51
|
Yang Z, Robinson MJ, Chen X, Smith GA, Taunton J, Liu W, Allen CDC. Regulation of B cell fate by chronic activity of the IgE B cell receptor. eLife 2016; 5. [PMID: 27935477 PMCID: PMC5207771 DOI: 10.7554/elife.21238] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 12/08/2016] [Indexed: 12/13/2022] Open
Abstract
IgE can trigger potent allergic responses, yet the mechanisms regulating IgE production are poorly understood. Here we reveal that IgE+ B cells are constrained by chronic activity of the IgE B cell receptor (BCR). In the absence of cognate antigen, the IgE BCR promoted terminal differentiation of B cells into plasma cells (PCs) under cell culture conditions mimicking T cell help. This antigen-independent PC differentiation involved multiple IgE domains and Syk, CD19, BLNK, Btk, and IRF4. Disruption of BCR signaling in mice led to consistently exaggerated IgE+ germinal center (GC) B cell but variably increased PC responses. We were unable to confirm reports that the IgE BCR directly promoted intrinsic apoptosis. Instead, IgE+ GC B cells exhibited poor antigen presentation and prolonged cell cycles, suggesting reduced competition for T cell help. We propose that chronic BCR activity and access to T cell help play critical roles in regulating IgE responses. DOI:http://dx.doi.org/10.7554/eLife.21238.001 Antibodies are proteins that recognize and bind to specific molecules, and so help the immune system to defend the body against foreign substances that are potentially harmful. In some cases, harmless substances – such as pollen, dust or food – can trigger this response and lead to an allergic reaction. A type of antibody called immunoglobulin E (IgE) is particularly likely to trigger an allergic response. In general, immune cells called plasma cells produce antibodies and release them into the body. However, in B cells – the cells from which plasma cells develop – the antibodies remain on the surface of the cells. Here, the antibody acts as a “receptor” that allows the B cell to tell when its antibody has bound to a specific substance. Generally, B cells only activate when their B cell receptors bind to a specific substance. This binding triggers signals inside the cell that determine its fate – such as whether it will develop into a plasma cell. Recent studies have shown that B cells that have IgE on their surface (IgE+ B cells) are predisposed to develop rapidly into plasma cells. To investigate why this is the case, Yang et al. have now studied B cells both in cell culture and in mice. The results show that the IgE B cell receptor autonomously signals to the cell even when it is not bound to a specific substance, in a manner that differs from other types of B cell receptors. This increases the likelihood that the IgE+ B cell will develop into a plasma cell and limits the competitive fitness of IgE+ B cells. These findings provide new insights into how IgE responses are regulated by the B cell receptor. The next step will be to determine, at a molecular level, the basis for the autonomous signaling produced by the IgE B cell receptor when it is not bound to a specific substance. It will then be possible to investigate how this mechanism compares with the way that signals are normally transmitted when a B cell receptor binds to a specific substance. DOI:http://dx.doi.org/10.7554/eLife.21238.002
Collapse
Affiliation(s)
- Zhiyong Yang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States.,Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, United States
| | - Marcus J Robinson
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States.,Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, United States
| | - Xiangjun Chen
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Geoffrey A Smith
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Christopher D C Allen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States.,Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, United States.,Department of Anatomy, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
52
|
Kuchenov D, Laketa V, Stein F, Salopiata F, Klingmüller U, Schultz C. High-Content Imaging Platform for Profiling Intracellular Signaling Network Activity in Living Cells. Cell Chem Biol 2016; 23:1550-1559. [PMID: 27939899 PMCID: PMC5193178 DOI: 10.1016/j.chembiol.2016.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/19/2016] [Accepted: 11/14/2016] [Indexed: 01/06/2023]
Abstract
Essential characteristics of cellular signaling networks include a complex interconnected architecture and temporal dynamics of protein activity. The latter can be monitored by Förster resonance energy transfer (FRET) biosensors at a single-live-cell level with high temporal resolution. However, these experiments are typically limited to the use of a couple of FRET biosensors. Here, we describe a FRET-based multi-parameter imaging platform (FMIP) that allows simultaneous high-throughput monitoring of multiple signaling pathways. We apply FMIP to monitor the crosstalk between epidermal growth factor receptor (EGFR) and insulin-like growth factor-1 receptor signaling, signaling perturbations caused by pathophysiologically relevant EGFR mutations, and the effects of a clinically important MEK inhibitor (selumetinib) on the EGFR network. We expect that in the future the platform will be applied to develop comprehensive models of signaling networks and will help to investigate the mechanism of action as well as side effects of therapeutic treatments.
Collapse
Affiliation(s)
- Dmitry Kuchenov
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Vibor Laketa
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Frank Stein
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Florian Salopiata
- Division of Systems Biology of Signal Transduction, Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Ursula Klingmüller
- Division of Systems Biology of Signal Transduction, Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Carsten Schultz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), 69120 Heidelberg, Germany; Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97201, USA.
| |
Collapse
|
53
|
Lin S, Luo RT, Ptasinska A, Kerry J, Assi SA, Wunderlich M, Imamura T, Kaberlein JJ, Rayes A, Althoff MJ, Anastasi J, O'Brien MM, Meetei AR, Milne TA, Bonifer C, Mulloy JC, Thirman MJ. Instructive Role of MLL-Fusion Proteins Revealed by a Model of t(4;11) Pro-B Acute Lymphoblastic Leukemia. Cancer Cell 2016; 30:737-749. [PMID: 27846391 DOI: 10.1016/j.ccell.2016.10.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/21/2016] [Accepted: 10/12/2016] [Indexed: 01/11/2023]
Abstract
The t(4;11)(q21;q23) fuses mixed-lineage leukemia (MLL) to AF4, the most common MLL-fusion partner. Here we show that MLL fused to murine Af4, highly conserved with human AF4, produces high-titer retrovirus permitting efficient transduction of human CD34+ cells, thereby generating a model of t(4;11) pro-B acute lymphoblastic leukemia (ALL) that fully recapitulates the immunophenotypic and molecular aspects of the disease. MLL-Af4 induces a B ALL distinct from MLL-AF9 through differential genomic target binding of the fusion proteins leading to specific gene expression patterns. MLL-Af4 cells can assume a myeloid state under environmental pressure but retain lymphoid-lineage potential. Such incongruity was also observed in t(4;11) patients in whom leukemia evaded CD19-directed therapy by undergoing myeloid-lineage switch. Our model provides a valuable tool to unravel the pathogenesis of MLL-AF4 leukemogenesis.
Collapse
Affiliation(s)
- Shan Lin
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Roger T Luo
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Anetta Ptasinska
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jon Kerry
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Programme, University of Oxford, Oxford OX3 9DS, UK
| | - Salam A Assi
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Mark Wunderlich
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Toshihiko Imamura
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Joseph J Kaberlein
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Ahmad Rayes
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mark J Althoff
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - John Anastasi
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Maureen M O'Brien
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Amom Ruhikanta Meetei
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Thomas A Milne
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Programme, University of Oxford, Oxford OX3 9DS, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - James C Mulloy
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Michael J Thirman
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
54
|
Packard TA, Smith MJ, Conrad FJ, Johnson SA, Getahun A, Lindsay RS, Hinman RM, Friedman RS, Thomas JW, Cambier JC. B Cell Receptor Affinity for Insulin Dictates Autoantigen Acquisition and B Cell Functionality in Autoimmune Diabetes. J Clin Med 2016; 5:E98. [PMID: 27834793 PMCID: PMC5126795 DOI: 10.3390/jcm5110098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/24/2016] [Accepted: 11/03/2016] [Indexed: 11/30/2022] Open
Abstract
B cells have been strongly implicated in the development of human type 1 diabetes and are required for disease in the NOD mouse model. These functions are dependent on B cell antigen receptor (BCR) specificity and expression of MHC, implicating linked autoantigen recognition and presentation to effector T cells. BCR-antigen affinity requirements for participation in disease are unclear. We hypothesized that BCR affinity for the autoantigen insulin differentially affects lymphocyte functionality, including tolerance modality and the ability to acquire and become activated in the diabetogenic environment. Using combined transgenic and retrogenic heavy and light chain to create multiple insulin-binding BCRs, we demonstrate that affinity for insulin is a critical determinant of the function of these autoreactive cells. We show that both BCR affinity for insulin and genetic background affect tolerance induction in immature B cells. We also find new evidence that may explain the enigmatic ability of B cells expressing 125 anti-insulin BCR to support development of TID in NOD mice despite a reported affinity beneath requirements for binding insulin at in vivo concentrations. We report that when expressed as an antigen receptor the affinity of 125 is much higher than determined by measurements of the soluble form. Finally, we show that in vivo acquisition of insulin requires both sufficient BCR affinity and permissive host/tissue environment. We propose that a confluence of BCR affinity, pancreas environment, and B cell tolerance-regulating genes in the NOD animal allows acquisition of insulin and autoimmunity.
Collapse
Affiliation(s)
- Thomas A Packard
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA.
| | - Mia J Smith
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | - Francis J Conrad
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA.
| | - Sara A Johnson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA.
| | - Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA.
| | - Robin S Lindsay
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA.
| | - Rochelle M Hinman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA.
| | - Rachel S Friedman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA.
| | - James W Thomas
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA.
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
55
|
Tumbarello DA, Andrews MR, Brenton JD. SPARC Regulates Transforming Growth Factor Beta Induced (TGFBI) Extracellular Matrix Deposition and Paclitaxel Response in Ovarian Cancer Cells. PLoS One 2016; 11:e0162698. [PMID: 27622658 PMCID: PMC5021370 DOI: 10.1371/journal.pone.0162698] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/26/2016] [Indexed: 12/23/2022] Open
Abstract
TGFBI has been shown to sensitize ovarian cancer cells to the cytotoxic effects of paclitaxel via an integrin receptor-mediated mechanism that modulates microtubule stability. Herein, we determine that TGFBI localizes within organized fibrillar structures in mesothelial-derived ECM. We determined that suppression of SPARC expression by shRNA decreased the deposition of TGFBI in mesothelial-derived ECM, without affecting its overall protein expression or secretion. Conversely, overexpression of SPARC increased TGFBI deposition. A SPARC-YFP fusion construct expressed by the Met5a cell line co-localized with TGFBI in the cell-derived ECM. Interestingly, in vitro produced SPARC was capable of precipitating TGFBI from cell lysates dependent on an intact SPARC carboxy-terminus with in vitro binding assays verifying a direct interaction. The last 37 amino acids of SPARC were shown to be required for the TGFBI interaction while expression of a SPARC-YFP construct lacking this region (aa 1-256) did not interact and co-localize with TGFBI in the ECM. Furthermore, ovarian cancer cells have a reduced motility and decreased response to the chemotherapeutic agent paclitaxel when plated on ECM derived from mesothelial cells lacking SPARC compared to control mesothelial-derived ECM. In conclusion, SPARC regulates the fibrillar ECM deposition of TGFBI through a novel interaction, subsequently influencing cancer cell behavior.
Collapse
Affiliation(s)
- David A. Tumbarello
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, United Kingdom
| | - Melissa R. Andrews
- University of St Andrews, School of Medicine, MBSB, North Haugh, St Andrews, United Kingdom
| | - James D. Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, United Kingdom
| |
Collapse
|
56
|
Impact of loss of BH3-only proteins on the development and treatment of MLL-fusion gene-driven AML in mice. Cell Death Dis 2016; 7:e2351. [PMID: 27584789 PMCID: PMC5059861 DOI: 10.1038/cddis.2016.258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/25/2016] [Indexed: 12/26/2022]
Abstract
Inhibition of the apoptosis pathway controlled by opposing members of the Bcl-2 protein family plays a central role in cancer development and resistance to therapy. To investigate how pro-apoptotic Bcl-2 homology domain 3 (BH3)-only proteins impact on acute myeloid leukemia (AML), we generated mixed lineage leukemia (MLL)-AF9 and MLL-ENL AMLs from BH3-only gene knockout mice. Disease development was not accelerated by loss of Bim, Puma, Noxa, Bmf, or combinations thereof; hence these BH3-only proteins are apparently ineffectual as tumor suppressors in this model. We tested the sensitivity of MLL-AF9 AMLs of each genotype in vitro to standard chemotherapeutic drugs and to the proteasome inhibitor bortezomib, with or without the BH3 mimetic ABT-737. Loss of Puma and/or Noxa increased resistance to cytarabine, daunorubicin and etoposide, while loss of Bim protected against cytarabine and loss of Bmf had no impact. ABT-737 increased sensitivity to the genotoxic drugs but was not dependent on any BH3-only protein tested. The AML lines were very sensitive to bortezomib and loss of Noxa conveyed significant resistance. In vivo, several MLL-AF9 AMLs responded well to daunorubicin and this response was highly dependent on Puma and Noxa but not Bim. Combination therapy with ABT-737 provided little added benefit at the daunorubicin dose trialed. Bortezomib also extended survival of AML-bearing mice, albeit less than daunorubicin. In summary, our genetic studies reveal the importance of Puma and Noxa for the action of genotoxics currently used to treat MLL-driven AML and suggest that, while addition of ABT-737-like BH3 mimetics might enhance their efficacy, new Noxa-like BH3 mimetics targeting Mcl-1 might have greater potential.
