51
|
Gene Instability-Related lncRNA Prognostic Model of Melanoma Patients via Machine Learning Strategy. JOURNAL OF ONCOLOGY 2021; 2021:5582920. [PMID: 34122546 PMCID: PMC8169244 DOI: 10.1155/2021/5582920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 12/03/2022]
Abstract
Background Melanoma is a common tumor characterized by a high mortality rate in its late stage. After metastasis, current treatment methods are relatively ineffective. Many studies have shown that long noncoding RNA (lncRNA) may participate in gene mutation and genomic instability in cancer. Methods We downloaded transcriptome data, mutation data, and clinical follow-up data of melanoma patients from The Cancer Genome Atlas. We divided samples into groups according to the number of somatic cell mutations and then performed a differential analysis to screen out the differentially expressed genes. We then divided samples into genomic unstable and genomic stable groups. We compared lncRNA expression profiles in these groups and constructed a protein-coding genes network coexpressed with selected lncRNA to analyze the pathways enriched by these genes. Two machine learning methods, least absolute shrinkage and selector operation (LASSO) and support vector machine-recursive feature elimination (SVM-RFE), were applied to conduct the lncRNA-related prognostic model. Afterward, we performed survival analysis, risk correlation analysis, independent prognostic analysis, and clinical subgroup model validation. Finally, through wound healing assay and transwell assay, the function of AATBC was verified by A375 cell lines. Results We screened 61 prognostic-related lncRNAs and constructed an lncRNA-mRNA coexpression network based on these lncRNAs. Seven lncRNAs were selected as common characteristic factors based on the two machine learning methods. The model formula was as follows: risk score = 0.085∗AATBC + 0.190∗ AC026689.1−0.117∗AC083799.1 + 0.036∗ AC091544.6−0.039∗ LINC01287−0.291∗ SPRY4.AS1 + 0.056∗ ZNF667.AS1. The seven lncRNAs in this formula are key candidates. Cell experiments have verified that knocking down AATBC in A375 cell lines can reduce the proliferation and invasion ability of melanoma cells. Conclusion The lncRNA we identified provides a new way to study lncRNA's role in the genomic instability of melanoma. Our findings may provide essential candidate biomarkers for the diagnosis and treatment of melanoma.
Collapse
|
52
|
Zhang H, Zhang A, Gupte AA, Hamilton DJ. Plumbagin Elicits Cell-Specific Cytotoxic Effects and Metabolic Responses in Melanoma Cells. Pharmaceutics 2021; 13:pharmaceutics13050706. [PMID: 34066184 PMCID: PMC8151164 DOI: 10.3390/pharmaceutics13050706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/13/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
Melanoma is one of the most malignant skin cancers that require comprehensive therapies, including chemotherapy. A plant-derived drug, plumbagin (PLB), exhibits an anticancer property in several cancers. We compared the cytotoxic and metabolic roles of PLB in A375 and SK-MEL-28 cells, each with different aggressiveness. In our results, they were observed to have distinctive mitochondrial respiratory functions. The primary reactive oxygen species (ROS) source of A375 can be robustly attenuated by cell membrane permeabilization. A375 cell viability and proliferation, migration, and apoptosis induction are more sensitive to PLB treatment. PLB induced metabolic alternations in SK-MEL-28 cells, which included increasing mitochondrial oxidative phosphorylation (OXPHOS), mitochondrial ATP production, and mitochondrial mass. Decreasing mitochondrial OXPHOS and total ATP production with elevated mitochondrial membrane potential (MMP) were observed in PLB-induced A375 cells. PLB also induced ROS production and increased proton leak and non-mitochondria respiration in both cells. This study reveals the relationship between metabolism and cytotoxic effects of PLB in melanoma. PLB displays stronger cytotoxic effects on A375 cells, which exhibit lower respiratory function than SK-MEL-28 cells with higher respiratory function, and triggers cell-specific metabolic changes in accordance with its cytotoxic effects. These findings indicate that PLB might serve as a promising anticancer drug, targeting metabolism.
Collapse
Affiliation(s)
- Haoran Zhang
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA; (H.Z.); (A.Z.); (A.A.G.)
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Aijun Zhang
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA; (H.Z.); (A.Z.); (A.A.G.)
- Molecular Biology Research in Medicine, Houston Methodist Research Institute, Weill Cornell Medicine Affiliate, Houston, TX 77030, USA
| | - Anisha A. Gupte
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA; (H.Z.); (A.Z.); (A.A.G.)
- Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, Houston, TX 77030, USA
| | - Dale J. Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX 77030, USA; (H.Z.); (A.Z.); (A.A.G.)
- Department of Medicine, Houston Methodist, Weill Cornell Medicine Affiliate, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-(713)-441-4483
| |
Collapse
|
53
|
Baumgartner A, Stepien N, Mayr L, Madlener S, Dorfer C, Schmook MT, Traub-Weidinger T, Lötsch-Gojo D, Kirchhofer D, Reisinger D, Hedrich C, Arshad S, Irschik S, Boztug H, Engstler G, Bernkopf M, Rifatbegovic F, Höller C, Slavc I, Berger W, Müllauer L, Haberler C, Azizi AA, Peyrl A, Gojo J. Novel Insights into Diagnosis, Biology and Treatment of Primary Diffuse Leptomeningeal Melanomatosis. J Pers Med 2021; 11:292. [PMID: 33921303 PMCID: PMC8069125 DOI: 10.3390/jpm11040292] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
Primary diffuse leptomeningeal melanomatosis (PDLMM) is an extremely rare and aggressive cancer type for which best treatment strategies remain to be elucidated. Herein, we present current and prospective diagnostic strategies and treatment management of PDLMM. Against the background of an extensive literature review of published PDLMM cases and currently employed therapeutic strategies, we present an illustrative case of a pediatric patient suffering from PDLMM. We report the first case of a pediatric patient with PDLMM who received combination treatment including trametinib and everolimus, followed by intravenous nivolumab and ipilimumab with concomitant intensive intraventricular chemotherapy, resulting in temporary significant clinical improvement and overall survival of 7 months. Following this clinical experience, we performed a comprehensive literature review, identifying 26 additional cases. By these means, we provide insight into current knowledge on clinical and molecular characteristics of PDLMM. Analysis of these cases revealed that the unspecific clinical presentation, such as unrecognized increased intracranial pressure (present in 67%), is a frequent reason for the delay in diagnosis. Mortality remains substantial despite diverse therapeutic approaches with a median overall survival of 4 months from diagnosis. On the molecular level, to date, the only oncogenic driver reported so far is mutation of NRAS (n = 3), underlining a close biological relation to malignant melanoma and neurocutaneous melanosis. We further show, for the first time, that this somatic mutation can be exploited for cerebrospinal fluid liquid biopsy detection, revealing a novel potential biomarker for diagnosis and monitoring of PDLMM. Last, we use a unique patient derived PDLMM cell model to provide first insights into in vitro drug sensitivities. In summary, we provide future diagnostic and therapeutic guidance for PDLMM and first insights into the use of liquid biopsy and in vitro models for this orphan cancer type.
Collapse
Affiliation(s)
- Alicia Baumgartner
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (A.B.); (N.S.); (L.M.); (S.M.); (D.R.); (C.H.); (S.A.); (S.I.); (I.S.); (A.A.A.); (A.P.)
| | - Natalia Stepien
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (A.B.); (N.S.); (L.M.); (S.M.); (D.R.); (C.H.); (S.A.); (S.I.); (I.S.); (A.A.A.); (A.P.)
| | - Lisa Mayr
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (A.B.); (N.S.); (L.M.); (S.M.); (D.R.); (C.H.); (S.A.); (S.I.); (I.S.); (A.A.A.); (A.P.)
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, 1090 Vienna, Austria; (D.L.-G.); (W.B.)
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
| | - Sibylle Madlener
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (A.B.); (N.S.); (L.M.); (S.M.); (D.R.); (C.H.); (S.A.); (S.I.); (I.S.); (A.A.A.); (A.P.)
| | - Christian Dorfer
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Maria T. Schmook
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (M.T.S.); (T.T.-W.)
| | - Tatjana Traub-Weidinger
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (M.T.S.); (T.T.-W.)
| | - Daniela Lötsch-Gojo
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, 1090 Vienna, Austria; (D.L.-G.); (W.B.)
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Dominik Kirchhofer
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
| | - Dominik Reisinger
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (A.B.); (N.S.); (L.M.); (S.M.); (D.R.); (C.H.); (S.A.); (S.I.); (I.S.); (A.A.A.); (A.P.)
| | - Cora Hedrich
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (A.B.); (N.S.); (L.M.); (S.M.); (D.R.); (C.H.); (S.A.); (S.I.); (I.S.); (A.A.A.); (A.P.)
| | - Saleha Arshad
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (A.B.); (N.S.); (L.M.); (S.M.); (D.R.); (C.H.); (S.A.); (S.I.); (I.S.); (A.A.A.); (A.P.)
| | - Stefan Irschik
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (A.B.); (N.S.); (L.M.); (S.M.); (D.R.); (C.H.); (S.A.); (S.I.); (I.S.); (A.A.A.); (A.P.)
| | - Heidrun Boztug
- Department of Pediatric Hematology and Oncology, St. Anna Children’s Hospital, Medical University of Vienna, 1090 Vienna, Austria; (H.B.); (G.E.)
| | - Gernot Engstler
- Department of Pediatric Hematology and Oncology, St. Anna Children’s Hospital, Medical University of Vienna, 1090 Vienna, Austria; (H.B.); (G.E.)
| | - Marie Bernkopf
- Children’s Cancer Research Institute, 1090 Vienna, Austria; (M.B.); (F.R.)
| | | | - Christoph Höller
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (A.B.); (N.S.); (L.M.); (S.M.); (D.R.); (C.H.); (S.A.); (S.I.); (I.S.); (A.A.A.); (A.P.)
| | - Walter Berger
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, 1090 Vienna, Austria; (D.L.-G.); (W.B.)
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
| | - Leonhard Müllauer
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Amedeo A. Azizi
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (A.B.); (N.S.); (L.M.); (S.M.); (D.R.); (C.H.); (S.A.); (S.I.); (I.S.); (A.A.A.); (A.P.)
| | - Andreas Peyrl
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (A.B.); (N.S.); (L.M.); (S.M.); (D.R.); (C.H.); (S.A.); (S.I.); (I.S.); (A.A.A.); (A.P.)
| | - Johannes Gojo
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (A.B.); (N.S.); (L.M.); (S.M.); (D.R.); (C.H.); (S.A.); (S.I.); (I.S.); (A.A.A.); (A.P.)
| |
Collapse
|
54
|
Gams P, Dolenc Stražar Z, Šoštarič M, Bošnjak M, Kšela J. Cardiac Melanoma Metastasis with ERBB2 Gene Amplification: A Potential for Future Targeted Therapy. Case Rep Oncol 2021; 14:622-627. [PMID: 33976644 PMCID: PMC8077454 DOI: 10.1159/000514981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 01/15/2023] Open
Abstract
Cardiac tumors are rare, and their treatment differs interindividually regarding the histopathological proprieties and the stage of disease. Authors present a case of symptomatic cardiac melanoma metastasis that expressed an ERBB2 (HER2) gene amplification in a course of the disease that has not yet been reported. The frail patient with a history of pulmonary and renal carcinoma, was admitted to the hospital due to a symptomatic left atrial tumor mass. The patient underwent a tumor-resecting cardiac surgery. At first mistaken for myxoma on echocardiography, the histopathological examination of the tumor revealed a melanoma of acral or mucosal origin. The melanoma metastasis was negative for common genetic mutations in BRAF, NRAS or KIT genes, and for the presence of NTRK genes fusions, but carried ERBB2 (HER2) gene amplification. The absence of standard gene mutations rendered it unresponsive to treatment with BRAF and MEK inhibitors. This molecular finding is rare in melanomas and represented a therapeutic target for off-label systemic treatment with drugs, primarily aimed at ERBB2 positive breast, gastric, and gastroesophageal junction cancers. A rare finding like this justifies molecular genetic analysis of unusual tumor specimen and guarantees optimal treatment for uncommon types of cardiac metastatic tumors.
Collapse
Affiliation(s)
- Polona Gams
- Department of Anesthesiology and Intensive Care, Surgery Bitenc, Golnik, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Maja Šoštarič
- Department of Anesthesiology and Intensive Care, Surgery Bitenc, Golnik, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Clinical Department of Anesthesiology and Intensive Care, University Medical Centre, Ljubljana, Slovenia
| | - Matic Bošnjak
- Institute of Pathology, Faculty of Medicine, Ljubljana, Slovenia
| | - Juš Kšela
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department of Cardiovascular Surgery, University Medical Centre, Ljubljana, Slovenia
| |
Collapse
|
55
|
Benna C, Rajendran S, Spiro G, Menin C, Dall'Olmo L, Rossi CR, Mocellin S. Gender-specific associations between polymorphisms of the circadian gene RORA and cutaneous melanoma susceptibility. J Transl Med 2021; 19:57. [PMID: 33549124 PMCID: PMC7866430 DOI: 10.1186/s12967-021-02725-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/28/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Melanoma is the deadliest of skin cancers and has an increasing annual incidence worldwide. It is a multi-factorial disease most likely arising from both genetic predisposition and environmental exposure to ultraviolet light. Genetic variability of the components of the biological circadian clock is recognized to be a risk factor for different type of cancers. Moreover, two variants of a clock gene, RORA, have been associated with melanoma patient's prognosis. Our aim is to test the hypothesis that specific single nucleotide polymorphisms (SNPs) of the circadian clock genes may significantly influence the predisposition to develop cutaneous melanoma or the outcome of melanoma patients. METHODS We genotyped 1239 subjects, 629 cases of melanoma and 610 healthy controls in 14 known SNPs of seven selected clock genes: AANAT, CLOCK, NPAS2, PER1, PER2, RORA, and TIMELESS. Genotyping was conducted by q-PCR. Multivariate logistic regression was employed for susceptibility of melanoma assessment, modeled additively. Subgroup analysis was performed by gender. For the female subgroup, a further discrimination was performed by age. For prognosis of melanoma assessment, multivariate Cox proportional hazard regression was employed. The Benjamini-Hochberg method was utilized as adjustment for multiple comparisons. RESULTS We identified two RORA SNPs statistically significant with respect to the association with melanoma susceptibility. Considering the putative role of RORA as a nuclear steroid hormone receptor, we conducted a subgroup analysis by gender. Interestingly, the RORA rs339972 C allele was associated with a decreased predisposition to develop melanoma only in the female subgroup (OR 0.67; 95% CI 0.51-0.88; P = 0.003) while RORA rs10519097 T allele was associated with a decreased predisposition to develop melanoma only in the male subgroup (OR 0.62; 95% CI 0.44-0.87; P = 0.005). Moreover, the RORA rs339972 C allele had a decreased susceptibility to develop melanoma only in females aged over 50 years old (OR 0.67; 95% CI 0.54-0.83; P = 0.0002). None of the studied SNPs were significantly associated with the prognosis. CONCLUSIONS Overall, we cannot ascertain that circadian pathway genetic variation is involved in melanoma susceptibility or prognosis. Nevertheless, we identified an interesting relationship between melanoma susceptibility and RORA polymorphisms acting in sex-specific manner and which is worth further future investigation.
