51
|
Tosoian JJ, Dunn RL, Niknafs YS, Saha A, Vince RA, St Sauver JL, Jacobson DJ, McGree ME, Siddiqui J, Groskopf J, Jacobsen SJ, Tomlins SA, Kunju LP, Morgan TM, Salami SS, Wei JT, Chinnaiyan AM, Sarma AV. Association of Urinary MyProstateScore, Age, and Prostate Volume in a Longitudinal Cohort of Healthy Men: Long-term Findings from the Olmsted County Study. EUR UROL SUPPL 2021; 29:30-35. [PMID: 34337531 PMCID: PMC8317796 DOI: 10.1016/j.euros.2021.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 11/02/2022] Open
Abstract
Background Serum prostate-specific antigen (PSA), used in prostate cancer screening, is nonspecific for cancer and is affected by age and prostate volume. More specific biomarkers could be more accurate for early detection of prostate cancer and reduce unnecessary prostate biopsies. Objective To evaluate the association of age and prostate volume with urinary MyProstateScore (MPS) in a screened, longitudinal cohort without evidence of prostate cancer. Design setting and participants The Olmsted County Study included men aged 40-79 yr who underwent biennial prostate cancer screening. PSA ≥4.0 ng/ml or abnormal rectal examination triggered prostate biopsy, and patients with cancer were excluded. The remaining men submitted urinary specimens for PCA3 and TMPRSS2:ERG testing. Outcome measurements and statistical analysis MPS was calculated using the validated, locked model for grade group ≥2 cancer that includes serum PSA, urinary PCA3, and urinary TMPRSS2:ERG. The associations of age and volume with biomarkers were assessed in multivariable regression models. The t statistic was used to quantify the strength of associations independent of the unit of measurement, and R 2 values were used to estimate the proportion of biomarker variance explained by each factor. Results and limitations The study included 314 screened men without evidence of cancer. In multivariable models including age and volume, PCA3 score was significantly associated with age (t = 7.51; p < 0.001), while T2:ERG score was not associated with age or volume. MPS was significantly associated with both age (t = 7.45; p < 0.001) and volume (t = 3.56; p < 0.001), but accounting for age alone explained the variability observed (R 2 = 0.29) in a similar way to the model including age and volume (R 2 = 0.31). The variability of PCA3, T2:ERG, and MPS was less dependent on age and volume than the variability for PSA (R 2 = 0.45). Conclusions In a cohort of longitudinally screened men without evidence of cancer, we found that MPS demonstrated less variability with noncancer factors (age, prostate volume) than PSA did. These findings support the biology of these markers as more cancer-specific than PSA and highlight their promise in reducing the morbidity associated with PSA-based screening. Patient summary In a group of men with no evidence of prostate cancer, we found that each of three urine-based markers of cancer-PCA3, T2:ERG, and the commercially available MyProstateScore test-showed less variability with noncancer factors (age and prostate volume) than serum PSA (prostate-specific antigen) did. These findings support their proposed use as noninvasive markers of prostate cancer that could improve the accuracy of early detection.
Collapse
Affiliation(s)
- Jeffrey J Tosoian
- Department of Urology, University of Michigan, Ann Arbor, MI, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rodney L Dunn
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Yashar S Niknafs
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Anjan Saha
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Randy A Vince
- Department of Urology, University of Michigan, Ann Arbor, MI, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | | | - Debra J Jacobson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Michaela E McGree
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Javed Siddiqui
- Department of Urology, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Steven J Jacobsen
- Department of Research and Evaluation, Kaiser Permanente of Southern California, Pasadena, CA, USA
| | - Scott A Tomlins
- Department of Urology, University of Michigan, Ann Arbor, MI, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Lakshmi P Kunju
- Department of Urology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Todd M Morgan
- Department of Urology, University of Michigan, Ann Arbor, MI, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Simpa S Salami
- Department of Urology, University of Michigan, Ann Arbor, MI, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - John T Wei
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Department of Urology, University of Michigan, Ann Arbor, MI, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Aruna V Sarma
- Department of Urology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
52
|
Degeling K, Pereira-Salgado A, Corcoran NM, Boutros PC, Kuhn P, IJzerman MJ. Health Economic Evidence for Liquid- and Tissue-based Molecular Tests that Inform Decisions on Prostate Biopsies and Treatment of Localised Prostate Cancer: A Systematic Review. EUR UROL SUPPL 2021; 27:77-87. [PMID: 34337517 PMCID: PMC8317795 DOI: 10.1016/j.euros.2021.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2021] [Indexed: 11/16/2022] Open
Abstract
CONTEXT Several liquid- and tissue-based biomarker tests (LTBTs) are available to inform the need for prostate biopsies and treatment of localised prostate cancer (PCa) through risk stratification, but translation into routine practice requires evidence of their clinical utility and economic impact. OBJECTIVE To review and summarise the health economic evidence on the ability of LTBTs to inform decisions on prostate biopsies and treatment of localised PCa through risk stratification. EVIDENCE ACQUISITION A systematic search was performed in the EMBASE, MEDLINE, Health Technology Assessment, and National Health Service Health Economic Evaluation databases. Eligible publications were those presenting health economic evaluations of an LTBT to select individuals for biopsy or risk-stratify PCa patients for treatment. Data on the study objectives, context, methodology, clinical utility, and outcomes were extracted and summarised. EVIDENCE SYNTHESIS Of the 22 studies included, 14 were focused on test-informed biopsies and eight on treatment selection. Most studies performed cost-effectiveness analyses (n = 7), followed by costing (n = 4) or budget impact analyses (n = 3). Most (18 of 22) studies concluded that biomarker tests could decrease health care costs or would be cost-effective. However, downstream consequences and long-term outcomes were typically not included in studies that evaluated LTBT to inform biopsies. Long-term effectiveness was modelled by linking evidence from different sources instead of using data from prospective studies. CONCLUSIONS Although studies concluded that LTBTs would probably be cost-saving or -effective, the strength of this evidence is disputable because of concerns around the validity and transparency of the assumptions made. This warrants prospective interventional trials to inform health economic analyses to ensure collection of direct evidence of clinical outcomes based on LTBT use. PATIENT SUMMARY We reviewed studies that evaluated whether blood, urine, and tissue tests can reduce the health and economic burden of prostate cancer. Results indicate that these tests could be cost-effective, but clinical studies of long-term outcomes are needed to confirm the findings.
Collapse
Affiliation(s)
- Koen Degeling
- Cancer Health Services Research, Centre for Cancer Research, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
- Cancer Health Services Research, Centre for Health Policy, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Amanda Pereira-Salgado
- Cancer Health Services Research, Centre for Cancer Research, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
- Cancer Health Services Research, Centre for Health Policy, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Niall M. Corcoran
- Department of Urology, Frankston Hospital, Frankston, Australia
- Department of Surgery, The University of Melbourne, Melbourne, Australia
- Division of Urology, Royal Melbourne Hospital, Melbourne, Australia
| | - Paul C. Boutros
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA
- Departments of Human Genetics and Urology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Peter Kuhn
- USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Maarten J. IJzerman
- Cancer Health Services Research, Centre for Cancer Research, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
- Cancer Health Services Research, Centre for Health Policy, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
- Department of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
- Health Technology and Services Research, Faculty of Behavioural, Management and Social Sciences, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
53
|
Poon DMC, Chan CK, Chan TW, Cheung FY, Ho LY, Kwong PWK, Lee EKC, Leung AKC, Leung SYL, So HS, Tam PC, Ma WK. Prostate cancer management in the era of COVID-19: Recommendations from the Hong Kong Urological Association and Hong Kong Society of Uro-oncology. Asia Pac J Clin Oncol 2021; 17 Suppl 3:48-54. [PMID: 33860643 PMCID: PMC8250641 DOI: 10.1111/ajco.13579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aim In response to the fast‐developing coronavirus disease 2019 (COVID‐19) pandemic, special arrangement and coordination are urgently required in the interdisciplinary care of patients across different medical specialties. This article provides recommendations on the management of different stages of localized or metastatic prostate cancer (PC) amid this pandemic. Methods The Hong Kong Urological Association and Hong Kong Society of Uro‐oncology formed a joint discussion panel, which consisted of six urologists and six clinical oncologists with extensive experience in the public and private sectors. Following an evidence‐based approach, the latest relevant publications were searched and reviewed, before proceeding to a structured discussion of relevant clinical issues. Results The joint panel provided recommendations for PC management during the pandemic, in terms of general considerations, diagnostic procedures, different disease stages, treatment modules, patient support, and interdisciplinary collaboration. The overall goal was to minimize the risk of infection while avoiding unnecessary delays and compromises in management outcomes. Practical issues during the pandemic were addressed such as the use of invasive diagnostic procedures, robotic‐assisted laparoscopic prostatectomy, hypofractionated radiotherapy, and prolonged androgen deprivation therapy. The recommendations were explicated in the context of Hong Kong, a highly populated international city, in relation to the latest international guidelines and evidence. Conclusion A range of recommendations on the management of PC patients during the COVID‐19 pandemic was developed. Urologists, oncologists, and physicians treating PC patients may refer to them as practical guidance.
Collapse
Affiliation(s)
- Darren Ming-Chun Poon
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Sha Tin, Hong Kong.,Comprehensive Oncology Centre, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong
| | - Chi-Kwok Chan
- Division of Urology, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Tim-Wai Chan
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | | | | | - Philip Wai-Kay Kwong
- Department of Clinical Oncology, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Eric Ka-Chai Lee
- Department of Clinical Oncology, Tuen Mun Hospital, Tuen Mun, Hong Kong
| | | | | | - Hing-Shing So
- Division of Urology, Department of Surgery, United Christian Hospital, Kowloon, Hong Kong
| | - Po Chor Tam
- Department of Surgery, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Wai-Kit Ma
- Department of Surgery, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
54
|
Cimmino I, Bravaccini S, Cerchione C. Urinary Biomarkers in Tumors: An Overview. Methods Mol Biol 2021; 2292:3-15. [PMID: 33651347 DOI: 10.1007/978-1-0716-1354-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Recent reports suggest that urine is a useful noninvasive tool for the identification of urogenital tumors, including bladder, prostate, kidney, and other nonurological cancers. As a liquid biopsy, urine represents an important source for the improvement of new promising biomarkers, a suitable tool to identify indolent cancer and avoid overtreatment. Urine is enriched with DNAs, RNAs, proteins, circulating tumor cells, exosomes, and other small molecules which can be detected with several diagnostic methodologies.We provide an overview of the ongoing state of urinary biomarkers underlying both their potential utilities to improve cancer prognosis, diagnosis, and therapeutic strategy and their limitations.