Collapse
|
57
|
The Flexible Ends of CENP-A Nucleosome Are Required for Mitotic Fidelity. Mol Cell 2016; 63:674-685. [DOI: 10.1016/j.molcel.2016.06.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/03/2016] [Accepted: 06/15/2016] [Indexed: 12/27/2022]
|
58
|
The actin crosslinking protein palladin modulates force generation and mechanosensitivity of tumor associated fibroblasts. Sci Rep 2016; 6:28805. [PMID: 27353427 PMCID: PMC4926206 DOI: 10.1038/srep28805] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/10/2016] [Indexed: 01/15/2023] Open
Abstract
Cells organize actin filaments into higher-order structures by regulating the composition, distribution and concentration of actin crosslinkers. Palladin is an actin crosslinker found in the lamellar actin network and stress fibers, which are critical for mechanosensing of the environment. Palladin also serves as a molecular scaffold for α-actinin, another key actin crosslinker. By virtue of its close interactions with actomyosin structures in the cell, palladin may play an important role in cell mechanics. However, the role of palladin in cellular force generation and mechanosensing has not been studied. Here, we investigate the role of palladin in regulating the plasticity of the actin cytoskeleton and cellular force generation in response to alterations in substrate stiffness. Traction force microscopy revealed that tumor-associated fibroblasts generate larger forces on substrates of increased stiffness. Contrary to expectations, knocking down palladin increased the forces generated by cells and inhibited their ability to sense substrate stiffness for very stiff gels. This was accompanied by significant differences in actin organization, adhesion dynamics and altered myosin organization in palladin knock-down cells. Our results suggest that actin crosslinkers such as palladin and myosin motors coordinate for optimal cell function and to prevent aberrant behavior as in cancer metastasis.
Collapse
|
59
|
Mosabbir AA, Truong K. Genomic integration occurs in the packaging cell via unexported lentiviral precursors. Biotechnol Lett 2016; 38:1715-21. [DOI: 10.1007/s10529-016-2164-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022]
|
60
|
Human Cytomegalovirus pTRS1 and pIRS1 Antagonize Protein Kinase R To Facilitate Virus Replication. J Virol 2016; 90:3839-3848. [PMID: 26819306 DOI: 10.1128/jvi.02714-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/14/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Human cytomegalovirus (HCMV) counteracts host defenses that otherwise act to limit viral protein synthesis. One such defense is the antiviral kinase protein kinase R (PKR), which inactivates the eukaryotic initiation factor 2 (eIF2) translation initiation factor upon binding to viral double-stranded RNAs. Previously, the viral TRS1 and IRS1 proteins were found to antagonize the antiviral kinase PKR outside the context of HCMV infection, and the expression of either pTRS1 or pIRS1 was shown to be necessary for HCMV replication. In this study, we found that expression of either pTRS1 or pIRS1 is necessary to prevent PKR activation during HCMV infection and that antagonism of PKR is critical for efficient viral replication. Consistent with a previous study, we observed decreased overall levels of protein synthesis, reduced viral protein expression, and diminished virus replication in the absence of both pTRS1 and pIRS1. In addition, both PKR and eIF2α were phosphorylated during infection when pTRS1 and pIRS1 were absent. We also found that expression of pTRS1 was both necessary and sufficient to prevent stress granule formation in response to eIF2α phosphorylation. Depletion of PKR prevented eIF2α phosphorylation, rescued HCMV replication and protein synthesis, and reversed the accumulation of stress granules in infected cells. Infection with an HCMV mutant lacking the pTRS1 PKR binding domain resulted in PKR activation, suggesting that pTRS1 inhibits PKR through a direct interaction. Together our results show that antagonism of PKR by HCMV pTRS1 and pIRS1 is critical for viral protein expression and efficient HCMV replication. IMPORTANCE To successfully replicate, viruses must counteract host defenses that limit viral protein synthesis. We have identified inhibition of the antiviral kinase PKR by the viral proteins TRS1 and IRS1 and shown that this is a critical step in HCMV replication. Our results suggest that inhibiting pTRS1 and pIRS1 function or restoring PKR activity during infection may be a successful strategy to limit HCMV disease.
Collapse
|
61
|
Ferreira RB, Law ME, Jahn SC, Davis BJ, Heldermon CD, Reinhard M, Castellano RK, Law BK. Novel agents that downregulate EGFR, HER2, and HER3 in parallel. Oncotarget 2016; 6:10445-59. [PMID: 25865227 PMCID: PMC4496366 DOI: 10.18632/oncotarget.3398] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/16/2015] [Indexed: 11/25/2022] Open
Abstract
EGFR, HER2, and HER3 contribute to the initiation and progression of human cancers, and are therapeutic targets for monoclonal antibodies and tyrosine kinase inhibitors. An important source of resistance to these agents arises from functional redundancy among EGFR, HER2, and HER3. EGFR family members contain conserved extracellular structures that are stabilized by disulfide bonds. Compounds that disrupt extracellular disulfide bonds could inactivate EGFR, HER2, and HER3 in unison. Here we describe the identification of compounds that kill breast cancer cells that overexpress EGFR or HER2. Cell death parallels downregulation of EGFR, HER2, and HER3. These compounds disrupt disulfide bonds and are termed Disulfide Bond Disrupting Agents (DDAs). DDA RBF3 exhibits anticancer efficacy in vivo at 40 mg/kg without evidence of toxicity. DDAs may complement existing EGFR-, HER2-, and HER3-targeted agents that function through alternate mechanisms of action, and combination regimens with these existing drugs may overcome therapeutic resistance.
Collapse
Affiliation(s)
| | - Mary Elizabeth Law
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | | | - Bradley John Davis
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Coy Don Heldermon
- Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mary Reinhard
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, 32610, USA
| | | | - Brian Keith Law
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
62
|
Mackenzie KJ, Carroll P, Lettice L, Tarnauskaitė Ž, Reddy K, Dix F, Revuelta A, Abbondati E, Rigby RE, Rabe B, Kilanowski F, Grimes G, Fluteau A, Devenney PS, Hill RE, Reijns MA, Jackson AP. Ribonuclease H2 mutations induce a cGAS/STING-dependent innate immune response. EMBO J 2016; 35:831-44. [PMID: 26903602 PMCID: PMC4855687 DOI: 10.15252/embj.201593339] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/22/2016] [Indexed: 01/16/2023] Open
Abstract
Aicardi-Goutières syndrome (AGS) provides a monogenic model of nucleic acid-mediated inflammation relevant to the pathogenesis of systemic autoimmunity. Mutations that impair ribonuclease (RNase) H2 enzyme function are the most frequent cause of this autoinflammatory disorder of childhood and are also associated with systemic lupus erythematosus. Reduced processing of eitherRNA:DNAhybrid or genome-embedded ribonucleotide substrates is thought to lead to activation of a yet undefined nucleic acid-sensing pathway. Here, we establishRnaseh2b(A174T/A174T)knock-in mice as a subclinical model of disease, identifying significant interferon-stimulated gene (ISG) transcript upregulation that recapitulates theISGsignature seen inAGSpatients. The inflammatory response is dependent on the nucleic acid sensor cyclicGMP-AMPsynthase (cGAS) and its adaptorSTINGand is associated with reduced cellular ribonucleotide excision repair activity and increasedDNAdamage. This suggests thatcGAS/STINGis a key nucleic acid-sensing pathway relevant toAGS, providing additional insight into disease pathogenesis relevant to the development of therapeutics for this childhood-onset interferonopathy and adult systemic autoimmune disorders.
Collapse
Affiliation(s)
- Karen J Mackenzie
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Paula Carroll
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Laura Lettice
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Žygimantė Tarnauskaitė
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Kaalak Reddy
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Flora Dix
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Ailsa Revuelta
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Erika Abbondati
- Roslin Institute, The University of Edinburgh, Edinburgh, UK
| | - Rachel E Rigby
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Björn Rabe
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Fiona Kilanowski
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Graeme Grimes
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Adeline Fluteau
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Paul S Devenney
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Robert E Hill
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Martin Am Reijns
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Andrew P Jackson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
63
|
Richter U, Lahtinen T, Marttinen P, Suomi F, Battersby BJ. Quality control of mitochondrial protein synthesis is required for membrane integrity and cell fitness. J Cell Biol 2016; 211:373-89. [PMID: 26504172 PMCID: PMC4621829 DOI: 10.1083/jcb.201504062] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Impaired turnover of newly synthesized mitochondrial proteins of the oxidative phosphorylation complexes leads to protein over-accumulation in the inner mitochondrial membrane, thereby generating a stress that dissipates the mitochondrial membrane potential and therefore compromises organelle and cellular fitness. Mitochondrial ribosomes synthesize a subset of hydrophobic proteins required for assembly of the oxidative phosphorylation complexes. This process requires temporal and spatial coordination and regulation, so quality control of mitochondrial protein synthesis is paramount to maintain proteostasis. We show how impaired turnover of de novo mitochondrial proteins leads to aberrant protein accumulation in the mitochondrial inner membrane. This creates a stress in the inner membrane that progressively dissipates the mitochondrial membrane potential, which in turn stalls mitochondrial protein synthesis and fragments the mitochondrial network. The mitochondrial m-AAA protease subunit AFG3L2 is critical to this surveillance mechanism that we propose acts as a sensor to couple the synthesis of mitochondrial proteins with organelle fitness, thus ensuring coordinated assembly of the oxidative phosphorylation complexes from two sets of ribosomes.
Collapse
Affiliation(s)
- Uwe Richter
- Research Programs for Molecular Neurology, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland
| | - Taina Lahtinen
- Research Programs for Molecular Neurology, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland
| | - Paula Marttinen
- Research Programs for Molecular Neurology, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland
| | - Fumi Suomi
- Research Programs for Molecular Neurology, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland
| | - Brendan J Battersby
- Research Programs for Molecular Neurology, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
64
|
Abstract
Transduction of lymphoid progenitors with retroviral or lentiviral vectors is a powerful experimental strategy to tease out the role of a gene or pathway in T cell development via gain-of-function or loss-of-function strategies. Here we discuss different approaches to use this powerful technology, and present some protocols that we use to transduce murine HSCs, thymocytes, and lymphoid cell lines with these viral vectors.
Collapse
|
65
|
Basit A, Tang W, Wu D. shRNA-Induced Gene Knockdown In Vivo to Investigate Neutrophil Function. Methods Mol Biol 2016; 1407:169-77. [PMID: 27271902 DOI: 10.1007/978-1-4939-3480-5_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
To silence genes in neutrophils efficiently, we exploited the RNA interference and developed an shRNA-based gene knockdown technique. This method involves transfection of mouse bone marrow-derived hematopoietic stem cells with retroviral vector carrying shRNA directed at a specific gene. Transfected stem cells are then transplanted into irradiated wild-type mice. After engraftment of stem cells, the transplanted mice have two sets of circulating neutrophils. One set has a gene of interest knocked down while the other set has full complement of expressed genes. This efficient technique provides a unique way to directly compare the response of neutrophils with a knocked-down gene to that of neutrophils with the full complement of expressed genes in the same environment.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale University School of Medicine, 10 Amistad, P.O. Box 208089, New Haven, CT, 06520, USA
| | - Wenwen Tang
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale University School of Medicine, 10 Amistad, P.O. Box 208089, New Haven, CT, 06520, USA
| | - Dianqing Wu
- Department of Pharmacology, Vascular Biology and Therapeutic Program, Yale University School of Medicine, 10 Amistad, P.O. Box 208089, New Haven, CT, 06520, USA.
| |
Collapse
|
66
|
Functional Comparison of Molluscum Contagiosum Virus vFLIP MC159 with Murine Cytomegalovirus M36/vICA and M45/vIRA Proteins. J Virol 2015; 90:2895-905. [PMID: 26719271 DOI: 10.1128/jvi.02729-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/21/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Molluscum contagiosum virus (MCV) gene MC159 encodes a viral FLICE inhibitory protein (vFLIP) that inhibits caspase-8-mediated apoptosis. The MC159 protein was also reported to inhibit programmed necrosis (necroptosis) and modulate NF-κB activation by interacting with RIP1 and NEMO. The importance of MC159 during MCV infection has remained unknown, as there is no system for propagation and genetic manipulation of this virus. Here we investigated the functions of MC159 during viral infection using murine cytomegalovirus (MCMV) as a surrogate virus. MC159 was inserted into the MCMV genome, replacing M36 or M45, two MCMV genes with functions similar to those reported for MC159. M36 encodes a viral inhibitor of caspase-8-induced apoptosis (vICA) and M45 a viral inhibitor of RIP activation (vIRA), which inhibits RIP1/RIP3-mediated necroptosis. The M45 protein also blocks NF-κB activation by interacting with NEMO. When expressed by MCMV, MC159 blocked tumor necrosis factor alpha (TNF-α)-induced apoptosis of infected cells and partially restored MCMV replication in macrophages. However, MC159 did not fully replace M45, as it did not inhibit necroptosis in murine cells, but it reduced TNF-α-induced necroptosis in MCMV-infected human HT-29 cells. MC159 also differed from M45 in its effect on NF-κB. While MCMV-encoded M45 blocked NF-κB activation by TNF-α and interleukin-1β (IL-1β), MC159 inhibited TNF-α- but not IL-1β-induced NF-κB activation in infected mouse fibroblasts. These results indicate that the spectrum of MC159's functions differs depending on cell type and expression system and that a cell culture system for the propagation of MCV is needed to determine the biological relevance of presumed viral gene functions. IMPORTANCE MCV is a human-pathogenic poxvirus that cannot be propagated in cell culture or laboratory animals. Therefore, MCV gene products have been studied predominantly in cells expressing individual viral genes. In this study, we analyzed the function of the MCV gene MC159 by expressing it from a different virus and comparing its functions to those of two well-characterized MCMV genes. In this system, MC159 displayed some but not all of the previously described functions, suggesting that the functions of a viral gene depend on the conditions under which it is expressed. Until a cell culture system for the analysis of MCV becomes available, it might be necessary to analyze MCV genes in several different systems to extrapolate their biological importance.