Collapse
Affiliation(s)
- Clara Benna
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy. .,First Surgical Clinic, Azienda Ospedaliera Padova, Padova, Italy.
| | - Senthilkumar Rajendran
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Giovanna Spiro
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Chiara Menin
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology (IOV - IRCCS), Padova, Italy
| | - Luigi Dall'Olmo
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy.,Surgical Oncology Unit, Veneto Institute of Oncology (IOV-IRCCS), Padova, Italy
| | - Carlo Riccardo Rossi
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy.,Surgical Oncology Unit, Veneto Institute of Oncology (IOV-IRCCS), Padova, Italy
| | - Simone Mocellin
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy.,Surgical Oncology Unit, Veneto Institute of Oncology (IOV-IRCCS), Padova, Italy
| |
Collapse
|
56
|
Roy T, Boateng ST, Banang-Mbeumi S, Singh PK, Basnet P, Chamcheu RCN, Ladu F, Chauvin I, Spiegelman VS, Hill RA, Kousoulas KG, Nagalo BM, Walker AL, Fotie J, Murru S, Sechi M, Chamcheu JC. Synthesis, inverse docking-assisted identification and in vitro biological characterization of Flavonol-based analogs of fisetin as c-Kit, CDK2 and mTOR inhibitors against melanoma and non-melanoma skin cancers. Bioorg Chem 2021; 107:104595. [PMID: 33450548 PMCID: PMC7870562 DOI: 10.1016/j.bioorg.2020.104595] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/30/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022]
Abstract
Due to hurdles, including resistance, adverse effects, and poor bioavailability, among others linked with existing therapies, there is an urgent unmet need to devise new, safe, and more effective treatment modalities for skin cancers. Herein, a series of flavonol-based derivatives of fisetin, a plant-based flavonoid identified as an anti-tumorigenic agent targeting the mammalian targets of rapamycin (mTOR)-regulated pathways, were synthesized and fully characterized. New potential inhibitors of receptor tyrosine kinases (c-KITs), cyclin-dependent kinase-2 (CDK2), and mTOR, representing attractive therapeutic targets for melanoma and non-melanoma skin cancers (NMSCs) treatment, were identified using inverse-docking, in vitro kinase activity and various cell-based anticancer screening assays. Eleven compounds exhibited significant inhibitory activities greater than the parent molecule against four human skin cancer cell lines, including melanoma (A375 and SK-Mel-28) and NMSCs (A431 and UWBCC1), with IC50 values ranging from 0.12 to < 15 μM. Seven compounds were identified as potentially potent single, dual or multi-kinase c-KITs, CDK2, and mTOR kinase inhibitors after inverse-docking and screening against twelve known cancer targets, followed by kinase activity profiling. Moreover, the potent compound F20, and the multi-kinase F9 and F17 targeted compounds, markedly decreased scratch wound closure, colony formation, and heightened expression levels of key cancer-promoting pathway molecular targets c-Kit, CDK2, and mTOR. In addition, these compounds downregulated Bcl-2 levels and upregulated Bax and cleaved caspase-3/7/8 and PARP levels, thus inducing apoptosis of A375 and A431 cells in a dose-dependent manner. Overall, compounds F20, F9 and F17, were identified as promising c-Kit, CDK2 and mTOR inhibitors, worthy of further investigation as therapeutics, or as adjuvants to standard therapies for the control of melanoma and NMSCs.
Collapse
Affiliation(s)
- Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA
| | - Samuel T Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA
| | - Pankaj K Singh
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Pratik Basnet
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA; Department of Chemistry, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA
| | - Roxane-Cherille N Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA
| | - Federico Ladu
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Isabel Chauvin
- Department of Chemistry, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA
| | - Vladimir S Spiegelman
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033-0850, USA
| | - Ronald A Hill
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA
| | - Konstantin G Kousoulas
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Bolni Marius Nagalo
- Division of Hematology and Medical Oncology, Mayo Clinic Hospital, 5777 E Mayo Blvd, Phoenix, AZ 85054, USA
| | - Anthony L Walker
- School of Clinical Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA
| | - Jean Fotie
- Department of Chemistry and Physics, Southeastern Louisiana University, SELU, Hammond, LA 70402-0878, USA
| | - Siva Murru
- Department of Chemistry, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA
| | - Mario Sechi
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana-Monroe, Monroe, LA 71209-0497, USA.
| |
Collapse
|
57
|
Leiter A, Carroll E, Brooks D, Ben Shimol J, Eisenberg E, Wisnivesky JP, Galsky MD, Gallagher EJ. Characterization of hyperglycemia in patients receiving immune checkpoint inhibitors: Beyond autoimmune insulin-dependent diabetes. Diabetes Res Clin Pract 2021; 172:108633. [PMID: 33347896 PMCID: PMC7940559 DOI: 10.1016/j.diabres.2020.108633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022]
Abstract
AIMS Immune-mediated beta cell destruction is known to cause hyperglycemia in patients receiving immune checkpoint inhibitor (ICI) cancer therapy. However, it is uncommon, and little is known about the full spectrum of hyperglycemia in patients receiving ICIs. We aimed to characterize the prevalence and factors associated with hyperglycemia in patients treated with ICIs. METHODS We retrospectively analyzed patients receiving ICIs at an NCI-designated Cancer Center. We assessed the proportion of patients with new onset hyperglycemia (random glucose >11.1 mmol/L) after starting ICIs and used logistic regression to determine hyperglycemia predictors in patients without known diabetes. RESULTS Of 411 patients, 385 had post-ICI glucose data. 105 (27%) had hyperglycemia. Of this group, 29 (28%) had new onset hyperglycemia, 19 of whom had glucocorticoid-associated hyperglycemia. The remaining 10 had unexplained hyperglycemia and none had known autoimmune diabetes. Among patients without known diabetes, race/ethnicity, obesity, and pre-ICI hyperglycemia were significantly associated with hyperglycemia after starting ICIs. CONCLUSIONS We found that new hyperglycemia in patients receiving ICIs was most commonly related to glucocorticoids. A small patient subset had new unexplained hyperglycemia, suggesting ICIs might have a role in promoting hyperglycemia. Recognizing factors associated with hyperglycemia in this population is crucial for appropriate management.
Collapse
Affiliation(s)
- Amanda Leiter
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Emily Carroll
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Danielle Brooks
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jennifer Ben Shimol
- Department of Rheumatology, Edith Wolfson Medical Center, Holon, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elliot Eisenberg
- Division of Pulmonology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Juan P Wisnivesky
- Division of General Internal Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Matthew D Galsky
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Emily J Gallagher
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
58
|
Abstract
Response evaluation for cancer treatment consists primarily of clinical and radiological assessments. In addition, a limited number of serum biomarkers that assess treatment response are available for a small subset of malignancies. Through recent technological innovations, new methods for measuring tumor burden and treatment response are becoming available. By utilization of highly sensitive techniques, tumor-specific mutations in circulating DNA can be detected and circulating tumor DNA (ctDNA) can be quantified. These so-called liquid biopsies provide both molecular information about the genomic composition of the tumor and opportunities to evaluate tumor response during therapy. Quantification of tumor-specific mutations in plasma correlates well with tumor burden. Moreover, with liquid biopsies, it is also possible to detect mutations causing secondary resistance during treatment. This review focuses on the clinical utility of ctDNA as a response and follow-up marker in patients with non-small cell lung cancer, melanoma, colorectal cancer, and breast cancer. Relevant studies were retrieved from a literature search using PubMed database. An overview of the available literature is provided and the relevance of ctDNA as a response marker in anti-cancer therapy for clinical practice is discussed. We conclude that the use of plasma-derived ctDNA is a promising tool for treatment decision-making based on predictive testing, detection of resistance mechanisms, and monitoring tumor response. Necessary steps for translation to daily practice and future perspectives are discussed.
Collapse
|
59
|
Toor K, Middleton MR, Chan K, Amadi A, Moshyk A, Kotapati S. Comparative efficacy and safety of adjuvant nivolumab versus other treatments in adults with resected melanoma: a systematic literature review and network meta-analysis. BMC Cancer 2021; 21:3. [PMID: 33402121 PMCID: PMC7784366 DOI: 10.1186/s12885-020-07538-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors and targeted therapies are approved for adjuvant treatment of patients with resected melanoma; however, they have not been compared in randomized controlled trials (RCTs). We compared the efficacy and safety of adjuvant nivolumab with other approved treatments using available evidence from RCTs in a Bayesian network meta-analysis (NMA). METHODS A systematic literature review was conducted through May 2019 to identify relevant RCTs evaluating approved adjuvant treatments. Outcomes of interest included recurrence-free survival (RFS)/disease-free survival (DFS), distant metastasis-free survival (DMFS), all-cause grade 3/4 adverse events (AEs), discontinuations, and discontinuations due to AEs. Time-to-event outcomes (RFS/DFS and DMFS) were analyzed both assuming that hazard ratios (HRs) are constant over time and that they vary. RESULTS Of 26 identified RCTs, 19 were included in the NMA following a feasibility assessment. Based on HRs for RFS/DFS, the risk of recurrence with nivolumab was similar to that of pembrolizumab and lower than that of ipilimumab 3 mg/kg, ipilimumab 10 mg/kg, or interferon. Risk of recurrence with nivolumab was similar to that of dabrafenib plus trametinib at 12 months, however, was lower beyond 12 months (HR [95% credible interval] at 24 months, 0.46 [0.27-0.78]; at 36 months, 0.28 [0.14-0.59]). Based on HRs for DMFS, the risk of developing distant metastases was lower with nivolumab than with ipilimumab 10 mg/kg or interferon and was similar to dabrafenib plus trametinib. CONCLUSION Adjuvant therapy with nivolumab provides an effective treatment option with a promising risk-benefit profile.
Collapse
Affiliation(s)
- Kabirraaj Toor
- Precision HEOR, 1505 West 2nd Avenue, Vancouver, BC, V6H 3Y4, Canada.
| | - Mark R Middleton
- University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Keith Chan
- Precision HEOR, 1505 West 2nd Avenue, Vancouver, BC, V6H 3Y4, Canada
| | - Adenike Amadi
- Bristol Myers Squibb, Unit 2 Uxbridge Business Park, Uxbridge, UB8 1DH, UK
| | - Andriy Moshyk
- Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, NJ, 08543, USA
| | - Srividya Kotapati
- Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, NJ, 08543, USA
| |
Collapse
|
60
|
Immune Checkpoint Blockade in Advanced Cutaneous Squamous Cell Carcinoma: What Do We Currently Know in 2020? Int J Mol Sci 2020; 21:ijms21239300. [PMID: 33291277 PMCID: PMC7730197 DOI: 10.3390/ijms21239300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer that predominantly arises in chronically sun-damaged skin. Immunosuppression, genetic disorders such as xeroderma pigmentosum (XP), exposure to certain drugs and environmental noxae have been identified as major risk factors. Surgical removal of cSCC is the therapy of choice and mostly curative in early stages. However, a minority of patients develop locally advanced tumors or distant metastases that are still challenging to treat. Immune checkpoint blockade (ICB) targeting CTLA-4, PD-L1 and PD-1 has tremendously changed the field of oncological therapy and especially the treatment of skin cancers as tumors with a high mutational burden. In this review, we focus on the differences between cSCC and cutaneous melanoma (CM) and their implications on therapy, summarize the current evidence on ICB for the treatment of advanced cSCC and discuss the chances and pitfalls of this therapy option for this cancer entity. Furthermore, we focus on special subgroups of interest such as organ transplant recipients, patients with hematologic malignancies, XP and field cancerization.
Collapse
|
61
|
Zheng Q, Li J, Zhang H, Wang Y, Zhang S. Immune Checkpoint Inhibitors in Advanced Acral Melanoma: A Systematic Review. Front Oncol 2020; 10:602705. [PMID: 33344255 PMCID: PMC7744720 DOI: 10.3389/fonc.2020.602705] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Acral melanoma (AM) has different biological characteristics from cutaneous melanoma. Although systemic therapeutic strategies for advanced AM resemble those for advanced cutaneous melanoma, the evidence of the clinical use of immune checkpoint inhibitors (ICIs) for AM is still inadequate. We aimed to systematically analyze the therapeutic effects and safety profile of ICI treatments in advanced AM. METHODS This systematic review was conducted in line with a previously registered protocol. Three electronic databases, conference abstracts, clinical trial registers, and reference lists of included articles were searched for eligible studies. The primary outcomes were therapeutic effects, and the secondary outcomes were the safety profiles. RESULTS This systematic review included six studies investigating anti-CTLA-4 immunotherapy, 12 studies investigating anti-PD-1 immunotherapy, one study investigating the combination therapy of anti-CTLA-4 and anti-PD-1, and one study investigating anti-PD-1 immunotherapy in combination with radiotherapy. In most studies investigating ipilimumab, the anti-CTLA-4 antibody, the objective response rate ranged from 11.4 to 25%, the median progression-free survival ranged from 2.1 to 6.7 months, and the median overall survival was more than 7.16 months. For studies discussing anti-PD-1 immunotherapy with nivolumab, pembrolizumab, or JS001, the objective response rate ranged from 14 to 42.9%, the median progression-free survival ranged from 3.2 to 9.2 months, and the median overall survival was more than 14 months. The combination therapy of anti-CTLA-4 and anti-PD-1 immunotherapy showed better efficacy with an objective response rate of 42.9% than single-agent therapy. The retrospective study investigating the combination therapy of anti-PD-1 immunotherapy and radiation showed no overall response. Few outcomes regarding safety were reported in the included studies. CONCLUSIONS ICIs, especially anti-CTLA-4 monoclonal antibodies combined with anti-PD-1 antibodies, are effective systematic treatments in advanced AM. However, there remains a lack of high-level evidence to verify their efficacy and safety and support their clinical application.