Collapse
Affiliation(s)
- Ilaria Cimmino
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | - Sara Bravaccini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Claudio Cerchione
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy.
| |
Collapse
|
55
|
Advances in the selection of patients with prostate cancer for active surveillance. Nat Rev Urol 2021; 18:197-208. [PMID: 33623103 DOI: 10.1038/s41585-021-00432-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
Early identification and management of prostate cancer completely changed with the discovery of prostate-specific antigen. However, improved detection has also led to overdiagnosis and consequently overtreatment of patients with low-risk disease. Strategies for the management of patients using active surveillance - the monitoring of clinically insignificant disease until intervention is warranted - were developed in response to this issue. The success of this approach is critically dependent on the accurate selection of patients who are predicted to be at the lowest risk of prostate cancer mortality. The Epstein criteria for clinically insignificant prostate cancer were first published in 1994 and have been repeatedly validated for risk-stratification and selection for active surveillance over the past few decades. Current active surveillance programmes use modified criteria with 30-50% of patients receiving treatment at 10 years. Nonetheless, tools for prostate cancer diagnosis have continued to evolve with improvements in biopsy format and targeting, advances in imaging technologies such as multiparametric MRI, and the identification of serum-, tissue- and urine-based biomarkers. These advances have the potential to further improve the identification of men with low-risk disease who can be appropriately managed using active surveillance.
Collapse
|
56
|
Matsuzaki K, Fujita K, Tomiyama E, Hatano K, Hayashi Y, Wang C, Ishizuya Y, Yamamoto Y, Hayashi T, Kato T, Jingushi K, Kawashima A, Ujike T, Nagahara A, Uemura M, Tsujikawa K, Nonomura N. MiR-30b-3p and miR-126-3p of urinary extracellular vesicles could be new biomarkers for prostate cancer. Transl Androl Urol 2021; 10:1918-1927. [PMID: 33968679 PMCID: PMC8100845 DOI: 10.21037/tau-20-421] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Extracellular vesicles (EVs) including exosomes are present in blood, urine, and saliva and contain proteins, microRNAs, and messenger RNAs. We investigated microRNAs in urinary EVs to discover new biomarkers of prostate cancer (PCa). Methods We isolated EVs from urine obtained following digital rectal examination (DRE) of 14 men with elevated levels of serum prostate-specific antigen (PSA) [negative biopsy (n=4) and PCa with Gleason scores of 6 (n=3), 7 (n=3), and 8-9 (n=4)]. MicroRNAs extracted from EVs were analyzed by microRNA microarray. Results MicroRNAs miR-30b-3p and miR-126-3p were identified as being overexpressed in urinary EVs of the PCa patients versus the biopsy-negative men, but no microRNAs were associated with the Gleason score. In the independent cohort as well, these two microRNAs were overexpressed in urinary EVs from the PCa patients versus the negative-biopsy men. Logistic regression analysis adjusted by age and PSA showed that these two microRNAs were significantly associated with the prediction of PCa in biopsy specimens. Sensitivity and specificity of miR-30b-3p and miR-126-3p for the prediction of PCa were 46.4% and 88.0% and 60.7% and 80.0%, respectively, which were better than those of serum PSA (53.5% and 64.0%, respectively). Conclusions MiR-30b-3p and miR-126-3p in urinary EVs could be potential biomarkers of PCa.
Collapse
Affiliation(s)
- Kyosuke Matsuzaki
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Eisuke Tomiyama
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yujiro Hayashi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Cong Wang
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yu Ishizuya
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshiyuki Yamamoto
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takuji Hayashi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Taigo Kato
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Urological Immuno-Oncology, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Therapeutic Urologic Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kentaro Jingushi
- Department of Therapeutic Urologic Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Atsunari Kawashima
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takeshi Ujike
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akira Nagahara
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Motohide Uemura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Urological Immuno-Oncology, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Therapeutic Urologic Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Osaka University Graduate School of Pharmaceutical Science, Suita, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
57
|
Ferro M, Lucarelli G, de Cobelli O, Del Giudice F, Musi G, Mistretta FA, Luzzago S, Busetto GM, Buonerba C, Sciarra A, Conti S, Porreca A, Battaglia M, Ditonno P, Manfredi M, Fiori C, Porpiglia F, Terracciano D. The emerging landscape of tumor marker panels for the identification of aggressive prostate cancer: the perspective through bibliometric analysis of an Italian translational working group in uro-oncology. Minerva Urol Nephrol 2021; 73:442-451. [PMID: 33769016 DOI: 10.23736/s2724-6051.21.04098-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular heterogeneity and availability of different therapeutic strategies are relevant clinical features of prostate cancer. On this basis, there is an urgent need to identify prognostic and predictive biomarkers for an individualized therapeutic approach. In this context, researchers focused their attention on biomarkers able to discriminate potential life-threatening from organ-confined disease. Such biomarker could provide aid in clinical decision making, helping to choose the treatment which ensures the best results in terms of patient survival and quality of life. To address this need, many new laboratory tests have been proposed, with a clear tendency to use panels of combined biomarkers. In this review we evaluate current data on the application in clinical practice of the most promising laboratory tests: Phi, 4K score and Stockholm 3 as circulating biomarkers, Mi-prostate score, Exo DX Prostate and Select MD-X as urinary biomarkers, Confirm MDx, Oncotype Dx, Prolaris and Decipher as tissue biomarkers. In particular, the ability of these tests in the identification of clinically significant PCa and their potential use for precision medicine have been explored in this review.
Collapse
Affiliation(s)
- Matteo Ferro
- Department of Urology, IEO European Institute of Oncology, Milan, Italy
| | - Giuseppe Lucarelli
- Unit of Urology, Andrology and Kidney Transplantation, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Ottavio de Cobelli
- Department of Urology, IEO European Institute of Oncology, Milan, Italy.,Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | | | - Gennaro Musi
- Department of Urology, IEO European Institute of Oncology, Milan, Italy
| | | | - Stefano Luzzago
- Department of Urology, IEO European Institute of Oncology, Milan, Italy
| | | | - Carlo Buonerba
- Service of Medical Oncology, Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | | | - Simon Conti
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Angelo Porreca
- Department of Urology, Abano Terme Hospital, Padua, Italy
| | - Michele Battaglia
- Unit of Urology, Andrology and Kidney Transplantation, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Pasquale Ditonno
- Unit of Urology, Andrology and Kidney Transplantation, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Matteo Manfredi
- Division of Urology, Department of Oncology, School of Medicine, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - Cristian Fiori
- Division of Urology, Department of Oncology, School of Medicine, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - Francesco Porpiglia
- Division of Urology, Department of Oncology, School of Medicine, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, Federico II University, Naples, Italy -
| |
Collapse
|
58
|
Use of the MyProstateScore Test to Rule Out Clinically Significant Cancer: Validation of a Straightforward Clinical Testing Approach. J Urol 2021; 205:732-739. [PMID: 33080150 PMCID: PMC8189629 DOI: 10.1097/ju.0000000000001430] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE The MyProstateScore test was validated for improved detection of clinically significant (grade group ≥2) prostate cancer relative to prostate specific antigen based risk calculators. We sought to validate an optimal MyProstateScore threshold for clinical use in ruling out grade group ≥2 cancer in men referred for biopsy. MATERIALS AND METHODS Biopsy naïve men provided post-digital rectal examination urine prior to biopsy. MyProstateScore was calculated using the validated, locked multivariable model including only serum prostate specific antigen, urinary prostate cancer antigen 3 and urinary TMPRSS2:ERG. The MyProstateScore threshold approximating 95% sensitivity for grade group ≥2 cancer was identified in a training cohort, and performance was measured in 2 external validation cohorts. We assessed the 1) overall biopsy referral population and 2) population meeting guideline based testing criteria (ie, prostate specific antigen 3-10, or <3 with suspicious digital rectal examination). RESULTS Validation cohorts were prospectively enrolled from academic (977 patients, median prostate specific antigen 4.5, IQR 3.1-6.0) and community (548, median prostate specific antigen 4.9, IQR 3.7-6.8) settings. In the overall validation population (1,525 patients), 338 men (22%) had grade group ≥2 cancer on biopsy. The MyProstateScore threshold of 10 provided 97% sensitivity and 98% negative predictive value for grade group ≥2 cancer. MyProstateScore testing would have prevented 387 unnecessary biopsies (33%), while missing only 10 grade group ≥2 cancers (3.0%). In 1,242 patients meeting guideline based criteria, MyProstateScore ≤10 provided 96% sensitivity and 97% negative predictive value, and would have prevented 32% of unnecessary biopsies, missing 3.7% of grade group ≥2 cancers. CONCLUSIONS In a large, clinically pertinent biopsy referral population, MyProstateScore ≤10 provided exceptional sensitivity and negative predictive value for ruling out grade group ≥2 cancer. This straightforward secondary testing approach would reduce the use of more costly and invasive procedures after screening with prostate specific antigen.
Collapse
|
59
|
Taratkin M, Álvarez-Maestro M, Gómez Rivas J. The need of avoiding unnecessary biopsies in active surveillance for prostate cancer. Actas Urol Esp 2021. [PMID: 33637377 DOI: 10.1016/j.acuro.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
60
|
Vahedian-Azimi A, Mohammadi SM, Heidari Beni F, Banach M, Guest PC, Jamialahmadi T, Sahebkar A. Improved COVID-19 ICU admission and mortality outcomes following treatment with statins: a systematic review and meta-analysis. Arch Med Sci 2021; 17:579-595. [PMID: 34025827 PMCID: PMC8130467 DOI: 10.5114/aoms/132950] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Approximately 1% of the world population has now been infected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19). With cases still rising and vaccines just beginning to rollout, we are still several months away from seeing reductions in daily case numbers, hospitalisations, and mortality. Therefore, there is a still an urgent need to control the disease spread by repurposing existing therapeutics. Owing to antiviral, anti-inflammatory, immunomodulatory, and cardioprotective actions, statin therapy has been considered as a plausible approach to improve COVID-19 outcomes. MATERIAL AND METHODS We carried out a meta-analysis to investigate the effect of statins on 3 COVID-19 outcomes: intensive care unit (ICU) admission, tracheal intubation, and death. We systematically searched the PubMed, Web of Science, Scopus, and ProQuest databases using keywords related to our aims up to November 2, 2020. All published observational studies and randomised clinical trials on COVID-19 and statins were retrieved. Statistical analysis with random effects modelling was performed using STATA16 software. RESULTS The final selected studies (n = 24 studies; 32,715 patients) showed significant reductions in ICU admission (OR = 0.78, 95% CI: 0.58-1.06; n = 10; I 2 = 58.5%) and death (OR = 0.70, 95% CI: 0.55-0.88; n = 21; I 2 = 82.5%) outcomes, with no significant effect on tracheal intubation (OR = 0.79; 95% CI: 0.57-1.11; n = 7; I 2= 89.0%). Furthermore, subgroup analysis suggested that death was reduced further by in-hospital application of stains (OR = 0.40, 95% CI: 0.22-0.73, n = 3; I 2 = 82.5%), compared with pre-hospital use (OR = 0.77, 95% CI: 0.60-0.98, n = 18; I 2 = 81.8%). CONCLUSIONS These findings call attention to the need for systematic clinical studies to assess both pre- and in-hospital use of statins as a potential means of reducing COVID-19 disease severity, particularly in terms of reduction of ICU admission and total mortality reduction.
