surgery, Tianjin Medical University General HospitalTianjin, China
| | - Jiaming Song
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General HospitalTianjin, China
| | - Linao Sun
- Department of Thoracic Surgery, Tianjin Medical University General HospitalTianjin, China
| | - Peng Zhang
- Department of Thoracic Surgery, Tianjin Medical University General HospitalTianjin, China
| |
Collapse
|
99910
|
Brás MM, Cruz TB, Maia AF, Oliveira MJ, Sousa SR, Granja PL, Radmacher M. Mechanical Properties of Colorectal Cancer Cells Determined by Dynamic Atomic Force Microscopy: A Novel Biomarker. Cancers (Basel) 2022; 14:cancers14205053. [PMID: 36291838 PMCID: PMC9600571 DOI: 10.3390/cancers14205053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is presently the third-most abundant and the second-most lethal cancer worldwide. Thus, there is a real and urgent need to investigate the processes behind the appearance, development, and proliferation of CRC cells. Several biochemical pathways have been investigated to understand their role in oncogene activation and tumor-suppressor gene inhibition. Despite the research increase in biochemistry, there is still a need to better understand the biophysical cues that drive the activation of signaling pathways relevant to mechanotransduction and cell transformation. The elucidation of these biological processes may help to hinder oncogenic mechanisms and to find biomarkers that could be used to design more personalized therapeutic strategies. Abstract Colorectal cancer (CRC) has been addressed in the framework of molecular, cellular biology, and biochemical traits. A new approach to studying CRC is focused on the relationship between biochemical pathways and biophysical cues, which may contribute to disease understanding and therapy development. Herein, we investigated the mechanical properties of CRC cells, namely, HCT116, HCT15, and SW620, using static and dynamic methodologies by atomic force microscopy (AFM). The static method quantifies Young’s modulus; the dynamic method allows the determination of elasticity, viscosity, and fluidity. AFM results were correlated with confocal laser scanning microscopy and cell migration assay data. The SW620 metastatic cells presented the highest Young’s and storage moduli, with a defined cortical actin ring with distributed F-actin filaments, scarce vinculin expression, abundant total focal adhesions (FAK), and no filopodia formation, which could explain the lessened migratory behavior. In contrast, HCT15 cells presented lower Young’s and storage moduli, high cortical tubulin, less cortical F-actin and less FAK, and more filopodia formation, probably explaining the higher migratory behavior. HCT116 cells presented Young’s and storage moduli values in between the other cell lines, high cortical F-actin expression, intermediate levels of total FAK, and abundant filopodia formation, possibly explaining the highest migratory behavior.
Collapse
Affiliation(s)
- M. Manuela Brás
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Engenharia da Universidade do Porto, 4200-465 Porto, Portugal
| | - Tânia B. Cruz
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - André F. Maia
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria José Oliveira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Susana R. Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| | - Pedro L. Granja
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - Manfred Radmacher
- Institute of Biophysics, University of Bremen, 28334 Bremen, Germany
- Correspondence:
| |
Collapse
|
99911
|
CHEN J, CHEN J, WANG L. Tertiary lymphoid structures as unique constructions associated with the organization, education, and function of tumor-infiltrating immunocytes. J Zhejiang Univ Sci B 2022; 23:812-822. [PMID: 36226536 PMCID: PMC9561406 DOI: 10.1631/jzus.b2200174] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tertiary lymphoid structures (TLSs) are formations at sites with persistent inflammatory stimulation, including tumors. These ectopic lymphoid organs mainly consist of chemo-attracting B cells, T cells, and supporting dendritic cells (DCs). Mature TLSs exhibit functional organization for the optimal development and collaboration of adaptive immune response, delivering an augmented effect on the tumor microenvironment (TME). The description of the positive correlation between TLSs and tumor prognosis is reliable only under a certain condition involving the localization and maturation of TLSs. Emerging evidence suggests that underlying mechanisms of the anti-tumor effect of TLSs pave the way for novel immunotherapies. Several approaches have been developed to take advantage of intratumoral TLSs, either by combining it with therapeutic agents or by inducing the neogenesis of TLSs.
Collapse
Affiliation(s)
- Jing CHEN
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310009, China,Institute of Immunology and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China
| | - Jian CHEN
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310009, China,Jian CHEN,
| | - Lie WANG
- Institute of Immunology and Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310003, China,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou311121, China,Cancer Center, Zhejiang University, Hangzhou310058, China,Lie WANG,
| |
Collapse
|
99912
|
Knockdown of miR-214 Alleviates Renal Interstitial Fibrosis by Targeting the Regulation of the PTEN/PI3K/AKT Signalling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7553928. [PMID: 36285295 PMCID: PMC9588363 DOI: 10.1155/2022/7553928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 09/14/2022] [Indexed: 11/22/2022]
Abstract
The microRNA-214 (miR-214) precursor is formed by the DNM3 gene on human chromosome 1q24.3, which is encoded and transcribed in the nucleus and processed into mature miR-214 in the cytoplasm. Association of miR-214 with the interstitial fibrosis of the kidney has been reported in existing research. Renal interstitial fibrosis is considered necessary during the process of various renal injuries in chronic kidney disease (CKD). One of the important mechanisms is the TGF- (transforming growth factor-) β1-stimulated epithelial interstitial transformation (EMT). The specific mechanisms of miR-214-3p in renal interstitial fibrosis and whether it participates in EMT are worthy of further investigation. In this paper, we first demonstrated modulation of the downstream PI3K/AKT axis by miR-214-3p through targeting phosphatase and tension protein homologues (PTEN), indicating the miRNA's participation in unilateral ureteral obstruction (UUO) nephropathy and TGF-β1-induced EMT. We overexpressed or silenced miR-214-3p and PTEN for probing into the correlation of miR-214-3p with PTEN and the downstream PI3K/AKT signalling pathways. According to the results of the study, miR-214-3p overexpression silenced PTEN, activated the PI3K/AKT signalling pathway, and exacerbated EMT induced by TGF-β1, while miR-214-3p knockdown had the opposite effect. In miR-214-3p knockdown mice, the expression of PTEN was increased, the PI3K/AKT signalling pathway was inhibited, and fibrosis was alleviated. In conclusion, miR-214-3p regulates the EMT of renal tubular cells induced by TGF-β1 by targeting PTEN and regulating the PI3K/AKT signalling pathway. Furthermore, miR-214-3p knockdown can reduce renal interstitial fibrosis through the PTEN/PI3K/AKT pathway.
Collapse
|
99913
|
Yang L, Afshari MJ, Ge J, Kou D, Chen L, Zhou D, Li C, Wu S, Zhang L, Zeng J, Zhong J, Stauber RH, Gao M. Functionalized Ultrasmall Iron Oxide Nanoparticles for T1-Weighted Magnetic Resonance Imaging of Tumor Hypoxia. Molecules 2022; 27:molecules27206929. [PMID: 36296522 PMCID: PMC9610745 DOI: 10.3390/molecules27206929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
Hypoxia is a common biological condition in many malignant solid tumors that plays an imperative role in regulating tumor growth and impacting the treatment’s therapeutic effect. Therefore, the hypoxia assessment is of great significance in predicting tumor development and evaluating its prognosis. Among the plenty of existing tumor diagnosis techniques, magnetic resonance imaging (MRI) offers certain distinctive features, such as being free of ionizing radiation and providing images with a high spatial resolution. In this study, we develop a fluorescent traceable and hypoxia-sensitive T1-weighted MRI probe (Fe3O4-Met-Cy5.5) via conjugating notable hypoxia-sensitive metronidazole moiety and Cy5.5 dye with ultrasmall iron oxide (Fe3O4) nanoparticles. The results of in vitro and in vivo experiments show that Fe3O4-Met-Cy5.5 has excellent performance in relaxivity, biocompatibility, and hypoxia specificity. More importantly, the obvious signal enhancement in hypoxic areas indicates that the probe has great feasibility for sensing tumor hypoxia via T1-weighted MRI. These promising results may unlock the potential of Fe3O4 nanoparticles as T1-weighted contrast agents for the development of clinical hypoxia probes.
Collapse
Affiliation(s)
- Lei Yang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mohammad Javad Afshari
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Dandan Kou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lei Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Dandan Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Cang Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuwang Wu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Leshuai Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
- Correspondence: (J.Z.); (M.G.)
| | - Jian Zhong
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Roland H. Stauber
- Department of Nanobiomedicine, ENT, University Medical Center of Mainz, Langenbeckstr. 1, 55101 Mainz, Germany
| | - Mingyuan Gao
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
- Correspondence: (J.Z.); (M.G.)
| |
Collapse
|
99914
|
Zhao W, Yang J, Xie X, Li C, Zhang W, Chen E, Guo Y, Yan L, Fang F, Yao H, Liu X. A MDM2 inhibitor MX69 inhibits adipocytes adipogenesis and differentiation. Biochem Biophys Res Commun 2022; 625:9-15. [PMID: 35944364 DOI: 10.1016/j.bbrc.2022.07.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/02/2022]
Abstract
Adipose tissue, a key regulator of systemic energy homeostasis, can synthesize and store triglycerides to meet long-term energy demands. In response to nutrient overload, adipose tissue expands by hypertrophy or hyperplasia. As an oncogene, MDM2 has exerted diverse biological activities including human development, tissue regeneration, and inflammation, in addition to major oncogenic activities. Recently, some studies indicated that MDM2 plays an important role in adipose tissue function. However, the role of MX69, a MDM2 inhibitor, in adipose tissue function has not been fully elucidated. Here, we administered MX69 intraperitoneally to high-fat diet-induced obesity (DIO) wild type C57BL/6 mice and found that MX69 could promote the body weight and white adipose tissue weight of DIO mice. Moreover, MX69 had no effects on glucose tolerance and insulin sensitivity in DIO mice. And MX69 treatment decreased the size of adipocytes and fat deposition in adipose tissue and inhibited 3T3-L1 preadipocytes differentiation. Mechanistically, MX69 inhibited the protein levels of MDM2 and the mRNA levels of genes related to adipogenesis and differentiation. In summary, our results indicated that MDM2 has a crucial and complex role in regulating adipose tissue function.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Jiahui Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, 030001, China
| | - Xianghong Xie
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Chunmei Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Weihong Zhang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, 030001, China
| | - Enhui Chen
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Yanfang Guo
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Li Yan
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Fude Fang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Hong Yao
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, 030001, China.