Collapse
Affiliation(s)
- Qingyue Zheng
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year MD Program, Peking Union Medical College, Beijing, China
| | - Jiarui Li
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hanlin Zhang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year MD Program, Peking Union Medical College, Beijing, China
| | - Yuanzhuo Wang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Eight-year MD Program, Peking Union Medical College, Beijing, China
| | - Shu Zhang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
62
|
Charignon E, Bouché M, Clave-Darcissac C, Dahm G, Ichim G, Clotagatide A, Mertani HC, Telouk P, Caramel J, Diaz JJ, Bellemin-Laponnaz S, Bouvet P, Billotey C. In Cellulo Evaluation of the Therapeutic Potential of NHC Platinum Compounds in Metastatic Cutaneous Melanoma. Int J Mol Sci 2020; 21:E7826. [PMID: 33105692 PMCID: PMC7659946 DOI: 10.3390/ijms21217826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 02/02/2023] Open
Abstract
We describe here the evaluation of the cytotoxic efficacy of two platinum (II) complexes bearing an N-heterocyclic carbene (NHC) ligand, a pyridine ligand and bromide or iodide ligands on a panel of human metastatic cutaneous melanoma cell lines representing different genetic subsets including BRAF-inhibitor-resistant cell lines, namely A375, SK-MEL-28, MeWo, HMCB, A375-R, SK-MEL-5-R and 501MEL-R. Cisplatin and dacarbazine were also studied for comparison purposes. Remarkably, the iodine-labelled Pt-NHC complex strongly inhibited proliferation of all tested melanoma cells after 1-h exposure, likely due to its rapid uptake by melanoma cells. The mechanism of this inhibitory activity involves the formation of DNA double-strand breaks and apoptosis. Considering the intrinsic chemoresistance of metastatic melanoma cells of current systemic treatments, these findings are promising and could give research opportunities in the future to improve the prognosis of patients suffering from unresectable metastatic melanoma that are not eligible or that do not respond to the most effective drugs available to date, namely BRAF inhibitors and the anti-PD-1 monoclonal antibody (mAb).
Collapse
Affiliation(s)
- Elsa Charignon
- Hospices Civils de Lyon, EA3738-Therapeutic Targeting in Oncology, Université Jean Monnet-Université Claude Bernard Lyon1, 165 Chemin du Grand Revoyet, CEDEX, 69921 Oullins, France; (E.C.); (C.C.-D.); (A.C.)
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon1, CEDEX 08, 69373 Lyon, France; (H.C.M.); (J.C.); (J.-J.D.); (P.B.)
| | - Mathilde Bouché
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg-CNRS UMR7504, Strasbourg, Bâtiment 69, 23 Rue du Loess, 67200 Strasbourg, France; (M.B.); (G.D.); (S.B.-L.)
| | - Caroline Clave-Darcissac
- Hospices Civils de Lyon, EA3738-Therapeutic Targeting in Oncology, Université Jean Monnet-Université Claude Bernard Lyon1, 165 Chemin du Grand Revoyet, CEDEX, 69921 Oullins, France; (E.C.); (C.C.-D.); (A.C.)
- Hôpital Nord, Département de Pharmacie, Centre Hospitalier Universitaire de Saint-Etienne, Avenue Albert Raimond, 42270 Saint-Priest, France
| | - Georges Dahm
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg-CNRS UMR7504, Strasbourg, Bâtiment 69, 23 Rue du Loess, 67200 Strasbourg, France; (M.B.); (G.D.); (S.B.-L.)
| | - Gabriel Ichim
- Cancer Cell Death Laboratory, part of LabEx DEVweCAN, Cancer Initiation and Tumoral Cell Identity Department, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France;
| | - Anthony Clotagatide
- Hospices Civils de Lyon, EA3738-Therapeutic Targeting in Oncology, Université Jean Monnet-Université Claude Bernard Lyon1, 165 Chemin du Grand Revoyet, CEDEX, 69921 Oullins, France; (E.C.); (C.C.-D.); (A.C.)
- Hôpital Nord, Département de Pharmacie, Centre Hospitalier Universitaire de Saint-Etienne, Avenue Albert Raimond, 42270 Saint-Priest, France
| | - Hichem C. Mertani
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon1, CEDEX 08, 69373 Lyon, France; (H.C.M.); (J.C.); (J.-J.D.); (P.B.)
| | - Philippe Telouk
- Laboratoire de Géologie de Lyon Terre, Planètes, Université de Lyon, Environnement-ENS-UCBL-CNRS, UMR CNRS 5276 (CNRS, ENS, Université Lyon1), École Normale Supérieure de Lyon, 9 rue du Vercors, CEDEX 07, 69364 Lyon, France;
| | - Julie Caramel
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon1, CEDEX 08, 69373 Lyon, France; (H.C.M.); (J.C.); (J.-J.D.); (P.B.)
| | - Jean-Jacques Diaz
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon1, CEDEX 08, 69373 Lyon, France; (H.C.M.); (J.C.); (J.-J.D.); (P.B.)
| | - Stéphane Bellemin-Laponnaz
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg-CNRS UMR7504, Strasbourg, Bâtiment 69, 23 Rue du Loess, 67200 Strasbourg, France; (M.B.); (G.D.); (S.B.-L.)
| | - Philippe Bouvet
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon1, CEDEX 08, 69373 Lyon, France; (H.C.M.); (J.C.); (J.-J.D.); (P.B.)
- École Normale Supérieure de Lyon, Université de Lyon, 9 rue du Vercors, CEDEX 07, 69364 Lyon, France
| | - Claire Billotey
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Claude Bernard Lyon1, CEDEX 08, 69373 Lyon, France; (H.C.M.); (J.C.); (J.-J.D.); (P.B.)
- UFR de Médecine, Campus Santé Innovations, Université de Lyon, Université Jean Monnet, 10 rue de Marandière, 42270 Saint-Priest en Jarez, France
| |
Collapse
|
63
|
David TIP, Cerqueira OLD, Lana MG, Medrano RFV, Hunger A, Strauss BE. Response of human melanoma cell lines to interferon-beta gene transfer mediated by a modified adenoviral vector. Sci Rep 2020; 10:17893. [PMID: 33087767 PMCID: PMC7578831 DOI: 10.1038/s41598-020-74826-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/25/2020] [Indexed: 01/08/2023] Open
Abstract
Since melanomas often retain wild type p53, we developed an adenoviral vector, AdRGD-PG, which provides robust transduction and transgene expression in response to p53. Previously, this vector was used for interferon-β gene transfer in mouse models of melanoma, resulting in control of tumor progression, but limited cell killing. Here, the AdRGD-PG-hIFNβ vector encoding the human interferon-β cDNA (hIFNβ) was used to transduce human melanoma cell lines SK-MEL-05 and SK-MEL-147 (both wild type p53). In vitro, cell death was induced in more than 80% of the cells and correlated with elevated annexinV staining and caspase 3/7 activity. Treatment with hIFNβ promoted cell killing in neighboring, non-transduced cells, thus revealing a bystander effect. In situ gene therapy resulted in complete inhibition of tumor progression for SK-MEL-147 when using nude mice with no evidence of hepatotoxicity. However, the response in Nod-Scid mice was less robust. For SK-MEL-05, tumor inhibition was similar in nude and Nod-Scid mice and was less efficient than seen for SK-MEL-147, indicating both cell type and host specific responses. The AdRGD-PG-hIFNβ vector provides extensive killing of human melanoma cells in vitro and a potent anti-tumor effect in vivo. This study provides a critical advance in the development of our melanoma gene therapy approach.
Collapse
Affiliation(s)
- Taynah I P David
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto Do Câncer Do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo, 251, 8th floor, São Paulo, SP, Brazil
| | - Otto L D Cerqueira
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto Do Câncer Do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo, 251, 8th floor, São Paulo, SP, Brazil
| | - Marlous G Lana
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto Do Câncer Do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo, 251, 8th floor, São Paulo, SP, Brazil
| | - Ruan F V Medrano
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto Do Câncer Do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo, 251, 8th floor, São Paulo, SP, Brazil
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Aline Hunger
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto Do Câncer Do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo, 251, 8th floor, São Paulo, SP, Brazil
- Cristalia, Biotecnologia Unidade 1, Rodoviária SP 147, Itapira, SP, Brazil
| | - Bryan E Strauss
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia, Instituto Do Câncer Do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Arnaldo, 251, 8th floor, São Paulo, SP, Brazil.
| |
Collapse
|
64
|
Matafora V, Farris F, Restuccia U, Tamburri S, Martano G, Bernardelli C, Sofia A, Pisati F, Casagrande F, Lazzari L, Marsoni S, Bonoldi E, Bachi A. Amyloid aggregates accumulate in melanoma metastasis modulating YAP activity. EMBO Rep 2020; 21:e50446. [PMID: 32749065 PMCID: PMC7507035 DOI: 10.15252/embr.202050446] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Melanoma progression is generally associated with increased transcriptional activity mediated by the Yes-associated protein (YAP). Mechanical signals from the extracellular matrix are sensed by YAP, which then activates the expression of proliferative genes, promoting melanoma progression and drug resistance. Which extracellular signals induce mechanotransduction, and how this is mediated, is not completely understood. Here, using secretome analyses, we reveal the extracellular accumulation of amyloidogenic proteins, i.e. premelanosome protein (PMEL), in metastatic melanoma, together with proteins that assist amyloid maturation into fibrils. We also confirm the accumulation of amyloid-like aggregates, similar to those detected in Alzheimer disease, in metastatic cell lines, as well as in human melanoma biopsies. Mechanistically, beta-secretase 2 (BACE2) regulates the maturation of these aggregates, which in turn induce YAP activity. We also demonstrate that recombinant PMEL fibrils are sufficient to induce mechanotransduction, triggering YAP signaling. Finally, we demonstrate that BACE inhibition affects cell proliferation and increases drug sensitivity, highlighting the importance of amyloids for melanoma survival, and the use of beta-secretase inhibitors as potential therapeutic approach for metastatic melanoma.
Collapse
Affiliation(s)
| | | | - Umberto Restuccia
- IFOM‐ FIRC Institute of Molecular OncologyMilanItaly
- Present address:
ADIENNE Pharma & BiotechCaponagoItaly
| | - Simone Tamburri
- IFOM‐ FIRC Institute of Molecular OncologyMilanItaly
- Present address:
Department of Experimental OncologyIEO‐European Institute of Oncology IRCCSMilanItaly
| | | | - Clara Bernardelli
- IFOM‐ FIRC Institute of Molecular OncologyMilanItaly
- Present address:
Fondazione Politecnico di MilanoMilanItaly
| | - Andrea Sofia
- IFOM‐ FIRC Institute of Molecular OncologyMilanItaly
- University of InsubriaVareseItaly
| | - Federica Pisati
- IFOM‐ FIRC Institute of Molecular OncologyMilanItaly
- Cogentech SRL Benefit CorporationMilanItaly
| | | | - Luca Lazzari
- IFOM‐ FIRC Institute of Molecular OncologyMilanItaly
| | | | - Emanuela Bonoldi
- Department of Laboratory MedicineDivision of PathologyGrande Ospedale Metropolitano NiguardaMilanItaly
| | - Angela Bachi
- IFOM‐ FIRC Institute of Molecular OncologyMilanItaly
| |
Collapse
|
65
|
Czarnecka AM, Teterycz P, Mariuk-Jarema A, Lugowska I, Rogala P, Dudzisz-Sledz M, Switaj T, Rutkowski P. Treatment Sequencing and Clinical Outcomes in BRAF-Positive and BRAF-Negative Unresectable and Metastatic Melanoma Patients Treated with New Systemic Therapies in Routine Practice. Target Oncol 2020; 14:729-742. [PMID: 31754963 DOI: 10.1007/s11523-019-00688-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Although BRAF/MEK inhibitors are generally considered to be equally effective whether given before or after immunotherapy, no prospective trial has confirmed this hypothesis and contradictory data have been published in the melanoma field. OBJECTIVE We aimed to investigate the outcomes of patients with metastatic melanoma depending on the first-line treatment. PATIENTS AND METHODS In this ambidirectional cohort, single-center study, we included 253 consecutive melanoma patients treated in our institution with an anti-PD1 antibody or BRAF/MEK inhibitors, who started first-line treatment between December 2015 and March 2018. Kaplan-Meier estimator, log-rank test, and Cox proportional hazard model were used in this analysis. RESULTS First-line median progression-free survival (PFS) for all patients was 5.7 months (m), 6.9 m on anti-PD-1 therapy and 5.6 m for combination targeted therapy. Patients with BRAF mutated melanoma had 6.0 m median PFS on immunotherapy. At a median follow-up of 23.2 m with 149 events, in BRAF wild-type patients treated with anti-PD1, median overall survival (OS) was 18.1 m. BRAF mutated patients treated with first-line BRAF/MEK inhibitors had 11.7 m median OS. High neutrophil to lymphocyte ratio, high LDH level, ECOG > 0, and the presence of brain metastases negatively impacted PFS and OS. CONCLUSIONS In BRAF mutated patients with normal LDH, first-line immunotherapy seems a more effective approach. We have demonstrated that although BRAF mutation is a negative prognostic factor in stage IV melanoma, the use of two different systemic treatment modalities allows achievement of comparable survival in BRAF mutated and BRAF wild-type patients.