Collapse
Affiliation(s)
- Amir Vahedian-Azimi
- Trauma Research Centre, Nursing Faculty, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyede Momeneh Mohammadi
- Department of Anatomical Sciences, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Farshad Heidari Beni
- Nursing Care Research Center (NCRC), School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland
- Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Paul C. Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Biomedical Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
61
|
Gunelli R, Fragalà E, Fiori M. PCA3 in Prostate Cancer. Methods Mol Biol 2021; 2292:105-113. [PMID: 33651355 DOI: 10.1007/978-1-0716-1354-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Prostate cancer antigen 3 (PCA3) is a urinary biomarker for prostate cancer and has demonstrated a good specificity and sensitivity representing a minimally invasive test.PCA3 assay could be useful in combination with PSA to suggest an eventual rebiopsy in men who have had one or more previous negative prostate biopsies.Combination of multiple tumor biomarkers will be the trend in the near future to achieve the goal of evaluate the aggressiveness of cancer and at the same time reducing the number of unnecessary biopsies.
Collapse
Affiliation(s)
| | | | - Massimo Fiori
- Department of Urology, GB Morgagni Hospital, Forlì, Italy.
| |
Collapse
|
62
|
Dragan J, Kania J, Salagierski M. Active surveillance in prostate cancer management: where do we stand now? Arch Med Sci 2021; 17:805-811. [PMID: 34025851 PMCID: PMC8130493 DOI: 10.5114/aoms.2019.85252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/25/2018] [Indexed: 11/30/2022] Open
Abstract
Prostate cancer (PCa) is the most common cancer in men, with a steadily rising incidence, affecting on average one in six men during their lifetime. The increase in morbidity is related to the increasing overall life expectancy, prostate-specific antigen testing, implementation of new molecular markers for cancer detection and the more frequent application of multiparametric magnetic resonance imaging. There is growing evidence demonstrating that active surveillance (AS) is an alternative to immediate intervention in patients with very low- and low-risk prostate cancer. Ongoing reports from multiple studies have consistently demonstrated a very low rate of metastases and prostate cancer specific mortality in selected cohorts of patients. As a matter of fact, AS has been adopted by many institutions as a safe and effective management strategy. The aim of our review is to summarize the contemporary data on AS in patients affected with PCa with the intention to present the most clinically useful and pertinent AS protocols.
Collapse
Affiliation(s)
- Jędrzej Dragan
- Urology Department, Faculty of Medicine and Health Sciences, University of Zielona Gora, Zielona Gora, Poland
| | - Jagoda Kania
- Urology Department, Faculty of Medicine and Health Sciences, University of Zielona Gora, Zielona Gora, Poland
| | - Maciej Salagierski
- Urology Department, Faculty of Medicine and Health Sciences, University of Zielona Gora, Zielona Gora, Poland
| |
Collapse
|
63
|
Gray JS, Campbell MJ. Challenges and Opportunities of Genomic Approaches in Therapeutics Development. Methods Mol Biol 2021; 2194:107-126. [PMID: 32926364 DOI: 10.1007/978-1-0716-0849-4_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The magnitude of all therapeutic responses is significantly determined by genome structure, variation, and functional interactions. This determination occurs at many levels which are discussed in the current review. Well-established examples of structural variation between individuals are known to dictate an individual's response to numerous drugs, as clearly illustrated by warfarin. The exponential rate of genomic-based interrogation is coupled with an expanding repertoire of genomic technologies and applications. This is leading to an ever more sophisticated appreciation of how structural variation, regulation of transcription and genomic structure, both individually and collectively, define cell therapeutic responses.
Collapse
Affiliation(s)
- Jaimie S Gray
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Moray J Campbell
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
64
|
Visser WCH, de Jong H, Melchers WJG, Mulders PFA, Schalken JA. Commercialized Blood-, Urinary- and Tissue-Based Biomarker Tests for Prostate Cancer Diagnosis and Prognosis. Cancers (Basel) 2020; 12:E3790. [PMID: 33339117 PMCID: PMC7765473 DOI: 10.3390/cancers12123790] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 01/24/2023] Open
Abstract
In the diagnosis and prognosis of prostate cancer (PCa), the serum prostate-specific antigen test is widely used but is associated with low specificity. Therefore, blood-, urinary- and tissue-based biomarker tests have been developed, intended to be used in the diagnostic and prognostic setting of PCa. This review provides an overview of commercially available biomarker tests developed to be used in several clinical stages of PCa management. In the diagnostic setting, the following tests can help selecting the right patients for initial and/or repeat biopsy: PHI, 4K, MiPS, SelectMDx, ExoDx, Proclarix, ConfirmMDx, PCA3 and PCMT. In the prognostic setting, the Prolaris, OncotypeDx and Decipher test can help in risk-stratification of patients regarding treatment decisions. Following, an overview is provided of the studies available comparing the performance of biomarker tests. However, only a small number of recently published head-to-head comparison studies are available. In contrast, recent research has focused on the use of biomarker tests in relation to the (complementary) use of multiparametric magnetic resonance imaging in PCa diagnosis.
Collapse
Affiliation(s)
- Wieke C. H. Visser
- Department of Product Development, MDxHealth BV, 6534 AT Nijmegen, The Netherlands; (H.d.J.); (W.J.G.M.)
| | - Hans de Jong
- Department of Product Development, MDxHealth BV, 6534 AT Nijmegen, The Netherlands; (H.d.J.); (W.J.G.M.)
| | - Willem J. G. Melchers
- Department of Product Development, MDxHealth BV, 6534 AT Nijmegen, The Netherlands; (H.d.J.); (W.J.G.M.)
- Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Peter F. A. Mulders
- Department of Urology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands; (P.F.A.M.); (J.A.S.)
| | - Jack A. Schalken
- Department of Urology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands; (P.F.A.M.); (J.A.S.)
| |
Collapse
|
65
|
Qin Z, Yao J, Xu L, Xu Z, Ge Y, Zhou L, Zhao F, Jia R. Diagnosis accuracy of PCA3 level in patients with prostate cancer: a systematic review with meta-analysis. Int Braz J Urol 2020; 46:691-704. [PMID: 31961625 PMCID: PMC7822358 DOI: 10.1590/s1677-5538.ibju.2019.0360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/13/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The diagnostic value and suitability of prostate cancer antigen 3 (PCA3) for the detection of prostate cancer (PCa) have been inconsistent in previous studies. Thus, the aim of the present meta-analysis was performed to systematically evaluate the diagnostic value of PCA3 for PCa. MATERIALS AND METHODS A meta-analysis was performed to search relevant studies using online databases EMBASE, PubMed and Web of Science published until February 1st, 2019. Ultimately, 65 studies met the inclusion criteria for this meta-analysis with 8.139 cases and 14.116 controls. The sensitivity, specificity, positive likelihood ratios (LR+), negative likelihood ratios (LR-), and other measures of PCA3 were pooled and determined to evaluate the diagnostic rate of PCa by the random-effect model. RESULTS With PCA3, the pooled overall diagnostic sensitivity, specificity, LR+, LR-, and 95% confidence intervals (CIs) for predicting significant PCa were 0.68 (0.64-0.72), 0.72 (0.68-0.75), 2.41 (2.16-2.69), 0.44 (0.40-0.49), respectively. Besides, the summary diagnostic odds ratio (DOR) and 95% CIs for PCA3 was 5.44 (4.53-6.53). In addition, the area under summary receiver operating characteristic (sROC) curves and 95% CIs was 0.76 (0.72-0.79). The major design deficiencies of included studies were differential verification bias, and a lack of clear inclusion and exclusion criteria. CONCLUSIONS The results of this meta-analysis suggested that PCA3 was a non-invasive method with the acceptable sensitivity and specificity in the diagnosis of PCa, to distinguish between patients and healthy individuals. To validate the potential applicability of PCA3 in the diagnosis of PCa, more rigorous studies were needed to confirm these conclusions.
Collapse
Affiliation(s)
- Zhiqiang Qin
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jianxiang Yao
- Department of Urology, Huzhou first people's hospital, Huzhou, China
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zheng Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuzheng Ge
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
66
|
Feng Z, Pepe MS. Adding Rigor to Biomarker Evaluations-EDRN Experience. Cancer Epidemiol Biomarkers Prev 2020; 29:2575-2582. [PMID: 33172885 PMCID: PMC8341386 DOI: 10.1158/1055-9965.epi-20-0240] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022] Open
Abstract
The cancer early-detection biomarker field was, compared with the therapeutic arena, in its infancy when the Early Detection Research Network (EDRN) was initiated in 2000. The EDRN has played a crucial role in changing the culture and the ways people conduct biomarker studies. The EDRN proposed biomarker developmental guidelines and biomarker pivotal trial study design standards, created biomarker reference sets and functioned as an unbiased broker for the field, implemented the most rigorous blinding policy in the biomarker field, developed an array of statistical and computational tools for early-detection biomarker evaluations, and developed a multidisciplinary team-science approach. We reviewed these contributions made by the EDRN and their impacts on maturing the field. Future challenges and opportunities in cancer early-detection biomarker translational research are discussed, particularly in strengthening biomarker discovery pipeline and conducting more efficient biomarker validation studies.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."
Collapse
Affiliation(s)
- Ziding Feng
- Division of Public Health Sciences, Biostatistics Program, Fred Hutchinson Cancer Research Center, Seattle Washington.
| | - Margaret S Pepe
- Division of Public Health Sciences, Biostatistics Program, Fred Hutchinson Cancer Research Center, Seattle Washington
| |
Collapse
|
67
|
Liss MA, Leach RJ, Sanda MG, Semmes OJ. Prostate Cancer Biomarker Development: National Cancer Institute's Early Detection Research Network Prostate Cancer Collaborative Group Review. Cancer Epidemiol Biomarkers Prev 2020; 29:2454-2462. [PMID: 33093161 PMCID: PMC7710596 DOI: 10.1158/1055-9965.epi-20-1104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 01/01/2023] Open
Abstract
Prostate cancer remains the most common non-skin cancer and second leading cause of death among men in the United States. Although progress has been made in diagnosis and risk assessment, many clinical questions remain regarding early identification of prostate cancer and management. The early detection of aggressive disease continues to provide high curative rates if diagnosed in a localized state. Unfortunately, prostate cancer displays significant heterogeneity within the prostate organ and between individual patients making detection and treatment strategies complex. Although prostate cancer is common among men, the majority will not die from prostate cancer, introducing the issue of overtreatment as a major concern in clinical management of the disease. The focus of the future is to identify those at highest risk for aggressive prostate cancer and to develop prevention and screening strategies, as well as discerning the difference in malignant potential of diagnosed tumors. The Prostate Cancer Research Group of the National Cancer Institute's Early Detection Research Network has contributed to the progress in addressing these concerns. This summary is an overview of the activities of the group.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."
Collapse
Affiliation(s)
- Michael A Liss
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas
| | - Robin J Leach
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Martin G Sanda
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia
| | - Oliver J Semmes
- The Leroy T. Canoles Jr. Cancer Research Center, Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia.
| |
Collapse
|
68
|
Rajwa P, Syed J, Leapman MS. How should radiologists incorporate non-imaging prostate cancer biomarkers into daily practice? Abdom Radiol (NY) 2020; 45:4031-4039. [PMID: 32232525 PMCID: PMC7529677 DOI: 10.1007/s00261-020-02496-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To review the current body of evidence surrounding non-imaging biomarkers in patients with known or suspected prostate cancer. RESULTS Several non-imaging biomarkers have been developed and are available that aim to improve risk estimates at several clinical junctures. For patients with suspicion of prostate cancer who are considering first-time or repeat biopsy, blood- and urine-based assays can improve the prediction of harboring clinically significant disease and may reduce unnecessary biopsy. Blood- and urine-based biomarkers have been evaluated in association with prostate MRI, offering insights that might augment decision-making in the pre and post-MRI setting. Tissue-based genomic and proteomic assays have also been developed that provide independent assessments of prostate cancer aggressiveness that can complement imaging. CONCLUSION A growing number of non-imaging biomarkers are available to assist in clinical decision-making for men with known or suspected prostate cancer. An appreciation for the intersection of imaging and biomarkers may improve clinical care and resource utilization for men with prostate cancer.