| | - Xiaojun Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
99915
|
Van de Gucht M, Dufait I, Kerkhove L, Corbet C, de Mey S, Jiang H, Law KL, Gevaert T, Feron O, De Ridder M. Inhibition of Phosphoglycerate Dehydrogenase Radiosensitizes Human Colorectal Cancer Cells under Hypoxic Conditions. Cancers (Basel) 2022; 14:cancers14205060. [PMID: 36291844 PMCID: PMC9599856 DOI: 10.3390/cancers14205060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/15/2022] [Accepted: 10/07/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Colorectal cancer is the third most prevalent cancer worldwide. Treatment options for these patients consist of surgery combined with chemotherapy and/or radiotherapy. However, a subset of tumors will not respond to therapy or acquire resistance during the course of the treatment, leading to patient relapse. The interplay between reprogramming cancer metabolism and radiotherapy has become an appealing strategy to improve a patient’s outcome. Due to the overexpression of certain enzymes in a variety of cancer types, including colorectal cancer, the serine synthesis pathway has recently become an attractive metabolic target. We demonstrated that by inhibiting the first enzyme of this pathway, namely phosphoglycerate dehydrogenase (PHGDH), tumor cells that are deprived of oxygen (as is generally the case in solid tumors) respond better to radiation, leading to increased tumor cell killing in an experimental model of human colorectal cancer. Abstract Augmented de novo serine synthesis activity is increasingly apparent in distinct types of cancers and has mainly sparked interest by investigation of phosphoglycerate dehydrogenase (PHGDH). Overexpression of PHGDH has been associated with higher tumor grade, shorter relapse time and decreased overall survival. It is well known that therapeutic outcomes in cancer patients can be improved by reprogramming metabolic pathways in combination with standard treatment options, for example, radiotherapy. In this study, possible metabolic changes related to radioresponse were explored upon PHGDH inhibition. Additionally, we evaluated whether PHGDH inhibition could improve radioresponse in human colorectal cancer cell lines in both aerobic and radiobiological relevant hypoxic conditions. Dysregulation of reactive oxygen species (ROS) homeostasis and dysfunction in mitochondrial energy metabolism and oxygen consumption rate were indicative of potential radiomodulatory effects. We demonstrated that PHGDH inhibition radiosensitized hypoxic human colorectal cancer cells while leaving intrinsic radiosensitivity unaffected. In a xenograft model, the first hints of additive effects between PHGDH inhibition and radiotherapy were demonstrated. In conclusion, this study is the first to show that modulation of de novo serine biosynthesis enhances radioresponse in hypoxic colorectal cancer cells, mainly mediated by increased levels of intracellular ROS.
Collapse
Affiliation(s)
- Melissa Van de Gucht
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Inès Dufait
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Lisa Kerkhove
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Mounier 53, 1200 Brussels, Belgium
| | - Sven de Mey
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Heng Jiang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Ka Lun Law
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Thierry Gevaert
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Avenue Mounier 53, 1200 Brussels, Belgium
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
- Correspondence: ; Tel.: +32-2-4776144
| |
Collapse
|
99916
|
Kapoor S, Damiani E, Wang S, Dharmanand R, Tripathi C, Tovar Perez JE, Dashwood WM, Rajendran P, Dashwood RH. BRD9 Inhibition by Natural Polyphenols Targets DNA Damage/Repair and Apoptosis in Human Colon Cancer Cells. Nutrients 2022; 14:nu14204317. [PMID: 36297001 PMCID: PMC9610492 DOI: 10.3390/nu14204317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Epigenetic mechanisms play an important role in the etiology of colorectal cancer (CRC) and other malignancies due, in part, to deregulated bromodomain (BRD) functions. Inhibitors of the bromodomain and extraterminal (BET) family have entered into clinical trials as anticancer agents, and interest has grown in other acetyl 'reader' proteins as therapeutic targets, including non-BET member bromodomain-containing protein 9 (BRD9). We report here that overexpression of BRD9 is associated with poor prognosis in CRC patients, and that siRNA-mediated knockdown of BRD9 decreased cell viability and activated apoptosis in human colon cancer cells, coincident with increased DNA damage. Seeking natural compounds as BRD9 antagonists, molecular docking in silico identified several polyphenols such as Epigallocatechin-3-gallate (EGCG), Equol, Quercetin, and Aspalathin, with favorable binding energies, supported by BROMOscan® (DiscoverX) and isothermal titration calorimetry experiments. Polyphenols mimicked BRD9 knockdown and iBRD9 treatment in reducing colon cancer cell viability, inhibiting colony formation, and enhancing DNA damage and apoptosis. Normal colonic epithelial cells were unaffected, signifying cancer-specific effects. These findings suggest that natural polyphenols recognize and target BRD9 for inhibition, and might serve as useful lead compounds for bromodomain therapeutics in the clinical setting.
Collapse
Affiliation(s)
- Sabeeta Kapoor
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Shan Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Ravirajan Dharmanand
- Center for Infectious & Inflammatory Diseases, Texas A&M Health, Houston, TX 77030, USA
| | - Chakrapani Tripathi
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
| | | | - Wan Mohaiza Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
| | - Praveen Rajendran
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA
- Correspondence: (P.R.); (R.H.D.); Tel.: +1-713-677-7803 (P.R.); +1-713-677-7806 (R.H.D.)
| | - Roderick Hugh Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA
- Correspondence: (P.R.); (R.H.D.); Tel.: +1-713-677-7803 (P.R.); +1-713-677-7806 (R.H.D.)
| |
Collapse
|
99917
|
Perez-Castro L, Venkateswaran N, Garcia R, Hao YH, Lafita-Navarro MC, Kim J, Segal D, Saponzik E, Chang BJ, Fiolka R, Danuser G, Xu L, Brabletz T, Conacci-Sorrell M. The AHR target gene scinderin activates the WNT pathway by facilitating the nuclear translocation of β-catenin. J Cell Sci 2022; 135:jcs260028. [PMID: 36148682 PMCID: PMC10658791 DOI: 10.1242/jcs.260028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/12/2022] [Indexed: 01/12/2023] Open
Abstract
The ligand-activated transcription factor aryl hydrocarbon receptor (AHR) regulates cellular detoxification, proliferation and immune evasion in a range of cell types and tissues, including cancer cells. In this study, we used RNA-sequencing to identify the signature of the AHR target genes regulated by the pollutant 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and the endogenous ligand kynurenine (Kyn), a tryptophan-derived metabolite. This approach identified a signature of six genes (CYP1A1, ALDH1A3, ABCG2, ADGRF1 and SCIN) as commonly activated by endogenous or exogenous ligands of AHR in multiple colon cancer cell lines. Among these, the actin-severing protein scinderin (SCIN) was necessary for cell proliferation; SCIN downregulation limited cell proliferation and its expression increased it. SCIN expression was elevated in a subset of colon cancer patient samples, which also contained elevated β-catenin levels. Remarkably, SCIN expression promoted nuclear translocation of β-catenin and activates the WNT pathway. Our study identifies a new mechanism for adhesion-mediated signaling in which SCIN, likely via its ability to alter the actin cytoskeleton, facilitates the nuclear translocation of β-catenin. This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Lizbeth Perez-Castro
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Roy Garcia
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi-Heng Hao
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - M. C. Lafita-Navarro
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiwoong Kim
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dagan Segal
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Etai Saponzik
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bo-Jui Chang
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reto Fiolka
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gaudenz Danuser
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pediatrics, Division of Hematology/Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas Brabletz
- Nikolaus-Fiebiger Center for Molecular Medicine, University Erlangen-Nurnberg, Erlangen 91054, Germany
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
99918
|
Suzuki S, Hourai S, Uozumi K, Uchida Y, Yoshimitsu M, Miho H, Arima N, Ueno SI, Ishitsuka K. Gamma-secretase inhibitor does not induce cytotoxicity in adult T-cell leukemia cell lines despite NOTCH1 expression. BMC Cancer 2022; 22:1065. [PMID: 36243685 PMCID: PMC9571424 DOI: 10.1186/s12885-022-10003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022] Open
Abstract
Background Activated mutations in NOTCH1 are drivers of T-cell type acute lymphoblastic leukemia/lymphoma. The γ-secretase inhibitor (GSI), which suppresses the function of NOTCH1, is expected to be a molecular-targeted agent. NOTCH1 is also expressed in other malignant neoplasms. We aimed to determine the function of NOTCH1 expression and the effects of GSI on adult T-cell leukemia/lymphoma (ATL) caused by long-term human T-cell leukemia virus type I (HTLV-1) infection. Methods We analyzed the expression of NOTCH1 in six ATL- and HTLV-1-infected cell lines and investigated the influence of activated NOTCH1 (i.e., the cleaved form of NOTCH1) together with GSI on cell proliferation. Results Activated NOTCH1 found in ATL- and HTLV-1-infected cell lines was undetectable after incubation with GSI, regardless of Tax expression (HTLV-1-coded protein). Whole-exome sequencing revealed that activated NOTCH1 mutations were undetectable in six ATL- and HTLV-1-infected cell lines, regardless of abundant NOTCH1 expression. Moreover, GSI did not suppress the growth of ATL cell lines. Conclusions These findings suggested that NOTCH1 protein is constitutively activated but is likely a passenger during NOTCH1-mutation-negative ATL cell proliferation. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10003-w.
Collapse
Affiliation(s)
- Shinsuke Suzuki
- Cancer Center, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan. .,Department of Clinical Oncology, Course of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan. .,Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan.
| | - Sawako Hourai
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan.,Department of Environment and Public Health, Environmental Health Section, Ministry of the Environment, National Institute for Minamata Disease, Minamata, Japan
| | - Kimiharu Uozumi
- Department of Medical Oncology, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Yuichirou Uchida
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Makoto Yoshimitsu
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Hachiman Miho
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Naomichi Arima
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Shin-Ichi Ueno
- Cancer Center, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan.,Department of Clinical Oncology, Course of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kenji Ishitsuka
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| |
Collapse
|
99919
|
Identification of Specific Cervical Cancer Subtypes and Prognostic Gene Sets in Tumor and Nontumor Tissues Based on GSVA Analysis. JOURNAL OF ONCOLOGY 2022; 2022:6951885. [PMID: 36284631 PMCID: PMC9588340 DOI: 10.1155/2022/6951885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022]
Abstract
Background Cervical cancer is the fourth common cancer among women. Its prognosis needs our more attention. Our purpose was to identity new prognostic gene sets to help other researchers develop more effective treatment for cervical cancer patients and improve the prognosis of patients. Methods We used gene set variation analysis (GSVA) to calculate the enrichment scores of gene sets and identified three subtypes of cervical cancer through the Cox regression model, k-means clustering algorithm, and nonnegative matrix factorization method (NMF). Chi-square test was utilized to test whether a certain clinical characteristic is different among divided subtypes. We further screened the prognostic gene sets using differential analysis, univariate Cox regression analysis, and least absolute shrinkage and selection operator (LASSO) regression. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to analyze which pathways and function the genes from screened gene sets enriched. Search Tool for the Retrieval of Interacting Genes (STRING) was used to draw the protein-protein interaction network, and Cytoscape was used to visualize the hub genes of protein-protein interaction network. Results We identified three novel subtypes of cervical cancer in The Cancer Genome Atlas (TCGA) samples and validated in Gene Expression Omnibus (GEO) samples. There were significant variations between the three subtypes in histological type, T stage, M stage, and N stage. T_GSE36888_UNTREATED_VS_IL2_TREATED_STAT5_AB_KNOCKIN_TCELL_2H_UP and N_HALLMARK_ANGIOGENESIS were screened prognostic gene sets. The prognostic model was as follows: riskScore = T_GSE36888_UNTREATED_VS_IL2_TREATED_STAT5_AB_KNOCKIN_TCELL_2H_UP∗ 2.617 + N_HALLMARK_ANGIOGENESIS∗ 4.860. Survival analysis presented that in these two gene sets, high enrichment scores were all significantly related to worse overall survival. The hub genes from T gene set included CXCL1, CXCL2, CXCL8, ALDOA, TALDO1, LDHA, CCL4, FCAR, FCER1G, SAMSN1, LILRB1, SH3PXD2B, PPM1N, PKM, and FKBP4. As for N gene sets, the hub genes included ITGAV, PTK2, SPP1, THBD, and APOH. Conclusions Three novel subtypes and two prognostic gene sets were identified. 15 hub genes for T gene set and 5 hub genes for N gene set were discovered. Based on these findings, we can develop more and more effective treatments for cervical cancer patients. Based on the gene enriched pathways, we can development specific drugs targeting the pathways.