Collapse
Affiliation(s)
- Anna M Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute, Oncology Center, Roentgena 5, 02-78, Warsaw, Poland. .,Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| | - Paweł Teterycz
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute, Oncology Center, Roentgena 5, 02-78, Warsaw, Poland
| | - Anna Mariuk-Jarema
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute, Oncology Center, Roentgena 5, 02-78, Warsaw, Poland
| | - Iwona Lugowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute, Oncology Center, Roentgena 5, 02-78, Warsaw, Poland.,Early Phase Clinical Trials Unit, Maria Sklodowska-Curie Institute, Oncology Center, Warsaw, Poland
| | - Pawel Rogala
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute, Oncology Center, Roentgena 5, 02-78, Warsaw, Poland
| | - Monika Dudzisz-Sledz
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute, Oncology Center, Roentgena 5, 02-78, Warsaw, Poland
| | - Tomasz Switaj
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute, Oncology Center, Roentgena 5, 02-78, Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute, Oncology Center, Roentgena 5, 02-78, Warsaw, Poland
| |
Collapse
|
66
|
Zebrowska A, Widlak P, Whiteside T, Pietrowska M. Signaling of Tumor-Derived sEV Impacts Melanoma Progression. Int J Mol Sci 2020; 21:ijms21145066. [PMID: 32709086 PMCID: PMC7404104 DOI: 10.3390/ijms21145066] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Small extracellular vesicles (sEV or exosomes) are nanovesicles (30–150 nm) released both in vivo and in vitro by most cell types. Tumor cells produce sEV called TEX and disperse them throughout all body fluids. TEX contain a cargo of proteins, lipids, and RNA that is similar but not identical to that of the “parent” producer cell (i.e., the cargo of exosomes released by melanoma cells is similar but not identical to exosomes released by melanocytes), possibly due to selective endosomal packaging. TEX and their role in cancer biology have been intensively investigated largely due to the possibility that TEX might serve as key component of a “liquid tumor biopsy.” TEX are also involved in the crosstalk between cancer and immune cells and play a key role in the suppression of anti-tumor immune responses, thus contributing to the tumor progression. Most of the available information about the TEX molecular composition and functions has been gained using sEV isolated from supernatants of cancer cell lines. However, newer data linking plasma levels of TEX with cancer progression have focused attention on TEX in the patients’ peripheral circulation as potential biomarkers of cancer diagnosis, development, activity, and response to therapy. Here, we consider the molecular cargo and functions of TEX as potential biomarkers of one of the most fatal malignancies—melanoma. Studies of TEX in plasma of patients with melanoma offer the possibility of an in-depth understanding of the melanoma biology and response to immune therapies. This review features melanoma cell-derived exosomes (MTEX) with special emphasis on exosome-mediated signaling between melanoma cells and the host immune system.
Collapse
Affiliation(s)
- Aneta Zebrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-100 Gliwice, Poland; (A.Z.); (P.W.)
| | - Piotr Widlak
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-100 Gliwice, Poland; (A.Z.); (P.W.)
| | - Theresa Whiteside
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Department of Pathology, University of Pittsburgh School of Medicine Pittsburgh, Pittsburgh, PA 15261, USA
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-100 Gliwice, Poland; (A.Z.); (P.W.)
- Correspondence: ; Tel.: +48-32-278-9627
| |
Collapse
|
67
|
Tanda ET, Vanni I, Boutros A, Andreotti V, Bruno W, Ghiorzo P, Spagnolo F. Current State of Target Treatment in BRAF Mutated Melanoma. Front Mol Biosci 2020; 7:154. [PMID: 32760738 PMCID: PMC7371970 DOI: 10.3389/fmolb.2020.00154] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022] Open
Abstract
Incidence of melanoma has been constantly growing during the last decades. Although most of the new diagnoses are represented by thin melanomas, the number of melanoma-related deaths in 2018 was 60,712 worldwide (Global Cancer Observatory, 2019). Until 2011, no systemic therapy showed to improve survival in patients with advanced or metastatic melanoma. At that time, standard of care was chemotherapy, with very limited results. The identification of BRAF V600 mutation, and the subsequent introduction of BRAF targeting drugs, radically changed the clinical practice and dramatically improved outcomes. In this review, we will retrace the development of molecular-target drugs and the current therapeutic scenario for patients with BRAF mutated melanoma, from the introduction of BRAF inhibitors as single agents to modern clinical practice. We will also discuss the resistance mechanisms identified so far, and the future therapeutic perspectives in BRAF mutated melanoma.
Collapse
Affiliation(s)
| | - Irene Vanni
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Andrea Boutros
- Medical Oncology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Virginia Andreotti
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - William Bruno
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | | |
Collapse
|
68
|
Kenyon-Smith TJ, Kroon HM, Miura JT, Teras J, Beasley GM, Mullen D, Farrow NE, Mosca PJ, Lowe MC, Farley CR, Potdar A, Daou H, Sun J, Farma JM, Henderson MA, Speakman D, Serpell J, Delman KA, Smithers BM, Barbour A, Coventry BJ, Tyler DS, Zager JS, Thompson JF. Factors predicting toxicity and response following isolated limb infusion for melanoma: An international multi-centre study. Eur J Surg Oncol 2020; 46:2140-2146. [PMID: 32739218 DOI: 10.1016/j.ejso.2020.06.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/12/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Isolated limb infusion (ILI) is a minimally-invasive procedure for delivering high-dose regional chemotherapy to treat melanoma in-transit metastases confined to a limb. The aim of this international multi-centre study was to identify predictive factors for toxicity and response. METHODS Data of 687 patients who underwent a first ILI for melanoma in-transit metastases confined to the limb between 1992 and 2018 were collected at five Australian and four US tertiary referral centres. RESULTS After ILI, predictive factors for increased limb toxicity (Wieberdink grade III/IV limb toxicity, n = 192, 27.9%) were: female gender, younger age, procedures performed before 2005, lower limb procedures, higher melphalan dose, longer drug circulation and ischemia times, and increased tissue hypoxia. No patient experienced grade V toxicity (necessitating amputation). A complete response (n = 199, 28.9%) was associated with a lower stage of disease, lower burden of disease (BOD) and thinner Breslow thickness of the primary melanoma. Additionally, an overall response (combined complete and partial response, n = 441, 64.1%) was associated with female gender, Australian centres, procedures performed before 2005, lower limb procedures and lower actinomycin-D doses. On multivariate analysis, higher melphalan dose remained a predictive factor for toxicity, while lower stage of disease and lower BOD remained predictive factors for overall response. CONCLUSION ILI is safe and effective to treat melanoma in-transit metastases. Predictive factors for toxicity and response identified in this study will allow improved patient selection and optimization of intra-operative parameters to increase response rates, while keeping toxicity low.
Collapse
Affiliation(s)
- Timothy J Kenyon-Smith
- Department of Surgery, Royal Adelaide Hospital, University of Adelaide, Adelaide, SA, Australia
| | - Hidde M Kroon
- Department of Surgery, Royal Adelaide Hospital, University of Adelaide, Adelaide, SA, Australia; Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.
| | - John T Miura
- Department of Cutaneous Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA; University of South Florida Morsani College of Medicine, Tampa FL, USA; Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Jüri Teras
- Department of Surgery, Royal Adelaide Hospital, University of Adelaide, Adelaide, SA, Australia; Department of Surgical Oncology, North Estonian Medical Centre Foundation, Tallinn, Estonia; Tallinn University of Technology, Tallinn, Estonia
| | | | - Dean Mullen
- Department of Surgery, Royal Adelaide Hospital, University of Adelaide, Adelaide, SA, Australia
| | | | - Paul J Mosca
- Department of Surgery, Duke University, Durham, NC, USA
| | - Michael C Lowe
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Clara R Farley
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Aishwarya Potdar
- Department of Cutaneous Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA; University of South Florida Morsani College of Medicine, Tampa FL, USA
| | - Hala Daou
- Department of Cutaneous Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA; University of South Florida Morsani College of Medicine, Tampa FL, USA
| | - James Sun
- Department of Cutaneous Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA; University of South Florida Morsani College of Medicine, Tampa FL, USA
| | - Jeffrey M Farma
- Department of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Michael A Henderson
- Division of Surgical Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia
| | - David Speakman
- Division of Surgical Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Jonathan Serpell
- Discipline of Surgery, The Alfred Hospital, Melbourne, VIC, Australia
| | - Keith A Delman
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - B Mark Smithers
- Queensland Melanoma Project, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia
| | - Andrew Barbour
- Queensland Melanoma Project, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia
| | - Brendon J Coventry
- Department of Surgery, Royal Adelaide Hospital, University of Adelaide, Adelaide, SA, Australia
| | - Douglas S Tyler
- Department of Surgery, University Texas Medical Branch, Galveston, TX, USA
| | - Jonathan S Zager
- Department of Cutaneous Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA; University of South Florida Morsani College of Medicine, Tampa FL, USA
| | - John F Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia; Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
69
|
Schlichtig K, Dürr P, Dörje F, Fromm MF. New Oral Anti-Cancer Drugs and Medication Safety. DEUTSCHES ARZTEBLATT INTERNATIONAL 2020; 116:775-782. [PMID: 31920193 DOI: 10.3238/arztebl.2019.0775] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 04/30/2019] [Accepted: 08/15/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Many oral anti-cancer drugs have come onto the market in the past 20 years. For example, kinase inhibitors, such as the BCR-ABL and BRAF inhibitors, have markedly improved the treatment of chronic myeloid leukemia and melanoma. In this review, we discuss the special challenges posed by poor adherence, drug-drug interactions with other substances, and side effects, among other problems, and the ways in which these challenges can be met. METHODS A selective search was carried out in PubMed for original and review articles on the safety of new oral anti-cancer drugs. Guidelines and current Summaries of Product Characteristics (SmPC) were also considered in the analysis. RESULTS Review articles have pointed out numerous safety concerns with oral anti-cancer drugs. One of these is adherence, on which highly variable figures are available (with mean non-adherence rates ranging from 0 to 54%). The absorption of approximately half of these drugs is influenced by the patient's diet, and that of approximately 20% by gastric pH (Caution: proton-pump inhibitors may influence bioavailability). 70% of the active substances are metabolized primarily by CYP3A4, which means that their pharmacokinetics can be altered by grapefruit juice and CYP3A4 modulators. The prevention, detection, and treatment of side effects (which can be gastrointestinal, cutaneous, cardiovascular, or other) is a highly important matter. CONCLUSION The increasing use of oral anti-cancer drugs confronts patients and treatment teams with special challenges. To optimize treatment outcomes, a multidisciplinary approach should be taken, involving physicians, pharmacists, and nurses. To improve medication safety, medication and side-effect management should be performed, and adherence should be regularly checked and systematically encouraged.
Collapse
Affiliation(s)
- Katja Schlichtig
- Chair of Clinical Pharmacology and Clinical Toxicology, Institute for Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen; Pharmacy, University Hospital Erlangen; Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg (EMN), Erlangen
| | | | | | | |
Collapse
|
70
|
Immunotherapy in the Treatment of Metastatic Melanoma: Current Knowledge and Future Directions. J Immunol Res 2020; 2020:9235638. [PMID: 32671117 PMCID: PMC7338969 DOI: 10.1155/2020/9235638] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/24/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023] Open
Abstract
Melanoma is one of the most immunologic malignancies based on its higher prevalence in immune-compromised patients, the evidence of brisk lymphocytic infiltrates in both primary tumors and metastases, the documented recognition of melanoma antigens by tumor-infiltrating T lymphocytes and, most important, evidence that melanoma responds to immunotherapy. The use of immunotherapy in the treatment of metastatic melanoma is a relatively late discovery for this malignancy. Recent studies have shown a significantly higher success rate with combination of immunotherapy and chemotherapy, radiotherapy, or targeted molecular therapy. Immunotherapy is associated to a panel of dysimmune toxicities called immune-related adverse events that can affect one or more organs and may limit its use. Future directions in the treatment of metastatic melanoma include immunotherapy with anti-PD1 antibodies or targeted therapy with BRAF and MEK inhibitors.
Collapse
|
71
|
Czarnecka AM, Bartnik E, Fiedorowicz M, Rutkowski P. Targeted Therapy in Melanoma and Mechanisms of Resistance. Int J Mol Sci 2020; 21:ijms21134576. [PMID: 32605090 PMCID: PMC7369697 DOI: 10.3390/ijms21134576] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
The common mutation BRAFV600 in primary melanomas activates the mitogen-activated protein kinase/extracellular-signal-regulated kinase (MAPK/ERK) pathway and the introduction of proto-oncogene B-Raf (BRAF) and mitogen-activated protein kinase kinase (MEK) inhibitors (BRAFi and MEKi) was a breakthrough in the treatment of these cancers. However, 15–20% of tumors harbor primary resistance to this therapy, and moreover, patients develop acquired resistance to treatment. Understanding the molecular phenomena behind resistance to BRAFi/MEKis is indispensable in order to develop novel targeted therapies. Most often, resistance develops due to either the reactivation of the MAPK/ERK pathway or the activation of alternative kinase signaling pathways including phosphatase and tensin homolog (PTEN), neurofibromin 1 (NF-1) or RAS signaling. The hyperactivation of tyrosine kinase receptors, such as the receptor of the platelet-derived growth factor β (PDFRβ), insulin-like growth factor 1 receptor (IGF-1R) and the receptor for hepatocyte growth factor (HGF), lead to the induction of the AKT/3-phosphoinositol kinase (PI3K) pathway. Another pathway resulting in BRAFi/MEKi resistance is the hyperactivation of epidermal growth factor receptor (EGFR) signaling or the deregulation of microphthalmia-associated transcription factor (MITF).