Collapse
|
67
|
A new live-cell reporter strategy to simultaneously monitor mitochondrial biogenesis and morphology. Sci Rep 2015; 5:17217. [PMID: 26596249 PMCID: PMC4657046 DOI: 10.1038/srep17217] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/27/2015] [Indexed: 12/18/2022] Open
Abstract
Changes in mitochondrial amount and shape are intimately linked to maintenance of cell homeostasis via adaptation of vital functions. Here, we developed a new live-cell reporter strategy to simultaneously monitor mitochondrial biogenesis and morphology. This was achieved by making a genetic reporter construct where a master regulator of mitochondrial biogenesis, nuclear respiratory factor 1 (NRF-1), controls expression of mitochondria targeted green fluorescent protein (mitoGFP). HeLa cells with the reporter construct demonstrated inducible expression of mitoGFP upon activation of AMP-dependent protein kinase (AMPK) with AICAR. We established stable reporter cells where the mitoGFP reporter activity corresponded with mitochondrial biogenesis both in magnitude and kinetics, as confirmed by biochemical markers and confocal microscopy. Quantitative 3D image analysis confirmed accordant increase in mitochondrial biomass, in addition to filament/network promoting and protecting effects on mitochondrial morphology, after treatment with AICAR. The level of mitoGFP reversed upon removal of AICAR, in parallel with decrease in mtDNA. In summary, we here present a new GFP-based genetic reporter strategy to study mitochondrial regulation and dynamics in living cells. This combinatorial reporter concept can readily be transferred to other cell models and contexts to address specific physiological mechanisms.
Collapse
|
68
|
Shingleton JR, Hemann MT. The Chromatin Regulator CHD8 Is a Context-Dependent Mediator of Cell Survival in Murine Hematopoietic Malignancies. PLoS One 2015; 10:e0143275. [PMID: 26588464 PMCID: PMC4654476 DOI: 10.1371/journal.pone.0143275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/02/2015] [Indexed: 12/11/2022] Open
Abstract
Aberrant chromatin regulation is a frequent driver of leukemogenesis. Mutations in chromatin regulators often result in more stem-like cells that seed a bulk leukemic population. Inhibitors targeting these proteins represent an emerging class of therapeutics, and identifying further chromatin regulators that promote disease progression may result in additional drug targets. We identified the chromatin-modifying protein CHD8 as necessary for cell survival in a mouse model of BCR-Abl+ B-cell acute lymphoblastic leukemia. This disease has a poor prognosis despite treatment with kinase inhibitors targeting BCR-Abl. Although implicated as a risk factor in autism spectrum disorder and a tumor suppressor in prostate and lung cancer, the mechanism of CHD8's activity is still unclear and has never been studied in the context of hematopoietic malignancies. Here we demonstrate that depletion of CHD8 in B-ALL cells leads to cell death. While multiple B cell malignancies were dependent on CHD8 expression for survival, T cell malignancies displayed milder phenotypes upon CHD8 knockdown. In addition, ectopic expression of the Notch1 intracellular domain in a T cell malignancy partially alleviated the detrimental effect of CHD8 depletion. Our results demonstrate that CHD8 has a context-dependent role in cell survival, and its inhibition may be an effective treatment for B lymphoid malignancies.
Collapse
Affiliation(s)
- Jennifer R. Shingleton
- Koch Institute for Integrated Cancer Research at MIT, Cambridge, Massachusetts, United States of America
| | - Michael T. Hemann
- Koch Institute for Integrated Cancer Research at MIT, Cambridge, Massachusetts, United States of America
| |
Collapse
|
69
|
In Vitro and In Vivo Comparison of Lymphocytes Transduced with a Human CD16 or with a Chimeric Antigen Receptor Reveals Potential Off-Target Interactions due to the IgG2 CH2-CH3 CAR-Spacer. J Immunol Res 2015; 2015:482089. [PMID: 26665156 PMCID: PMC4664810 DOI: 10.1155/2015/482089] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/22/2015] [Indexed: 12/15/2022] Open
Abstract
The present work was designed to compare two mechanisms of cellular recognition based on Ab specificity: firstly, when the anti-HER2 mAb trastuzumab bridges target cells and cytotoxic lymphocytes armed with a Fc receptor (ADCC) and, secondly, when HER2 positive target cells are directly recognized by cytotoxic lymphocytes armed with a chimeric antigen receptor (CAR). To compare these two mechanisms, we used the same cellular effector (NK-92) and the same signaling domain (FcεRIγ). The NK-92 cytotoxic cell line was transfected with either a FcγRIIIa-FcεRIγ (NK-92CD16) or a trastuzumab-based scFv-FcεRIγ chimeric receptor (NK-92CAR). In vitro, the cytotoxic activity against HER2 positive target cells after indirect recognition by NK-92CD16 was always inferior to that observed after direct recognition by NK-92CAR. In contrast, and somehow unexpectedly, in vivo, adoptive transfer of NK-92CD16 + trastuzumab but not of NK-92CAR induced tumor regression. Analysis of the in vivo xenogeneic system suggested that the human CH2-CH3 IgG2 used as a spacer in our construct was able to interact with the FcR present at the cell surface of the few NSG-FcR+ remaining immune cells. This interaction, leading to blockage of the NK-92CAR in the periphery of the engrafted tumor cells, stresses the critical role of the composition of the spacer domain.
Collapse
|
70
|
Zhang M, Chakraborty SK, Sampath P, Rojas JJ, Hou W, Saurabh S, Thorne SH, Bruchez MP, Waggoner AS. Fluoromodule-based reporter/probes designed for in vivo fluorescence imaging. J Clin Invest 2015; 125:3915-27. [PMID: 26348895 DOI: 10.1172/jci81086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 07/30/2015] [Indexed: 12/26/2022] Open
Abstract
Optical imaging of whole, living animals has proven to be a powerful tool in multiple areas of preclinical research and has allowed noninvasive monitoring of immune responses, tumor and pathogen growth, and treatment responses in longitudinal studies. However, fluorescence-based studies in animals are challenging because tissue absorbs and autofluoresces strongly in the visible light spectrum. These optical properties drive development and use of fluorescent labels that absorb and emit at longer wavelengths. Here, we present a far-red absorbing fluoromodule-based reporter/probe system and show that this system can be used for imaging in living mice. The probe we developed is a fluorogenic dye called SC1 that is dark in solution but highly fluorescent when bound to its cognate reporter, Mars1. The reporter/probe complex, or fluoromodule, produced peak emission near 730 nm. Mars1 was able to bind a variety of structurally similar probes that differ in color and membrane permeability. We demonstrated that a tool kit of multiple probes can be used to label extracellular and intracellular reporter-tagged receptor pools with 2 colors. Imaging studies may benefit from this far-red excited reporter/probe system, which features tight coupling between probe fluorescence and reporter binding and offers the option of using an expandable family of fluorogenic probes with a single reporter gene.
Collapse
|
71
|
Ostrop J, Jozefowski K, Zimmermann S, Hofmann K, Strasser E, Lepenies B, Lang R. Contribution of MINCLE-SYK Signaling to Activation of Primary Human APCs by Mycobacterial Cord Factor and the Novel Adjuvant TDB. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26202982 DOI: 10.4049/jimmunol.1500102] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Trehalose-6,6-dimycolate (TDM), the mycobacterial cord factor, is an abundant cell wall glycolipid and major virulence factor of Mycobacterium tuberculosis. Its synthetic analog trehalose-6,6-dibehenate (TDB) is a new adjuvant currently in phase I clinical trials. In rodents, the C-type lectin receptors Mincle and Mcl bind TDB/TDM and activate macrophages and dendritic cells (DC) through the Syk-Card9 pathway. However, it is unknown whether these glycolipids activate human innate immune cells through the same mechanism. We performed in vitro analysis of TDB/TDM-stimulated primary human monocytes, macrophages, and DC; determined C-type lectin receptor expression; and tested the contribution of SYK, MINCLE, and MCL by small interfering RNA knockdown and genetic complementation. We observed a robust chemokine and cytokine release in response to TDB or TDM. MCSF-driven macrophages secreted higher levels of IL-8, IL-6, CCL3, CCL4, and CCL2 after stimulation with TDM, whereas DC responded more strongly to TDB and GM-CSF-driven macrophages were equally responsive to TDB and TDM. SYK kinase and the adaptor protein CARD9 were essential for glycolipid-induced IL-8 production. mRNA expression of MINCLE and MCL was high in monocytes and macrophages, with MINCLE and MCL proteins localized intracellularly under resting conditions. Small interfering RNA-mediated MINCLE or MCL knockdown caused on average reduced TDB- or TDM-induced IL-8 production. Conversely, retroviral expression in murine Mincle-deficient DC revealed that human MINCLE, but not MCL, was sufficient to confer responsiveness to TDB/TDM. Our study demonstrates that SYK-CARD9 signaling plays a key role in TDB/TDM-induced activation of innate immune cells in man as in mouse, likely by engagement of MINCLE.
Collapse
Affiliation(s)
- Jenny Ostrop
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Katrin Jozefowski
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Stephanie Zimmermann
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; Free University of Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany; and
| | - Katharina Hofmann
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Erwin Strasser
- Transfusionsmedizinische und Hämostaseologische Abteilung, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Bernd Lepenies
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; Free University of Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany; and
| | - Roland Lang
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| |
Collapse
|
72
|
Preston GC, Sinclair LV, Kaskar A, Hukelmann JL, Navarro MN, Ferrero I, MacDonald HR, Cowling VH, Cantrell DA. Single cell tuning of Myc expression by antigen receptor signal strength and interleukin-2 in T lymphocytes. EMBO J 2015; 34:2008-24. [PMID: 26136212 PMCID: PMC4551349 DOI: 10.15252/embj.201490252] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 05/18/2015] [Indexed: 12/29/2022] Open
Abstract
Myc controls the metabolic reprogramming that supports effector T cell differentiation. The expression of Myc is regulated by the T cell antigen receptor (TCR) and pro-inflammatory cytokines such as interleukin-2 (IL-2). We now show that the TCR is a digital switch for Myc mRNA and protein expression that allows the strength of the antigen stimulus to determine the frequency of T cells that express Myc. IL-2 signalling strength also directs Myc expression but in an analogue process that fine-tunes Myc quantity in individual cells via post-transcriptional control of Myc protein. Fine-tuning Myc matters and is possible as Myc protein has a very short half-life in T cells due to its constant phosphorylation by glycogen synthase kinase 3 (GSK3) and subsequent proteasomal degradation. We show that Myc only accumulates in T cells exhibiting high levels of amino acid uptake allowing T cells to match Myc expression to biosynthetic demands. The combination of digital and analogue processes allows tight control of Myc expression at the population and single cell level during immune responses.