Collapse
|
99920
|
Phosphorylated Proteins from Serum: A Promising Potential Diagnostic Biomarker of Cancer. Int J Mol Sci 2022; 23:ijms232012359. [PMID: 36293212 PMCID: PMC9604268 DOI: 10.3390/ijms232012359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a fatal disease worldwide. Each year ten million people are diagnosed around the world, and more than half of patients eventually die from it in many countries. A majority of cancer remains asymptomatic in the earlier stages, with specific symptoms appearing in the advanced stages when the chances of adequate treatment are low. Cancer screening is generally executed by different imaging techniques like ultrasonography (USG), mammography, CT-scan, and magnetic resonance imaging (MRI). Imaging techniques, however, fail to distinguish between cancerous and non-cancerous cells for early diagnosis. To confirm the imaging result, solid and liquid biopsies are done which have certain limitations such as invasive (in case of solid biopsy) or missed early diagnosis due to extremely low concentrations of circulating tumor DNA (in case of liquid biopsy). Therefore, it is essential to detect certain biomarkers by a noninvasive approach. One approach is a proteomic or glycoproteomic study which mostly identifies proteins and glycoproteins present in tissues and serum. Some of these studies are approved by the Food and Drug Administration (FDA). Another non-expensive and comparatively easier method to detect glycoprotein biomarkers is by ELISA, which uses lectins of diverse specificities. Several of the FDA approved proteins used as cancer biomarkers do not show optimal sensitivities for precise diagnosis of the diseases. In this regard, expression of phosphoproteins is associated with a more specific stage of a particular disease with high sensitivity and specificity. In this review, we discuss the expression of different serum phosphoproteins in various cancers. These phosphoproteins are detected either by phosphoprotein enrichment by immunoprecipitation using phosphospecific antibody and metal oxide affinity chromatography followed by LC-MS/MS or by 2D gel electrophoresis followed by MALDI-ToF/MS analysis. The updated knowledge on phosphorylated proteins in clinical samples from various cancer patients would help to develop these serum phophoproteins as potential diagnostic/prognostic biomarkers of cancer.
Collapse
|
99921
|
Vimal N, Angmo N, Sengupta M, Seth RK. Radiation Hormesis to Improve the Quality of Adult Spodoptera litura (Fabr.). INSECTS 2022; 13:933. [PMID: 36292881 PMCID: PMC9604102 DOI: 10.3390/insects13100933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Mass rearing of insects of high biological quality is a crucial attribute for the successful implementation of sterile insect release programs. Various ontogenetic stages of Spodoptera litura (Fabr.) were treated with a range of low doses of ionizing radiation (0.25-1.25 Gy) to assess whether these gamma doses could elicit a stimulating effect on the growth and viability of developing moths. Doses in the range of 0.75 Gy to 1.0 Gy administered to eggs positively influenced pupal weight, adult emergence, and growth index, with a faster developmental period. The enhanced longevity of adults derived from eggs treated with 0.75 Gy and 1.0 Gy, and for larvae and pupae treated with 1.0 Gy, indicated a hormetic effect on these life stages. Furthermore, the use of these hormetic doses upregulated the relative mRNA expression of genes associated with longevity (foxo, sirtuin 2 like/sirt1, atg8) and viability/antioxidative function (cat and sod), suggesting a positive hormetic effect at the transcriptional level. These results indicated the potential use of low dose irradiation (0.75-1 Gy) on preimaginal stages as hormetic doses to improve the quality of the reared moths. This might increase the efficiency of the inherited sterility technique for the management of these lepidopteran pests.
Collapse
Affiliation(s)
| | | | | | - Rakesh Kumar Seth
- Applied Entomology and Radiation Biology Lab, Department of Zoology, University of Delhi, Delhi 110007, India
| |
Collapse
|
99922
|
Yadav V, Sharma K, Bhattacharya S, Talwar P, Purohit PK, Saini N. RETRACTED: hsa-miR-23a~27a~24-2 cluster members inhibit aggressiveness of breast cancer cells by commonly targeting NCOA1, NLK and RAP1B. Life Sci 2022; 307:120906. [PMID: 36007610 DOI: 10.1016/j.lfs.2022.120906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. The corresponding author notified the journal of three examples of image duplication within the published article (two in Figure 3D and one in Figure 4A), and requested a corrigendum. As per journal policy when considering corrigendum requests, the journal requested the authors to provide source data relating to these affected figures. The editorial team noticed 12 additional suspected image duplications within the supplied source data and the corresponding author was informed. Upon submission of revised source data, the editorial team noticed two new suspected image duplications. The editorial team have concerns about the provenance of the data and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Vikas Yadav
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, 110007, Delhi, India
| | - Kritika Sharma
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, 110007, Delhi, India
| | - Sushant Bhattacharya
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, 110007, Delhi, India
| | - Puneet Talwar
- Institute of Human Behaviour & Allied Sciences (IHBAS), Delhi, India
| | - Paresh Kumar Purohit
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, 110007, Delhi, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neeru Saini
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, 110007, Delhi, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
99923
|
Mihalopoulos M, Yaghoubian A, Razdan S, Khusid JA, Mehrazin R, Badani KK, Sfakianos JP, Atallah WM, Tewari AK, Wiklund P, Gupta M, Kyprianou N. Understanding the link between kidney stones and cancers of the upper urinary tract and bladder. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2022; 10:277-298. [PMID: 36313208 PMCID: PMC9605942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/09/2022] [Indexed: 04/22/2023]
Abstract
Kidney stones are one of the most common renal pathologies. While emerging evidence has implicated a potential association between kidney stones and upper urinary tract cancers (including renal cancer), there is limited understanding as to the common underlying biological pathways functionally linking the etiology of kidney stone formation and the incidence, development, and progression of urinary tract cancers. From a clinical perspective, kidney stone disease can be a barrier to oncologic care due to renal obstruction. From the epidemiological perspective, risk factors associated with both conditions include smoking, alcohol consumption, diet, and gender. Herein, we review the association between renal calculi and malignancy of the upper urinary tract and discuss the current understanding of (a) potential shared mechanisms, and (b) the impact this has on shared therapeutic management of both conditions.
Collapse
Affiliation(s)
- Meredith Mihalopoulos
- Department of Urology, Icahn School of Medicine at Mount SinaiNew York, NY 10029, USA
| | - Alan Yaghoubian
- Department of Urology, Icahn School of Medicine at Mount SinaiNew York, NY 10029, USA
| | - Shirin Razdan
- Department of Urology, Icahn School of Medicine at Mount SinaiNew York, NY 10029, USA
| | - Johnathan A Khusid
- Department of Urology, Icahn School of Medicine at Mount SinaiNew York, NY 10029, USA
| | - Reza Mehrazin
- Department of Urology, Icahn School of Medicine at Mount SinaiNew York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew York, NY 10029, USA
| | - Ketan K Badani
- Department of Urology, Icahn School of Medicine at Mount SinaiNew York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew York, NY 10029, USA
| | - John P Sfakianos
- Department of Urology, Icahn School of Medicine at Mount SinaiNew York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew York, NY 10029, USA
| | - William M Atallah
- Department of Urology, Icahn School of Medicine at Mount SinaiNew York, NY 10029, USA
| | - Ashutosh K Tewari
- Department of Urology, Icahn School of Medicine at Mount SinaiNew York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew York, NY 10029, USA
| | - Peter Wiklund
- Department of Urology, Icahn School of Medicine at Mount SinaiNew York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew York, NY 10029, USA
| | - Mantu Gupta
- Department of Urology, Icahn School of Medicine at Mount SinaiNew York, NY 10029, USA
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount SinaiNew York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount SinaiNew York, NY 10029, USA
- Department of Pathology and Cell-Based Medicine, Icahn School of Medicine at Mount SinaiNew York, NY 10029, USA
| |
Collapse
|
99924
|
Bhat SS, Mahapatra SD, R S, Sommano SR, Prasad SK. Virtual Screening and Quantitative Structure-Activity Relationship of Moringa oleifera with Melanoma Antigen A (MAGE-A) Genes against the Therapeutics of Non-Small Cell Lung Cancers (NSCLCs). Cancers (Basel) 2022; 14:5052. [PMID: 36291836 PMCID: PMC9600242 DOI: 10.3390/cancers14205052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
In the last decade, there have been significant advancements in the treatment of non-small cell lung cancer, including remarkable gains in detection, diagnosis, and therapy. The emergence of molecular targeted therapies, immunotherapeutic inhibitors, and antiangiogenesis medicines has largely fueled improvements in combination therapy and systemic treatments, all of which have dramatically ameliorated patient outcomes. The Moringa oleifera bioactive compounds have been effective in the suppression of cancers, making them the therapeutic agents of choice for the current investigation to treat MAGE-A presented in NSCLC. The ligand entrants were screened for their pharmacological properties, and 2,2-diphenyl-1,3-benzodioxole was stipulated as the lead candidate. 2,2-Diphenyl-1,3-benzodioxole exhibited better pharmacological properties and superior binding with branched-chain amino acids, making it an ideal candidate to address MAGE-A. The study concluded that addressing MAGE-A to impede their activity and antigenicity can be exploited as immunotarget(s).