Collapse
Affiliation(s)
- Anna M. Czarnecka
- Department of Soft Tissue/Bone, Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence:
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Michał Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Interinstitute Laboratory of New Diagnostic Applications of MRI, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, 02-109 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone, Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| |
Collapse
|
72
|
Zhang Q, Huo GW, Zhang HZ, Song Y. Efficacy of pembrolizumab for advanced/metastatic melanoma: a meta-analysis. Open Med (Wars) 2020; 15:447-456. [PMID: 33313405 PMCID: PMC7706128 DOI: 10.1515/med-2020-0110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/09/2019] [Accepted: 03/11/2020] [Indexed: 12/25/2022] Open
Abstract
This study evaluates the efficacy of pembrolizumab for the treatment of advanced/metastatic melanoma. The literature search was conducted in electronic databases for studies that evaluated the efficacy and safety of pembrolizumab either alone or in combination with other treatments advanced/metastatic melanoma patients. Random-effects meta-analyses were performed to achieve pooled effect sizes of response and survival rates. The overall objective response rate (ORR) was 34.2% [95% confidence interval (CI): 30.4, 38.0]. However, ORR differed with respect to the history of prior systemic therapy. ORR was lower in studies with over 50% patients with prior therapy (25.5% [22.4, 28.5]) than in studies with under 50% patients with prior therapy (40.1% [34.1, 46.1]). ORR was higher in pembrolizumab monotherapy (32.9% [28.1, 37.7]) than in pembrolizumab-ipilimumab combination (27.6% [24.0, 31.2]). Overall ORR was inversely associated with visceral metastasis and prior systemic therapy. With pembrolizumab treatment, either alone or in combination, the progression-free survival (PFS) was 5.73 months; 12-, 24-, and 60-month PFS rate were 44%, 27%, and 25%, respectively; and 12-, 24-, and 60-month overall survival rates were 65%, 50%, and 41%, respectively. The percentage of AEs that led to treatment discontinuation was 13%. Pembrolizumab monotherapy is a valuable option for the treatment of advanced/metastatic melanoma patients.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, China
| | - Geng-Wei Huo
- Department of Oncology, Jining No. 1 People's Hospital, Jining, Shandong 272000, China
| | - Hong-Zhen Zhang
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, 050051, China
| | - Ying Song
- Department of Pharmacy, Jining No. 1 People's Hospital, Jining, Shandong 272000, China
| |
Collapse
|
73
|
Li J, Kan H, Zhao L, Sun Z, Bai C. Immune checkpoint inhibitors in advanced or metastatic mucosal melanoma: a systematic review. Ther Adv Med Oncol 2020; 12:1758835920922028. [PMID: 32489431 PMCID: PMC7238311 DOI: 10.1177/1758835920922028] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
Background Conventional cytotoxic chemotherapy offers minor benefit to patients with mucosal melanoma (MM). Although immune checkpoint inhibitors (ICIs) have become the preferred approach in patients with advanced or metastatic cutaneous melanoma, the evidence of their clinical use for MM is still limited. This systematic review aims to summarize the efficacy and safety of ICIs in advanced or metastatic MM. Methods We searched electronic databases, conference abstracts, clinical trial registers and reference lists for relevant studies. The primary outcomes included the overall response rate (ORR), median progression-free survival (PFS), median overall survival (OS), one-year PFS rate, and one-year OS rate. Results This review identified 13 studies assessing anti-CTLA-4 monotherapy, 22 studies assessing anti-PD-1 monotherapy, two studies assessing anti-CTLA-4 and anti-PD-1 combination therapy, one study assessing anti-PD-1 antibodies combined with axitinib, and three studies assessing anti-PD-1 antibodies combined with radiotherapy. For most patients who received ipilimumab monotherapy, the ORR ranged from 0% to 17%, the median PFS was less than 5 months, and the median OS was less than 10 months. For patients who received nivolumab or pembrolizumab monotherapy, most studies showed an ORR of more than 15% and a median OS of more than 11 months. The combined administration of anti-CTLA-4 and anti-PD-1 agents showed benefits over single-agent therapy with an ORR of more than 33.3%. In a phase Ib trial of toripalimab in combination with axitinib, approximately half of patients had complete or partial responses. Three retrospective studies that investigated anti-PD-1 antibodies combined with radiotherapy showed an ORR of more than 50%, which was higher than each single modality treatment. Conclusions Immune checkpoint inhibitors, especially anti-PD-1 monoclonal antibodies alone and in combination with anti-CTLA-4 monoclonal antibodies or other modalities, are promising treatment options for advanced or metastatic MM. However, high-level evidence is still needed to support the clinical application.
Collapse
Affiliation(s)
- Jiarui Li
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haoxuan Kan
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Zhao
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhao Sun
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunmei Bai
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuai Fu Yuan, Dongcheng District, Beijing 100032, China
| |
Collapse
|
74
|
A Novel Hybrid Nanosystem Integrating Cytotoxic and Magnetic Properties as a Tool to Potentiate Melanoma Therapy. NANOMATERIALS 2020; 10:nano10040693. [PMID: 32268611 PMCID: PMC7221742 DOI: 10.3390/nano10040693] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
Cancer is a major health concern and the prognosis is often poor. Significant advances in nanotechnology are now driving a revolution in cancer detection and treatment. The goal of this study was to develop a novel hybrid nanosystem for melanoma treatment, integrating therapeutic and magnetic targeting modalities. Hence, we designed long circulating and pH-sensitive liposomes loading both dichloro(1,10-phenanthroline) copper (II) (Cuphen), a cytotoxic metallodrug, and iron oxide nanoparticles (IONPs). The synthetized IONPs were characterized by transmission electron microscopy and dynamic light scattering. Lipid-based nanoformulations were prepared by the dehydration rehydration method, followed by an extrusion step for reducing and homogenizing the mean size. Liposomes were characterized in terms of incorporation parameters and mean size. High Cuphen loadings were obtained and the presence of IONPs slightly reduced Cuphen incorporation parameters. Cuphen antiproliferative properties were preserved after association to liposomes and IONPs (at 2 mg/mL) did not interfere on cellular proliferation of murine and human melanoma cell lines. Moreover, the developed nanoformulations displayed magnetic properties. The absence of hemolytic activity for formulations under study demonstrated their safety for parenteral administration. In conclusion, a lipid-based nanosystem loading the cytotoxic metallodrug, Cuphen, and displaying magnetic properties was successfully designed.
Collapse
|
75
|
Kim Y, Gil J, Pla I, Sanchez A, Betancourt LH, Lee B, Appelqvist R, Ingvar C, Lundgren L, Olsson H, Baldetorp B, Kwon HJ, Oskolás H, Rezeli M, Doma V, Kárpáti S, Szasz AM, Németh IB, Malm J, Marko-Varga G. Protein Expression in Metastatic Melanoma and the Link to Disease Presentation in a Range of Tumor Phenotypes. Cancers (Basel) 2020; 12:E767. [PMID: 32213878 PMCID: PMC7140007 DOI: 10.3390/cancers12030767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/11/2020] [Accepted: 03/18/2020] [Indexed: 12/31/2022] Open
Abstract
Malignant melanoma is among the most aggressive skin cancers and it has among the highest metastatic potentials. Although surgery to remove the primary tumor is the gold standard treatment, once melanoma progresses and metastasizes to the lymph nodes and distal organs, i.e., metastatic melanoma (MM), the usual outcome is decreased survival. To improve survival rates and life span, advanced treatments have focused on the success of targeted therapies in the MAPK pathway that are based on BRAF (BRAF V600E) and MEK. The majority of patients with tumors that have higher expression of BRAF V600E show poorer prognosis than patients with a lower level of the mutated protein. Based on the molecular basis of melanoma, these findings are supported by distinct tumor phenotypes determined from differences in tumor heterogeneity and protein expression profiles. With these aspects in mind, continued challenges are to: (1) deconvolute the complexity and heterogeneity of MM; (2) identify the signaling pathways involved; and (3) determine protein expression to develop targeted therapies. Here, we provide an overview of the results from protein expression in MM and the link to disease presentation in a variety of tumor phenotypes and how these will overcome the challenges of clinical problems and suggest new promising approaches in metastatic melanoma and cancer therapy.
Collapse
Affiliation(s)
- Yonghyo Kim
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Jeovanis Gil
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Indira Pla
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - Aniel Sanchez
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - Lazaro Hiram Betancourt
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Boram Lee
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Roger Appelqvist
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Christian Ingvar
- Department of Surgery, Clinical Sciences, Lund University, Skåne University Hospital Lund, 222 42 Lund, Sweden;
| | - Lotta Lundgren
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Håkan Olsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Bo Baldetorp
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden; (L.L.); (H.O.); (B.B.)
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea;
| | - Henriett Oskolás
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
| | - Viktoria Doma
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (V.D.); (S.K.)
| | - Sarolta Kárpáti
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary; (V.D.); (S.K.)
| | - A. Marcell Szasz
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Department of Bioinformatics, Semmelweis University, 1091 Budapest, Hungary
| | - István Balázs Németh
- Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary;
| | - Johan Malm
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden; (J.G.); (I.P.); (A.S.); (L.H.B.); (B.L.); (R.A.); (H.O.); (M.R.); (A.M.S.); (J.M.); (G.M.-V.)
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea;
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjiku Shinjiku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
76
|
Children with malignant melanoma: a single center experience from Turkey. Turk Arch Pediatr 2020; 55:39-45. [PMID: 32231448 PMCID: PMC7096563 DOI: 10.14744/turkpediatriars.2019.90022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/15/2019] [Indexed: 01/09/2023]
Abstract
Aim: Malignant melanoma is the most frequent skin cancer in children and adolescents. It comprises 1–3% of all malignancies. In this study, we aimed to evaluate the clinical aspects, histopathologic features, and treatment outcomes of our patients with malignant melanoma. Material and Methods: Patients aged <15 years who were treated between 2003 and 2018 for malignant melanoma were retrospectively analyzed. Results: Seventeen patients (10 females, 7 males), with a median age of 7 years (range, 7 months-13 years) were evaluated. Five patients had congenital melanocytic nevi. All had cutaneous melanoma except one with mucosal (conjunctival) melanoma. The most frequent primary tumor site was the lower extremities (35%). Sentinel lymphoscintigraphy, sentinel node biopsy, and PET/CT were performed as the staging procedures at initial diagnosis. Localized disease was present in eight patients; nine had regional lymph node metastasis. The only treatment was surgery in localized disease; surgery and adjuvant interferon treatment was given in patients with regional lymph node metastasis. Three developed distant metastasis (bone, lung, brain) at a median of 9 months. A three-year-old patient received a BRAF inhibitor (vemurafenib), and a 13-year-old patient received a check point inhibitor (ipilimumab); both died of progressive disease. The median follow-up for all patients was 25 months. The 5-year overall survival was 76.6%. Conclusion: Although malignant melanoma is rare in children, prognosis is good if diagnosed early. Physicians should be aware of skin lesions and full-layer biopsy should be obtained in suspicious skin lesions. Patients with congenital melanocytic nevi should also be followed up cautiously.
Collapse
|
77
|
Failmezger H, Muralidhar S, Rullan A, de Andrea CE, Sahai E, Yuan Y. Topological Tumor Graphs: A Graph-Based Spatial Model to Infer Stromal Recruitment for Immunosuppression in Melanoma Histology. Cancer Res 2020; 80:1199-1209. [PMID: 31874858 PMCID: PMC7985597 DOI: 10.1158/0008-5472.can-19-2268] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/12/2019] [Accepted: 12/10/2019] [Indexed: 01/08/2023]
Abstract
Despite the advent of immunotherapy, metastatic melanoma represents an aggressive tumor type with a poor survival outcome. The successful application of immunotherapy requires in-depth understanding of the biological basis and immunosuppressive mechanisms within the tumor microenvironment. In this study, we conducted spatially explicit analyses of the stromal-immune interface across 400 melanoma hematoxylin and eosin (H&E) specimens from The Cancer Genome Atlas. A computational pathology pipeline (CRImage) was used to classify cells in the H&E specimen into stromal, immune, or cancer cells. The estimated proportions of these cell types were validated by independent measures of tumor purity, pathologists' estimate of lymphocyte density, imputed immune cell subtypes, and pathway analyses. Spatial interactions between these cell types were computed using a graph-based algorithm (topological tumor graphs, TTG). This approach identified two stromal features, namely stromal clustering and stromal barrier, which represented the melanoma stromal microenvironment. Tumors with increased stromal clustering and barrier were associated with reduced intratumoral lymphocyte distribution and poor overall survival independent of existing prognostic factors. To explore the genomic basis of these TTG-derived stromal phenotypes, we used a deep learning approach integrating genomic (copy number) and transcriptomic data, thereby inferring a compressed representation of copy number-driven alterations in gene expression. This integrative analysis revealed that tumors with high stromal clustering and barrier had reduced expression of pathways involved in naïve CD4 signaling, MAPK, and PI3K signaling. Taken together, our findings support the immunosuppressive role of stromal cells and T-cell exclusion within the vicinity of melanoma cells. SIGNIFICANCE: Computational histology-based stromal phenotypes within the tumor microenvironment are significantly associated with prognosis and immune exclusion in melanoma.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Biopsy
- Cohort Studies
- DNA Copy Number Variations
- Deep Learning
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/immunology
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Humans
- Image Interpretation, Computer-Assisted
- Kaplan-Meier Estimate
- Lymphocytes, Tumor-Infiltrating/immunology
- Melanoma/drug therapy
- Melanoma/genetics
- Melanoma/immunology
- Melanoma/mortality
- Middle Aged
- Models, Biological
- Prognosis
- RNA-Seq
- Skin/cytology
- Skin/immunology
- Skin/pathology
- Skin Neoplasms/drug therapy
- Skin Neoplasms/genetics
- Skin Neoplasms/immunology
- Skin Neoplasms/mortality
- Spatial Analysis
- Stromal Cells/immunology
- Stromal Cells/pathology
- T-Lymphocytes/immunology
- Tumor Escape/genetics
- Tumor Escape/immunology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Henrik Failmezger
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Sathya Muralidhar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Antonio Rullan
- Tumor Cell Biology Laboratory, The Francis Crick Institute, London, United Kingdom
- Targeted therapy Laboratory, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - Erik Sahai
- Tumor Cell Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom.
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
78
|
Efficacy and Adverse Events in Metastatic Melanoma Patients Treated with Combination BRAF Plus MEK Inhibitors Versus BRAF Inhibitors: A Systematic Review. Cancers (Basel) 2019; 11:cancers11121950. [PMID: 31817473 PMCID: PMC6966686 DOI: 10.3390/cancers11121950] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/16/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022] Open
Abstract
We reviewed the literature to assess the efficacy and risk of constitutional, cardiac, gastrointestinal, and dermatological toxicities of combined BRAF plus MEK inhibitors versus BRAF inhibitors alone in patients with metastatic melanoma with BRAF mutations. Searches were conducted in PubMed, Cochrane Database of Systematic Reviews, Google scholar, ASCO, Scopus, and EMBASE for reports published from January 2010 through March 2019. Efficacy, including progression-free survival (PFS) and overall survival (OS) rates, were assessed by hazard ratio (HR); objective response rates (ORR) were assessed by odds ratio (OR). The randomized clinical trials (RCTs) with comparison to vemurafenib monotherapy were included to determine constitutional, gastrointestinal, cardiac, and dermatological toxicities using PRISMA statistical analysis with relative risk (RR) for equal comparison to avoid inclusion bias. Five RTCs comprising 2307 patients were included to assess efficacy, while three of the five RCTs comprising 1776 patients were included to assess adverse events. BRAF plus MEK inhibitor combination therapy demonstrated overall better efficacy compared to BRAF inhibitor monotherapy. Combination therapies appear to have favorable dermatologic side effect profiles, similar constitutional and cardiac profiles, and slightly worse gastrointestinal profiles compares to monotherapy regimens.