Collapse
Affiliation(s)
- Pawel Rajwa
- Department of Urology, Medical University of Silesia, 41-800, Zabrze, Poland
| | - Jamil Syed
- Department of Urology, Yale University School of Medicine, 310 Cedar Street BML 238c, PO Box 208058, New Haven, CT, 06520, USA
| | - Michael S Leapman
- Department of Urology, Yale University School of Medicine, 310 Cedar Street BML 238c, PO Box 208058, New Haven, CT, 06520, USA.
| |
Collapse
|
69
|
Siddappa M, Wani SA, Long MD, Leach DA, Mathé EA, Bevan CL, Campbell MJ. Identification of transcription factor co-regulators that drive prostate cancer progression. Sci Rep 2020; 10:20332. [PMID: 33230156 PMCID: PMC7683598 DOI: 10.1038/s41598-020-77055-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
In prostate cancer (PCa), and many other hormone-dependent cancers, there is clear evidence for distorted transcriptional control as disease driver mechanisms. Defining which transcription factor (TF) and coregulators are altered and combine to become oncogenic drivers remains a challenge, in part because of the multitude of TFs and coregulators and the diverse genomic space on which they function. The current study was undertaken to identify which TFs and coregulators are commonly altered in PCa. We generated unique lists of TFs (n = 2662), coactivators (COA; n = 766); corepressors (COR; n = 599); mixed function coregulators (MIXED; n = 511), and to address the challenge of defining how these genes are altered we tested how expression, copy number alterations and mutation status varied across seven prostate cancer (PCa) cohorts (three of localized and four advanced disease). Testing of significant changes was undertaken by bootstrapping approaches and the most significant changes were identified. For one commonly and significantly altered gene were stably knocked-down expression and undertook cell biology experiments and RNA-Seq to identify differentially altered gene networks and their association with PCa progression risks. COAS, CORS, MIXED and TFs all displayed significant down-regulated expression (q.value < 0.1) and correlated with protein expression (r 0.4-0.55). In localized PCa, stringent expression filtering identified commonly altered TFs and coregulator genes, including well-established (e.g. ERG) and underexplored (e.g. PPARGC1A, encodes PGC1α). Reduced PPARGC1A expression significantly associated with worse disease-free survival in two cohorts of localized PCa. Stable PGC1α knockdown in LNCaP cells increased growth rates and invasiveness and RNA-Seq revealed a profound basal impact on gene expression (~ 2300 genes; FDR < 0.05, logFC > 1.5), but only modestly impacted PPARγ responses. GSEA analyses of the PGC1α transcriptome revealed that it significantly altered the AR-dependent transcriptome, and was enriched for epigenetic modifiers. PGC1α-dependent genes were overlapped with PGC1α-ChIP-Seq genes and significantly associated in TCGA with higher grade tumors and worse disease-free survival. These methods and data demonstrate an approach to identify cancer-driver coregulators in cancer, and that PGC1α expression is clinically significant yet underexplored coregulator in aggressive early stage PCa.
Collapse
Affiliation(s)
- Manjunath Siddappa
- College of Pharmacy, Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, 536 Parks Hall, 500 West 12th Ave, Columbus, OH, 43210, USA
| | - Sajad A Wani
- College of Pharmacy, Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, 536 Parks Hall, 500 West 12th Ave, Columbus, OH, 43210, USA
| | - Mark D Long
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center (RPCCC), Buffalo, NY, 14263, USA
| | - Damien A Leach
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Ewy A Mathé
- Biomedical Informatics Department, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Dr, Rockville, MD, 20892, USA
| | - Charlotte L Bevan
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Moray J Campbell
- College of Pharmacy, Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, 536 Parks Hall, 500 West 12th Ave, Columbus, OH, 43210, USA. .,The James, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA. .,Biomedical Informatics Shared Resource, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
70
|
Lu S, Liang Q, Huang Y, Meng F, Liu J. Definition and review on a category of long non-coding RNA: Atherosclerosis-associated circulating lncRNA (ASCLncRNA). PeerJ 2020; 8:e10001. [PMID: 33240586 PMCID: PMC7666546 DOI: 10.7717/peerj.10001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/29/2020] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis (AS) is one of the most common cardiovascular system diseases which seriously affects public health in modern society. Finding potential biomarkers in the complicated pathological progression of AS is of great significance for the prevention and treatment of AS. Studies have shown that long noncoding RNAs (lncRNAs) can be widely involved in the regulation of many physiological processes, and have important roles in different stages of AS formation. LncRNAs can be secreted into the circulatory system through exosomes, microvesicles, and apoptotic bodies. Recently, increasing studies have been focused on the relationships between circulating lncRNAs and AS development. The lncRNAs in circulating blood are expected to be new non-invasive diagnostic markers for monitoring the progression of AS. We briefly reviewed the previously reported lncRNA transcripts which related to AS development and detectable in circulating blood, including ANRIL, SENCR, CoroMarker, LIPCAR, HIF1α-AS1, LncRNA H19, APPAT, KCNQ1OT1, LncPPARδ, LincRNA-p21, MALAT1, MIAT, and UCA1. Further researches and a definition of atherosclerosis-associated circulating lncRNA (ASCLncRNA) were also discussed.
Collapse
Affiliation(s)
- Shanshan Lu
- Department of Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Qin Liang
- Department of Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Yanqing Huang
- Department of Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Fanming Meng
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China
| | - Junwen Liu
- Department of Histology and Embryology, School of Basic Medical Science, Central South University, Changsha, Hunan Province, China.,China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
71
|
Xie C, Fang JH, Zhuang SM. Reply. Hepatology 2020; 72:1887-1889. [PMID: 32525240 DOI: 10.1002/hep.31300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Chen Xie
- Key Laboratory of Liver Disease of Guangdong Province, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian-Hong Fang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shi-Mei Zhuang
- Key Laboratory of Liver Disease of Guangdong Province, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | | |
Collapse
|
72
|
Dong M, Lih TM, Chen SY, Cho KC, Eguez RV, Höti N, Zhou Y, Yang W, Mangold L, Chan DW, Zhang Z, Sokoll LJ, Partin A, Zhang H. Urinary glycoproteins associated with aggressive prostate cancer. Am J Cancer Res 2020; 10:11892-11907. [PMID: 33204318 PMCID: PMC7667684 DOI: 10.7150/thno.47066] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Background: There is an urgent need for the detection of aggressive prostate cancer. Glycoproteins play essential roles in cancer development, while urine is a noninvasive and easily obtainable biological fluid that contains secretory glycoproteins from the urogenital system. Therefore, here we aimed to identify urinary glycoproteins that are capable of differentiating aggressive from non-aggressive prostate cancer. Methods: Quantitative mass spectrometry data of glycopeptides from a discovery cohort comprised of 74 aggressive (Gleason score ≥8) and 68 non-aggressive (Gleason score = 6) prostate cancer urine specimens were acquired via a data independent acquisition approach. The glycopeptides showing distinct expression profiles in aggressive relative to non-aggressive prostate cancer were further evaluated for their performance in distinguishing the two groups either individually or in combination with others using repeated 5-fold cross validation with logistic regression to build predictive models. Predictive models showing good performance from the discovery cohort were further evaluated using a validation cohort. Results: Among the 20 candidate glycoproteins, urinary ACPP outperformed the other candidates. Urinary ACPP can also serve as an adjunct to serum PSA to further improve the discrimination power for aggressive prostate cancer (AUC= 0.82, 95% confidence interval 0.75 to 0.89). A three-signature panel including urinary ACPP, urinary CLU, and serum PSA displayed the ability to distinguish aggressive prostate cancer from non-aggressive prostate cancer with an AUC of 0.86 (95% confidence interval 0.8 to 0.92). Another three-signature panel containing urinary ACPP, urinary LOX, and serum PSA also demonstrated its ability in recognizing aggressive prostate cancer (AUC=0.82, 95% confidence interval 0.75 to 0.9). Moreover, consistent performance was observed from each panel when evaluated using a validation cohort. Conclusion: We have identified glycopeptides of urinary glycoproteins associated with aggressive prostate cancer using a quantitative mass spectrometry-based glycoproteomic approach and demonstrated their potential to serve as noninvasive urinary glycoprotein biomarkers worthy of further validation by a multi-center study.
Collapse
|
73
|
French WW, Wallen EM. Advances in the diagnostic options for prostate cancer. Postgrad Med 2020; 132:52-62. [PMID: 32900250 DOI: 10.1080/00325481.2020.1822067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Over the past decade, despite the controversies surrounding prostate cancer screening, significant refinements have improved its application. PSA screening, although it has been questioned, appears to confer a mortality benefit and remains the most effective way to identify the possible presence of prostate cancer. Methods to improve the specificity of PSA screening and limit overdiagnosis of indolent cancers, including risk-stratified screening regimens, are currently being utilized. Certain imaging modalities, such as multiparametric MRI, have proven to be excellent adjuncts providing improved risk stratification and the ability for targeted biopsies; however, concerns over variability in interpretation and generalizability persist. A number of novel biomarkers have become available with nearly all demonstrating the ability to improve upon the specificity of PSA screening; however, optimal timing, direct comparisons, and usefulness in conjunction with imaging modalities remain to be elucidated. With the improvement in testing options and recognition of the risk/benefit ratio for men undergoing screening for prostate cancer, the increasing role of shared decision making in the process is emphasized.
Collapse
Affiliation(s)
- William W French
- Department of Urology, University of North Carolina Medical Center , Chapel Hill, NC, United States
| | - Eric M Wallen
- Department of Urology, University of North Carolina Medical Center , Chapel Hill, NC, United States
| |
Collapse
|
74
|
Pederzoli F, Bandini M, Marandino L, Ali SM, Madison R, Chung J, Ross JS, Necchi A. Targetable gene fusions and aberrations in genitourinary oncology. Nat Rev Urol 2020; 17:613-625. [PMID: 33046892 DOI: 10.1038/s41585-020-00379-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
Gene fusions result from either structural chromosomal rearrangement or aberrations caused by splicing or transcriptional readthrough. The precise and distinctive presence of fusion genes in neoplastic tissues and their involvement in multiple pathways central to cancer development, growth and survival make them promising targets for personalized therapy. In genitourinary malignancies, rearrangements involving the E26 transformation-specific family of transcription factors have emerged as very frequent alterations in prostate cancer, especially the TMPRSS2-ERG fusion. In renal malignancies, Xp11 and t(6;11) translocations are hallmarks of a distinct pathological group of tumours described as microphthalmia-associated transcription factor family translocation-associated renal cell carcinomas. Novel druggable fusion events have been recognized in genitourinary malignancies, leading to the activation of several clinical trials. For instance, ALK-rearranged renal cell carcinomas have shown responses to alectinib and crizotinib. Erdafitinib has been tested for the treatment of FGFR-rearranged bladder cancer. Other anti-fibroblast growth factor receptor 3 (FGFR3) compounds are showing promising results in the treatment of bladder cancer, including infigratinib and pemigatinib, and all are currently in clinical trials.