Collapse
Affiliation(s)
- Smitha S. Bhat
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru 570 015, Karnataka, India
| | - Shreya Das Mahapatra
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru 570 015, Karnataka, India
| | - Sindhu R
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru 570 015, Karnataka, India
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50100, Thailand
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Shashanka K. Prasad
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru 570 015, Karnataka, India
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
99925
|
Wang JH, Derkach A, Pfeiffer RM, Engels EA. Immune-related conditions and cancer-specific mortality among older adults with cancer in the United States. Int J Cancer 2022; 151:1216-1227. [PMID: 35633044 PMCID: PMC9420778 DOI: 10.1002/ijc.34140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 11/07/2022]
Abstract
Immunity may play a role in preventing cancer progression. We studied associations of immune-related conditions with cancer-specific mortality among older adults in the United States. We evaluated 1 229 443 patients diagnosed with 20 common cancer types (age 67-99, years 1993-2013) using Surveillance Epidemiology and End Results-Medicare data. With Medicare claims, we ascertained immune-related medical conditions diagnosed before cancer diagnosis (4 immunosuppressive conditions [n = 3380 affected cases], 32 autoimmune conditions [n = 155 766], 3 allergic conditions [n = 101 366]). For each cancer site, we estimated adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) for cancer-specific mortality associated with each condition, applying a Bonferroni cutoff for significance (P < 5.1 × 10-5 ). Bayesian metaanalysis methods were used to detect patterns across groups of conditions and cancers. We observed 21 associations with cancer-specific mortality at the Bonferroni threshold. Increased cancer-specific mortality was observed with rheumatoid arthritis for patients with melanoma (aHR 1.51, 95% CI 1.31-1.75) and breast cancer (1.24, 1.15-1.33)), and with hemolytic anemia for bladder cancer (2.54, 1.68-3.82). Significant inverse associations with cancer-specific mortality were observed for allergic rhinitis (range of aHRs: 0.84-0.94) and asthma (0.83-0.95) for cancers of the lung, breast, and prostate. Cancer-specific mortality was nominally elevated in patients with immunosuppressive conditions for eight cancer types (aHR range: 1.27-2.36; P-value range: 7.5 × 10-5 to 3.1 × 10-2 ) and was strongly associated with grouped immunosuppressive conditions using Bayesian metaanalyses methods. For older patients with several cancer types, certain immunosuppressive and autoimmune conditions were associated with increased cancer-specific mortality. In contrast, inverse associations with allergic conditions may reflect enhanced immune control of cancer.
Collapse
Affiliation(s)
- Jeanny H. Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Andriy Derkach
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ruth M. Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Eric A. Engels
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| |
Collapse
|
99926
|
Xin Z, Deguchi K, Suye SI, Fujita S. Quantitative Analysis of Collective Migration by Single-Cell Tracking Aimed at Understanding Cancer Metastasis. Int J Mol Sci 2022; 23:ijms232012372. [PMID: 36293228 PMCID: PMC9604284 DOI: 10.3390/ijms232012372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
Metastasis is a major complication of cancer treatments. Studies of the migratory behavior of cells are needed to investigate and control metastasis. Metastasis is based on the epithelial–mesenchymal transition, in which epithelial cells acquire mesenchymal properties and the ability to leave the population to invade other regions of the body. In collective migration, highly migratory “leader” cells are found at the front of the cell population, as well as cells that “follow” these leader cells. However, the interactions between these cells are not well understood. We examined the migration properties of leader–follower cells during collective migration at the single-cell level. Different mixed ratios of “leader” and “follower” cell populations were compared. Collective migration was quantitatively analyzed from two perspectives: cell migration within the colony and migration of the entire colony. Analysis of the effect of the cell mixing ratio on migration behavior showed that a small number of highly migratory cells enhanced some of the migratory properties of other cells. The results provide useful insights into the cellular interactions in collective cell migration of cancer cell invasion.
Collapse
Affiliation(s)
- Zhuohan Xin
- Department of Advanced Interdisciplinary Science and Technology, University of Fukui, Fukui 910-8507, Japan
| | - Keiko Deguchi
- Department of Frontier Fiber Technology and Science, University of Fukui, Fukui 910-8507, Japan
| | - Shin-ichiro Suye
- Department of Advanced Interdisciplinary Science and Technology, University of Fukui, Fukui 910-8507, Japan
- Department of Frontier Fiber Technology and Science, University of Fukui, Fukui 910-8507, Japan
- Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-8507, Japan
| | - Satoshi Fujita
- Department of Advanced Interdisciplinary Science and Technology, University of Fukui, Fukui 910-8507, Japan
- Department of Frontier Fiber Technology and Science, University of Fukui, Fukui 910-8507, Japan
- Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-8507, Japan
- Correspondence: ; Tel.: +81-776-27-9969
| |
Collapse
|
99927
|
Brancato V, Brentari I, Coscujuela Tarrero L, Furlan M, Nicassio F, Denti MA. News from around the RNA world: new avenues in RNA biology, biotechnology and therapeutics from the 2022 SIBBM meeting. Biol Open 2022; 11:bio059597. [PMID: 36239357 PMCID: PMC9581514 DOI: 10.1242/bio.059597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since the formalization of the Central Dogma of molecular biology, the relevance of RNA in modulating the flow of information from DNA to proteins has been clear. More recently, the discovery of a vast set of non-coding transcripts involved in crucial aspects of cellular biology has renewed the enthusiasm of the RNA community. Moreover, the remarkable impact of RNA therapies in facing the COVID19 pandemics has bolstered interest in the translational opportunities provided by this incredible molecule. For all these reasons, the Italian Society of Biophysics and Molecular Biology (SIBBM) decided to dedicate its 17th yearly meeting, held in June 2022 in Rome, to the many fascinating aspects of RNA biology. More than thirty national and international speakers covered the properties, modes of action and applications of RNA, from its role in the control of development and cell differentiation to its involvement in disease. Here, we summarize the scientific content of the conference, highlighting the take-home message of each presentation, and we stress the directions the community is currently exploring to push forward our comprehension of the RNA World 3.0.
Collapse
Affiliation(s)
- Virginia Brancato
- Center for Genomic Science IIT@SEMM, Italian Institute of Technology, Milan 20139, Italy
| | - Ilaria Brentari
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | | | - Mattia Furlan
- Center for Genomic Science IIT@SEMM, Italian Institute of Technology, Milan 20139, Italy
| | - Francesco Nicassio
- Center for Genomic Science IIT@SEMM, Italian Institute of Technology, Milan 20139, Italy
| | - Michela A. Denti
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| |
Collapse
|
99928
|
GEMIN6 Overexpression Correlates with the Low Immune Cell Infiltration and Poor Prognosis in Lung Adenocarcinoma. JOURNAL OF ONCOLOGY 2022; 2022:1930604. [PMID: 36284636 PMCID: PMC9588342 DOI: 10.1155/2022/1930604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/27/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
Background. Gem nuclear organelle-associated protein 6 (GEMIN6) is a component of the GEMINS protein family involved in the survival of motor neuron (SMN) complex. SMN interfered with snRNP assembly and mRNA processing resulting in tumorigenesis. We performed this study to explore the association between GEMIN6 and lung adenocarcinoma (LUAD). Methods. We used The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to collect transcriptomic expression data of LUAD patients and analyze the difference in GEMIN6 expression between normal and tumor tissues of LUAD. qRT-PCR analysis was also performed to detect the expression of GEMIN6 in normal and LUAD cells. The expression of GEMIN6 on the LUAD patient survival outcome was estimated by the Kaplan–Meier curves and Cox analyses. In addition, the Metascape online tool and single-sample GSEA were employed to find out the underlying biological mechanisms of GEMIN6. Furthermore, the correlations of GEMIN6 expression with immune cell infiltration in LUAD were analyzed by ssGSEA and Spearman correlation analysis. Results. Compared with the normal tissues and cells, the expression of GEMIN6 was significantly higher in LUAD tissues and cells; the high expression GEMIN6 was also found in the advanced pathologic stage and advanced N and T stages of LUAD. GEMIN6 high expression was significantly associated with inferior overall survival. The heat map revealed the top 20 coexpressed genes with GEMIN6, including SF3B6, CPSF3, and PSMB3. Functional enrichment analysis demonstrated that enrichment genes are associated with the cell cycle, mRNA processing, and energy metabolism. Additionally, GEMIN6 was negatively related to the immune cell infiltration in LUAD. Conclusions. This study demonstrated that GEMIN6 was involved in the tumorigenesis and progression of LUAD. GEMIN6 could be an important molecular marker of poor prognosis and a therapeutic target of LUAD.
Collapse
|
99929
|
Overexpression of Laminin 5γ2 Chain Correlates with Tumor Cell Proliferation, Invasion, and Poor Prognosis in Laryngeal Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:7248064. [PMID: 36284634 PMCID: PMC9588344 DOI: 10.1155/2022/7248064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022]
Abstract
Objective Laryngeal squamous cell carcinoma (LSCC) is a common malignant tumor. Laminin 5γ2 chain (LAMC2) was reported to be associated with tumorigenesis. This study explored the role of LAMC2 on LSCC progression by regulating the integrinβ1/FAK/Src/AKT pathway. Methods The level of LAMC2 in 46 LSCC patients was detected by qRT-PCR and western blot. Then the relationship between LAMC2 expression and LSCC malignancy as well as prognosis was analyzed, and the effect of LAMC2 expression on LSCC patient survival was also analyzed using the Kaplan–Meier survival curves. Afterwards, the LSCC cells were transfected with LAMC2 overexpression and knockdown vectors, the effect of LAMC2 on LSCC cell viability, proliferation ability, cell cycle, cell migration, and invasion were detected by CCK-8, colony formation, flow cytometry, wound healing, and Transwell assays. The expression of EMT-related biomarkers and integrin β1/FAK/Src/AKT signaling-related proteins was detected by western blot. Moreover, the effect of LAMC2 on LSCC tumor growth was evaluated by in vivo xenograft experiments and western blot. Results LAMC2 was expressed at high level in LSCC tissues and associated with poor prognosis. LAMC2 overexpression increased TU177 cell viability, proliferation ability, promoted cell cycle, cell migration, and invasion capacity. The expression of N-cadherin, vimentin, and integrinβ1/FAK/Src/AKT related proteins was increased, while the expression of E-cadherin protein was decreased. When the LAMC2 knockdown in AMC-HN-8 cells had opposite effects. Furthermore, shLAMC2 decreased tumor volume and the expression of LAMC2, Ki-67 and integrinβ1, but increased the expression of E-cadherin in LSCC tumor-bearing mice. Conclusion The findings suggested that LAMC2 was overexpressed in LSCC and correlated with poor prognosis. LAMC2 knockdown inhibited LSCC progression by regulating the integrinβ1/FAK/Src/AKT signaling pathway. Therefore, LAMC2 could be a target for LSCC therapy.
Collapse
|
99930
|
Wang X, Gou Z, Lv JJ, Zuo Y. A novel coumarin-TPA based fluorescent probe for turn-on hypochlorite detection and lipid-droplet-polarity bioimaging in cancer cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121481. [PMID: 35691171 DOI: 10.1016/j.saa.2022.121481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
A novel fluorescent compound, named C-TPA, based on coumarin (acceptor) and triphenylamine (donor) was facilely designed and fabricated through a one-step Suzuki coupling reaction. As a donor group, triphenylamine can efficiently enhance the fluorescence intensity and photostability of coumarin, and thus improve the detection efficiency. C-TPA-S was obtained from C-TPA treated with Lawesson's reagent and C-TPA-S can be used for the turn-on detection of hypochlorite through oxidative desulfurization with a low detection limit of 0.12 μM. Moreover, the intramolecular charge transfer process between the donor and acceptor group endows C-TPA with solvatochromism property and makes C-TPA a good candidate for polarity detection. The C-TPA with bright green fluorescence was highly efficient for imaging the microenvironment of polarity both in living cells and tissues with high selectivity and photostability, which can be applied in the diagnosis for the cancer cells.