Collapse
|
79
|
Melanoma and Vitiligo: In Good Company. Int J Mol Sci 2019; 20:ijms20225731. [PMID: 31731645 PMCID: PMC6888090 DOI: 10.3390/ijms20225731] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/10/2019] [Accepted: 11/13/2019] [Indexed: 12/24/2022] Open
Abstract
Cutaneous melanoma represents the most aggressive form of skin cancer, whereas vitiligo is an autoimmune disorder that leads to progressive destruction of skin melanocytes. However, vitiligo has been associated with cutaneous melanoma since the 1970s. Most of the antigens recognized by the immune system are expressed by both melanoma cells and normal melanocytes, explaining why the autoimmune response against melanocytes that led to vitiligo could be also present in melanoma patients. Leukoderma has been also observed as a side effect of melanoma immunotherapy and has always been associated with a favorable prognosis. In this review, we discuss several characteristics of the immune system responses shared by melanoma and vitiligo patients, as well as the significance of occurrence of leukoderma during immunotherapy, with special attention to check-point inhibitors.
Collapse
|
80
|
Sun J, Kirichenko DA, Zager JS, Eroglu Z. The emergence of neoadjuvant therapy in advanced melanoma. Melanoma Manag 2019; 6:MMT27. [PMID: 31807278 PMCID: PMC6891937 DOI: 10.2217/mmt-2019-0007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2019] [Indexed: 12/27/2022] Open
Abstract
The discovery of immunotherapy and targeted therapy has introduced new and effective treatment options for advanced melanoma, providing therapeutic options where none existed before. The natural extension of these novel therapies is to identify their role in the neoadjuvant setting. Neoadjuvant therapy for advanced melanoma is still in its infancy, with a wealth of clinical trials underway. Early results are promising, allowing for management of a disease that previously had few options. We review the current literature and interim results from several ongoing investigations to understand the current state of neoadjuvant treatment options and what is to come. These studies pave the way for further advancements in melanoma therapy.
Collapse
Affiliation(s)
- James Sun
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Dennis A Kirichenko
- Univeristy of South Florida, Morsani College of Medicine, Tampa, FL 33612, USA
| | - Jonathan S Zager
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Zeynep Eroglu
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
81
|
van Holstein Y, Kapiteijn E, Bastiaannet E, van den Bos F, Portielje J, de Glas NA. Efficacy and Adverse Events of Immunotherapy with Checkpoint Inhibitors in Older Patients with Cancer. Drugs Aging 2019; 36:927-938. [PMID: 31317421 PMCID: PMC6764930 DOI: 10.1007/s40266-019-00697-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The number of older patients with cancer is increasing as a result of the ageing of Western societies. Immune checkpoint inhibitors have improved cancer treatment and are associated with lower rates of treatment-related toxicity compared with chemotherapy in the general population. Nonetheless, immune checkpoint inhibitors have potentially serious immune-related adverse events, which might have a greater impact on older and more vulnerable patients and potentially influence treatment efficacy and quality of life. Previous clinical trials have shown no major increase in immune-related adverse events; however, older patients are underrepresented and relatively healthy in these trials. Observational studies suggest that older and more vulnerable patients may be at a higher risk of immune-related adverse events and early treatment discontinuation. Geriatric assessment could help identify older patients who will benefit from immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Yara van Holstein
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ellen Kapiteijn
- Department of Medical Oncology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Esther Bastiaannet
- Department of Medical Oncology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Frederiek van den Bos
- Department of Geriatrics, Utrecht University Medical Center, Leiden, The Netherlands
| | - Johanneke Portielje
- Department of Medical Oncology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Nienke A de Glas
- Department of Medical Oncology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
82
|
Khunger A, Rytlewski JA, Fields P, Yusko EC, Tarhini AA. The impact of CTLA-4 blockade and interferon-α on clonality of T-cell repertoire in the tumor microenvironment and peripheral blood of metastatic melanoma patients. Oncoimmunology 2019; 8:e1652538. [PMID: 31646098 PMCID: PMC6791420 DOI: 10.1080/2162402x.2019.1652538] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Patients with metastatic melanoma were treated with tremelimumab and interferon-α (IFN) in a previously reported clinical trial [NCT00610857]. Responses were assessed by RECIST criteria as complete (CR) or partial (PR), stable disease (SD) or progressive disease (PD). In this study, T-cell receptor (TCR) beta-chain repertoire was immunosequenced in peripheral blood mononuclear cells (PBMC) specimens (N = 33) and tumor samples (N = 18) utilizing the immunoSEQ® Assay to determine repertoire clonality and T cell fractions at pre-treatment (tumor and PBMC), one month (PBMC) and 3 months (PBMC) time points and evaluate its association with clinical outcomes. In the pretreatment tumor microenvironment (TME), T cell clonality was significantly (p = .035) different and greater in patients who achieved disease control (CR, PR, SD) versus those with non-disease control (PD) as best response to treatment. Further, there was significantly (p = .001) increased TCR fraction in tissue of responders (CR, PR) versus non-responders (PD, SD). In examining T cell clonality in the circulation (PBMC), no significant associations were found in the pretreatment samples. However, early on-treatment (4 weeks) there was a significant decrease in T cell clonality that was associated with improved overall survival (p = .01) and progression-free survival (p = .04). In addition, analysis of temporal changes in tumor-infiltrating lymphocytes (TIL) and peripheral TCR repertoire revealed that responders had significantly higher clonal expansion of TIL in the circulation at 4 weeks than non-responders (p = .036). Our study provided interesting mechanistic data related to CTLA-4 Blockade and IFN and potential biomarkers of immunotherapeutic benefit.
Collapse
Affiliation(s)
- Arjun Khunger
- Department of Hematology and Oncology, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | - Ahmad A. Tarhini
- Department of Cutaneous Oncology, Moffitt Comprehensive Cancer Center, Tampa, Florida, USA
| |
Collapse
|
83
|
Dinnes J, Ferrante di Ruffano L, Takwoingi Y, Cheung ST, Nathan P, Matin RN, Chuchu N, Chan SA, Durack A, Bayliss SE, Gulati A, Patel L, Davenport C, Godfrey K, Subesinghe M, Traill Z, Deeks JJ, Williams HC. Ultrasound, CT, MRI, or PET-CT for staging and re-staging of adults with cutaneous melanoma. Cochrane Database Syst Rev 2019; 7:CD012806. [PMID: 31260100 PMCID: PMC6601698 DOI: 10.1002/14651858.cd012806.pub2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Melanoma is one of the most aggressive forms of skin cancer, with the potential to metastasise to other parts of the body via the lymphatic system and the bloodstream. Melanoma accounts for a small percentage of skin cancer cases but is responsible for the majority of skin cancer deaths. Various imaging tests can be used with the aim of detecting metastatic spread of disease following a primary diagnosis of melanoma (primary staging) or on clinical suspicion of disease recurrence (re-staging). Accurate staging is crucial to ensuring that patients are directed to the most appropriate and effective treatment at different points on the clinical pathway. Establishing the comparative accuracy of ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET)-CT imaging for detection of nodal or distant metastases, or both, is critical to understanding if, how, and where on the pathway these tests might be used. OBJECTIVES Primary objectivesWe estimated accuracy separately according to the point in the clinical pathway at which imaging tests were used. Our objectives were:• to determine the diagnostic accuracy of ultrasound or PET-CT for detection of nodal metastases before sentinel lymph node biopsy in adults with confirmed cutaneous invasive melanoma; and• to determine the diagnostic accuracy of ultrasound, CT, MRI, or PET-CT for whole body imaging in adults with cutaneous invasive melanoma:○ for detection of any metastasis in adults with a primary diagnosis of melanoma (i.e. primary staging at presentation); and○ for detection of any metastasis in adults undergoing staging of recurrence of melanoma (i.e. re-staging prompted by findings on routine follow-up).We undertook separate analyses according to whether accuracy data were reported per patient or per lesion.Secondary objectivesWe sought to determine the diagnostic accuracy of ultrasound, CT, MRI, or PET-CT for whole body imaging (detection of any metastasis) in mixed or not clearly described populations of adults with cutaneous invasive melanoma.For study participants undergoing primary staging or re-staging (for possible recurrence), and for mixed or unclear populations, our objectives were:• to determine the diagnostic accuracy of ultrasound, CT, MRI, or PET-CT for detection of nodal metastases;• to determine the diagnostic accuracy of ultrasound, CT, MRI, or PET-CT for detection of distant metastases; and• to determine the diagnostic accuracy of ultrasound, CT, MRI, or PET-CT for detection of distant metastases according to metastatic site. SEARCH METHODS We undertook a comprehensive search of the following databases from inception up to August 2016: Cochrane Central Register of Controlled Trials; MEDLINE; Embase; CINAHL; CPCI; Zetoc; Science Citation Index; US National Institutes of Health Ongoing Trials Register; NIHR Clinical Research Network Portfolio Database; and the World Health Organization International Clinical Trials Registry Platform. We studied reference lists as well as published systematic review articles. SELECTION CRITERIA We included studies of any design that evaluated ultrasound (with or without the use of fine needle aspiration cytology (FNAC)), CT, MRI, or PET-CT for staging of cutaneous melanoma in adults, compared with a reference standard of histological confirmation or imaging with clinical follow-up of at least three months' duration. We excluded studies reporting multiple applications of the same test in more than 10% of study participants. DATA COLLECTION AND ANALYSIS Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2)). We estimated accuracy using the bivariate hierarchical method to produce summary sensitivities and specificities with 95% confidence and prediction regions. We undertook analysis of studies allowing direct and indirect comparison between tests. We examined heterogeneity between studies by visually inspecting the forest plots of sensitivity and specificity and summary receiver operating characteristic (ROC) plots. Numbers of identified studies were insufficient to allow formal investigation of potential sources of heterogeneity. MAIN RESULTS We included a total of 39 publications reporting on 5204 study participants; 34 studies reporting data per patient included 4980 study participants with 1265 cases of metastatic disease, and seven studies reporting data per lesion included 417 study participants with 1846 potentially metastatic lesions, 1061 of which were confirmed metastases. The risk of bias was low or unclear for all domains apart from participant flow. Concerns regarding applicability of the evidence were high or unclear for almost all domains. Participant selection from mixed or not clearly defined populations and poorly described application and interpretation of index tests were particularly problematic.The accuracy of imaging for detection of regional nodal metastases before sentinel lymph node biopsy (SLNB) was evaluated in 18 studies. In 11 studies (2614 participants; 542 cases), the summary sensitivity of ultrasound alone was 35.4% (95% confidence interval (CI) 17.0% to 59.4%) and specificity was 93.9% (95% CI 86.1% to 97.5%). Combining pre-SLNB ultrasound with FNAC revealed summary sensitivity of 18.0% (95% CI 3.58% to 56.5%) and specificity of 99.8% (95% CI 99.1% to 99.9%) (1164 participants; 259 cases). Four studies demonstrated lower sensitivity (10.2%, 95% CI 4.31% to 22.3%) and specificity (96.5%,95% CI 87.1% to 99.1%) for PET-CT before SLNB (170 participants, 49 cases). When these data are translated to a hypothetical cohort of 1000 people eligible for SLNB, 237 of whom have nodal metastases (median prevalence), the combination of ultrasound with FNAC potentially allows 43 people with nodal metastases to be triaged directly to adjuvant therapy rather than having SLNB first, at a cost of two people with false positive results (who are incorrectly managed). Those with a false negative ultrasound will be identified on subsequent SLNB.Limited test accuracy data were available for whole body imaging via PET-CT for primary staging or re-staging for disease recurrence, and none evaluated MRI. Twenty-four studies evaluated whole body imaging. Six of these studies explored primary staging following a confirmed diagnosis of melanoma (492 participants), three evaluated re-staging of disease following some clinical indication of recurrence (589 participants), and 15 included mixed or not clearly described population groups comprising participants at a number of different points on the clinical pathway and at varying stages of disease (1265 participants). Results for whole body imaging could not be translated to a hypothetical cohort of people due to paucity of data.Most of the studies (6/9) of primary disease or re-staging of disease considered PET-CT, two in comparison to CT alone, and three studies examined the use of ultrasound. No eligible evaluations of MRI in these groups were identified. All studies used histological reference standards combined with follow-up, and two included FNAC for some participants. Observed accuracy for detection of any metastases for PET-CT was higher for re-staging of disease (summary sensitivity from two studies: 92.6%, 95% CI 85.3% to 96.4%; specificity: 89.7%, 95% CI 78.8% to 95.3%; 153 participants; 95 cases) compared to primary staging (sensitivities from individual studies ranged from 30% to 47% and specificities from 73% to 88%), and was more sensitive than CT alone in both population groups, but participant numbers were very small.No conclusions can be drawn regarding routine imaging of the brain via MRI or CT. AUTHORS' CONCLUSIONS Review authors found a disappointing lack of evidence on the accuracy of imaging in people with a diagnosis of melanoma at different points on the clinical pathway. Studies were small and often reported data according to the number of lesions rather than the number of study participants. Imaging with ultrasound combined with FNAC before SLNB may identify around one-fifth of those with nodal disease, but confidence intervals are wide and further work is needed to establish cost-effectiveness. Much of the evidence for whole body imaging for primary staging or re-staging of disease is focused on PET-CT, and comparative data with CT or MRI are lacking. Future studies should go beyond diagnostic accuracy and consider the effects of different imaging tests on disease management. The increasing availability of adjuvant therapies for people with melanoma at high risk of disease spread at presentation will have a considerable impact on imaging services, yet evidence for the relative diagnostic accuracy of available tests is limited.