Collapse
Affiliation(s)
- Gavin C Preston
- Department of Cell Signalling & Immunology, College of Life Sciences University of Dundee, Dundee, UK
| | - Linda V Sinclair
- Department of Cell Signalling & Immunology, College of Life Sciences University of Dundee, Dundee, UK
| | - Aneesa Kaskar
- Department of Cell Signalling & Immunology, College of Life Sciences University of Dundee, Dundee, UK Centre for Gene Regulation and Expression, College of Life Sciences University of Dundee, Dundee, UK
| | - Jens L Hukelmann
- Department of Cell Signalling & Immunology, College of Life Sciences University of Dundee, Dundee, UK Centre for Gene Regulation and Expression, College of Life Sciences University of Dundee, Dundee, UK
| | - Maria N Navarro
- Department of Cell Signalling & Immunology, College of Life Sciences University of Dundee, Dundee, UK Instituto Investigación Sanitaria/Hospital Universitario de la Princesa Universidad Autónoma de Madrid, Madrid, Spain
| | - Isabel Ferrero
- Ludwig Center for Cancer Research of the University of Lausanne, Epalinges, Switzerland
| | - H Robson MacDonald
- Ludwig Center for Cancer Research of the University of Lausanne, Epalinges, Switzerland
| | - Victoria H Cowling
- Centre for Gene Regulation and Expression, College of Life Sciences University of Dundee, Dundee, UK
| | - Doreen A Cantrell
- Department of Cell Signalling & Immunology, College of Life Sciences University of Dundee, Dundee, UK
| |
Collapse
|
73
|
Rouquette-Jazdanian AK, Kortum RL, Li W, Merrill RK, Nguyen PH, Samelson LE, Sommers CL. miR-155 Controls Lymphoproliferation in LAT Mutant Mice by Restraining T-Cell Apoptosis via SHIP-1/mTOR and PAK1/FOXO3/BIM Pathways. PLoS One 2015; 10:e0131823. [PMID: 26121028 PMCID: PMC4487994 DOI: 10.1371/journal.pone.0131823] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/06/2015] [Indexed: 12/19/2022] Open
Abstract
Linker for Activation of T cells (LAT) is an adapter protein that is essential for T cell function. Knock-in mice with a LAT mutation impairing calcium flux develop a fatal CD4+ lymphoproliferative disease. miR-155 is a microRNA that is correlated with hyperproliferation in a number of cancers including lymphomas and leukemias and is overexpressed in mutant LAT T cells. To test whether miR-155 was merely indicative of T cell activation or whether it contributes to lymphoproliferative disease in mutant LAT mice, we interbred LAT mutant and miR-155-deficient mice. miR-155 deficiency markedly inhibited lymphoproliferative disease by stimulating BIM-dependent CD4+ T cell apoptosis, even though ERK activation and T cell proliferation were increased in double mutant CD4+ T cells. Bim/Bcl2l11 expression is activated by the forkhead transcription factor FOXO3. Using miR-155-deficient, LAT mutant T cells as a discovery tool, we found two connected pathways that impact the nuclear translocation and activation of FOXO3 in T cells. One pathway is mediated by the inositide phosphatase SHIP-1 and the serine/threonine kinases AKT and PDK1. The other pathway involves PAK1 and JNK kinase activation. We define crosstalk between the two pathways via the kinase mTOR, which stabilizes PAK1. This study establishes a role for PAK1 in T cell apoptosis, which contrasts to its previously identified role in T cell proliferation. Furthermore, miR-155 regulates the delicate balance between PAK1-mediated proliferation and apoptosis in T cells impacting lymphoid organ size and function.
Collapse
Affiliation(s)
- Alexandre K. Rouquette-Jazdanian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert L. Kortum
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Wenmei Li
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert K. Merrill
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Phan H. Nguyen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lawrence E. Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Connie L. Sommers
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (CLS)
| |
Collapse
|
74
|
Hwang GL, van den Bosch MA, Kim YI, Katzenberg R, Willmann JK, Paulmurugan R, Gambhir SS, Hofmann L. Development of a High-Throughput Molecular Imaging-Based Orthotopic Hepatocellular Carcinoma Model. Cureus 2015; 7:e281. [PMID: 26180705 PMCID: PMC4494575 DOI: 10.7759/cureus.281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/17/2015] [Indexed: 02/06/2023] Open
Abstract
We have developed a novel orthotopic rat hepatocellular (HCC) model and have assessed the ability to use bioluminescence imaging (BLI), positron emission tomography (PET), and ultrasound for early tumor detection and monitoring of disease progression. Briefly, rat HCC cells were stably transfected with click beetle red as a reporter gene for BLI. Tumor cells were injected under direct visualization into the left or middle lobe of the liver in 37 rats. In six animals, serial PET, BLI, and ultrasound imaging were performed at 10-time points in 28 days. The remainder of the animals underwent PET imaging at 14 days. Tumor implantation was successful in 34 of 37 animals (91.9%). In the six animals that underwent serial imaging, tumor formation was first detected with BLI on Day 4 with continued increase through Day 21, and hypermetabolic activity on PET was first noted on Days 14-15 with continued increase through Day 28. PET activity was seen on Day 14 in the 28 other animals that demonstrated tumor development. Anatomic tumor formation was detected with ultrasound at Days 10-12 with continued growth through Day 28. The first metastases were detected by PET after Day 24. We have successfully developed and validated a novel orthotopic HCC small animal model that permits longitudinal assessment of change in tumor size using molecular imaging techniques. BLI is the most sensitive imaging method for detection of early tumor formation and growth. This model permits high-throughput in vivo evaluation of image-guided therapies.
Collapse
Affiliation(s)
| | | | - Young I Kim
- Radiology, Seoul National University College of Medicine
| | | | | | | | | | | |
Collapse
|
75
|
Hellesøy M, Lorens JB. Cellular context-mediated Akt dynamics regulates MAP kinase signaling thresholds during angiogenesis. Mol Biol Cell 2015; 26:2698-711. [PMID: 26023089 PMCID: PMC4501366 DOI: 10.1091/mbc.e14-09-1378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 05/18/2015] [Indexed: 01/01/2023] Open
Abstract
This study examines the temporal regulation of Akt in endothelial cells during formation of capillary-like networks induced by cell–cell contact with vascular smooth muscle cells (vSMCs) and vSMC-associated VEGF. Heterotypic cell–cell interaction between mural and endothelial cells alters Akt kinase protein dynamics, which regulates angiogenesis. The formation of new blood vessels by sprouting angiogenesis is tightly regulated by contextual cues that affect angiogeneic growth factor signaling. Both constitutive activation and loss of Akt kinase activity in endothelial cells impair angiogenesis, suggesting that Akt dynamics mediates contextual microenvironmental regulation. We explored the temporal regulation of Akt in endothelial cells during formation of capillary-like networks induced by cell–cell contact with vascular smooth muscle cells (vSMCs) and vSMC-associated VEGF. Expression of constitutively active Akt1 strongly inhibited network formation, whereas hemiphosphorylated Akt1 epi-alleles with reduced kinase activity had an intermediate inhibitory effect. Conversely, inhibition of Akt signaling did not affect endothelial cell migration or morphogenesis in vSMC cocultures that generate capillary-like structures. We found that endothelial Akt activity is transiently blocked by proteasomal degradation in the presence of SMCs during the initial phase of capillary-like structure formation. Suppressed Akt activity corresponded to the increased endothelial MAP kinase signaling that was required for angiogenic endothelial morphogenesis. These results reveal a regulatory principle by which cellular context regulates Akt protein dynamics, which determines MAP kinase signaling thresholds necessary drive a morphogenetic program during angiogenesis.
Collapse
Affiliation(s)
- Monica Hellesøy
- Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway
| | - James B Lorens
- Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway Center for Cancer Biomarkers, University of Bergen, N-5009 Bergen, Norway
| |
Collapse
|
76
|
Garcia-Cuellar MP, Steger J, Füller E, Hetzner K, Slany RK. Pbx3 and Meis1 cooperate through multiple mechanisms to support Hox-induced murine leukemia. Haematologica 2015; 100:905-13. [PMID: 25911551 DOI: 10.3324/haematol.2015.124032] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/17/2015] [Indexed: 12/18/2022] Open
Abstract
Hox homeobox transcription factors drive leukemogenesis efficiently only in the presence of Meis or Pbx proteins. Here we show that Pbx3 and Meis1 need to dimerize to support Hox-induced leukemia and we analyze the molecular details of this cooperation. In the absence of Pbx3, Meis1 was highly unstable. As shown by a deletion analysis Meis1 degradation was contingent on a motif coinciding with the Pbx-binding domain. Either deletion of this sequence or binding to Pbx3 prolonged the half-life of Meis1 by preventing its ubiquitination. Meis1 break-down could also be blocked by inhibition of the ubiquitin proteasome system, indicating tight post-transcriptional control. In addition, Meis1 and Pbx3 cooperated genetically as overexpression of Pbx3 induced endogenous Meis1 transcription. These functional interactions translated into in vivo activity. Blocking Meis1/Pbx3 dimerization abrogated the ability to enhance proliferation and colony-forming cell numbers in primary cells transformed by Hoxa9. Furthermore, expression of Meis1 target genes Flt3 and Trib2 was dependent on Pbx3/Meis1 dimerization. This correlated with the requirement of Meis1 to bind Pbx3 in order to form high affinity DNA/Hoxa9/Meis1/Pbx3 complexes in vitro. Finally, kinetics and severity of disease in transplantation assays indicated that Pbx3/Meis1 dimers are rate-limiting factors for Hoxa9-induced leukemia.
Collapse
Affiliation(s)
| | - Julia Steger
- Department of Genetics, Friedrich-Alexander-University, Erlangen, Germany
| | - Elisa Füller
- Department of Genetics, Friedrich-Alexander-University, Erlangen, Germany
| | - Katrin Hetzner
- Department of Genetics, Friedrich-Alexander-University, Erlangen, Germany
| | - Robert K Slany
- Department of Genetics, Friedrich-Alexander-University, Erlangen, Germany
| |
Collapse
|
77
|
IQGAP1 and IQGAP3 Serve Individually Essential Roles in Normal Epidermal Homeostasis and Tumor Progression. J Invest Dermatol 2015; 135:2258-2265. [PMID: 25848980 PMCID: PMC4537348 DOI: 10.1038/jid.2015.140] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/20/2015] [Accepted: 03/26/2015] [Indexed: 01/11/2023]
Abstract
IQGAP scaffolding proteins regulate many essential cellular processes including growth factor receptor signaling, cytoskeletal rearrangement, adhesion and proliferation, and are highly expressed in many cancers. Using genetically engineered human skin tissue in vivo, we demonstrate that diminished, sub-physiologic expression of IQGAP1 or IQGAP3 is sufficient to maintain normal epidermal homeostasis, while significantly higher levels are required to support tumorigenesis. To target this tumor-specific IQGAP requirement in vivo, we engineered epidermal keratinocytes to express individual IQGAP protein domains designed to compete with endogenous IQGAPs for effector protein binding. Expression of the IQGAP1-IQM decoy domain in epidermal tissue in vivo inhibits oncogenic Ras-driven MAPK signaling and antagonizes tumorigenesis, without disrupting normal epidermal proliferation or differentiation. These findings define essential non-redundant roles for IQGAP1 and IQGAP3 in epidermis, and demonstrate the potential of IQGAP antagonism for cancer therapy.
Collapse
|
78
|
Mense SM, Barrows D, Hodakoski C, Steinbach N, Schoenfeld D, Su W, Hopkins BD, Su T, Fine B, Hibshoosh H, Parsons R. PTEN inhibits PREX2-catalyzed activation of RAC1 to restrain tumor cell invasion. Sci Signal 2015; 8:ra32. [PMID: 25829446 DOI: 10.1126/scisignal.2005840] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The tumor suppressor PTEN restrains cell migration and invasion by a mechanism that is independent of inhibition of the PI3K pathway and decreased activation of the kinase AKT. PREX2, a widely distributed GEF that activates the GTPase RAC1, binds to and inhibits PTEN. We used mouse embryonic fibroblasts and breast cancer cell lines to show that PTEN suppresses cell migration and invasion by blocking PREX2 activity. In addition to metabolizing the phosphoinositide PIP₃, PTEN inhibited PREX2-induced invasion by a mechanism that required the tail domain of PTEN, but not its lipid phosphatase activity. Fluorescent nucleotide exchange assays revealed that PTEN inhibited the GEF activity of PREX2 toward RAC1. PREX2 is a frequently mutated GEF in cancer, and examination of human tumor data showed that PREX2 mutation was associated with high PTEN expression. Therefore, we tested whether cancer-derived somatic PREX2 mutants, which accelerate tumor formation of immortalized melanocytes, were inhibited by PTEN. The three stably expressed, somatic PREX2 cancer mutants that we tested were resistant to PTEN-mediated inhibition of invasion but retained the ability to inhibit the lipid phosphatase activity of PTEN. In vitro analysis showed that PTEN did not block the GEF activity of two PREX2 cancer mutants and had a reduced binding affinity for the third. Thus, PTEN antagonized migration and invasion by restraining PREX2 GEF activity, and PREX2 mutants are likely selected in cancer to escape PTEN-mediated inhibition of invasion.