Collapse
Affiliation(s)
- Xuefeng Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
| | - Zhiming Gou
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| | - Jing-Jing Lv
- Key Laboratory of Carbon Materials of Zhejiang Province, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang 325035, PR China
| | - Yujing Zuo
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, PR China
| |
Collapse
|
99931
|
Discovery of Simple Diacylhydrazine-Functionalized Cinnamic Acid Derivatives as Potential Microtubule Stabilizers. Int J Mol Sci 2022; 23:ijms232012365. [PMID: 36293224 PMCID: PMC9604255 DOI: 10.3390/ijms232012365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/21/2022] [Accepted: 10/05/2022] [Indexed: 11/04/2022] Open
Abstract
To develop novel microtubule-binding agents for cancer therapy, an array of N-cinnamoyl-N'-(substituted)acryloyl hydrazide derivatives were facilely synthesized through a two-step process. Initially, the antiproliferative activity of these title compounds was explored against A549, 98 PC-3 and HepG2 cancer cell lines. Notably, compound I23 exhibited the best antiproliferative activity against three cancer lines with IC50 values ranging from 3.36 to 5.99 μM and concurrently afforded a lower cytotoxicity towards the NRK-52E cells. Anticancer mechanism investigations suggested that the highly bioactive compound I23 could potentially promote the protofilament assembly of tubulin, thus eventually leading to the stagnation of the G2/M phase cell cycle of HepG2 cells. Moreover, compound I23 also disrupted cancer cell migration and significantly induced HepG2 cells apoptosis in a dosage-dependent manner. Additionally, the in silico analysis indicated that compound I23 exhibited an acceptable pharmacokinetic profile. Overall, these easily prepared N-cinnamoyl-N'-(substituted)acryloyl hydrazide derivatives could serve as potential microtubule-interacting agents, probably as novel microtubule-stabilizers.
Collapse
|
99932
|
Luo Y, Deng FM, Zhang Y, Xiao Y. Editorial: Molecular biomarkers and imaging markers in the prediction, diagnosis, and prognosis of bladder cancer. Front Cell Dev Biol 2022; 10:1014565. [PMID: 36313549 PMCID: PMC9614322 DOI: 10.3389/fcell.2022.1014565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Yongwen Luo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Fang-Ming Deng
- Department of Pathology, New York University Medical Center, New York, NY, United States
| | - Yi Zhang
- Center of Life Sciences, Peking University, Beijing, China
- Euler Technology, Beijing, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
- *Correspondence: Yu Xiao,
| |
Collapse
|
99933
|
Siiss LA, Guarda A, Graeff DB, Cecagno-Zanini SC. Benefícios e Segurança dos Exercícios Físicos em Pacientes com Metástases Ósseas: Revisão Sistemática da Literatura e Metanálise. REVISTA BRASILEIRA DE CANCEROLOGIA 2022. [DOI: 10.32635/2176-9745.rbc.2022v68n4.2520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Introdução: A expectativa de vida de pessoas com câncer metastático está aumentando, mas esse grupo de pacientes corre um risco considerável de apresentar problemas psicológicos e de saúde física. Nesse sentido, o exercício físico tem sido um aliado no tratamento de pacientes com metástases ósseas. Objetivo: Realizar uma revisão sistemática e metanálise sobre a segurança e os benefícios do exercício físico em pacientes com metástases ósseas. Método: Metanálise com pesquisa bibliográfica realizada nas bases eletrônicas: PubMed, LILACS, PEDro e Embase. Resultados: Dos 396 estudos, somente dez foram incluídos, com um total de 531 indivíduos. Não foi observado nenhum efeito adverso musculoesquelético durante a intervenção, sendo significativamente seguro o exercício em indivíduos com metástases ósseas. Não houve melhora considerável na capacidade aeróbica, progressão da doença, qualidade de vida, massa magra e gordura corporal. Três dos estudos incluídos avaliaram a dor durante e após a intervenção, demonstrando melhora no escore de dor, assim como a diminuição do uso do analgésico no grupo intervenção. Conclusão: A terapia com exercícios aeróbicos e isométricos e segura para pacientes com metástases ósseas, além de apresentar melhora da dor, mas sem evolução relevante na capacidade aeróbica, na progressão da doença, na massa corporal e na qualidade de vida.
Collapse
|
99934
|
Masson B, Le Ribeuz H, Sabourin J, Laubry L, Woodhouse E, Foster R, Ruchon Y, Dutheil M, Boët A, Ghigna MR, De Montpreville VT, Mercier O, Beech DJ, Benitah JP, Bailey MA, Humbert M, Montani D, Capuano V, Antigny F. Orai1 Inhibitors as Potential Treatments for Pulmonary Arterial Hypertension. Circ Res 2022; 131:e102-e119. [PMID: 36164973 DOI: 10.1161/circresaha.122.321041] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is characterized by progressive distal pulmonary artery (PA) obstruction, leading to right ventricular hypertrophy and failure. Exacerbated intracellular calcium (Ca2+) signaling contributes to abnormalities in PA smooth muscle cells (PASMCs), including aberrant proliferation, apoptosis resistance, exacerbated migration, and arterial contractility. Store-operated Ca2+ entry is involved in Ca2+ homeostasis in PASMCs, but its properties in PAH are unclear. METHODS Using a combination of Ca2+ imaging, molecular biology, in vitro, ex vivo, and in vivo approaches, we investigated the roles of the Orai1 SOC channel in PA remodeling in PAH and determined the consequences of pharmacological Orai1 inhibition in vivo using experimental models of pulmonary hypertension (PH). RESULTS Store-operated Ca2+ entry and Orai1 mRNA and protein were increased in human PASMCs (hPASMCs) from patients with PAH (PAH-hPASMCs). We found that MEK1/2 (mitogen-activated protein kinase kinase 1/2), NFAT (nuclear factor of activated T cells), and NFκB (nuclear factor-kappa B) contribute to the upregulation of Orai1 expression in PAH-hPASMCs. Using small interfering RNA (siRNA) and Orai1 inhibitors, we found that Orai1 inhibition reduced store-operated Ca2+ entry, mitochondrial Ca2+ uptake, aberrant proliferation, apoptosis resistance, migration, and excessive calcineurin activity in PAH-hPASMCs. Orai1 inhibitors reduced agonist-evoked constriction in human PAs. In experimental rat models of PH evoked by chronic hypoxia, monocrotaline, or Sugen/hypoxia, administration of Orai1 inhibitors (N-{4-[3,5-bis(Trifluoromethyl)-1H-pyrazol-1-yl]phenyl}-4-methyl-1,2,3-thiadiazole-5-carboxamide [BTP2], 4-(2,5-dimethoxyphenyl)-N-[(pyridin-4-yl)methyl]aniline [JPIII], or 5J4) protected against PH. CONCLUSIONS In human PAH and experimental PH, Orai1 expression and activity are increased. Orai1 inhibition normalizes the PAH-hPASMCs phenotype and attenuates PH in rat models. These results suggest that Orai1 should be considered as a relevant therapeutic target for PAH.
Collapse
Affiliation(s)
- Bastien Masson
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France (B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,INSERM UMR_S 999 « Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France. B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.)
| | - Hélène Le Ribeuz
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France (B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,INSERM UMR_S 999 « Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France. B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.)
| | - Jessica Sabourin
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France (J.S., J.-P.B.)
| | - Loann Laubry
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France (B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,INSERM UMR_S 999 « Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France. B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (E.W., R.F., L.C., D.J.B., M.A.B.)
| | - Emily Woodhouse
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (E.W., R.F., L.C., D.J.B., M.A.B.)
| | - Richard Foster
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (E.W., R.F., L.C., D.J.B., M.A.B.)
| | - Yann Ruchon
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France (B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,INSERM UMR_S 999 « Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France. B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,Hôptal Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis Robinson, France (Y.R., M.D., A.B., V.C.)
| | - Mary Dutheil
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France (B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,INSERM UMR_S 999 « Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France. B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,Hôptal Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis Robinson, France (Y.R., M.D., A.B., V.C.)
| | - Angèle Boët
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France (B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,INSERM UMR_S 999 « Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France. B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,Hôptal Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis Robinson, France (Y.R., M.D., A.B., V.C.)
| | - Maria-Rosa Ghigna
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France (B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,INSERM UMR_S 999 « Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France. B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.)
| | | | - Olaf Mercier
- Service de Chirurgie Thoracique, Vasculaire et Transplantation Cardio-Pulmonaire, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Le Plessis Robinson, France (O.M.)
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (E.W., R.F., L.C., D.J.B., M.A.B.)
| | - Jean-Pierre Benitah
- Inserm, UMR-S 1180, Signalisation et Physiopathologie Cardiovasculaire, Université Paris-Saclay, Châtenay-Malabry, France (J.S., J.-P.B.)
| | - Marc A Bailey
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom (E.W., R.F., L.C., D.J.B., M.A.B.)
| | - Marc Humbert
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France (B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,INSERM UMR_S 999 « Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France. B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (M.H., D.M.)
| | - David Montani
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France (B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,INSERM UMR_S 999 « Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France. B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France (M.H., D.M.)
| | - Véronique Capuano
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France (B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,INSERM UMR_S 999 « Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France. B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,Hôptal Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis Robinson, France (Y.R., M.D., A.B., V.C.)
| | - Fabrice Antigny
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France (B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.).,INSERM UMR_S 999 « Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique », Hôpital Marie Lannelongue, Le Plessis-Robinson, France. B.M., H.L.R., L.L.., Y.R, M.D, A.B., M.-R.G., M.H., D.M., V.C., F.A.)
| |
Collapse
|
99935
|
Sato Y, Saito G, Fujimoto D. Histologic transformation in lung cancer: when one door shuts, another opens. Ther Adv Med Oncol 2022; 14:17588359221130503. [PMID: 36268218 PMCID: PMC9577078 DOI: 10.1177/17588359221130503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/12/2022] [Indexed: 11/05/2022] Open
Abstract
Histologic transformation (HT) is a major cause of drug resistance to therapy in
patients with lung cancer. HTs to small-cell lung cancer (SCLC) have been
reported frequently in patients with epidermal growth factor receptor
(EGFR)-mutated lung cancer. Although HTs have an impact on
the clinical outcomes in patients owing to a high refractoriness to treatments,
there is limited data on the prevalence, causes, mechanisms, treatment efficacy,
and future treatment strategies. In this review, we assess the literature
regarding HTs comprehensively, including those describing EGFR-tyrosine kinase
inhibitors, other molecular targeted drugs, and immune checkpoint inhibitors.