Collapse
Affiliation(s)
- Jacqueline Dinnes
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | | | - Yemisi Takwoingi
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Seau Tak Cheung
- Dudley Hospitals Foundation Trust, Corbett HospitalDepartment of DermatologyWicarage RoadStourbridgeUKDY8 4JB
| | - Paul Nathan
- Mount Vernon HospitalMount Vernon Cancer CentreRickmansworth RoadNorthwoodUKHA6 2RN
| | - Rubeta N Matin
- Churchill HospitalDepartment of DermatologyOld RoadHeadingtonOxfordUKOX3 7LE
| | - Naomi Chuchu
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Sue Ann Chan
- City HospitalBirmingham Skin CentreDudley RdBirminghamUKB18 7QH
| | - Alana Durack
- Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation TrustDermatologyHills RoadCambridgeUKCB2 0QQ
| | - Susan E Bayliss
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Abha Gulati
- Barts Health NHS TrustDepartment of DermatologyWhitechapelLondonUKE11BB
| | - Lopa Patel
- Royal Stoke HospitalPlastic SurgeryStoke‐on‐TrentStaffordshireUKST4 6QG
| | - Clare Davenport
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Kathie Godfrey
- The University of Nottinghamc/o Cochrane Skin GroupNottinghamUK
| | - Manil Subesinghe
- King's College LondonCancer Imaging, School of Biomedical Engineering & Imaging SciencesLondonUK
| | - Zoe Traill
- Oxford University Hospitals NHS TrustChurchill Hospital Radiology DepartmentOxfordUK
| | - Jonathan J Deeks
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Hywel C Williams
- University of NottinghamCentre of Evidence Based DermatologyQueen's Medical CentreDerby RoadNottinghamUKNG7 2UH
| | | | | |
Collapse
|
84
|
Johnston MP, Khakoo SI. Immunotherapy for hepatocellular carcinoma: Current and future. World J Gastroenterol 2019; 25:2977-2989. [PMID: 31293335 PMCID: PMC6603808 DOI: 10.3748/wjg.v25.i24.2977] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/24/2019] [Accepted: 05/18/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) arises on the background of chronic liver disease. Despite the development of effective anti-viral therapeutics HCC is continuing to rise, in part driven by the epidemic of non-alcoholic fatty liver disease. Many patients present with advanced disease out with the criteria for transplant, resection or even locoregional therapy. Currently available therapeutics for HCC are effective in a small minority of individuals. However, there has been a major global interest in immunotherapies for cancer and although HCC has lagged behind other cancers, great opportunities now exist for treating HCC with newer and more sophisticated agents. Whilst checkpoint inhibitors are at the forefront of this revolution, other therapeutics such as inhibitory cytokine blockade, oncolytic viruses, adoptive cellular therapies and vaccines are emerging. Broadly these may be categorized as either boosting existing immune response or stimulating de novo immune response. Although some of these agents have shown promising results as monotherapy in early phase trials it may well be that their future role will be as combination therapy, either in combination with one another or in combination with treatment modalities such as locoregional therapy. Together these agents are likely to generate new and exciting opportunities for treating HCC, which are summarized in this review.
Collapse
Affiliation(s)
- Michael P Johnston
- Department of Hepatology, Southampton General Hospital, University Hospital Southampton, Southampton SO16 6YD, United Kingdom
| | - Salim I Khakoo
- Department of Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton SO16 6YD, United Kingdom
| |
Collapse
|
85
|
Imaoka M, Tanese K, Masugi Y, Hayashi M, Sakamoto M. Macrophage migration inhibitory factor-CD74 interaction regulates the expression of programmed cell death ligand 1 in melanoma cells. Cancer Sci 2019; 110:2273-2283. [PMID: 31069878 PMCID: PMC6609804 DOI: 10.1111/cas.14038] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/16/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
Expression of programmed cell death ligand 1 (PD‐L1) on tumor cells contributes to cancer immune evasion by interacting with programmed cell death 1 on immune cells. γ‐Interferon (IFN‐γ) has been reported as a key extrinsic stimulator of PD‐L1 expression, yet its mechanism of expression is poorly understood. This study analyzed the role of CD74 and its ligand macrophage migration inhibitory factor (MIF) on PD‐L1 expression, by immunohistochemical analysis of melanoma tissue samples and in vitro analyses of melanoma cell lines treated with IFN‐γ and inhibitors of the MIF‐CD74 interaction. Immunohistochemical analyses of 97 melanoma tissue samples showed significant correlations between CD74 and the expression status of PD‐L1 (P < .01). In vitro analysis of 2 melanoma cell lines, which are known to secrete MIF constitutively and express cell surface CD74 following IFN‐γ stimulation, showed upregulation of PD‐L1 levels by IFN‐γ stimulation. This was suppressed by further treatment with the MIF‐CD74 interaction inhibitor, 4‐iodo‐6‐phenylpyrimidine. In the analysis of melanoma cell line WM1361A, which constitutively expresses PD‐L1, CD74, and MIF in its non‐treated state, treatment with 4‐iodo‐6‐phenylpyrimidine and transfection of siRNAs targeting MIF and CD74 significantly suppressed the expression of PD‐L1. Together, the results indicated that MIF‐CD74 interaction directly regulated the expression of PD‐L1 and helps tumor cells escape from antitumorigenic immune responses. In conclusion, the MIF‐CD74 interaction could be a therapeutic target in the treatment of melanoma patients.
Collapse
Affiliation(s)
- Masako Imaoka
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Keiji Tanese
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan.,Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Masugi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Mutsumi Hayashi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
86
|
Rocca MS, Benna C, Mocellin S, Rossi CR, Msaki A, Di Nisio A, Opocher G, Foresta C. E2F1 germline copy number variations and melanoma susceptibility. J Transl Med 2019; 17:181. [PMID: 31142321 PMCID: PMC6542053 DOI: 10.1186/s12967-019-1933-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/20/2019] [Indexed: 01/29/2023] Open
Abstract
Background Melanoma is an aggressive type of skin cancer whose aetiology remains elusive as both environmental and genetic factors can contribute to its development. Recent studies have demonstrated the existence of multiple copies of E2F1 gene in melanoma specimens which could explain the deregulated E2F1 activity in this type of cancer. This finding suggests a key role for this transcription factor in the malignant transformation of melanocytes. Therefore, E2F1 has been considered as a potential therapeutic target for this form of skin cancer. Since germline copy number variations (CNVs) have been associated with increased susceptibility to different types of cancer, the aim of our study was to assess germline E2F1 CNV in melanoma patients. However, CNVs not necessarily lead to gene dosage imbalance, hence, further factors, in association with CNVs, could contribute to clinical manifestations. Considering that heat stress has been hypothesised as a contributing factor to skin cancer, we also investigated the effect of heat stress on E2F1 expression. Methods E2F1 CNV was measured in genomic DNA isolated from blood of 552 patients diagnosed with melanoma and 520 healthy subjects using TaqMan Copy Number Assays. E2F1 mRNA expression was also evaluated by RT-qPCR in the melanoma cell line, SK MEL 267, before and after exposure to heat stress. Results We found that patients diagnosed with melanoma (1.6%, 9/552) harboured frequently altered germline E2F1 copies compared to healthy subjects (0%, 0/520). Moreover, the difference among the two groups was statistically significant (p = 0.004). Furthermore, we found that heat exposure alone can significantly induce E2F1 expression. Conclusions This is the first study that shows a relation between germline E2F1 CNV and melanoma, suggesting that altered copies of this gene might be a predisposing factor to skin cancer. Our results also suggest that environmental insults, such as heat stress, could contribute to an aberrant E2F1 activity by inducing E2F1 mRNA expression. Therefore, subjects with multiple constitutive copies of E2F1 are at greater risk of developing melanoma when exposed to heat. Altogether our results corroborate with the hypothesis that susceptibility to melanoma depends on both the environment and genetic factors.
Collapse
Affiliation(s)
- Maria Santa Rocca
- Familial Cancer Clinic, Veneto Institute of Oncology (IOV-IRCCS), Padua, Italy
| | - Clara Benna
- Department of Surgery Oncology and Gastroenterology (DISCOG), University of Padua, Padua, Italy.,First Surgical Clinic, Azienda Ospedaliera di Padova, Padua, Italy
| | - Simone Mocellin
- Surgical Oncology Unit, Veneto Institute of Oncology (IOV-IRCCS), Padua, Italy.,Department of Surgery Oncology and Gastroenterology (DISCOG), University of Padua, Padua, Italy
| | - Carlo Riccardo Rossi
- Surgical Oncology Unit, Veneto Institute of Oncology (IOV-IRCCS), Padua, Italy.,Department of Surgery Oncology and Gastroenterology (DISCOG), University of Padua, Padua, Italy
| | - Aichi Msaki
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padua, Via Giustiniani, 2, 35128, Padua, Italy
| | - Andrea Di Nisio
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padua, Via Giustiniani, 2, 35128, Padua, Italy
| | - Giuseppe Opocher
- Familial Cancer Clinic, Veneto Institute of Oncology (IOV-IRCCS), Padua, Italy
| | - Carlo Foresta
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padua, Via Giustiniani, 2, 35128, Padua, Italy.
| |
Collapse
|
87
|
Radiotherapy for Melanoma: More than DNA Damage. Dermatol Res Pract 2019; 2019:9435389. [PMID: 31073304 PMCID: PMC6470446 DOI: 10.1155/2019/9435389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/26/2018] [Accepted: 03/04/2019] [Indexed: 12/20/2022] Open
Abstract
Despite its reputation as a radioresistant tumour, there is evidence to support a role for radiotherapy in patients with melanoma and we summarise current clinical practice. Melanoma is a highly immunogenic tumour and in this era of immunotherapy, there is renewed interest in the potential of irradiation, not only as an adjuvant and palliative treatment, but also as an immune stimulant. It has long been known that radiation causes not only DNA strand breaks, apoptosis, and necrosis, but also immunogenic modulation and cell death through the induction of dendritic cells, cell adhesion molecules, death receptors, and tumour-associated antigens, effectively transforming the tumour into an individualised vaccine. This immune response can be enhanced by the application of clinical hyperthermia as evidenced by randomised trial data in patients with melanoma. The large fraction sizes used in cranial radiosurgery and stereotactic body radiotherapy are more immunogenic than conventional fractionation, which provides additional radiobiological justification for these techniques in this disease entity. Given the immune priming effect of radiotherapy, there is a strong but complex biological rationale and an increasing body of evidence for synergy in combination with immune checkpoint inhibitors, which are now first-line therapy in patients with recurrent or metastatic melanoma. There is great potential to increase local control and abscopal effects by combining radiotherapy with both immunotherapy and hyperthermia, and a combination of all three modalities is suggested as the next important trial in this refractory disease.
Collapse
|
88
|
Ercolano G, De Cicco P, Frecentese F, Saccone I, Corvino A, Giordano F, Magli E, Fiorino F, Severino B, Calderone V, Citi V, Cirino G, Ianaro A. Anti-metastatic Properties of Naproxen-HBTA in a Murine Model of Cutaneous Melanoma. Front Pharmacol 2019; 10:66. [PMID: 30800067 PMCID: PMC6376415 DOI: 10.3389/fphar.2019.00066] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/18/2019] [Indexed: 12/28/2022] Open
Abstract
The beneficial effects of H2S-release and of COXs-inhibition have been exploited in the design of novel anti-inflammatory drugs, the H2S-releasing non-steroidal anti-inflammatory drugs (H2S-NSAIDs), showing promising potential for chemoprevention in cancers. Here, we evaluated the efficacy of a new H2S-releasing derivative of naproxen, named naproxen-4-hydroxybenzodithioate (naproxen-HBTA), in reducing metastatic melanoma features, both in vitro and in vivo. The novel H2S donor has been prepared following a synthetic scheme that provided high yields and purity. In particular, we investigated the effect of naproxen-HBTA in vitro on several metastatic features of human melanoma cells such as proliferation, migration, invasion, and colonies formation and in vivo in a model of cutaneous melanoma. Cell culture studies demonstrated that naproxen-HBTA induced caspase 3-mediated apoptosis and inhibited motility, invasiveness, and focus formation. Finally, daily oral treatment with naproxen-HBTA significantly suppressed melanoma growth and progression in mice. In conclusion, by using this dual approach we propose that the COX-2 and H2S pathways could be regarded as novel therapeutic targets/tools to generate new treatment options based on "combination therapy" for melanoma.
Collapse
Affiliation(s)
- Giuseppe Ercolano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Paola De Cicco
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Irene Saccone
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Angela Corvino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Flavia Giordano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Elisa Magli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Beatrice Severino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | | | - Giuseppe Cirino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Angela Ianaro
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
89
|
Han S, Huang T, Li W, Wang X, Wu X, Liu S, Yang W, Shi Q, Li H, Hou F. Prognostic Value of CD44 and Its Isoforms in Advanced Cancer: A Systematic Meta-Analysis With Trial Sequential Analysis. Front Oncol 2019; 9:39. [PMID: 30788285 PMCID: PMC6372530 DOI: 10.3389/fonc.2019.00039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
Objective: Cancer stem cell marker CD44 and its variant isoforms (CD44v) may be correlated with tumor growth, metastasis, and chemo-radiotherapy resistance. However, the prognostic power of CD44 and CD44v in advanced cancer remains controversial. Therefore, the purpose of our study was to generalize the prognostic significance of these cancer stem cell markers in advanced cancer patients. Methods: Hazard ratios (HRs) with 95% confidence intervals (95% CIs) were calculated from multivariable analysis to assess the associations among CD44, CD44v6, and CD44v9 positivity and overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), cancer-specific survival (CSS), and recurrence-free survival (RFS). Trial sequential analysis (TSA) was also conducted. Results: We included 15 articles that reported on 1,201 patients with advanced cancer (CD44: nine studies with 796 cases, CD44v6: three studies with 143 cases, and CD44v9: three studies with 262 cases). CD44 expression was slightly linked to worse OS (HR = 2.03, P = 0.027), but there was no correlation between CD44 expression and DFS, RFS, or PFS. Stratified analysis showed that CD44 expression was not correlated with OS at ≥5 years or OS in patients receiving adjuvant therapy. CD44v6 expression was not associated with OS. CD44v9 expression was closely associated with poor 5-years CSS in patients treated with chemo/radiotherapy (HR = 3.62, P < 0.001). However, TSA suggested that additional trials were needed to confirm these conclusions. Conclusions: CD44 or CD44v9 might be novel therapeutic targets for improving the treatment of advanced cancer patients. Additional prospective clinical trials are strongly needed across different cancer types.