Collapse
Affiliation(s)
- Sarah M Mense
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Douglas Barrows
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA. Department of Pharmacology, Columbia University, New York, NY 10032, USA
| | - Cindy Hodakoski
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Nicole Steinbach
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA. Integrated Program in Cellular, Molecular, Structural, and Genetic Studies, Columbia University, New York, NY 10032, USA
| | - David Schoenfeld
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA. Integrated Program in Cellular, Molecular, Structural, and Genetic Studies, Columbia University, New York, NY 10032, USA
| | - William Su
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Benjamin D Hopkins
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Tao Su
- Herbert Irving Comprehensive Cancer Center, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | - Barry Fine
- Department of Medicine, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Hanina Hibshoosh
- Herbert Irving Comprehensive Cancer Center, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA. Department of Pathology and Cell Biology, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Ramon Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA.
| |
Collapse
|
79
|
Davis ZH, Verschueren E, Jang GM, Kleffman K, Johnson JR, Park J, Von Dollen J, Maher MC, Johnson T, Newton W, Jäger S, Shales M, Horner J, Hernandez RD, Krogan NJ, Glaunsinger BA. Global mapping of herpesvirus-host protein complexes reveals a transcription strategy for late genes. Mol Cell 2015; 57:349-60. [PMID: 25544563 PMCID: PMC4305015 DOI: 10.1016/j.molcel.2014.11.026] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/20/2014] [Accepted: 11/21/2014] [Indexed: 12/19/2022]
Abstract
Mapping host-pathogen interactions has proven instrumental for understanding how viruses manipulate host machinery and how numerous cellular processes are regulated. DNA viruses such as herpesviruses have relatively large coding capacity and thus can target an extensive network of cellular proteins. To identify the host proteins hijacked by this pathogen, we systematically affinity tagged and purified all 89 proteins of Kaposi's sarcoma-associated herpesvirus (KSHV) from human cells. Mass spectrometry of this material identified over 500 virus-host interactions. KSHV causes AIDS-associated cancers, and its interaction network is enriched for proteins linked to cancer and overlaps with proteins that are also targeted by HIV-1. We found that the conserved KSHV protein ORF24 binds to RNA polymerase II and brings it to viral late promoters by mimicking and replacing cellular TATA-box-binding protein (TBP). This is required for herpesviral late gene expression, a complex and poorly understood phase of the viral lifecycle.
Collapse
Affiliation(s)
- Zoe H Davis
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Division of Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Erik Verschueren
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gwendolyn M Jang
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevin Kleffman
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jeffrey R Johnson
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jimin Park
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - John Von Dollen
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - M Cyrus Maher
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tasha Johnson
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - William Newton
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stefanie Jäger
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael Shales
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Julie Horner
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, CA 95134, USA
| | - Ryan D Hernandez
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Britt A Glaunsinger
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
80
|
Lukic A, Uphill J, Brown CA, Beck J, Poulter M, Campbell T, Adamson G, Hummerich H, Whitfield J, Ponto C, Zerr I, Lloyd SE, Collinge J, Mead S. Rare structural genetic variation in human prion diseases. Neurobiol Aging 2015; 36:2004.e1-8. [PMID: 25726360 DOI: 10.1016/j.neurobiolaging.2015.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/22/2014] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
Prion diseases are a diverse group of neurodegenerative conditions, caused by the templated misfolding of prion protein. Aside from the strong genetic risk conferred by multiple variants of the prion protein gene (PRNP), several other variants have been suggested to confer risk in the most common type, sporadic Creutzfeldt-Jakob disease (sCJD) or in the acquired prion diseases. Large and rare copy number variants (CNVs) are known to confer risk in several related disorders including Alzheimer's disease (at APP), schizophrenia, epilepsy, mental retardation, and autism. Here, we report the first genome-wide analysis for CNV-associated risk using data derived from a recent international collaborative association study in sCJD (n = 1147 after quality control) and publicly available controls (n = 5427). We also investigated UK patients with variant Creutzfeldt-Jakob disease (n = 114) and elderly women from the Eastern Highlands of Papua New Guinea who proved highly resistant to the epidemic prion disease kuru, who were compared with healthy young Fore population controls (n = 395). There were no statistically significant alterations in the burden of CNVs >100, >500, or >1000 kb, duplications, or deletions in any disease group or geographic region. After correction for multiple testing, no statistically significant associations were found. A UK blood service control sample showed a duplication CNV that overlapped PRNP, but these were not found in prion disease. Heterozygous deletions of a 3' region of the PARK2 gene were found in 3 sCJD patients and no controls (p = 0.001, uncorrected). A cell-based prion infection assay did not provide supportive evidence for a role for PARK2 in prion disease susceptibility. These data are consistent with a modest impact of CNVs on risk of late-onset neurologic conditions and suggest that, unlike APP, PRNP duplication is not a causal high-risk mutation.
Collapse
Affiliation(s)
- Ana Lukic
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - James Uphill
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Craig A Brown
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - John Beck
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Mark Poulter
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Tracy Campbell
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Gary Adamson
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Holger Hummerich
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Jerome Whitfield
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Claudia Ponto
- Department of Neurology, Georg-August University Göttingen, Göttingen, Germany; German Center for Neurodegenrative Diseases (DZNE), Gottingen, Germany
| | - Inga Zerr
- Department of Neurology, Georg-August University Göttingen, Göttingen, Germany; German Center for Neurodegenrative Diseases (DZNE), Gottingen, Germany
| | - Sarah E Lloyd
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - John Collinge
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Simon Mead
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.
| |
Collapse
|
81
|
Freitag J, Heink S, Roth E, Wittmann J, Jäck HM, Kamradt T. Towards the generation of B-cell receptor retrogenic mice. PLoS One 2014; 9:e109199. [PMID: 25296340 PMCID: PMC4189916 DOI: 10.1371/journal.pone.0109199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/10/2014] [Indexed: 12/03/2022] Open
Abstract
Transgenic expression of B- and T-cell receptors (BCRs and TCRs, respectively) has been a standard tool to study lymphocyte development and function in vivo. The generation of transgenic mice is time-consuming and, therefore, a faster method to study the biology of defined lymphocyte receptors in vivo would be highly welcome. Using 2A peptide-linked multicistronic retroviral vectors to transduce stem cells, TCRs can be expressed rapidly in mice of any background. We aimed at adopting this retrogenic technology to the in vivo expression of BCRs. Using a well characterised BCR specific for hen egg lysozyme (HEL), we achieved surface expression of the retrogenically encoded BCR in a Rag-deficient pro B-cell line in vitro. In vivo, retrogenic BCRs were detectable only intracellularly but not on the surface of B cells from wild type or Rag2-deficient mice. This data, together with the fact that no BCR retrogenic mouse model has been published in the 7 years since the method was originally published for TCRs, strongly suggests that achieving BCR-expression in vivo with retrogenic technology is highly challenging if not impossible.
Collapse
MESH Headings
- Animals
- Cell Line
- Cells, Cultured
- Mice
- Mice, Transgenic
- Muramidase/genetics
- Muramidase/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Transfection
Collapse
Affiliation(s)
- Jenny Freitag
- Department of Immunology, University Hospital Jena, Jena, Germany
| | - Sylvia Heink
- Department of Immunology, University Hospital Jena, Jena, Germany
| | - Edith Roth
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Wittmann
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Kamradt
- Department of Immunology, University Hospital Jena, Jena, Germany
- * E-mail:
| |
Collapse
|
82
|
Brown CA, Schmidt C, Poulter M, Hummerich H, Klöhn PC, Jat P, Mead S, Collinge J, Lloyd SE. In vitro screen of prion disease susceptibility genes using the scrapie cell assay. Hum Mol Genet 2014; 23:5102-8. [PMID: 24833721 PMCID: PMC4159154 DOI: 10.1093/hmg/ddu233] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/10/2014] [Indexed: 11/29/2022] Open
Abstract
Prion diseases (transmissible spongiform encephalopathies) are fatal neurodegenerative diseases, including Creutzfeldt-Jakob disease in humans, scrapie in sheep and bovine spongiform encephalopathy in cattle. While genome-wide association studies in human and quantitative trait loci mapping in mice have provided evidence for multiple susceptibility genes, few of these have been confirmed functionally. Phenotyping mouse models is generally the method of choice. However, this is not a feasible option where many novel genes, without pre-existing models, would need to be tested. We have therefore developed and applied an in-vitro screen to triage and prioritize candidate modifier genes for more detailed future studies which is faster, far more cost effective and ethical relative to mouse bioassay models. An in vitro prion bioassay, the scrapie cell assay, uses a neuroblastoma-derived cell line (PK1) that is susceptible to RML prions and able to propagate prions at high levels. In this study, we have generated stable gene silencing and/or overexpressing PK1-derived cell lines to test whether perturbation of 14 candidate genes affects prion susceptibility. While no consistent differences were determined for seven genes, highly significant changes were detected for Zbtb38, Sorcs1, Stmn2, Hspa13, Fkbp9, Actr10 and Plg, suggesting that they play key roles in the fundamental processes of prion propagation or clearance. Many neurodegenerative diseases involve the accumulation of misfolded protein aggregates and 'prion-like' seeding and spread has been implicated in their pathogenesis. It is therefore expected that some of these prion-modifier genes may be of wider relevance in neurodegeneration.
Collapse
Affiliation(s)
- Craig A Brown
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Christian Schmidt
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Mark Poulter
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Holger Hummerich
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Peter-C Klöhn
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Parmjit Jat
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Simon Mead
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - John Collinge
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Sarah E Lloyd
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
83
|
Schoenen H, Huber A, Sonda N, Zimmermann S, Jantsch J, Lepenies B, Bronte V, Lang R. Differential control of Mincle-dependent cord factor recognition and macrophage responses by the transcription factors C/EBPβ and HIF1α. THE JOURNAL OF IMMUNOLOGY 2014; 193:3664-75. [PMID: 25156364 DOI: 10.4049/jimmunol.1301593] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Trehalose-6,6-dimycolate (TDM), the mycobacterial cord factor, and its synthetic analog Trehalose-6,6-dibehenate (TDB) bind to the C-type lectin receptors macrophage-inducible C-type lectin (Mincle) and Mcl to activate macrophages. Genetically, the transcriptional response to TDB/TDM has been defined to require FcRγ-Syk-Card9 signaling. However, TDB/TDM-triggered kinase activation has not been studied well, and it is largely unknown which transcriptional regulators bring about inflammatory gene expression. In this article, we report that TDB/TDM caused only weak Syk-phosphorylation in resting macrophages, consistent with low basal Mincle expression. However, LPS-priming caused MYD88-dependent upregulation of Mincle, resulting in enhanced TDB/TDM-induced kinase activation and more rapid inflammatory gene expression. TLR-induced Mincle expression partially circumvented the requirement for Mcl in the response to TDB/TDM. To dissect transcriptional responses to TDB/TDM, we mined microarray data and identified early growth response (Egr) family transcription factors as direct Mincle target genes, whereas upregulation of Cebpb and Hif1a required new protein synthesis. Macrophages and dendritic cells lacking C/EBPβ showed nearly complete abrogation of TDB/TDM responsiveness, but also failed to upregulate Mincle. Retroviral rescue of Mincle expression in Cebpb-deficient cells restored induction of Egr1, but not of G-CSF. This pattern of C/EBPβ dependence was also observed after stimulation with the Dectin-1 ligand Curdlan. Inducible expression of hypoxia-inducible factor 1α (HIF1α) also required C/EBPβ. In turn, HIF1α was not required for Mincle expression, kinase activation, and Egr1 or Csf3 expression, but critically contributed to NO production. Taken together, we identify C/EBPβ as central hub in Mincle expression and inflammatory gene induction, whereas HIF1α controls Nos2 expression. C/EBPβ also connects TLR signals to cord factor responsiveness through MYD88-dependent upregulation of Mincle.