Furthermore, we discuss the mechanisms of HTs and the lineage plasticity to SCLC
and squamous cell carcinoma in lung cancer. In addition, we summarize the
treatment efficacy and future perspectives of HTs in patients with lung cancer,
and propose better management strategies for this group of patients.
Collapse
|
99936
|
Chen Y, Zheng A, Zhang Y, Xiao M, Zhao Y, Wu X, Li M, Du F, Chen Y, Chen M, Li W, Li X, Sun Y, Gu L, Xiao Z, Shen J. Dysregulation of B7 family and its association with tumor microenvironment in uveal melanoma. Front Immunol 2022; 13:1026076. [PMID: 36311731 PMCID: PMC9615147 DOI: 10.3389/fimmu.2022.1026076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Background Uveal melanoma (UVM) is the most common primary intraocular malignancy in adults with a poor prognosis. B7 family is an important modulator of the immune response. However, its dysregulation and underlying molecular mechanism in UVM still remains unclear. Methods Data were derived from TCGA and GEO databases. The prognosis was analyzed by Kaplan-Meier curve. The ESTIMATE algorithm, CIBERSORT algorithm, and TIMER database were used to demonstrate the correlation between B7 family and tumor immune microenvironment in UVM. Single-cell RNA sequencing was used to detect the expression levels of the B7 family in different cell types of UVM. UVM was classified into different types by consistent clustering. Enrichment analysis revealed downstream signaling pathways of the B7 family. The interaction between different cell types was visualized by cell chat. Results The expression level of B7 family in UVM was significantly dysregulated and negatively correlated with methylation level. The expression of B7 family was associated with prognosis and immune infiltration, and B7 family plays an important role in the tumor microenvironment (TME). B7 family members were highly expressed in monocytes/macrophages of UVM compared with other cell types. Immune response and visual perception were the main functions affected by B7 family. The result of cell chat showed that the interaction between photoreceptor cells and immune-related cells was mainly generated by HLA-C-CD8A. CABP4, KCNJ10 and RORB had the strongest correlation with HLA-C-CD8A, and their high expression was significantly correlated with poor prognosis. CABP4 and RORB were specifically expressed in photoreceptor cells. Conclusions Dysregulation of the B7 family in UVM is associated with poor prognosis and affects the tumor immune microenvironment. CABP4 and RORB can serve as potential therapeutic targets for UVM, which can be regulated by the B7 family to affect the visual perception and immune response function of the eye, thus influencing the prognosis of UVM.
Collapse
Affiliation(s)
- Yao Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Pidu District People’s Hospital, Chengdu, Sichuan, China
| | - Anfu Zheng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yao Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mintao Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Jing Shen, ; Zhangang Xiao,
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
- *Correspondence: Jing Shen, ; Zhangang Xiao,
| |
Collapse
|
99937
|
Jeong A, Cho Y, Cho M, Bae GU, Song DG, Kim SN, Kim YK. PRMT7 Inhibitor SGC8158 Enhances Doxorubicin-Induced DNA Damage and Its Cytotoxicity. Int J Mol Sci 2022; 23:ijms232012323. [PMID: 36293180 PMCID: PMC9604017 DOI: 10.3390/ijms232012323] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
Protein arginine methyltransferase 7 (PRMT7) regulates various cellular responses, including gene expression, cell migration, stress responses, and stemness. In this study, we investigated the biological role of PRMT7 in cell cycle progression and DNA damage response (DDR) by inhibiting PRMT7 activity with either SGC8158 treatment or its specific siRNA transfection. Suppression of PRMT7 caused cell cycle arrest at the G1 phase, resulting from the stabilization and subsequent accumulation of p21 protein. In addition, PRMT7 activity is closely associated with DNA repair pathways, including both homologous recombination and non-homologous end-joining. Interestingly, SGC8158, in combination with doxorubicin, led to a synergistic increase in both DNA damage and cytotoxicity in MCF7 cells. Taken together, our data demonstrate that PRMT7 is a critical modulator of cell growth and DDR, indicating that it is a promising target for cancer treatment.
Collapse
Affiliation(s)
- Ahyeon Jeong
- Muscle Physiome Research Center and Drug Information Research Institute, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea
| | - Yena Cho
- Muscle Physiome Research Center and Drug Information Research Institute, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea
| | - Minkyeong Cho
- Muscle Physiome Research Center and Drug Information Research Institute, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea
| | - Gyu-Un Bae
- Muscle Physiome Research Center and Drug Information Research Institute, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea
| | - Dae-Geun Song
- Natural Products Research Institute, KIST Gangneung, Gangneung 25451, Korea
| | - Su-Nam Kim
- Natural Products Research Institute, KIST Gangneung, Gangneung 25451, Korea
- Division of Bio-Medical Science and Technology, University of Science and Technology KIST School, Seoul 02792, Korea
- Correspondence: (S.-N.K.); (Y.K.K.); Tel.: +82-33-650-3503 (S.-N.K.); +82-2-2077-7688 (Y.K.K.)
| | - Yong Kee Kim
- Muscle Physiome Research Center and Drug Information Research Institute, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea
- Correspondence: (S.-N.K.); (Y.K.K.); Tel.: +82-33-650-3503 (S.-N.K.); +82-2-2077-7688 (Y.K.K.)
| |
Collapse
|
99938
|
Fang H, Li H, Zhang H, Wang S, Xu S, Chang L, Yang Y, Cui R. Short-chain L-3-hydroxyacyl-CoA dehydrogenase: A novel vital oncogene or tumor suppressor gene in cancers. Front Pharmacol 2022; 13:1019312. [PMID: 36313354 PMCID: PMC9614034 DOI: 10.3389/fphar.2022.1019312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/23/2022] [Indexed: 08/22/2023] Open
Abstract
The reprogramming of cellular metabolism is frequently linked to tumorigenesis. Glucose, fatty acids, and amino acids are the specific substrates involved in how an organism maintains metabolic equilibrium. The HADH gene codes for the short-chain L-3-hydroxyacyl-CoA dehydrogenase (HADH), a crucial enzyme in fatty acid oxidation that catalyzes the third phase of fatty acid oxidation in mitochondria. Increasing data suggest that HADH is differentially expressed in various types of malignancies and is linked to cancer development and progression. The significance of HADH expression in tumors and its potential mechanisms of action in the onset and progression of certain cancers are summarized in this article. The possible roles of HADH as a target and/or biomarker for the detection and treatment of various malignancies is also described here.
Collapse
Affiliation(s)
- He Fang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hanyang Li
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Shu Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Shuang Xu
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Li Chang
- Department of Pathology, The Second Hospital of Jilin University, Changchun, China
| | - Yongsheng Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
99939
|
Wang F, He T, Wang G, Han T, Yao Z. Association of triglyceride glucose-body mass index with non-small cell lung cancer risk: A case-control study on Chinese adults. Front Nutr 2022; 9:1004179. [PMID: 36313086 PMCID: PMC9614218 DOI: 10.3389/fnut.2022.1004179] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background and objectives Insulin resistance (IR) is closely related to non-small-cell lung cancer (NSCLC) risk. Recently, triglyceride glucose-body mass index (TyG-BMI) has been recognized as one of the simple indexes of insulin resistance (IR). However, there are limited data on the relationship between TyG-BMI and NSCLC. Here, we investigated the association of TyG-BMI with NSCLC risk in Chinese adults. Methods This study consisted of 477 NSCLC cases and 954 healthy subjects. All participants were enrolled from 3201 Hospital affiliated to the Medical Department of Xi'an Jiaotong University. TyG-BMI was calculated based on the values of fasting blood glucose, triglyceride, and BMI. The association of TyG-BMI with NSCLC risk was estimated by logistic regression analysis. Results The mean value of TyG-BMI was statistically increased in patients with NSCLC compared to the control group (201.11 ± 28.18 vs. 174 ± 23.78, P < 0.01). There was a significant positive association between TyG-BMI and NSCLC (OR = 1.014; 95% CI 1.007-1.021; P < 0.001) after controlling for confounding factors. Moreover, the prevalence of NSCLC was significantly elevated in participants in the high TyG-BMI tertiles than those in the intermediate and low TyG-BMI tertiles (60.46% vs. 12.61% vs. 26.83%, P < 0.01). Importantly, TyG-BMI achieved a significant diagnostic accuracy for NSCLC, with an AUC (area under the curve) of 0.769 and a cutoff value of 184.87. Conclusion The findings suggest that TyG-BMI is a useful tool for assessing NSCLC risk. Thus, it is essential to follow up on high TyG-BMI, and lifestyle modification is needed to prevent NSCLC in people with high TyG-BMI.
Collapse
Affiliation(s)
- Feifei Wang
- Department of Oncology, The 3201 Hospital Affiliated to Medical Department of Xi’an Jiaotong University, Hanzhong, Shaanxi, China
| | - Ting He
- Department of Oncology, The 3201 Hospital Affiliated to Medical Department of Xi’an Jiaotong University, Hanzhong, Shaanxi, China
| | - Guoliang Wang
- Department of Orthopedics, Second Affiliated Hospital, Air Force Medical University, Xi’an, Shaanxi, China
| | - Tuo Han
- Department of Oncology Surgery, The 3201 Hospital Affiliated to Medical Department of Xi’an Jiaotong University, Hanzhong, Shaanxi, China
| | - Zhongqiang Yao
- Department of Oncology, The 3201 Hospital Affiliated to Medical Department of Xi’an Jiaotong University, Hanzhong, Shaanxi, China,*Correspondence: Zhongqiang Yao,
| |
Collapse
|
99940
|
Jiang X, Zhang Y, Wang H, Wang Z, Hu S, Cao C, Xiao H. In-Depth Metaproteomics Analysis of Oral Microbiome for Lung Cancer. Research (Wash D C) 2022; 2022:9781578. [PMID: 36320634 PMCID: PMC9590273 DOI: 10.34133/2022/9781578] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/22/2022] [Indexed: 11/12/2022] Open
Abstract
The human oral microbiome correlates with numerous diseases, including lung cancer. Identifying the functional changes by metaproteomics helps understand the disease-related dysbiosis, yet characterizing low-abundant bacteria is challenging. Here, we developed a free-flow isoelectric focusing electrophoresis-mass spectrometry- (FFIEF-MS-) based metaproteomics strategy to reduce host interferences and enrich low-abundant bacteria for in-depth interpretation of the oral microbiome. With our method, the number of interfering peptides decreased by 52.87%, whereas the bacterial peptides and species increased by 94.97% and 44.90%, respectively, compared to the conventional metaproteomics approach. We identified 3647 bacterial proteins, which is the most comprehensive oral metaproteomics study to date. Lung cancer-associated bacteria were validated among an independent cohort. The imbalanced Fusobacterium nucleatum and Prevotella histicola and their dysregulated functions in inhibiting immune response and maintaining cell redox homeostasis were revealed. The FFIEF-MS may serve as a valuable strategy to study the mechanisms between human diseases and microbiomes with broader applications.