Collapse
Affiliation(s)
- Filippo Pederzoli
- Urological Research Institute (URI), Unit of Urology, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy.
| | - Marco Bandini
- Urological Research Institute (URI), Unit of Urology, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Laura Marandino
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Siraj M Ali
- Foundation Medicine Inc., Cambridge, MA, USA
| | | | - Jon Chung
- Foundation Medicine Inc., Cambridge, MA, USA
| | - Jeffrey S Ross
- Foundation Medicine Inc., Cambridge, MA, USA.,Upstate Medical University, Syracuse, NY, USA
| | - Andrea Necchi
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
75
|
Preisser F, Bandini M, Nazzani S, Mazzone E, Marchioni M, Tian Z, Chun FK, Saad F, Briganti A, Haese A, Montorsi F, Huland H, Graefen M, Tilki D, Karakiewicz PI. Development and Validation of a Lookup Table for the Prediction of Metastatic Prostate Cancer According to Prostatic-specific Antigen Value, Clinical Tumor Stage, and Gleason Grade Groups. Eur Urol Oncol 2020; 3:631-639. [DOI: 10.1016/j.euo.2019.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/15/2019] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
|
76
|
Saw PE, Xu X, Chen J, Song EW. Non-coding RNAs: the new central dogma of cancer biology. SCIENCE CHINA-LIFE SCIENCES 2020; 64:22-50. [PMID: 32930921 DOI: 10.1007/s11427-020-1700-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
The central dogma of molecular biology states that the functions of RNA revolve around protein translation. Until the last decade, most researches were geared towards characterization of RNAs as intermediaries in protein translation, namely, messenger RNAs (mRNAs) as temporary copies of genetic information, ribosomal RNAs (rRNAs) as a main component of ribosome, or translators of codon sequence (tRNAs). The statistical reality, however, is that these processes account for less than 2% of the genome, and insufficiently explain the functionality of 98% of transcribed RNAs. Recent discoveries have unveiled thousands of unique non-coding RNAs (ncRNAs) and shifted the perception of them from being "junk" transcriptional products to "yet to be elucidated"-and potentially monumentally important-RNAs. Most ncRNAs are now known as key regulators in various networks in which they could lead to specific cellular responses and fates. In major cancers, ncRNAs have been identified as both oncogenic drivers and tumor suppressors, indicating a complex regulatory network among these ncRNAs. Herein, we provide a comprehensive review of the various ncRNAs and their functional roles in cancer, and the pre-clinical and clinical development of ncRNA-based therapeutics. A deeper understanding of ncRNAs could facilitate better design of personalized therapeutics.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jianing Chen
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Er-Wei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China. .,Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
77
|
Long X, Wu L, Zeng X, Wu Z, Hu X, Jiang H, Lv Z, Yang C, Cai Y, Yang K, Li Y. Biomarkers in previous histologically negative prostate biopsies can be helpful in repeat biopsy decision-making processes. Cancer Med 2020; 9:7524-7536. [PMID: 32860339 PMCID: PMC7571822 DOI: 10.1002/cam4.3419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/31/2022] Open
Abstract
To evaluate whether the addition of biomarkers to traditional clinicopathological parameters may help to increase the accurate prediction of prostate re‐biopsy outcome. A training cohort with 98 patients and a validation cohort with 72 patients were retrospectively recruited into our study. Immunohistochemical analysis was used to evaluate the immunoreactivity of a group of biomarkers in the initial negative biopsy normal‐looking tissues of the training and validation cohorts. p‐STAT3, Mcm2, and/or MSR1 were selected out of 10 biomarkers to construct a biomarker index for predicting cancer and high‐grade prostate cancer (HGPCa) in the training cohort based on the stepwise logistic regression analysis; these biomarkers were then validated in the validation cohort. In the training cohort study, we found that the biomarker index was independently associated with the re‐biopsy outcomes of cancer and HGPCa. Moreover supplementing the biomarker index with traditional clinical‐pathological parameters can improve the area under the receiver operating characteristic curve of the model from 0.722 to 0.842 and from 0.735 to 0.842, respectively, for predicting cancer and HGPCa at re‐biopsy. In the decision‐making analysis, we found the model supplemented with the biomarker index can improve patients’ net benefit. The application of the model to clinical practice, at a 10% risk threshold, would reduce the number of biopsies by 34.7% while delaying the diagnosis of 7.8% cancers and would reduce the number of biopsies by 73.5% while delaying the diagnosis of 17.8% HGPCas. Taken together, supplementing the biomarker index with clinicopathological parameters may help urologists in re‐biopsy decision‐making processes.
Collapse
Affiliation(s)
- Xingbo Long
- Department of Urology, Beijing Hospital, National Center of Gerontology, Beijing, China.,Graduate School of Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Longxiang Wu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiting Zeng
- Department of Ophthalmology, The Affiliated XiangTan Hospital XiangYa Medical College CSU (XiangTan Central Hospital), XiangTan, Hunan, China
| | - Zhijian Wu
- Department of Urology, Chenzhou No.1 People's Hospital, ChengZhou, Hunan, China
| | - Xiheng Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Huichuan Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhengtong Lv
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Changzhao Yang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Cai
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Keda Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuan Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
78
|
Lebastchi AH, Russell CM, Niknafs YS, Eyrich NW, Chopra Z, Botbyl R, Kabeer R, Osawa T, Siddiqui J, Siddiqui R, Davenport MS, Mehra R, Tomlins SA, Kunju LP, Chinnaiyan AM, Wei JT, Tosoian JJ, Morgan TM. Impact of the MyProstateScore (MPS) Test on the Clinical Decision to Undergo Prostate Biopsy: Results From a Contemporary Academic Practice. Urology 2020; 145:204-210. [PMID: 32777370 DOI: 10.1016/j.urology.2020.07.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/03/2020] [Accepted: 07/27/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To evaluate the association of the MyProstateScore (MPS) urine test on the decision to undergo biopsy in men referred for prostate biopsy in urology practice. METHODS MPS testing was offered as an alternative to immediate biopsy in men referred to the University of Michigan for prostate biopsy from October 2013 through October 2016. The primary endpoint was the decision to perform biopsy. The proportion of patients undergoing biopsy was compared to predicted risk scores from the Prostate Cancer Prevention Trial risk calculator (PCPTrc). Analyses were stratified by the use of multiparametric magnetic resonance imaging (mpMRI). The associations of PCPTrc, MPS, and mpMRI with the decision to undergo biopsy were explored in a multivariable logistic regression model. RESULTS Of 248 patients, 134 (54%) proceeded to prostate biopsy. MPS was significantly higher in biopsied patients (median 29 vs14, P < .001). The use of biopsy was strongly associated with MPS, with biopsy rates of 26%, 38%, 58%, 90%, and 85% in the first through fifth quintiles, respectively (P < .001). MPS association with biopsy persisted upon stratification by mpMRI. On multivariable analysis, MPS was strongly associated with the decision to undergo biopsy when modeled as both a continuous (odds ratio [OR] 1.05, 95%; confidence interval [CI] 1.04-1.08; <.001) and binary (OR 7.76, 95%; CI 4.14-14.5; P < .001) variable. CONCLUSION Many patients (46%) undergoing clinical MPS testing as an alternative to immediate prostate biopsy were able to avoid biopsy. Increasing MPS was strongly associated with biopsy rates. These findings were robust to use of mpMRI.
Collapse
Affiliation(s)
| | | | - Yashar S Niknafs
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI
| | | | - Zoey Chopra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI
| | - Rachel Botbyl
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI
| | - Rana Kabeer
- Department of Urology, University of Michigan, Ann Arbor, MI
| | - Takahiro Osawa
- Department of Urology, University of Michigan, Ann Arbor, MI
| | - Javed Siddiqui
- Department of Urology, University of Michigan, Ann Arbor, MI; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI
| | - Rabia Siddiqui
- Department of Urology, University of Michigan, Ann Arbor, MI
| | | | - Rohit Mehra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI; Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Scott A Tomlins
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI; Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Lakshimi P Kunju
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI; Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Arul M Chinnaiyan
- Department of Urology, University of Michigan, Ann Arbor, MI; Rogel Cancer Center, University of Michigan, Ann Arbor, MI; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI; Department of Pathology, University of Michigan, Ann Arbor, MI; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI
| | - John T Wei
- Department of Urology, University of Michigan, Ann Arbor, MI; Dow Division of Health Services Research, University of Michigan, Ann Arbor, MI
| | - Jeffrey J Tosoian
- Department of Urology, University of Michigan, Ann Arbor, MI; Rogel Cancer Center, University of Michigan, Ann Arbor, MI; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI.
| | - Todd M Morgan
- Department of Urology, University of Michigan, Ann Arbor, MI; Rogel Cancer Center, University of Michigan, Ann Arbor, MI; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
79
|
Abstract
PURPOSE To review available prostate cancer biomarkers and their performance in a clinical order, from prostate cancer detection, to treatment of localized and advanced disease. METHODS We used an electronic literature search of the PubMed database using the key words "prostate biomarkers," "genomic markers," and "prostate cancer screening," as well as specific biomarkers, until March 2019. RESULTS Prostate-specific antigen (PSA) lacks sensitivity for prostate cancer detection, and PSA derivatives have slightly improved its specificity, but have not resolved the limitations of PSA screening. Prostate cancer biomarkers have emerged as an ancillary tool to guide the clinical decision-making in different clinical scenarios. Urine-based tests can identify patients who may benefit from a prostate biopsy, and issue-based markers are helpful in guiding the decision regarding a second biopsy, stratifying patient with newly diagnosed prostate cancer to active surveillance or treatment, and identifying patients who may benefit from adjuvant treatment after surgery. CONCLUSIONS New biomarkers have improved risk stratification in diagnosing and treating prostate cancer. Many of these markers are still considered experimental, and their efficacy and cost utility have not been determined.