Collapse
Affiliation(s)
- Hanne Schoenen
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Alexandra Huber
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Nada Sonda
- Oncology and Immunology Section, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128, Padua, Italy
| | - Stephanie Zimmermann
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; Freie Universität Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; Institut für Klinische Mikrobiologie und Hygiene, Universitätsklinikum Regensburg, 93053 Regensburg, Germany; and
| | - Bernd Lepenies
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; Freie Universität Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany
| | - Vincenzo Bronte
- Immunology Section, Department of Pathology, Verona University Hospital, University of Verona, 37134 Verona, Italy
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
| |
Collapse
|
84
|
Nikolaisen J, Nilsson LIH, Pettersen IKN, Willems PHGM, Lorens JB, Koopman WJH, Tronstad KJ. Automated quantification and integrative analysis of 2D and 3D mitochondrial shape and network properties. PLoS One 2014; 9:e101365. [PMID: 24988307 PMCID: PMC4079598 DOI: 10.1371/journal.pone.0101365] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 06/05/2014] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial morphology and function are coupled in healthy cells, during pathological conditions and (adaptation to) endogenous and exogenous stress. In this sense mitochondrial shape can range from small globular compartments to complex filamentous networks, even within the same cell. Understanding how mitochondrial morphological changes (i.e. “mitochondrial dynamics”) are linked to cellular (patho) physiology is currently the subject of intense study and requires detailed quantitative information. During the last decade, various computational approaches have been developed for automated 2-dimensional (2D) analysis of mitochondrial morphology and number in microscopy images. Although these strategies are well suited for analysis of adhering cells with a flat morphology they are not applicable for thicker cells, which require a three-dimensional (3D) image acquisition and analysis procedure. Here we developed and validated an automated image analysis algorithm allowing simultaneous 3D quantification of mitochondrial morphology and network properties in human endothelial cells (HUVECs). Cells expressing a mitochondria-targeted green fluorescence protein (mitoGFP) were visualized by 3D confocal microscopy and mitochondrial morphology was quantified using both the established 2D method and the new 3D strategy. We demonstrate that both analyses can be used to characterize and discriminate between various mitochondrial morphologies and network properties. However, the results from 2D and 3D analysis were not equivalent when filamentous mitochondria in normal HUVECs were compared with circular/spherical mitochondria in metabolically stressed HUVECs treated with rotenone (ROT). 2D quantification suggested that metabolic stress induced mitochondrial fragmentation and loss of biomass. In contrast, 3D analysis revealed that the mitochondrial network structure was dissolved without affecting the amount and size of the organelles. Thus, our results demonstrate that 3D imaging and quantification are crucial for proper understanding of mitochondrial shape and topology in non-flat cells. In summary, we here present an integrative method for unbiased 3D quantification of mitochondrial shape and network properties in mammalian cells.
Collapse
Affiliation(s)
| | | | | | - Peter H. G. M. Willems
- Department of Biochemistry (286), Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - James B. Lorens
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Werner J. H. Koopman
- Department of Biochemistry (286), Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Karl J. Tronstad
- Department of Biomedicine, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
85
|
Murine cytomegalovirus virion-associated protein M45 mediates rapid NF-κB activation after infection. J Virol 2014; 88:9963-75. [PMID: 24942588 DOI: 10.1128/jvi.00684-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Murine cytomegalovirus (MCMV) rapidly induces activation of nuclear factor κB (NF-κB) upon infection of host cells. After a transient phase of activation, the MCMV M45 protein blocks all canonical NF-κB-activating pathways by inducing the degradation of the gamma subunit of the inhibitor of κB kinase complex (IKKγ; commonly referred to as the NF-κB essential modulator [NEMO]). Here we show that the viral M45 protein also mediates rapid NF-κB activation immediately after infection. MCMV mutants lacking M45 or expressing C-terminally truncated M45 proteins induced neither NF-κB activation nor transcription of NF-κB-dependent genes within the first 3 h of infection. Rapid NF-κB activation was absent in MCMV-infected NEMO-deficient fibroblasts, indicating that activation occurs at or upstream of the IKK complex. NF-κB activation was strongly reduced in murine fibroblasts lacking receptor-interacting protein 1 (RIP1), a known M45-interacting protein, but was restored upon complementation with murine RIP1. However, the ability of M45 to interact with RIP1 and NEMO was not sufficient to induce NF-κB activation upon infection. In addition, incorporation of the M45 protein into virions was required. This was dependent on a C-terminal region of M45, which is not required for interaction with RIP1 and NEMO. We propose a model in which M45 delivered by viral particles activates NF-κB, presumably involving an interaction with RIP1 and NEMO. Later in infection, expression of M45 induces the degradation of NEMO and the shutdown of canonical NF-κB activation. IMPORTANCE Transcription factor NF-κB is an important regulator of innate and adaptive immunity. Its activation can be beneficial or detrimental for viral pathogens. Therefore, many viruses interfere with NF-κB signaling by stimulating or inhibiting the activation of this transcription factor. Cytomegaloviruses, opportunistic pathogens that cause lifelong infections in their hosts, activate NF-κB rapidly and transiently upon infection but block NF-κB signaling soon thereafter. Here we report the surprising finding that the murine cytomegalovirus protein M45, a component of viral particles, plays a dual role in NF-κB signaling. It not only blocks NF-κB signaling later in infection but also triggers the rapid activation of NF-κB immediately following virus entry into host cells. Both activation and inhibition involve M45 interaction with the cellular signaling mediators RIP1 and NEMO. Similar dual functions in NF-κB signaling are likely to be found in other viral proteins.
Collapse
|
86
|
Torrente M, Guetg A, Sass JO, Arps L, Ruckstuhl L, Camargo SMR, Verrey F. Amino acids regulate transgene expression in MDCK cells. PLoS One 2014; 9:e96823. [PMID: 24797296 PMCID: PMC4010483 DOI: 10.1371/journal.pone.0096823] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/11/2014] [Indexed: 11/18/2022] Open
Abstract
Gene expression and cell growth rely on the intracellular concentration of amino acids, which in metazoans depends on extracellular amino acid availability and transmembrane transport. To investigate the impact of extracellular amino acid concentrations on the expression of a concentrative amino acid transporter, we overexpressed the main kidney proximal tubule luminal neutral amino acid transporter B0AT1-collectrin (SLC6A19-TMEM27) in MDCK cell epithelia. Exogenously expressed proteins co-localized at the luminal membrane and mediated neutral amino acid uptake. However, the transgenes were lost over few cell culture passages. In contrast, the expression of a control transgene remained stable. To test whether this loss was due to inappropriately high amino acid uptake, freshly transduced MDCK cell lines were cultivated either with physiological amounts of amino acids or with the high concentration found in standard cell culture media. Expression of exogenous transporters was unaffected by physiological amino acid concentration in the media. Interestingly, mycoplasma infection resulted in a significant increase in transgene expression and correlated with the rapid metabolism of L-arginine. However, L-arginine metabolites were shown to play no role in transgene expression. In contrast, activation of the GCN2 pathway revealed by an increase in eIF2α phosphorylation may trigger transgene derepression. Taken together, high extracellular amino acid concentration provided by cell culture media appears to inhibit the constitutive expression of concentrative amino acid transporters whereas L-arginine depletion by mycoplasma induces the expression of transgenes possibly via stimulation of the GCN2 pathway.
Collapse
Affiliation(s)
- Marta Torrente
- Institute of Physiology and Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Adriano Guetg
- Institute of Physiology and Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Jörn Oliver Sass
- Division of Clinical Chemistry & Biochemistry, University Children's Hospital, Zurich, Zurich, Switzerland
| | - Lisa Arps
- Institute of Physiology and Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Lisa Ruckstuhl
- Institute of Physiology and Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Simone M. R. Camargo
- Institute of Physiology and Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - François Verrey
- Institute of Physiology and Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
87
|
Lorenzo IM, Fleischer A, Bachiller D. Generation of mouse and human induced pluripotent stem cells (iPSC) from primary somatic cells. Stem Cell Rev Rep 2014; 9:435-50. [PMID: 23104133 DOI: 10.1007/s12015-012-9412-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cellular reprogramming consists of the conversion of differentiated cells into pluripotent cells; the so-called induced Pluripotent Stem Cells. iPSC are amenable to in vitro manipulation and, in theory, direct production of any differentiated cell type. Furthermore, iPSC can be obtained from sick individuals and subsequently used for disease modeling, drug discovery and regenerative treatments. iPSC production was first achieved by transducing, with the use of retroviral vectors, four specific transcription factors: Oct4, Klf4, Sox2 and c-Myc (OKSM), into primary cells in culture Takahashi and Yamanaka, (Cell 126(4):663-676, 2006). Many alternative protocols have since been proposed: repeated transfections of expression plasmids containing the four pluripotency-associated genes Okita et al. (Science 322(5903):949-953, 2008), lentiviral delivery of the four factors Sommer et al. (Stem Cells 27(3):543-549, 2009), Sendai virus delivery Fusaki et al. (Proceedings of the Japan Academy. Series B, Physical and Biological Sciences 85(8):348-362, 2009), removal of the reprogramming vectors by 'piggyBac' transposition Woltjen et al. (Nature 458(7239):766-770, 2009); Kaji et al. (Nature 458(7239):771-775, 2009), Cre-recombinase excisable viruses Soldner et al. (Cell 136(5):964-977, 2009), episomal vectors Yu et al. (Science 324(5928):797-801, 2009), cell-penetrating reprogramming proteins Zhou et al. (Stem Cells 4(5):381-384, 2009), mammalian artificial chromosomes Hiratsuka et al. (PLoS One 6(10):e25961, 2011) synthetically modified mRNAs Warren et al. (Scientific Reports 2:657, 2012), miRNA Anokye-Danso et al. (Cell Stem Cell 8(4):376-388, 2009); however, although some of these methods are commercially available, in general they still need to attain the reproducibility and reprogramming efficiency required for routine applications Mochiduki and Okita (Biotechnol Journal 7(6):789-797, 2012). Herein we explain, in four detailed protocols, the isolation of mouse and human somatic cells and their reprogramming into iPSC. All-encompassing instructions, not previously published in a single document, are provided for mouse and human iPSC colony isolation and derivation. Although mouse and human iPSC share similarities in the cellular reprogramming process and culture, both cell types need to be handled differently.
Collapse
Affiliation(s)
- I M Lorenzo
- Caubet-Cimera Foundation, Centre for Advanced Respiratory Medicine, Crta. Sóller Km12, 07110 Bunyola, Illes Balears, Mallorca, Spain
| | | | | |
Collapse
|
88
|
Human α-defensin expression is not dependent on CCAAT/enhancer binding protein-ε in a murine model. PLoS One 2014; 9:e92471. [PMID: 24658030 PMCID: PMC3962403 DOI: 10.1371/journal.pone.0092471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 02/24/2014] [Indexed: 11/19/2022] Open
Abstract
Specific granule deficiency (SGD) is a rare congenital disorder characterized by recurrent infections. The disease is caused by inactivating mutations of the CCAAT/enhancer binding protein-ε (C/EBP-ε) gene. As a consequence, specific and gelatinase granules lack most matrix proteins. Furthermore, azurophil granules contain diminished amounts of their most abundant proteins, α-defensins, also known as human neutrophil peptides (HNPs). In accordance with this, in vitro models have demonstrated induction of HNPs by C/EBP-ε. Since mice do not express myeloid defensins, they cannot per se be used to characterize the role of C/EBP-ε in controlling HNP expression in vivo. We therefore crossed a transgenic HNP-1-expressing mouse with the Cebpe-/- mouse to study the in vivo significance of C/EBP-ε for HNP-1 transcription and expression. Surprisingly, neither expression nor processing of HNP-1 was affected by lack of C/EBP-ε in these mice. Transduction of C/EBP-ε into primary bone marrow cells from HNP-1 mice induced some HNP-1 expression, but not to levels comparable to expression human cells. Taken together, our data infer that the HNP-1 of the transgenic mouse does not show an expression pattern equivalent to endogenous secondary granule proteins. This limits the use of these transgenic mice as a model for human conditions.
Collapse
|
89
|
Wallin RPA, Sundquist VS, Bråkenhielm E, Cao Y, Ljunggren HG, Grandien A. Angiostatic effects of NK cell-derived IFN-γ counteracted by tumour cell Bcl-xL expression. Scand J Immunol 2014; 79:90-7. [PMID: 24313893 DOI: 10.1111/sji.12134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 10/16/2013] [Indexed: 01/13/2023]
Abstract
Anti-apoptotic proteins that block death receptor-mediated apoptosis favour tumour evasion of the immune system, leading to enhanced tumour progression. However, it is unclear whether blocking the mitochondrial pathway of apoptosis will protect tumours from immune cell attack. Here, we report that the anti-apoptotic protein Bcl-xL , known for its ability to block the mitochondrial pathway of apoptosis, exerted tumour-progressive activity in a murine lymphoma model. Bcl-xL overexpressing tumours exhibited a more aggressive development than control tumours. Surprisingly, Bcl-xL protection of tumours from NK cell-mediated attack did not involve protection from NK cell-mediated cytotoxicity. Instead, Bcl-xL -blocked apoptosis resulting from hypoxia and/or nutrient loss associated with the inhibition of angiogenesis caused by NK cell-secreted IFN-γ. These results support the notion that NK cells may inhibit tumour growth also by mechanisms other than direct cytotoxicity. Hence, the present results unravel a pathway by which tumours with a block in the mitochondrial pathway of apoptosis can evade the immune system.