Collapse
Affiliation(s)
- Xiaoteng Jiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huiyu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zeyuan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shen Hu
- School of Dentistry and Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles 90095, USA
| | - Chengxi Cao
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
99941
|
Radiovaccination Strategy for Cancer Treatment Integrating Photodynamic Therapy-Generated Vaccines with Radiotherapy. Int J Mol Sci 2022; 23:ijms232012263. [PMID: 36293116 PMCID: PMC9602685 DOI: 10.3390/ijms232012263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/01/2022] [Accepted: 10/10/2022] [Indexed: 03/21/2023] Open
Abstract
Therapeutic cancer vaccines have become firmly established as a reliable and proficient form of tumor immunotherapy. They represent a promising approach for substantial advancements in the successful treatment of malignant diseases. One attractive vaccine strategy is using, as the vaccine material, the whole tumor cells treated ex vivo by rapid tumor ablation therapies that instigate stress signaling responses culminating in immunogenic cell death (ICD). One such treatment is photodynamic therapy (PDT). The underlying mechanisms and critical elements responsible for the potency of these vaccines are discussed in this review. Radiotherapy has emerged as a suitable component for the combined therapy protocols with the vaccines. Arguments and prospects for optimizing tumor control using a radiovaccination strategy involving X-ray irradiation plus PDT vaccines are presented, together with the findings supporting its validity.
Collapse
|
99942
|
Li K, Wang W. Establishment of m7G-related gene pair signature to predict overall survival in colorectal cancer. Front Genet 2022; 13:981392. [PMID: 36313441 PMCID: PMC9614021 DOI: 10.3389/fgene.2022.981392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
Abstract
Background: N7-methylguanosine (m7G) is an emerging research hotspot in the field of RNA methylation, and its role in tumor regulation is becoming increasingly recognized. However, its role in colorectal cancer (CRC) remains unclear. Hence, our study explored the role of m7G in CRC. Methods: The mRNA expression data and the corresponding clinical information of the patients with CRC were obtained from The Cancer Genome Atlas (TCGA). A m7G-related gene pair signature was established using the Cox and LASSO regression analyses. A series of in silico analyses based on the signature included analysis of prognosis, correlation analysis, immune-related analysis, and estimation of tumor mutational burden (TMB), microsatellite instability (MSI), and response to immunotherapy. A nomogram prediction model was then constructed. Results: In total, 2156 m7G-related gene pairs were screened based on 152 m7G-related genes. Then, a prognostic signature of seven gene pairs was constructed, and the patients were stratified into high- or low-risk groups. Better overall survival (OS), left-sided tumor, early stage, immune activity, and low proportion of MSI-low and MSI-high were all associated with a low risk score. High-risk patients had a higher TMB, and patients with a high TMB had a poor OS. Furthermore, the risk score was linked to immune checkpoint expression (including PD-L1), the tumor immune dysfunction and exclusion (TIDE) score, and chemotherapy sensitivity. We also created an accurate nomogram to increase the clinical applicability of the risk score. Conclusion: We identified an m7G pair-based prognostic signature associated with prognosis, immune landscape, immunotherapy, and chemotherapy in CRC. These findings could help us to better understand the role of m7G in CRC, as well as pave the path for novel methods to assess prognosis and design more effective individualized therapeutic strategies.
Collapse
Affiliation(s)
- Kai Li
- Department of Gastrointestinal Surgery Ⅱ, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Weixing Wang,
| |
Collapse
|
99943
|
Jiang Z, Zhang W, Zeng Z, Tang D, Li C, Cai W, Chen Y, Li Y, Jin Q, Zhang X, Yin L, Liu X, Xu Y, Dai Y. A comprehensive investigation discovered the novel methyltransferase METTL24 as one presumably prognostic gene for kidney renal clear cell carcinoma potentially modulating tumor immune microenvironment. Front Immunol 2022; 13:926461. [PMID: 36311770 PMCID: PMC9613963 DOI: 10.3389/fimmu.2022.926461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
Background Recently, an increasing number of studies have uncovered the aberrant expression of methyltransferase-like family (METTL) plays an important role in tumorigenesis, such as METTL3 (an m6A writer). In our recent work, we discovered METTL24 expression was highly associated with the hazard ratio (HR) of kidney renal clear cell carcinoma (KIRC) compared to other tumors, implying a special function of METTL24 in KIRC carcinogenesis. Until now, the functions and mechanisms of METTL24 in KIRC have remained mostly unknown. Methods The mRNA expression of METTL24 in KIRC was analyzed using the TIMER 2.0, GEPIA, and UALCAN databases. The immunohistochemical assay was performed to validate METTL24 expression in our self-built Chinese cohort (n tumor = 88, n normal = 85). The gene set enrichment analysis (GSEA) was used to investigate the biological processes in which METTL24 might be engaged. The Spearman analysis was used to evaluate the expression correlations between METTL24 and a range of immunological variables, and the effects of METTL24 on the infiltration levels of multiple immune cells were explored using TCGA data. The upstream transcription factors of METTL24 were screened through a multi-omics analysis. Results METTL24 expression in KIRC tissues was significantly decreased compared to normal adjacent kidney tissues, which was associated with the lower survival rate of KIRC patients. METTL24 potentially participated in the immune-relevant biological processes such as cytokine binding, NF-kappa B binding, MHC protein complex, and interleukin-12 action. Besides, METTL24 expression was linked to a number of immune checkpoints, cytokines, chemokines, and chemokine receptors, and also correlated with the infiltration levels of 10 types of immune cells in KIRC. Meanwhile, METTL24 expression differently affected the overall survival rates (OS) of KIRC patients with high or low levels of immune infiltration. Finally, CTCF and EP300 were discovered to be the probable transcription factors of METTL24 in KIRC. Conclusion This study revealed that METTL24 might serve as a prognostic marker in KIRC and as one immune-relevant target for clinical treatment.
Collapse
Affiliation(s)
- Zhongji Jiang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Wei Zhang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Zhipeng Zeng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Chujiao Li
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Wanxia Cai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Yumei Chen
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Ya Li
- Key Renal Laboratory of Shenzhen, Department of Nephrology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Qiu Jin
- Key Renal Laboratory of Shenzhen, Department of Nephrology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Xinzhou Zhang
- Key Renal Laboratory of Shenzhen, Department of Nephrology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Lianghong Yin
- Department of Nephrology, Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Xueyan Liu
- Department of Intensive Care Unit, Shenzhen Key Laboratory of Prevention and Treatment of Severe Infections, The Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen, China
| | - Yong Xu
- Department of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| |
Collapse
|
99944
|
Liao T, Lu Y, Li W, Wang K, Zhang Y, Luo Z, Ju Y, Ouyang M. Construction and validation of a glycolysis-related lncRNA signature for prognosis prediction in Stomach Adenocarcinoma. Front Genet 2022; 13:794621. [PMID: 36313430 PMCID: PMC9614251 DOI: 10.3389/fgene.2022.794621] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 09/20/2022] [Indexed: 01/12/2024] Open
Abstract
Background: Glycolysis is closely related to the occurrence and progression of gastric cancer (GC). Currently, there is no systematic study on using the glycolysis-related long non-coding RNA (lncRNA) as a model for predicting the survival time in patients with GC. Therefore, it was essential to develop a signature for predicting the survival based on glycolysis-related lncRNA in patients with GC. Materials and methods: LncRNA expression profiles, containing 375 stomach adenocarcinoma (STAD) samples, were obtained from The Cancer Genome Atlas (TCGA) database. The co-expression network of lncRNA and glycolysis-related genes was used to identify the glycolysis-related lncRNAs. The Kaplan-Meier survival analysis and univariate Cox regression analysis were used to detect the glycolysis-related lncRNA with prognostic significance. Then, Bayesian Lasso-logistic and multivariate Cox regression analyses were performed to screen the glycolysis-related lncRNA with independent prognostic significance and to develop the risk model. Patients were assigned into the low- and high-risk cohorts according to their risk scores. A nomogram model was constructed based on clinical information and risk scores. Gene Set Enrichment Analysis (GSEA) was performed to visualize the functional and pathway enrichment analyses of the glycolysis-related lncRNA. Finally, the robustness of the results obtained was verified in an internal validation data set. Results: Seven glycolysis-related lncRNAs (AL353804.1, AC010719.1, TNFRSF10A-AS1, AC005586.1, AL355574.1, AC009948.1, and AL161785.1) were obtained to construct a risk model for prognosis prediction in the STAD patients using Lasso regression and multivariate Cox regression analyses. The risk score was identified as an independent prognostic factor for the patients with STAD [HR = 1.315, 95% CI (1.056-1.130), p < 0.001] via multivariate Cox regression analysis. Receiver operating characteristic (ROC) curves were drawn and the area under curve (AUC) values of 1-, 3-, and 5-year overall survival (OS) were calculated to be 0.691, 0.717, and 0.723 respectively. Similar results were obtained in the validation data set. In addition, seven glycolysis-related lncRNAs were significantly enriched in the classical tumor processes and pathways including cell adhesion, positive regulation of vascular endothelial growth factor, leukocyte transendothelial migration, and JAK_STAT signaling pathway. Conclusion: The prognostic prediction model constructed using seven glycolysis-related lncRNA could be used to predict the prognosis in patients with STAD, which might help clinicians in the clinical treatment for STAD.
Collapse
Affiliation(s)
- Tianyou Liao
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Yan Lu
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Wangji Li
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Kang Wang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yanxiang Zhang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Zhentao Luo
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Yongle Ju
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Manzhao Ouyang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
99945
|
Home Artificial Nutrition and Energy Balance in Cancer Patients: Nutritional and Clinical Outcomes. Nutrients 2022; 14:nu14204307. [PMID: 36296990 PMCID: PMC9607087 DOI: 10.3390/nu14204307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Malnutrition is one of the main factors determining cachexia syndrome, which negatively impacts the quality of life and survival. In cancer patients, artificial nutrition is considered as an appropriate therapy when the impossibility of an adequate oral intake worsened nutritional and clinical conditions. This study aims to verify, in a home palliative care setting for cancer patients, if home artificial nutrition (HAN) supplies a patient’s energy requirement, improving nutritional and performance status. A nutritional service team performed counseling at a patient’s home and assessed nutritional status (body mass index, weight loss in the past 6 months), resting energy expenditure (REE), and oral food intake; Karnofsky Performance Status (KPS); cachexia degree; and survival. From 1990 to 2021, 1063 patients started HAN. Among these patients, 101 suspended artificial nutrition for oral refeeding. Among the 962 patients continuing HAN until death, 226 patients (23.5%) survived 6 weeks or less. HAN allowed to achieve a positive energy balance in 736 patients who survived more than 6 weeks, improving body weight and KPS when evaluated after 1 month of HAN. Advanced cancer and cachexia degree at the entry of the study negatively affected the positive impact of HAN.