Collapse
Affiliation(s)
- Amihay Nevo
- Department of Urology, Mayo Clinic, 5777 East Mayo Blvd, Phoenix, AZ, 85054, USA.
| | - Anojan Navaratnam
- Department of Urology, Mayo Clinic, 5777 East Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Paul Andrews
- Department of Urology, Mayo Clinic, 5777 East Mayo Blvd, Phoenix, AZ, 85054, USA
| |
Collapse
|
80
|
Huskova Z, Knillova J, Kolar Z, Vrbkova J, Kral M, Bouchal J. The Percentage of Free PSA and Urinary Markers Distinguish Prostate Cancer from Benign Hyperplasia and Contribute to a More Accurate Indication for Prostate Biopsy. Biomedicines 2020; 8:biomedicines8060173. [PMID: 32630458 PMCID: PMC7344460 DOI: 10.3390/biomedicines8060173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 01/05/2023] Open
Abstract
The main advantage of urinary biomarkers is their noninvasive character and the ability to detect multifocal prostate cancer (CaP). We have previously implemented a quadruplex assay of urinary markers into clinical practice (PCA3, AMACR, TRPM8 and MSMB with KLK3 normalization). In this study, we aimed to validate it in a larger cohort with serum PSA 2.5-10 ng/mL and test other selected transcripts and clinical parameters, including the percentage of free prostate-specific antigen (PSA) (% free PSA) and inflammation. In the main cohort of 299 men, we tested the quadruplex transcripts. In a subset of 146 men, we analyzed additional transcripts (CD45, EPCAM, EZH2, Ki67, PA2G4, PSGR, RHOA and TBP). After a prostate massage, the urine was collected, RNA isolated from a cell sediment and qRT-PCR performed. Ct values of KLK3 (i.e., PSA) were strongly correlated with Ct values of other genes which play a role in CaP (i.e., PCA3, AMACR, TRPM8, MSMB and PSGR). AMACR, PCA3, TRPM8 and EZH2 mRNA expression, as well as % free PSA, were significantly different for BPH and CaP. The best combined model (% free PSA plus PCA3 and AMACR) achieved an AUC of 0.728 in the main cohort. In the subset of patients, the best AUC 0.753 was achieved for the combination of PCA3, % free PSA, EPCAM and PSGR. PCA3 mRNA was increased in patients with inflammation, however, this did not affect the stratification of patients indicated for prostate biopsy. In conclusion, the percentage of free PSA and urinary markers contribute to a more accurate indication for prostate biopsy.
Collapse
Affiliation(s)
- Zlata Huskova
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 779 00 Olomouc, Czech Republic; (Z.H.); (J.K.); (Z.K.)
| | - Jana Knillova
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 779 00 Olomouc, Czech Republic; (Z.H.); (J.K.); (Z.K.)
| | - Zdenek Kolar
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 779 00 Olomouc, Czech Republic; (Z.H.); (J.K.); (Z.K.)
| | - Jana Vrbkova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic;
| | - Milan Kral
- Department of Urology, University Hospital, 779 00 Olomouc, Czech Republic
- Correspondence: (M.K.); (J.B.)
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, 779 00 Olomouc, Czech Republic; (Z.H.); (J.K.); (Z.K.)
- Correspondence: (M.K.); (J.B.)
| |
Collapse
|
81
|
Light A, Ahmed A, Dasgupta P, Elhage O. The genetic landscapes of urological cancers and their clinical implications in the era of high-throughput genome analysis. BJU Int 2020; 126:26-54. [PMID: 32306543 DOI: 10.1111/bju.15084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE With the advent of high-throughput genome analysis, we are increasingly able to sequence and hence understand the pathogenic processes underlying individual cancers. Recently, consortiums such as The Cancer Genome Atlas (TCGA) have performed large-scale projects to this end, providing significant amounts of information regarding the genetic landscapes of several cancers. PATIENTS AND METHODS We performed a narrative review of studies from the TCGA and other major studies. We aimed to summarise data exploring the clinical implications of specific genetic alterations, both prognostically and therapeutically, in four major urological cancers. These were renal cell carcinoma, muscle-invasive bladder cancer/carcinoma, prostate cancer, and testicular germ cell tumours. RESULTS With these four urological cancers, great strides have been made in the molecular characterisation of tumours. In particular, recent studies have focussed on identifying molecular subtypes of tumours with characteristic genetic alterations and differing prognoses. Other prognostic alterations have also recently been identified, including those pertaining to epigenetics and microRNAs. In regard to treatment, numerous options are emerging for patients with these cancers such as including immune checkpoint inhibition, epigenetic-based treatments, and agents targeting MAPK, PI3K, and DNA repair pathways. There are a multitude of trials underway investigating the effects of these novel agents, the results of which are eagerly awaited. CONCLUSIONS As medicine chases the era of personalised care, it is becoming increasingly important to provide individualised prognoses for patients. Understanding how specific genetic alterations affects prognosis is key for this. It will also be crucial to provide highly targeted treatments against the specific genetics of a patient's tumour. With work performed by the TCGA and other large consortiums, these aims are gradually being achieved. Our review provides a succinct overview of this exciting field that may underpin personalised medicine in urological oncology.
Collapse
Affiliation(s)
- Alexander Light
- Department of Surgery, Cambridge University Hospitals NHS Foundation Trust, University of Cambridge, Cambridge, UK.,Bedford Hospital NHS Trust, Bedford Hospital, Bedford, UK
| | - Aamir Ahmed
- Centre for Stem Cell and Regenerative Medicine, King's College London, London, UK
| | - Prokar Dasgupta
- Department of Urology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Oussama Elhage
- Department of Urology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
82
|
Abstract
Background Biomarker discovery studies have generated an array of omic data, however few novel biomarkers have reached clinical use. Guidelines for rigorous study designs are needed. Content Biases frequently occur in sample selection, outcome ascertainment, or unblinded sample handling and assaying process. The principles of a prospective-specimen collection and retrospective-blinded-evaluation (PRoBE) design can be adapted to mitigate various sources of biases in discovery. We recommend establishing quality biospecimen repositories using matched two-phase designs to minimize biases and maximize efficiency. We also highlight the importance of taking the clinical context into consideration in both sample selection and power calculation for discovery studies. Summary Biomarker discovery research should follow rigorous design principles in sample se- lection to avoid biases. Consideration of clinical application and the corresponding biomarker performance characteristics in study designs will lead to a more fruitful discovery study. Impact Appropriate study designs will improve the quality and clinical rigor of biomarker discovery studies.
Collapse
Affiliation(s)
- Yingye Zheng
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., M2-B500, Seattle, Washington 98109, ,
| |
Collapse
|
83
|
Integrated RNA and metabolite profiling of urine liquid biopsies for prostate cancer biomarker discovery. Sci Rep 2020; 10:3716. [PMID: 32111915 PMCID: PMC7048821 DOI: 10.1038/s41598-020-60616-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Sensitive and specific diagnostic and prognostic biomarkers for prostate cancer (PCa) are urgently needed. Urine samples are a non-invasive means to obtain abundant and readily accessible “liquid biopsies”. Herein we used urine liquid biopsies to identify and characterize a novel group of urine-enriched RNAs and metabolites in patients with PCa and normal individuals with or without benign prostatic disease. Differentially expressed RNAs were identified in urine samples by deep sequencing and metabolites in urine were measured by mass spectrometry. mRNA and metabolite profiles were distinct in patients with benign and malignant disease. Integrated analysis of urinary gene expression and metabolite signatures unveiled an aberrant glutamate metabolism and tricarboxylic acid (TCA) cycle node in prostate cancer-derived cells. Functional validation supported a role for glutamate metabolism and glutamate oxaloacetate transaminase 1 (GOT1)-dependent redox balance in PCa, which could be exploited for novel biomarkers and therapies. In this study, we discovered cancer-specific changes in urinary RNAs and metabolites, paving the way for the development of sensitive and specific urinary PCa diagnostic biomarkers either alone or in combination. Our methodology was based on single void urine samples (i.e., without prostatic massage). The integrated analysis of metabolomic and transcriptomic data from these liquid biopsies revealed a glutamate metabolism and tricarboxylic acid cycle node that was specific to prostate-derived cancer cells and cancer-specific metabolic changes in urine.
Collapse
|
84
|
Ferro M, De Cobelli O, Lucarelli G, Porreca A, Busetto GM, Cantiello F, Damiano R, Autorino R, Musi G, Vartolomei MD, Muto M, Terracciano D. Beyond PSA: The Role of Prostate Health Index (phi). Int J Mol Sci 2020; 21:ijms21041184. [PMID: 32053990 PMCID: PMC7072791 DOI: 10.3390/ijms21041184] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 01/03/2023] Open
Abstract
Background: Widespread use of prostate specific antigen (PSA) in screening procedures allowed early identification of an increasing number of prostate cancers (PCas), mainly including indolent cancer. Availability of different therapeutic strategies which have a very different impact on the patient’s quality of life suggested a strong need for tools able to identify clinically significant cancer at diagnosis. Multi-parametric magnetic resonance showed very good performance in pre-biopsy diagnosis. However, it is an expensive tool and requires an experienced radiologist. In this context, a simple blood-based test is worth investigating. In this context, researchers focused their attention on the development of a laboratory test able to minimize overdiagnosis without losing the identification of aggressive tumors. Results: Recent literature data on PCa biomarkers revealed a clear tendency towards the use of panels of biomarkers or a combination of biomarkers and clinical variables. Phi, the 4Kscore, and Stockholm3 as circulating biomarkers and the Mi-prostate score, Exo DX Prostate, and Select MD-X as urinary biomarker-based tests have been developed. In this scenario, phi is worthy of attention as a noninvasive test significantly associated with aggressive PCa. Conclusions: Literature data showed that phi had good diagnostic performance to identify clinically significant (cs) PCa, suggesting that it could be a useful tool for personalized treatment decision-making. In this review, phi potentialities, limitations, and comparisons with other blood- and urinary-based tests were explored.
Collapse
Affiliation(s)
- Matteo Ferro
- Division of Urology, European Institute of Oncology, 20141 Milan, Italy; (M.F.); (O.D.C.); (G.M.)
| | - Ottavio De Cobelli
- Division of Urology, European Institute of Oncology, 20141 Milan, Italy; (M.F.); (O.D.C.); (G.M.)
| | - Giuseppe Lucarelli
- Department of Emergency and Organ Transplantation—Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy;
| | - Angelo Porreca
- Department of Urology, Abano Terme Hospital, 35031 Padua, Italy;
| | | | - Francesco Cantiello
- Department of Urology, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.C.); (R.D.)
| | - Rocco Damiano
- Department of Urology, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.C.); (R.D.)
| | | | - Gennaro Musi
- Division of Urology, European Institute of Oncology, 20141 Milan, Italy; (M.F.); (O.D.C.); (G.M.)