Collapse
Affiliation(s)
- R P A Wallin
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden; Department of Microbiology Tumor- and Cell- Biology, Karolinska Institutet, Stockholm, Sweden; Indonesia International Institute for Life-Sciences, Jakarta Timur, Jakarta, Indonesia
| | | | | | | | | | | |
Collapse
|
90
|
Do TV, Xiao F, Bickel LE, Klein-Szanto AJ, Pathak HB, Hua X, Howe C, O’Brien S, Maglaty M, Ecsedy JA, Litwin S, Golemis EA, Schilder RJ, Godwin AK, Connolly DC. Aurora kinase A mediates epithelial ovarian cancer cell migration and adhesion. Oncogene 2014; 33:539-49. [PMID: 23334327 PMCID: PMC3640671 DOI: 10.1038/onc.2012.632] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/09/2012] [Accepted: 11/30/2012] [Indexed: 12/26/2022]
Abstract
Aurora kinase A (AURKA) localizes to centrosomes and mitotic spindles where it mediates mitotic progression and chromosomal stability. Overexpression of AURKA is common in cancer, resulting in acquisition of alternate non-mitotic functions. In the current study, we identified a novel role for AURKA in regulating ovarian cancer cell dissemination and evaluated the efficacy of an AURKA-selective small molecule inhibitor, alisertib (MLN8237), as a single agent and combined with paclitaxel using an orthotopic xenograft model of epithelial ovarian cancer (EOC). Ovarian carcinoma cell lines were used to evaluate the effects of AURKA inhibition and overexpression on migration and adhesion. Pharmacological or RNA interference-mediated inhibition of AURKA significantly reduced ovarian carcinoma cell migration and adhesion and the activation-associated phosphorylation of the cytoskeletal regulatory protein SRC at tyrosine 416 (pSRC(Y416)). Conversely, enforced expression of AURKA resulted in increased migration, adhesion and activation of SRC in cultured cells. In vivo tumor growth and dissemination were inhibited by alisertib treatment as a single agent. Moreover, combination of alisertib with paclitaxel, an agent commonly used in treatment of EOC, resulted in more potent inhibition of tumor growth and dissemination compared with either drug alone. Taken together, these findings support a role for AURKA in EOC dissemination by regulating migration and adhesion. They also point to the potential utility of combining AURKA inhibitors with taxanes as a therapeutic strategy for the treatment of EOC patients.
Collapse
Affiliation(s)
- Thuy-Vy Do
- Women’s Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Fang Xiao
- Women’s Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Laura E. Bickel
- Women’s Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
| | | | - Harsh B. Pathak
- Women’s Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Xiang Hua
- Transgenic Facility, Fox Chase Cancer Center, Philadelphia, PA
| | - Caitlin Howe
- Women’s Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Shane O’Brien
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Marisa Maglaty
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Jeffrey A. Ecsedy
- Department of Translational Medicine, Millennium Pharmaceuticals Inc., Cambridge, MA
| | - Samuel Litwin
- Biostatistics Facility, Fox Chase Cancer Center, Philadelphia, PA
| | - Erica A. Golemis
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Russell J. Schilder
- Women’s Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA
- Department of Gynecologic Medical Oncology, Thomas Jefferson University, Philadelphia, PA
| | - Andrew K. Godwin
- Women’s Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Denise C. Connolly
- Women’s Cancer Program, Fox Chase Cancer Center, Philadelphia, PA
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA
| |
Collapse
|
91
|
ter Braak B, Siezen CLE, Kannegieter N, Koedoot E, van de Water B, van der Laan JW. Classifying the adverse mitogenic mode of action of insulin analogues using a novel mechanism-based genetically engineered human breast cancer cell panel. Arch Toxicol 2014; 88:953-66. [PMID: 24464500 DOI: 10.1007/s00204-014-1201-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 01/15/2014] [Indexed: 12/29/2022]
Abstract
Insulin analogues are widely used in clinical practice. Modifications on the insulin molecular structure can affect the affinity and activation towards two closely related receptor tyrosine kinases: the insulin receptor (INSR) and the insulin-like growth factor 1 receptor (IGF1R). A switch towards higher IGF1R affinity is likely to emphasize mitogenesis rather than glucose metabolism. Relevant well-validated experimental tools to address the insulin analogue activation of either INSR or IGF1R are missing. We have established a panel of human MCF-7 breast cancer cell lines either ectopically expressing the INSR (A or B isoform) in conjunction with a stable knockdown of the IGF1R or ectopically expressing the IGF1R in conjunction with a stable knockdown of the INSR. In these cell lines, we systematically evaluated the INSR and IGF1R receptor activation and downstream mitogenic signalling of all major clinical relevant insulin analogues in comparison with insulin and IGF1R. While most insulin analogues primarily activated the INSR, the mitogenic activation pattern of glargine was highly similar to IGF1 and insulin AspB10, known to bind IGF1R and induce carcinogenesis. Yet, in a long-term proliferation assay, the proliferative effect of glargine was not much different from regular insulin or other insulin analogues. This was caused by the rapid enzymatic conversion into its two metabolic active metabolites M1 and M2, with reduced mitogenic signalling through the IGF1R. In summary, based on our new cell models, we identified a similar mitogenic potency of insulin glargine and AspB10. However, rapid enzymatic conversion of glargine precludes a sustained activation of the IGF1R signalling pathway.
Collapse
Affiliation(s)
- B ter Braak
- Division of Toxicology, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
92
|
Kempf A, Tews B, Arzt ME, Weinmann O, Obermair FJ, Pernet V, Zagrebelsky M, Delekate A, Iobbi C, Zemmar A, Ristic Z, Gullo M, Spies P, Dodd D, Gygax D, Korte M, Schwab ME. The sphingolipid receptor S1PR2 is a receptor for Nogo-a repressing synaptic plasticity. PLoS Biol 2014; 12:e1001763. [PMID: 24453941 PMCID: PMC3891622 DOI: 10.1371/journal.pbio.1001763] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/02/2013] [Indexed: 01/11/2023] Open
Abstract
This study identifies a GPCR, S1PR2, as a receptor for the Nogo-A-Δ20 domain of the membrane protein Nogo-A, which inhibits neuronal growth and synaptic plasticity. Nogo-A is a membrane protein of the central nervous system (CNS) restricting neurite growth and synaptic plasticity via two extracellular domains: Nogo-66 and Nogo-A-Δ20. Receptors transducing Nogo-A-Δ20 signaling remained elusive so far. Here we identify the G protein-coupled receptor (GPCR) sphingosine 1-phosphate receptor 2 (S1PR2) as a Nogo-A-Δ20-specific receptor. Nogo-A-Δ20 binds S1PR2 on sites distinct from the pocket of the sphingolipid sphingosine 1-phosphate (S1P) and signals via the G protein G13, the Rho GEF LARG, and RhoA. Deleting or blocking S1PR2 counteracts Nogo-A-Δ20- and myelin-mediated inhibition of neurite outgrowth and cell spreading. Blockade of S1PR2 strongly enhances long-term potentiation (LTP) in the hippocampus of wild-type but not Nogo-A−/− mice, indicating a repressor function of the Nogo-A/S1PR2 axis in synaptic plasticity. A similar increase in LTP was also observed in the motor cortex after S1PR2 blockade. We propose a novel signaling model in which a GPCR functions as a receptor for two structurally unrelated ligands, a membrane protein and a sphingolipid. Elucidating Nogo-A/S1PR2 signaling platforms will provide new insights into regulation of synaptic plasticity. Recent studies have demonstrated an important role of Nogo-A signaling in the repression of structural and synaptic plasticity in mature neuronal networks of the central nervous system. These insights extended our understanding of Nogo-A's inhibitory function far beyond its well-studied role as axonal-growth inhibitor. Repression is mediated via two different Nogo-A extracellular domains: Nogo-66 and Nogo-A-Δ20. Here, we identify the G-protein coupled receptor S1PR2 as a high-affinity receptor for Nogo-A-Δ20 and demonstrate that S1PR2 binds this domain with sites different from the recently proposed S1P binding pocket. Interfering with S1PR2 activity, either pharmacologically or genetically, prevented Nogo-A-Δ20-mediated inhibitory effects. Similar results were obtained when we blocked G13, LARG, and RhoA, components of the downstream signaling pathway. These findings revealed a strong increase in hippocampal and cortical synaptic plasticity when acutely interfering with Nogo-A/S1PR2 signaling, similar to previous results obtained by blocking Nogo-A. We thus provide a novel biological concept of multi-ligand GPCR signaling in which this sphingolipid-activated GPCR is also bound and activated by the high molecular weight membrane protein Nogo-A.
Collapse
Affiliation(s)
- Anissa Kempf
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Bjoern Tews
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Michael E. Arzt
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Oliver Weinmann
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Franz J. Obermair
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Vincent Pernet
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Marta Zagrebelsky
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig, Germany
| | - Andrea Delekate
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig, Germany
| | - Cristina Iobbi
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig, Germany
| | - Ajmal Zemmar
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Zorica Ristic
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Miriam Gullo
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Peter Spies
- School of Life Sciences, University of Applied Life Sciences Northwestern Switzerland, Muttenz, Switzerland
| | - Dana Dodd
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Daniel Gygax
- School of Life Sciences, University of Applied Life Sciences Northwestern Switzerland, Muttenz, Switzerland
| | - Martin Korte
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Braunschweig, Germany
| | - Martin E. Schwab
- Brain Research Institute, University of Zurich, and Dept. of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
93
|
Choi J, Landrette SF, Wang T, Evans P, Bacchiocchi A, Bjornson R, Cheng E, Stiegler AL, Gathiaka S, Acevedo O, Boggon TJ, Krauthammer M, Halaban R, Xu T. Identification of PLX4032-resistance mechanisms and implications for novel RAF inhibitors. Pigment Cell Melanoma Res 2014; 27:253-62. [PMID: 24283590 PMCID: PMC4065135 DOI: 10.1111/pcmr.12197] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/26/2013] [Indexed: 02/02/2023]
Abstract
BRAF inhibitors improve melanoma patient survival, but resistance invariably develops. Here we report the discovery of a novel BRAF mutation that confers resistance to PLX4032 employing whole-exome sequencing of drug-resistant BRAFV600K melanoma cells. We further describe a new screening approach, a genome-wide piggyBac mutagenesis screen that revealed clinically relevant aberrations (N-terminal BRAF truncations and CRAF overexpression). The novel BRAF mutation, a Leu505 to His substitution (BRAFL505H), is the first resistance-conferring second-site mutation identified in BRAF mutant cells. The mutation replaces a small nonpolar amino acid at the BRAF-PLX4032 interface with a larger polar residue. Moreover, we show that BRAFL505H, found in human prostate cancer, is itself a MAPK-activating, PLX4032-resistant oncogenic mutation. Lastly, we demonstrate that the PLX4032-resistant melanoma cells are sensitive to novel, next-generation BRAF inhibitors, especially the ‘paradox-blocker’ PLX8394, supporting its use in clinical trials for treatment of melanoma patients with BRAF-mutations.
Collapse
Affiliation(s)
- Jaehyuk Choi
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Preston GC, Feijoo-Carnero C, Schurch N, Cowling VH, Cantrell DA. The impact of KLF2 modulation on the transcriptional program and function of CD8 T cells. PLoS One 2013; 8:e77537. [PMID: 24155966 PMCID: PMC3796494 DOI: 10.1371/journal.pone.0077537] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 09/03/2013] [Indexed: 11/24/2022] Open
Abstract
Krüppel-like factor 2 (KLF2) is a transcription factor that is highly expressed in quiescent T lymphocytes and downregulated in effector T cells. We now show that antigen receptor engagement downregulates KLF2 expression in a graded response determined by the affinity of T cell antigen receptor (TCR) ligand and the integrated activation of protein kinase B and the MAP kinases ERK1/2. The present study explores the importance of KLF2 downregulation and reveals that the loss of KLF2 controls a select portion of the CD8 effector T cell transcriptional program. In particular, KLF2 loss is required for CD8 T cells to express the inflammatory chemokine receptor CXCR3 and for maximum clonal expansion of T cells. KLF2 thus negatively controls the ability of CD8 T cells to respond to the CXCR3 ligand CXCL10. Strikingly, the KLF2 threshold for restraining expression of CXCR3 is very low and quite distinct to the KLF2 threshold for restraining T cell proliferation. KLF2 is thus an analogue (tunable) not a digital (on/off) cellular switch where the magnitude of KLF2 expression differentially modifies the T cell responses.