Collapse
|
99946
|
Faheem MM, Rahim JU, Ahmad SM, Mir KB, Kaur G, Bhagat M, Rai R, Goswami A. Heterochiral dipeptide d-phenylalanyl- l-phenylalanine (H- D Phe- L Phe-OH) as a potential inducer of metastatic suppressor NM23H1 in p53 wild-type and mutant cells. Mol Carcinog 2022; 61:1143-1160. [PMID: 36239557 DOI: 10.1002/mc.23465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 12/24/2022]
Abstract
In recent years, significant progress has been made to the use-case of small peptides because of their diversified edifice and hence their versatile application scope in cancer therapy. Here we identify the heterochiral dipeptide H-D Phe-L Phe-OH (F1) as a potent inducer of the metastatic suppressor NM23H1. We divulge the effect of F1 on the major EMT/metastasis-associated genes and the implications on the invasion and migration ability of cancer cells. The anti-invasive potential of F1 was directly correlated with NM23H1 expression. Mechanistically, F1 treatment elevated p53 levels as validated by localization and transcriptional studies. In the NM23H1 knockdown condition, F1 failed to induce any p53 expression/nuclear localization, indicating that the upregulation in p53 expression by F1 is NM23H1 dependent. We also demonstrate how the antimetastatic potential of F1 is primarily mediated through NM23H1 irrespective of the p53 status of the cell. However, both NM23H1 and a functional p53 protein in conjunction govern the apoptotic and cytostatic potential of F1. Coimmunoprecipitation studies unraveled the augmentation of the p53 and NM23H1 interaction in p53 wild-type cells. However, in p53 mutated cells, no such enrichment was evidenced. We employed mouse isogenic cell lines (4T-1 and 4T-1 p53) to determine the in vivo efficacy of F1 (spontaneous and experimental models). Decreased tumor volume in the cohort injected with 4T-1 p53 cells demonstrated that while the antimetastatic potential of F1 was reliant on NM23H1, p53 activation was required for ablation of primary tumor burden. Our findings unravel that F1 treatment induces significant abrogation of the migration, invasion and metastatic potential of both p53 wild-type and p53 deficient cancers mediated through NM23H1.
Collapse
Affiliation(s)
- Mir Mohd Faheem
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Junaid Ur Rahim
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Syed Mudabir Ahmad
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Khalid Bashir Mir
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Gursimar Kaur
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Madhulika Bhagat
- School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Rajkishor Rai
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Anindya Goswami
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
99947
|
Mulas O, Mola B, Madeddu C, Caocci G, Macciò A, Nasa GL. Prognostic Role of Cell Blood Count in Chronic Myeloid Neoplasm and Acute Myeloid Leukemia and Its Possible Implications in Hematopoietic Stem Cell Transplantation. Diagnostics (Basel) 2022; 12:2493. [PMID: 36292182 PMCID: PMC9600993 DOI: 10.3390/diagnostics12102493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Numerous prognostic indexes have been developed in hematological diseases based on patient characteristics and genetic or molecular assessment. However, less attention was paid to more accessible parameters, such as neutrophils, lymphocytes, monocytes, and platelet counts. Although many studies have defined the role of neutrophil-to-lymphocyte or platelet-to-lymphocyte in lymphoid malignancies, few applications exist for myeloid neoplasm or hematopoietic stem cell transplantation procedures. In this review, we synthesized literature data on the prognostic value of count blood cells in myeloid malignancies and hematopoietic stem cell transplantation in the context of classical prognostic factors and clinical outcomes.
Collapse
Affiliation(s)
- Olga Mulas
- Hematology Unit, Businco Hospital, ARNAS G. Brotzu, 09124 Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, S554, km 4500, 09042 Monserrato, Italy
| | - Brunella Mola
- Hematology Unit, Businco Hospital, ARNAS G. Brotzu, 09124 Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, S554, km 4500, 09042 Monserrato, Italy
| | - Clelia Madeddu
- Department of Medical Sciences and Public Health, University of Cagliari, S554, km 4500, 09042 Monserrato, Italy
| | - Giovanni Caocci
- Hematology Unit, Businco Hospital, ARNAS G. Brotzu, 09124 Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, S554, km 4500, 09042 Monserrato, Italy
| | - Antonio Macciò
- Department of Gynecologic Oncology, Businco Hospital, ARNAS G. Brotzu, 09124 Cagliari, Italy
- Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Giorgio La Nasa
- Hematology Unit, Businco Hospital, ARNAS G. Brotzu, 09124 Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, S554, km 4500, 09042 Monserrato, Italy
| |
Collapse
|
99948
|
Di Filippo M, Hennig P, Karakaya T, Slaufova M, Beer HD. NLRP1 in Cutaneous SCCs: An Example of the Complex Roles of Inflammasomes in Cancer Development. Int J Mol Sci 2022; 23:12308. [PMID: 36293159 PMCID: PMC9603439 DOI: 10.3390/ijms232012308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Protein complexes termed inflammasomes ensure tissue protection from pathogenic and sterile stressors by induction of inflammation. This is mediated by different caspase-1-induced downstream pathways, including activation of the pro-inflammatory cytokines proIL-1β and -18, induction of a lytic type of cell death, and regulation of the release of other pro-inflammatory molecules. Aberrant inflammasome activation underlies the pathology of numerous (auto)inflammatory diseases. Furthermore, inflammasomes support or suppress tumor development in a complex cell-type- and stage-dependent manner. In human keratinocytes and skin, NLRP1 is the central inflammasome sensor activated by cellular perturbation induced, for example, by UVB radiation. UVB represents the main inducer of skin cancer, which is the most common type of malignancy in humans. Recent evidence demonstrates that activation of NLRP1 in human skin supports the development of cutaneous squamous cell carcinomas (cSCCs) by inducing skin inflammation. In contrast, the NLRP1 inflammasome pathway is restrained in established cSCCs, suggesting that, at this stage, the protein complex has a tumor suppressor role. A better understanding of the complex functions of NLRP1 in the development of cSCCs and in general of inflammasomes in cancer might pave the way for novel strategies for cancer prevention and therapy. These strategies might include stage-specific modulation of inflammasome activation or its downstream pathways by mono- or combination therapy.
Collapse
Affiliation(s)
- Michela Di Filippo
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Paulina Hennig
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Tugay Karakaya
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Marta Slaufova
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Hans-Dietmar Beer
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
99949
|
Lackner M, Neef SK, Winter S, Beer-Hammer S, Nürnberg B, Schwab M, Hofmann U, Haag M. Untargeted stable isotope-resolved metabolomics to assess the effect of PI3Kβ inhibition on metabolic pathway activities in a PTEN null breast cancer cell line. Front Mol Biosci 2022; 9:1004602. [PMID: 36310598 PMCID: PMC9614656 DOI: 10.3389/fmolb.2022.1004602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
The combination of high-resolution LC-MS untargeted metabolomics with stable isotope-resolved tracing is a promising approach for the global exploration of metabolic pathway activities. In our established workflow we combine targeted isotopologue feature extraction with the non-targeted X13CMS routine. Metabolites, detected by X13CMS as differentially labeled between two biological conditions are subsequently integrated into the original targeted library. This strategy enables monitoring of changes in known pathways as well as the discovery of hitherto unknown metabolic alterations. Here, we demonstrate this workflow in a PTEN (phosphatase and tensin homolog) null breast cancer cell line (MDA-MB-468) exploring metabolic pathway activities in the absence and presence of the selective PI3Kβ inhibitor AZD8186. Cells were fed with [U-13C] glucose and treated for 1, 3, 6, and 24 h with 0.5 µM AZD8186 or vehicle, extracted by an optimized sample preparation protocol and analyzed by LC-QTOF-MS. Untargeted differential tracing of labels revealed 286 isotope-enriched features that were significantly altered between control and treatment conditions, of which 19 features could be attributed to known compounds from targeted pathways. Other 11 features were unambiguously identified based on data-dependent MS/MS spectra and reference substances. Notably, only a minority of the significantly altered features (11 and 16, respectively) were identified when preprocessing of the same data set (treatment vs. control in 24 h unlabeled samples) was performed with tools commonly used for label-free (i.e. w/o isotopic tracer) non-targeted metabolomics experiments (Profinder´s batch recursive feature extraction and XCMS). The structurally identified metabolites were integrated into the existing targeted isotopologue feature extraction workflow to enable natural abundance correction, evaluation of assay performance and assessment of drug-induced changes in pathway activities. Label incorporation was highly reproducible for the majority of isotopologues in technical replicates with a RSD below 10%. Furthermore, inter-day repeatability of a second label experiment showed strong correlation (Pearson R2 > 0.99) between tracer incorporation on different days. Finally, we could identify prominent pathway activity alterations upon PI3Kβ inhibition. Besides pathways in central metabolism, known to be changed our workflow revealed additional pathways, like pyrimidine metabolism or hexosamine pathway. All pathways identified represent key metabolic processes associated with cancer metabolism and therapy.
Collapse
Affiliation(s)
- Marcel Lackner
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Sylvia K. Neef
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomics, Interfaculty Center for Pharmacogenomics and Drug Research (ICePhA), University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180), Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany
| | - Bernd Nürnberg
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomics, Interfaculty Center for Pharmacogenomics and Drug Research (ICePhA), University of Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180), Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany
- Departments of Clinical Pharmacology and of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Mathias Haag
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- *Correspondence: Mathias Haag,
| |
Collapse
|
99950
|
Hunter JE, Campbell AE, Butterworth JA, Sellier H, Hannaway NL, Luli S, Floudas A, Kenneth NS, Moore AJ, Brownridge PJ, Thomas HD, Coxhead J, Taylor L, Leary P, Hasoon MS, Knight AM, Garrett MD, Collins I, Eyers CE, Perkins ND. Mutation of the RelA(p65) Thr505 phosphosite disrupts the DNA replication stress response leading to CHK1 inhibitor resistance. Biochem J 2022; 479:2087-2113. [PMID: 36240065 PMCID: PMC9704643 DOI: 10.1042/bcj20220089] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/22/2022] [Accepted: 08/19/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Jill E. Hunter
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Amy E. Campbell
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Jacqueline A. Butterworth
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Helene Sellier
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Nicola L. Hannaway
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Saimir Luli
- Newcastle University Clinical and Translational Research Institute, Preclinical In Vivo Imaging, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Achilleas Floudas
- Newcastle University Clinical and Translational Research Institute, Preclinical In Vivo Imaging, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Niall S. Kenneth
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Adam J. Moore
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Philip J. Brownridge
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Huw D. Thomas
- Newcastle University Clinical and Translational Research Institute, Preclinical In Vivo Imaging, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Jonathan Coxhead
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Leigh Taylor
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| | - Peter Leary
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Megan S.R. Hasoon
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Andrew M. Knight
- Newcastle University Clinical and Translational Research Institute, Preclinical In Vivo Imaging, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, U.K
| | - Michelle D. Garrett
- School of Biosciences, University of Kent, Stacey Building, Canterbury, Kent CT2 7NJ, U.K
| | - Ian Collins
- Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton SM2 5NG, U.K
| | - Claire E. Eyers
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Neil D. Perkins
- Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K
| |
Collapse
|