| | - Mihai Dorin Vartolomei
- Department of Urology, Comprehensive Cancer Center, Vienna General Hospital, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
- Department of Cell and Molecular Biology, University of Medicine, Pharmacy, Sciences and Technology, 540139 Targu Mures, Romania
| | - Matteo Muto
- Radiotherapy Unit, “S. G. Moscati” Hospital, 83100 Avellino, Italy;
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples “Federico II”, 8031 Naples, Italy
- Correspondence: ; Tel.: +39-8174-6361-7
| |
Collapse
|
85
|
Kensler KH, Rebbeck TR. Cancer Progress and Priorities: Prostate Cancer. Cancer Epidemiol Biomarkers Prev 2020; 29:267-277. [PMID: 32024765 PMCID: PMC7006991 DOI: 10.1158/1055-9965.epi-19-0412] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/10/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023] Open
Affiliation(s)
- Kevin H Kensler
- Division of Population Sciences, Dana-Farber Cancer Institute and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Timothy R Rebbeck
- Division of Population Sciences, Dana-Farber Cancer Institute and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
86
|
Silva R, Moran B, Russell NM, Fahey C, Vlajnic T, Manecksha RP, Finn SP, Brennan DJ, Gallagher WM, Perry AS. Evaluating liquid biopsies for methylomic profiling of prostate cancer. Epigenetics 2020; 15:715-727. [PMID: 32000564 PMCID: PMC7574384 DOI: 10.1080/15592294.2020.1712876] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Liquid biopsies offer significant potential for informing on cancer progression and therapeutic resistance via minimally invasive serial monitoring of genetic alterations. Although the cancer epigenome is a central driving force in most neoplasia, the accuracy of monitoring the tumor methylome using liquid biopsies remains relatively unknown. Objectives: to investigate how well two types of liquid biopsy (urine and blood) capture the prostate cancer methylome, and may thus serve as a non-invasive surrogate for studying the tumor epigenome. Methods: A cohort of four metastatic treatment naïve prostate cancer (PCa) patients was selected. Matched biopsy cores (tumor and histologically matched-normal), post-DRE, pre-biopsy urine, and peripheral blood plasma were available for each subject. DNA methylation was profiled utilizing the Infinium® MethylationEPIC BeadChip (Illumina) and analysed using the RnBeads software. Significantly (FDR adjusted P < 0.05) differentially methylated probes (DMPs) between tumor and MN were identified and examined in the liquids (done at a grouped and individual subject level). Results: DNA methylation analysis of urine and blood in men with metastatic PCa showed highly correlated patterns between the different liquid types (ρ = 0.93, P < 0.0001), with large contributions from non-tumor sources. DNA methylation profiles of liquids were more similar between subjects, than intra-individual liquid-tumor correlations. Overall, both urine and plasma are viable surrogates for tumor tissue biopsies, capturing up to 39.40% and 64.14% of tumor-specific methylation alterations, respectively. Conclusion: We conclude that both urine and blood plasma are easily accessible and sensitive biofluids for the study of PCa epigenomic alterations.
Collapse
Affiliation(s)
- Romina Silva
- Cancer Biology and Therapeutics Laboratory, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Dublin, Ireland.,School of Medicine, University College Dublin , Dublin, Ireland
| | - Bruce Moran
- Cancer Biology and Therapeutics Laboratory, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Dublin, Ireland.,Ireland East Hospital Group (IEHG), St. Vincent's University Hospital , Dublin, Ireland
| | - Niamh M Russell
- Cancer Biology and Therapeutics Laboratory, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Dublin, Ireland.,School of Biomolecular and Biomedical Science, University College Dublin , Dublin, Ireland
| | - Ciara Fahey
- Prostate Molecular Oncology, Trinity Translational Medicine Institute, Trinity College Dublin , Dublin, Ireland
| | - Tatjana Vlajnic
- Department of Histopathology, St James's Hospital , Dublin, Ireland.,Institute of Pathology, University Hospital Basel , Basel, Switzerland
| | - Rustom P Manecksha
- Department of Urology, St. James's Hospital and Trinity College Dublin , Dublin, Ireland
| | - Stephen P Finn
- Department of Histopathology, St James's Hospital , Dublin, Ireland
| | - Donal J Brennan
- Cancer Biology and Therapeutics Laboratory, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Dublin, Ireland.,School of Medicine, University College Dublin , Dublin, Ireland
| | - William M Gallagher
- Cancer Biology and Therapeutics Laboratory, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Dublin, Ireland.,School of Biomolecular and Biomedical Science, University College Dublin , Dublin, Ireland
| | - Antoinette S Perry
- Cancer Biology and Therapeutics Laboratory, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Dublin, Ireland.,Prostate Molecular Oncology, Trinity Translational Medicine Institute, Trinity College Dublin , Dublin, Ireland.,School of Biology and Environmental Science, University College Dublin , Dublin, Ireland
| |
Collapse
|
87
|
Malik A, Srinivasan S, Batra J. A New Era of Prostate Cancer Precision Medicine. Front Oncol 2019; 9:1263. [PMID: 31850193 PMCID: PMC6901987 DOI: 10.3389/fonc.2019.01263] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer is the second most common male cancer affecting Western society. Despite substantial advances in the exploration of prostate cancer biomarkers and treatment strategies, men are over diagnosed with inert prostate cancer, while there is also a substantial mortality from the invasive disease. Precision medicine is the management of treatment profiles across different cancers predicting therapies for individual cancer patients. With strategies including individual genomic profiling and targeting specific cancer pathways, precision medicine for prostate cancer has the potential to impose changes in clinical practices. Some of the recent advances in prostate cancer precision medicine comprise targeting gene fusions, genome editing tools, non-coding RNA biomarkers, and the promise of liquid tumor profiling. In this review, we will discuss these recent scientific advances to scale up these approaches and endeavors to overcome clinical barriers for prostate cancer precision medicine.
Collapse
Affiliation(s)
- Adil Malik
- School of Biomedical Sciences, Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre–Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Srilakshmi Srinivasan
- School of Biomedical Sciences, Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre–Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre–Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
88
|
Lemos AEG, Matos ADR, Ferreira LB, Gimba ERP. The long non-coding RNA PCA3: an update of its functions and clinical applications as a biomarker in prostate cancer. Oncotarget 2019; 10:6589-6603. [PMID: 31762940 PMCID: PMC6859920 DOI: 10.18632/oncotarget.27284] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer antigen 3 (PCA3) is an overexpressed prostate long non-coding RNA (lncRNA), transcribed from an intronic region at the long arm of human chromosome 9q21–22. It has been described that PCA3 modulates prostate cancer (PCa) cell survival through modulating androgen receptor (AR) signaling, besides controlling the expression of several androgen responsive and cancer-related genes, including epithelial–mesenchymal transition (EMT) markers and those regulating gene expression and cell signaling. Also, PCA3 urine levels have been successfully used as a PCa diagnostic biomarker. In this review, we have highlighted recent findings regarding PCA3, addressing its gene structure, putative applications as a biomarker, a proposed origin of this lncRNA, roles in PCa biology and expression patterns. We also updated data regarding PCA3 interactions with cancer-related miRNAs and expression in other tissues and diseases beyond the prostate. Altogether, literature data indicate aberrant expression and dysregulated activity of PCA3, suggesting PCA3 as a promising relevant target that should be even further evaluated on its applicability for PCa detection and management.
Collapse
Affiliation(s)
- Ana Emília Goulart Lemos
- Departamento de Epidemiologia e Métodos Quantitativos em Saúde, Escola Nacional de Saúde Pública/Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Ciências Biomédicas - Fisiologia e Farmacologia, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Aline da Rocha Matos
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | - Etel Rodrigues Pereira Gimba
- Programa de Pós-Graduação em Ciências Biomédicas - Fisiologia e Farmacologia, Universidade Federal Fluminense, Rio de Janeiro, Brazil.,Coordenação de Pesquisa, Instituto Nacional do Câncer, Rio de Janeiro, Brazil.,Departamento de Ciências da Natureza (RCN), Instituto de Humanidades e Saúde, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| |
Collapse
|
89
|
Campbell MJ. Tales from topographic oceans: topologically associated domains and cancer. Endocr Relat Cancer 2019; 26:R611-R626. [PMID: 31505466 PMCID: PMC7664306 DOI: 10.1530/erc-19-0348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 01/03/2023]
Abstract
The 3D organization of the genome within the cell nucleus has come into sharp focus over the last decade. This has largely arisen because of the application of genomic approaches that have revealed numerous levels of genomic and chromatin interactions, including topologically associated domains (TADs). The current review examines how these domains were identified, are organized, how their boundaries arise and are regulated, and how genes within TADs are coordinately regulated. There are many examples of the disruption to TAD structure in cancer and the altered regulation, structure and function of TADs are discussed in the context of hormone responsive cancers, including breast, prostate and ovarian cancer. Finally, some aspects of the statistical insight and computational skills required to interrogate TAD organization are considered and future directions discussed.
Collapse
Affiliation(s)
- Moray J Campbell
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
90
|
Zeuschner P, Linxweiler J, Junker K. Non-coding RNAs as biomarkers in liquid biopsies with a special emphasis on extracellular vesicles in urological malignancies. Expert Rev Mol Diagn 2019; 20:151-167. [DOI: 10.1080/14737159.2019.1665998] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Philip Zeuschner
- Department of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| | - Johannes Linxweiler
- Department of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| | - Kerstin Junker
- Department of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| |
Collapse
|
91
|
Performance of PCA3 and TMPRSS2:ERG urinary biomarkers in prediction of biopsy outcome in the Canary Prostate Active Surveillance Study (PASS). Prostate Cancer Prostatic Dis 2019; 22:438-445. [PMID: 30664734 PMCID: PMC6642858 DOI: 10.1038/s41391-018-0124-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND For men on active surveillance for prostate cancer, biomarkers may improve prediction of reclassification to higher grade or volume cancer. This study examined the association of urinary PCA3 and TMPRSS2:ERG (T2:ERG) with biopsy-based reclassification. METHODS Urine was collected at baseline, 6, 12, and 24 months in the multi-institutional Canary Prostate Active Surveillance Study (PASS), and PCA3 and T2:ERG levels were quantitated. Reclassification was an increase in Gleason score or ratio of biopsy cores with cancer to ≥34%. The association of biomarker scores, adjusted for common clinical variables, with short- and long-term reclassification was evaluated. Discriminatory capacity of models with clinical variables alone or with biomarkers was assessed using receiver operating characteristic (ROC) curves and decision curve analysis (DCA). RESULTS Seven hundred and eighty-two men contributed 2069 urine specimens. After adjusting for PSA, prostate size, and ratio of biopsy cores with cancer, PCA3 but not T2:ERG was associated with short-term reclassification at the first surveillance biopsy (OR = 1.3; 95% CI 1.0-1.7, p = 0.02). The addition of PCA3 to a model with clinical variables improved area under the curve from 0.743 to 0.753 and increased net benefit minimally. After adjusting for clinical variables, neither marker nor marker kinetics was associated with time to reclassification in subsequent biopsies. CONCLUSIONS PCA3 but not T2:ERG was associated with cancer reclassification in the first surveillance biopsy but has negligible improvement over clinical variables alone in ROC or DCA analyses. Neither marker was associated with reclassification in subsequent biopsies.
Collapse
|
92
|
Abstract
PURPOSE OF REVIEW To summarize the highest level evidence that was acquired within the last years, with regard to diagnosis of prostate cancer. With many secondary diagnostic tools becoming available, and not being mentioned in the guidelines, this review is meant to assist clinical decision-making in initial biopsy and rebiopsy settings. RECENT FINDINGS The PROMIS Trial delivered level 1b evidence about the diagnostic accuracy of prostate multiparametric MRI (mpMRI) as a triage tool for prostate biopsy. MRI-ultrasound-fusions-targeted biopsy has been evaluated and compared with the standard of care, and has been found to have a higher cancer detection rate. The different approaches to MRI-guided biopsies do not show significant differences. Urine biomarkers analysing RNA as well as genetic assays of biopsy specimen have also shown to be helpful in the decision to (re-)biopsy a patient, especially in combination with MRI. SUMMARY Patients and doctors alike have been trying to avoid prostate biopsies, the risks, and the side effects of potential overtreatment. Imaging and other biomarkers are used to increase diagnostic accuracy, yielding more precise information to act on. None of these secondary diagnostic tools are perfect, yet they can, and should be used if one stays aware of their limitations.