Collapse
Affiliation(s)
- Gavin C. Preston
- Department of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Carmen Feijoo-Carnero
- Department of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Nick Schurch
- Data Analysis Group, Department of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, United Kingdom
| | - Victoria H. Cowling
- Department of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Doreen A. Cantrell
- Department of Cell Signalling & Immunology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
95
|
Franceschetti T, Kessler CB, Lee SK, Delany AM. miR-29 promotes murine osteoclastogenesis by regulating osteoclast commitment and migration. J Biol Chem 2013; 288:33347-60. [PMID: 24085298 DOI: 10.1074/jbc.m113.484568] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Osteoclast differentiation is regulated by transcriptional, post-transcriptional, and post-translational mechanisms. MicroRNAs are fundamental post-transcriptional regulators of gene expression. The function of the miR-29 (a/b/c) family in cells of the osteoclast lineage is not well understood. In primary cultures of mouse bone marrow-derived macrophages, inhibition of miR-29a, -29b, or -29c diminished formation of TRAP (tartrate-resistant acid phosphatase-positive) multinucleated osteoclasts, and the osteoclasts were smaller. Quantitative RT-PCR showed that all miR-29 family members increased during osteoclast differentiation, in concert with mRNAs for the osteoclast markers Trap (Acp5) and cathepsin K. Similar regulation was observed in the monocytic cell line RAW264.7. In stably transduced RAW264.7 cell lines expressing an inducible miR-29 competitive inhibitor (sponge construct), miR-29 knockdown impaired osteoclastic commitment and migration of pre-osteoclasts. However, miR-29 knockdown did not affect cell viability, actin ring formation, or apoptosis in mature osteoclasts. To better understand how miR-29 regulates osteoclast function, we validated miR-29 target genes using Luciferase 3'-UTR reporter assays and specific miR-29 inhibitors. We demonstrated that miR-29 negatively regulates RNAs critical for cytoskeletal organization, including Cdc42 (cell division control protein 42) and Srgap2 (SLIT-ROBO Rho GTPase-activating protein 2). Moreover, miR-29 targets RNAs associated with the macrophage lineage: Gpr85 (G protein-coupled receptor 85), Nfia (nuclear factor I/A), and Cd93. In addition, Calcr (calcitonin receptor), which regulates osteoclast survival and resorption, is a novel miR-29 target. Thus, miR-29 is a positive regulator of osteoclast formation and targets RNAs important for cytoskeletal organization, commitment, and osteoclast function. We hypothesize that miR-29 controls the tempo and amplitude of osteoclast differentiation.
Collapse
|
96
|
Cellular localization and processing of primary transcripts of exonic microRNAs. PLoS One 2013; 8:e76647. [PMID: 24073292 PMCID: PMC3779153 DOI: 10.1371/journal.pone.0076647] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 08/30/2013] [Indexed: 12/31/2022] Open
Abstract
Processing of miRNAs occurs simultaneous with the transcription and splicing of their primary transcripts. For the small subset of exonic miRNAs it is unclear if the unspliced and/or spliced transcripts are used for miRNA biogenesis. We assessed endogenous levels and cellular location of primary transcripts of three exonic miRNAs. The ratio between unspliced and spliced transcripts varied markedly, i.e. >1 for BIC, <1 for pri-miR-146a and variable for pri-miR-22. Endogenous unspliced transcripts were located almost exclusively in the nucleus and thus available for miRNA processing for all three miRNAs. Endogenous spliced pri-miRNA transcripts were present both in the nucleus and in the cytoplasm and thus only partly available for miRNA processing. Overexpression of constructs containing the 5’ upstream exonic or intronic sequence flanking pre-miR-155 resulted in strongly enhanced miR-155 levels, indicating that the flanking sequence does not affect processing efficiency. Exogenously overexpressed full-length spliced BIC transcripts were present both in the nucleus and in the cytoplasm, were bound by the Microprocessor complex and resulted in enhanced miR-155 levels. We conclude that both unspliced and spliced transcripts of exonic miRNAs can be used for pre-miRNA cleavage. Splicing and cytoplasmic transport of spliced transcripts may present a mechanism to regulate levels of exonic microRNAs.
Collapse
|
97
|
Liu H, Xiao F, Serebriiskii IG, O’Brien SW, Maglaty MA, Astsaturov I, Litwin S, Martin LP, Proia DA, Golemis EA, Connolly DC. Network analysis identifies an HSP90-central hub susceptible in ovarian cancer. Clin Cancer Res 2013; 19:5053-67. [PMID: 23900136 PMCID: PMC3778161 DOI: 10.1158/1078-0432.ccr-13-1115] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE Epithelial ovarian cancer (EOC) is usually detected at an advanced stage and is frequently lethal. Although many patients respond to initial surgery and standard chemotherapy consisting of a platinum-based agent and a taxane, most experience recurrence and eventually treatment-resistant disease. Although there have been numerous efforts to apply protein-targeted agents in EOC, these studies have so far documented little efficacy. Our goal was to identify broadly susceptible signaling proteins or pathways in EOC. EXPERIMENTAL DESIGN As a new approach, we conducted data-mining meta-analyses integrating results from multiple siRNA screens to identify gene targets that showed significant inhibition of cell growth. On the basis of this meta-analysis, we established that many genes with such activity were clients of the protein chaperone HSP90. We therefore assessed ganetespib, a clinically promising second-generation small-molecule HSP90 inhibitor, for activity against EOC, both as a single agent and in combination with cytotoxic and targeted therapeutic agents. RESULTS Ganetespib significantly reduced cell growth, induced cell-cycle arrest and apoptosis in vitro, inhibited growth of orthotopic xenografts and spontaneous ovarian tumors in transgenic mice in vivo, and inhibited expression and activation of numerous proteins linked to EOC progression. Importantly, paclitaxel significantly potentiated ganetespib activity in cultured cells and tumors. Moreover, combined treatment of cells with ganetespib and siRNAs or small molecules inhibiting genes identified in the meta-analysis in several cases resulted in enhanced activity. CONCLUSION These results strongly support investigation of ganetespib, a single-targeted agent with effects on numerous proteins and pathways, in augmenting standard EOC therapies.
Collapse
Affiliation(s)
- Hanqing Liu
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Fang Xiao
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ilya G. Serebriiskii
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Shane W. O’Brien
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Marisa A. Maglaty
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Igor Astsaturov
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Samuel Litwin
- Biostatistics Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lainie P. Martin
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Erica A. Golemis
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Denise C. Connolly
- Developmental Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
98
|
Stahl S, Burkhart JM, Hinte F, Tirosh B, Mohr H, Zahedi RP, Sickmann A, Ruzsics Z, Budt M, Brune W. Cytomegalovirus downregulates IRE1 to repress the unfolded protein response. PLoS Pathog 2013; 9:e1003544. [PMID: 23950715 PMCID: PMC3738497 DOI: 10.1371/journal.ppat.1003544] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/21/2013] [Indexed: 02/07/2023] Open
Abstract
During viral infection, a massive demand for viral glycoproteins can overwhelm the capacity of the protein folding and quality control machinery, leading to an accumulation of unfolded proteins in the endoplasmic reticulum (ER). To restore ER homeostasis, cells initiate the unfolded protein response (UPR) by activating three ER-to-nucleus signaling pathways, of which the inositol-requiring enzyme 1 (IRE1)-dependent pathway is the most conserved. To reduce ER stress, the UPR decreases protein synthesis, increases degradation of unfolded proteins, and upregulates chaperone expression to enhance protein folding. Cytomegaloviruses, as other viral pathogens, modulate the UPR to their own advantage. However, the molecular mechanisms and the viral proteins responsible for UPR modulation remained to be identified. In this study, we investigated the modulation of IRE1 signaling by murine cytomegalovirus (MCMV) and found that IRE1-mediated mRNA splicing and expression of the X-box binding protein 1 (XBP1) is repressed in infected cells. By affinity purification, we identified the viral M50 protein as an IRE1-interacting protein. M50 expression in transfected or MCMV-infected cells induced a substantial downregulation of IRE1 protein levels. The N-terminal conserved region of M50 was found to be required for interaction with and downregulation of IRE1. Moreover, UL50, the human cytomegalovirus (HCMV) homolog of M50, affected IRE1 in the same way. Thus we concluded that IRE1 downregulation represents a previously undescribed viral strategy to curb the UPR. Viruses abuse the cell's protein synthesis and folding machinery to produce large amounts of viral proteins. This enforced synthesis overloads the cell's capacity and leads to an accumulation of unfolded proteins in the endoplasmic reticulum (ER) resulting in ER stress, which can compromise cell viability. To restore ER homeostasis, cells initiate the unfolded protein response (UPR) to reduce protein synthesis, increase degradation of unfolded proteins, and upregulate chaperone expression for enhanced protein folding. The most conserved branch of the UPR is the signaling pathway activated by the ER stress sensor IRE1. It upregulates ER-associated degradation (ERAD), thereby antagonizing ER stress. Some of the counter-regulatory mechanisms of the UPR are detrimental for viral replication and are, therefore, moderated by viruses. In this study we identified the first viral IRE1 inhibitor: The murine cytomegalovirus M50 protein, which interacts with IRE1 and induces its degradation. By this means, M50 inhibits IRE1 signaling and prevents ERAD upregulation. Interestingly, the M50 homolog in human cytomegalovirus, UL50, also downregulated IRE1 revealing a previously unknown mechanism of viral host cell manipulation.
Collapse
Affiliation(s)
- Sebastian Stahl
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Division of Viral Infections, Robert Koch Institute, Berlin, Germany
| | - Julia M. Burkhart
- Department of Bioanalytics, ISAS – Leibniz Institute for Analytical Sciences, Dortmund, Germany
| | - Florian Hinte
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Boaz Tirosh
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Hermine Mohr
- Max von Pettenkofer Institute, Ludwig-Maximilians-Universität München, Munich, Germany
| | - René P. Zahedi
- Department of Bioanalytics, ISAS – Leibniz Institute for Analytical Sciences, Dortmund, Germany
| | - Albert Sickmann
- Department of Bioanalytics, ISAS – Leibniz Institute for Analytical Sciences, Dortmund, Germany
- Medical Proteome Center (MPC), Ruhr-Universität, Bochum, Germany
| | - Zsolt Ruzsics
- Max von Pettenkofer Institute, Ludwig-Maximilians-Universität München, Munich, Germany
- DZIF German Center for Infection Research, Munich, Germany
| | - Matthias Budt
- Division of Viral Infections, Robert Koch Institute, Berlin, Germany
| | - Wolfram Brune
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Division of Viral Infections, Robert Koch Institute, Berlin, Germany
- DZIF German Center for Infection Research, Hamburg, Germany
- * E-mail:
| |
Collapse
|
99
|
Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E, Boise LH. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol 2013; 14:32. [PMID: 23834359 PMCID: PMC3710246 DOI: 10.1186/1471-2121-14-32] [Citation(s) in RCA: 891] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 06/17/2013] [Indexed: 12/15/2022] Open
Abstract
Background Apoptosis is a form of programmed cell death that is regulated by the Bcl-2 family and caspase family of proteins. The caspase cascade responsible for executing cell death following cytochrome c release is well described; however the distinct roles of caspases-9, -3 and -7 during this process are not completely defined. Results Here we demonstrate several unique functions for each of these caspases during cell death. Specific inhibition of caspase-9 allows for efficient release of cytochrome c, but blocks changes in mitochondrial morphology and ROS production. We show that caspase-9 can cleave Bid into tBid at amino acid 59 and that this cleavage of Bid is required for ROS production following serum withdrawal. We also demonstrate that caspase-3-deficient MEFs are less sensitive to intrinsic cell death stimulation, yet have higher ROS production. In contrast, caspase-7-deficient MEFs are not resistance to intrinsic cell death, but remain attached to the ECM. Conclusions Taken together, these data suggest that caspase-9 is required for mitochondrial morphological changes and ROS production by cleaving and activating Bid into tBid. After activation by caspase-9, caspase-3 inhibits ROS production and is required for efficient execution of apoptosis, while effector caspase-7 is required for apoptotic cell detachment.
Collapse
Affiliation(s)
- Matthew Brentnall
- Departments of Hematology and Medical Oncology and Cell Biology, Winship Cancer Institute of Emory University, 1365 Clifton Road NE Bldg:C, Rm:4012, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
100
|
Gauthier NP, Soufi B, Walkowicz WE, Pedicord VA, Mavrakis KJ, Macek B, Gin DY, Sander C, Miller ML. Cell-selective labeling using amino acid precursors for proteomic studies of multicellular environments. Nat Methods 2013; 10:768-73. [PMID: 23817070 PMCID: PMC4002004 DOI: 10.1038/nmeth.2529] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 05/08/2013] [Indexed: 11/23/2022]
Abstract
To address limitations of current high-throughput methods for studying cell-cell communication and determining the cell-of-origin of proteins in multicellular environments, we have developed a technique that selectively and continuously labels the proteome of individual cell types in co-culture. Through transgenic expression of exogenous amino acid biosynthesis enzymes, vertebrate cells overcome their dependence on essential amino acids and can be selectively labeled through metabolic incorporation of amino acids produced from heavy isotope-labeled precursors. We have named this method Type specific labeling with Amino acid Precursors (CTAP). Testing CTAP in several human and mouse cell lines, we were able to differentially label the proteome of distinct cell populations in co-culture and determine the relative expression of proteins by quantitative mass spectrometry. In addition, CTAP successfully identified the cell-of-origin of extracellular proteins in co-culture, highlighting its potential use in biomarker discovery for linking secreted factors to their cellular source.
Collapse
Affiliation(s)
- Nicholas P Gauthier
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|