Collapse
Affiliation(s)
| | - Shahrokh Shariat
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
93
|
Srivastava S, Koay EJ, Borowsky AD, De Marzo AM, Ghosh S, Wagner PD, Kramer BS. Cancer overdiagnosis: a biological challenge and clinical dilemma. Nat Rev Cancer 2019; 19:349-358. [PMID: 31024081 PMCID: PMC8819710 DOI: 10.1038/s41568-019-0142-8] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
For cancer screening to be successful, it should primarily detect cancers with lethal potential or their precursors early, leading to therapy that reduces mortality and morbidity. Screening programmes have been successful for colon and cervical cancers, where subsequent surgical removal of precursor lesions has resulted in a reduction in cancer incidence and mortality. However, many types of cancer exhibit a range of heterogeneous behaviours and variable likelihoods of progression and death. Consequently, screening for some cancers may have minimal impact on mortality and may do more harm than good. Since the implementation of screening tests for certain cancers (for example, breast and prostate cancers), a spike in incidence of in situ and early-stage cancers has been observed, but a link to reduction in cancer-specific mortality has not been as clear. It is difficult to determine how many of these mortality reductions are due to screening and how many are due to improved treatments of tumours. In cancers with lower incidence but high mortality (for example, pancreatic cancer), screening has focused on high-risk populations, but challenges similar to those for general population screening remain, particularly with regard to finding lesions with difficult-to-characterize malignant potential (for example, intraductal papillary mucinous neoplasms). More sensitive screening methods are detecting smaller and smaller lesions, but this has not been accompanied by a comparable reduction in the incidence of invasive cancers. In this Opinion article, we focus on the contribution of screening in general and high-risk populations to overdiagnosis, the effects of overdiagnosis on patients and emerging strategies to reduce overdiagnosis of indolent cancers through an understanding of tumour heterogeneity, the biology of how cancers evolve and progress, the molecular and cellular features of early neoplasia and the dynamics of the interactions of early lesions with their surrounding tissue microenvironment.
Collapse
Affiliation(s)
- Sudhir Srivastava
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Eugene J Koay
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander D Borowsky
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, USA
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Sharmistha Ghosh
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul D Wagner
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Barnett S Kramer
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
94
|
Abstract
Over the past decade, the amount of research and the number of publications on associations between circulating small and long non-coding RNAs (ncRNAs) and cancer have grown exponentially. Particular focus has been placed on the development of diagnostic and prognostic biomarkers to enable efficient patient management - from early detection of cancer to monitoring for disease recurrence or progression after treatment. Owing to their high abundance and stability, circulating ncRNAs have potential utility as non-invasive, blood-based biomarkers that can provide information on tumour biology and the effects of treatments, such as targeted therapies and immunotherapies. Increasing evidence highlights the roles of ncRNAs in cell-to-cell communication, with a number of ncRNAs having the capacity to regulate gene expression outside of the cell of origin through extracellular vesicle-mediated transfer to recipient cells, with implications for cancer progression and therapy resistance. Moreover, 'foreign' microRNAs (miRNAs) encoded by non-human genomes (so-called xeno-miRNAs), such as viral miRNAs, have been shown to be present in human body fluids and can be used as biomarkers. Herein, we review the latest developments in the use of circulating ncRNAs as diagnostic and prognostic biomarkers and discuss their roles in cell-to-cell communication in the context of cancer. We provide a compendium of miRNAs and long ncRNAs that have been reported in the literature to be present in human body fluids and that have the potential to be used as diagnostic and prognostic cancer biomarkers.
Collapse
|
95
|
A Rich Array of Prostate Cancer Molecular Biomarkers: Opportunities and Challenges. Int J Mol Sci 2019; 20:ijms20081813. [PMID: 31013716 PMCID: PMC6515282 DOI: 10.3390/ijms20081813] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 01/30/2023] Open
Abstract
Prostate cancer is the most prevalent non-skin cancer in men and is the leading cause of cancer-related death. Early detection of prostate cancer is largely determined by a widely used prostate specific antigen (PSA) blood test and biopsy is performed for definitive diagnosis. Prostate cancer is asymptomatic in the early stage of the disease, comprises of diverse clinico-pathologic and progression features, and is characterized by a large subset of the indolent cancer type. Therefore, it is critical to develop an individualized approach for early detection, disease stratification (indolent vs. aggressive), and prediction of treatment response for prostate cancer. There has been remarkable progress in prostate cancer biomarker discovery, largely through advancements in genomic technologies. A rich array of prostate cancer diagnostic and prognostic tests has emerged for serum (4K, phi), urine (Progensa, T2-ERG, ExoDx, SelectMDx), and tumor tissue (ConfirmMDx, Prolaris, Oncoytype DX, Decipher). The development of these assays has created new opportunities for improving prostate cancer diagnosis, prognosis, and treatment decisions. While opening exciting opportunities, these developments also pose unique challenges in terms of selecting and incorporating these assays into the continuum of prostate cancer patient care.
Collapse
|
96
|
Dong L, Zieren RC, Wang Y, de Reijke TM, Xue W, Pienta KJ. Recent advances in extracellular vesicle research for urological cancers: From technology to application. Biochim Biophys Acta Rev Cancer 2019; 1871:342-360. [DOI: 10.1016/j.bbcan.2019.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 02/09/2023]
|
97
|
A novel approach for assessment of prostate cancer aggressiveness using survivin-driven tumour-activatable minicircles. Gene Ther 2019; 26:177-186. [PMID: 30867586 DOI: 10.1038/s41434-019-0067-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/15/2019] [Accepted: 01/30/2019] [Indexed: 12/20/2022]
Abstract
Early and accurate detection of cancer is essential to optimising patient outcomes. Of particular importance to prostate cancer is the ability to determine the aggressiveness of a primary tumour, which allows for effective management of patient care. In this work, we propose using gene vectors called tumour-activatable minicircles which deliver an exogenously encoded reporter gene into cancer cells, forcing them to produce a unique and sensitive biomarker. These minicircles express a blood reporter protein called secreted embryonic alkaline phosphatase mediated by the tumour-specific survivin promoter, which exhibits activity graded to prostate cancer aggressiveness. Together, these components underlie a detection system where levels of blood reporter are indicative of not only the presence, but also the metastatic potential of a tumour. Our goal was to assess the ability of tumour-activatable minicircles to detect and characterise primary prostate lesions. Our minicircles produced reporter levels related to survivin expression across a range of prostate cancer cell lines. When survivin-driven minicircles were administered intratumourally into mice, reporter levels in blood samples were significantly higher (p < 0.05) in mice carrying prostate tumours of high versus low-aggressiveness. Continued development of this gene-based system could provide clinicians with a powerful tool to evaluate prostate cancer aggressiveness using a sensitive and affordable blood assay.
Collapse
|
98
|
Approaches to urinary detection of prostate cancer. Prostate Cancer Prostatic Dis 2019; 22:362-381. [PMID: 30655600 PMCID: PMC6640078 DOI: 10.1038/s41391-019-0127-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/06/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022]
Abstract
Background: Prostate cancer is the most common cancer in American men that ranges from low risk states amenable to active surveillance to high risk states that can be lethal especially if untreated. There is a critical need to develop relatively non-invasive and clinically useful methods for screening, detection, prognosis, disease monitoring, and prediction of treatment efficacy. In this review, we focus on important advances as well as future efforts needed to drive clinical innovation in this area of urine biomarker research for prostate cancer detection and prognostication. Methods: We provide a review of current literature on urinary biomarkers for prostate cancer. We evaluate the strengths and limitations of a variety of approaches that vary in sampling strategies and targets measured; discuss reported urine tests for prostate cancer with respect to their technical, analytical, and clinical parameters; and provide our perspectives on critical considerations in approaches to developing a urine-based test for prostate cancer. Results: There has been an extensive history of exploring urine as a source of biomarkers for prostate cancer that has resulted in a variety of urine tests that are in current clinical use. Importantly, at least three tests have demonstrated high sensitivity (~90%) and negative predictive value (~95%) for clinically significant tumors; however, there has not been widespread adoption of these tests. Conclusions: Conceptual and methodological advances in the field will help to drive the development of novel urinary tests that in turn may lead to a shift in the clinical paradigm for prostate cancer diagnosis and management.
Collapse
|
99
|
Das R, Feng FY, Selth LA. Long non-coding RNAs in prostate cancer: Biological and clinical implications. Mol Cell Endocrinol 2019; 480:142-152. [PMID: 30391670 DOI: 10.1016/j.mce.2018.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/12/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022]
Abstract
Prostate cancer (PCa) is a major health issue in the Western world. Current clinical imperatives for this disease include better stratification of indolent versus aggressive disease to enable improved patient management, as well as the identification of more effective therapies for the prevention and treatment of metastatic and therapy-resistant PCa. The advent of next-generation transcriptomics led to the identification of an important class of molecules, long non-coding RNAs (lncRNAs). LncRNAs have critical functions in normal physiology, but their dysregulation has also been implicated in the development and progression of a variety of cancers, including PCa. Importantly, a subset of lncRNAs are highly prostate-specific, suggesting potential for utility as both biomarkers and therapeutic targets. In this review, we summarise the biology of lncRNAs and their mechanisms of action in the development and progression of prostate cancer. Additionally, we cast a critical eye over the potential for this class of molecules to impact on clinical practice.
Collapse
Affiliation(s)
- Rajdeep Das
- Department of Radiation Oncology, University of California San Francisco, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, USA.
| | - Felix Y Feng
- Department of Radiation Oncology, University of California San Francisco, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, USA; Department of Urology, University of California San Francisco, USA
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; Freemasons Foundation Centre for Men's Health, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
100
|
Harryman WL, Warfel NA, Nagle RB, Cress AE. The Tumor Microenvironments of Lethal Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:149-170. [PMID: 31900909 DOI: 10.1007/978-3-030-32656-2_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Localized prostate cancer (confined to the gland) generally is considered curable, with nearly a 100% 5-year-survival rate. When the tumor escapes the prostate capsule, leading to metastasis, there is a poorer prognosis and higher mortality rate, with 5-year survival dropping to less than 30%. A major research question has been to understand the transition from indolent (low risk) disease to aggressive (high risk) disease. In this chapter, we provide details of the changing tumor microenvironments during prostate cancer invasion and their role in the progression and metastasis of lethal prostate cancer. Four microenvironments covered here include the muscle stroma, perineural invasion, hypoxia, and the role of microvesicles in altering the extracellular matrix environment. The adaptability of prostate cancer to these varied microenvironments and the cues for phenotypic changes are currently understudied areas. Model systems for understanding smooth muscle invasion both in vitro and in vivo are highlighted. Invasive human needle biopsy tissue and mouse xenograft tumors both contain smooth muscle invasion. In combination, the models can be used in an iterative process to validate molecular events for smooth muscle invasion in human tissue. Understanding the complex and interacting microenvironments in the prostate holds the key to early detection of high-risk disease and preventing tumor invasion through escape from the prostate capsule.
Collapse
Affiliation(s)
| | - Noel A Warfel
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Raymond B Nagle
- Department of Pathology, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Anne E Cress
- University of Arizona Cancer Center, Tucson, AZ, USA.
| |
Collapse
|