Collapse
Affiliation(s)
- Susu Han
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Huang
- The Affiliated Hospital of Ningbo University, Ningbo, China
| | - Wen Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiyu Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xing Wu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shanshan Liu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Yang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Shi
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongjia Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenggang Hou
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
90
|
Grahovac J, Srdić-Rajić T, Francisco Santibañez J, Pavlović M, Čavić M, Radulović S. Telmisartan induces melanoma cell apoptosis and synergizes with vemurafenib in vitro by altering cell bioenergetics. Cancer Biol Med 2019; 16:247-263. [PMID: 31516746 PMCID: PMC6713633 DOI: 10.20892/j.issn.2095-3941.2018.0375] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective Despite recent advancements in targeted therapy and immunotherapies, prognosis for metastatic melanoma patients remains extremely poor. Development of resistance to previously effective treatments presents a serious challenge and new approaches for melanoma treatment are urgently needed. The objective of this study was to examine the effects of telmisartan, an AGTR1 inhibitor and a partial agonist of PPARγ, on melanoma cells as a potential agent for repurposing in melanoma treatment. Methods Expression of AGTR1 and PPARγ mRNA in melanoma patient tumor samples was examined in publicly available datasets and confirmed in melanoma cell lines by qRT-PCR. A panel of melanoma cell lines was tested in viability, apoptosis and metabolic assays in presence of telmisartan by flow cytometry and immunocytochemistry. A cytotoxic effect of combinations of telmisartan and targeted therapy vemurafenib was examined using the Chou-Talalay combination index method. Results Both AGTR1 and PPARγ mRNA were expressed in melanoma patient tumor samples and decreased compared to the expression in the healthy skin. In vitro, we found that telmisartan decreased melanoma cell viability by inducing cell apoptosis. Increased glucose uptake, but not utilization, in the presence of telmisartan caused the fission of mitochondria and release of reactive oxygen species. Telmisartan altered the cell bioenergetics, thereby synergizing with vemurafenib in vitro, and even sensitized vemurafenib-resistant cells to the treatment. Conclusions Given that the effective doses of telmisartan examined in our study can be administered to patients and that telmisartan is a widely used and safe antihypertensive drug, our findings provide the scientific rationale for testing its efficacy in treatment of melanoma progression.
Collapse
Affiliation(s)
- Jelena Grahovac
- Laboratory for Experimental Pharmacology, Institute for Oncology and Radiology of Serbia, Belgrade 11000, Serbia
| | - Tatjana Srdić-Rajić
- Laboratory for Experimental Pharmacology, Institute for Oncology and Radiology of Serbia, Belgrade 11000, Serbia
| | - Juan Francisco Santibañez
- Department of Molecular Oncology, Institute for Medical Research, University of Belgrade, Belgrade 11000, Serbia.,Integrative Center for Biology and Applied Chemistry (CIBQA), Bernardo O'Higgins University, Santiago 8370854, Chile
| | - Marijana Pavlović
- Laboratory for Experimental Pharmacology, Institute for Oncology and Radiology of Serbia, Belgrade 11000, Serbia
| | - Milena Čavić
- Laboratory for Experimental Pharmacology, Institute for Oncology and Radiology of Serbia, Belgrade 11000, Serbia
| | - Siniša Radulović
- Laboratory for Experimental Pharmacology, Institute for Oncology and Radiology of Serbia, Belgrade 11000, Serbia
| |
Collapse
|
91
|
Combination of chemotherapy and physical plasma elicits melanoma cell death via upregulation of SLC22A16. Cell Death Dis 2018; 9:1179. [PMID: 30518936 PMCID: PMC6281583 DOI: 10.1038/s41419-018-1221-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022]
Abstract
Malignant melanoma is an aggressive cancer that develops drug resistance leading to poor prognosis. Efficient delivery of chemotherapeutic drugs to the tumor tissue remains a major challenge in treatment regimens. Using murine (B16) and human (SK-MEL-28) melanoma cells, we investigated traditional cytotoxic agents in combination with cold physical plasma-derived oxidants. We report synergistic cytotoxicity of doxorubicin and epirubicin, and additive toxicity of oxaliplatin with plasma exposure in coefficient of drug interaction analysis. The combination treatment led to an increased DNA damage response (increased phosphorylation of ATM, γ-H2AX foci, and micronuclei formation). There was also an enhanced secretion of immunogenic cell death markers ATP and CXCL10 in cell culture supernatants following combination treatment. The observed synergistic effects in tumor cells was due to enhanced intracellular doxorubicin accumulation via upregulation of the organic cationic transporter SLC22A16 by plasma treatment. The doxorubicin uptake was reversed by pretreating cells with antioxidants or calcium influx inhibitor BTP2. Endoribonuclease-prepared siRNAs (esiRNA)-mediated knockdown of SLC22A16 inhibited the additive cytotoxic effect in tumor cells. SK-MEL 28 and THP-1 monocytes co-culture led to greater THP-1 cell migration and SK-MEL-28 cytotoxicity when compared with controls. Taken together, we propose pro-oxidant treatment modalities to sensitize chemoresistant melanoma cells towards subsequent chemotherapy, which may serve as therapeutic strategy in combination treatment in oncology.
Collapse
|
92
|
Dinnes J, Deeks JJ, Saleh D, Chuchu N, Bayliss SE, Patel L, Davenport C, Takwoingi Y, Godfrey K, Matin RN, Patalay R, Williams HC. Reflectance confocal microscopy for diagnosing cutaneous melanoma in adults. Cochrane Database Syst Rev 2018; 12:CD013190. [PMID: 30521681 PMCID: PMC6492459 DOI: 10.1002/14651858.cd013190] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Melanoma has one of the fastest rising incidence rates of any cancer. It accounts for a small percentage of skin cancer cases but is responsible for the majority of skin cancer deaths. Early detection and treatment is key to improving survival; however, anxiety around missing early cases needs to be balanced against appropriate levels of referral and excision of benign lesions. Used in conjunction with clinical or dermoscopic suspicion of malignancy, or both, reflectance confocal microscopy (RCM) may reduce unnecessary excisions without missing melanoma cases. OBJECTIVES To determine the diagnostic accuracy of reflectance confocal microscopy for the detection of cutaneous invasive melanoma and atypical intraepidermal melanocytic variants in adults with any lesion suspicious for melanoma and lesions that are difficult to diagnose, and to compare its accuracy with that of dermoscopy. SEARCH METHODS We undertook a comprehensive search of the following databases from inception up to August 2016: Cochrane Central Register of Controlled Trials; MEDLINE; Embase; and seven other databases. We studied reference lists and published systematic review articles. SELECTION CRITERIA Studies of any design that evaluated RCM alone, or RCM in comparison to dermoscopy, in adults with lesions suspicious for melanoma or atypical intraepidermal melanocytic variants, compared with a reference standard of either histological confirmation or clinical follow-up. DATA COLLECTION AND ANALYSIS Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on QUADAS-2). We contacted authors of included studies where information related to the target condition or diagnostic threshold were missing. We estimated summary sensitivities and specificities per algorithm and threshold using the bivariate hierarchical model. To compare RCM with dermoscopy, we grouped studies by population (defined by difficulty of lesion diagnosis) and combined data using hierarchical summary receiver operating characteristic (SROC) methods. Analysis of studies allowing direct comparison between tests was undertaken. To facilitate interpretation of results, we computed values of specificity at the point on the SROC curve with 90% sensitivity as this value lies within the estimates for the majority of analyses. We investigated the impact of using a purposely developed RCM algorithm and in-person test interpretation. MAIN RESULTS The search identified 18 publications reporting on 19 study cohorts with 2838 lesions (including 658 with melanoma), which provided 67 datasets for RCM and seven for dermoscopy. Studies were generally at high or unclear risk of bias across almost all domains and of high or unclear concern regarding applicability of the evidence. Selective participant recruitment, lack of blinding of the reference test to the RCM result, and differential verification were particularly problematic. Studies may not be representative of populations eligible for RCM, and test interpretation was often undertaken remotely from the patient and blinded to clinical information.Meta-analysis found RCM to be more accurate than dermoscopy in studies of participants with any lesion suspicious for melanoma and in participants with lesions that were more difficult to diagnose (equivocal lesion populations). Assuming a fixed sensitivity of 90% for both tests, specificities were 82% for RCM and 42% for dermoscopy for any lesion suspicious for melanoma (9 RCM datasets; 1452 lesions and 370 melanomas). For a hypothetical population of 1000 lesions at the median observed melanoma prevalence of 30%, this equated to a reduction in unnecessary excisions with RCM of 280 compared to dermoscopy, with 30 melanomas missed by both tests. For studies in equivocal lesions, specificities of 86% would be observed for RCM and 49% for dermoscopy (7 RCM datasets; 1177 lesions and 180 melanomas). At the median observed melanoma prevalence of 20%, this reduced unnecessary excisions by 296 with RCM compared with dermoscopy, with 20 melanomas missed by both tests. Across all populations, algorithms and thresholds assessed, the sensitivity and specificity of the Pellacani RCM score at a threshold of three or greater were estimated at 92% (95% confidence interval (CI) 87 to 95) for RCM and 72% (95% CI 62 to 81) for dermoscopy. AUTHORS' CONCLUSIONS RCM may have a potential role in clinical practice, particularly for the assessment of lesions that are difficult to diagnose using visual inspection and dermoscopy alone, where the evidence suggests that RCM may be both more sensitive and specific in comparison to dermoscopy. Given the paucity of data to allow comparison with dermoscopy, the results presented require further confirmation in prospective studies comparing RCM with dermoscopy in a real-world setting in a representative population.
Collapse
Affiliation(s)
- Jacqueline Dinnes
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Jonathan J Deeks
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Daniel Saleh
- Newcastle Hospitals NHS Trust, Royal Victoria InfirmaryNewcastle HospitalsNewcastleUK
- The University of Queensland, PA‐Southside Clinical UnitSchool of Clinical MedicineBrisbaneQueenslandAustralia
| | - Naomi Chuchu
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Susan E Bayliss
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Lopa Patel
- Royal Stoke HospitalPlastic SurgeryStoke‐on‐TrentStaffordshireUKST4 6QG
| | - Clare Davenport
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Yemisi Takwoingi
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Kathie Godfrey
- The University of Nottinghamc/o Cochrane Skin GroupNottinghamUK
| | - Rubeta N Matin
- Churchill HospitalDepartment of DermatologyOld RoadHeadingtonOxfordUKOX3 7LE
| | - Rakesh Patalay
- Guy's and St Thomas' NHS Foundation TrustDepartment of DermatologyDSLU, Cancer CentreGreat Maze PondLondonUKSE1 9RT
| | - Hywel C Williams
- University of NottinghamCentre of Evidence Based DermatologyQueen's Medical CentreDerby RoadNottinghamUKNG7 2UH
| | | | | |
Collapse
|
93
|
Ferrante di Ruffano L, Dinnes J, Deeks JJ, Chuchu N, Bayliss SE, Davenport C, Takwoingi Y, Godfrey K, O'Sullivan C, Matin RN, Tehrani H, Williams HC. Optical coherence tomography for diagnosing skin cancer in adults. Cochrane Database Syst Rev 2018; 12:CD013189. [PMID: 30521690 PMCID: PMC6516952 DOI: 10.1002/14651858.cd013189] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Early accurate detection of all skin cancer types is essential to guide appropriate management and to improve morbidity and survival. Melanoma and squamous cell carcinoma (SCC) are high-risk skin cancers, which have the potential to metastasise and ultimately lead to death, whereas basal cell carcinoma (BCC) is usually localised, with potential to infiltrate and damage surrounding tissue. Anxiety around missing early cases needs to be balanced against inappropriate referral and unnecessary excision of benign lesions. Optical coherence tomography (OCT) is a microscopic imaging technique, which magnifies the surface of a skin lesion using near-infrared light. Used in conjunction with clinical or dermoscopic examination of suspected skin cancer, or both, OCT may offer additional diagnostic information compared to other technologies. OBJECTIVES To determine the diagnostic accuracy of OCT for the detection of cutaneous invasive melanoma and atypical intraepidermal melanocytic variants, basal cell carcinoma (BCC), or cutaneous squamous cell carcinoma (cSCC) in adults. SEARCH METHODS We undertook a comprehensive search of the following databases from inception up to August 2016: Cochrane Central Register of Controlled Trials; MEDLINE; Embase; CINAHL; CPCI; Zetoc; Science Citation Index; US National Institutes of Health Ongoing Trials Register; NIHR Clinical Research Network Portfolio Database; and the World Health Organization International Clinical Trials Registry Platform. We studied reference lists and published systematic review articles. SELECTION CRITERIA We included studies of any design evaluating OCT in adults with lesions suspicious for invasive melanoma and atypical intraepidermal melanocytic variants, BCC or cSCC, compared with a reference standard of histological confirmation or clinical follow-up. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data using a standardised data extraction and quality assessment form (based on QUADAS-2). Our unit of analysis was lesions. Where possible, we estimated summary sensitivities and specificities using the bivariate hierarchical model. MAIN RESULTS We included five studies with 529 cutaneous lesions (282 malignant lesions) providing nine datasets for OCT, two for visual inspection alone, and two for visual inspection plus dermoscopy. Studies were of moderate to unclear quality, using data-driven thresholds for test positivity and giving poor accounts of reference standard interpretation and blinding. Studies may not have been representative of populations eligible for OCT in practice, for example due to high disease prevalence in study populations, and may not have reflected how OCT is used in practice, for example by using previously acquired OCT images.It was not possible to make summary statements regarding accuracy of detection of melanoma or of cSCC because of the paucity of studies, small sample sizes, and for melanoma differences in the OCT technologies used (high-definition versus conventional resolution OCT), and differences in the degree of testing performed prior to OCT (i.e. visual inspection alone or visual inspection plus dermoscopy).Pooled data from two studies using conventional swept-source OCT alongside visual inspection and dermoscopy for the detection of BCC estimated the sensitivity of OCT as 95% (95% confidence interval (CI) 91% to 97%) and specificity of 77% (95% CI 69% to 83%).When applied to a hypothetical population of 1000 lesions at the mean observed BCC prevalence of 60%, OCT would miss 31 BCCs (91 fewer than would be missed by visual inspection alone and 53 fewer than would be missed by visual inspection plus dermoscopy), and OCT would lead to 93 false-positive results for BCC (a reduction in unnecessary excisions of 159 compared to using visual inspection alone and of 87 compared to visual inspection plus dermoscopy). AUTHORS' CONCLUSIONS Insufficient data are available on the use of OCT for the detection of melanoma or cSCC. Initial data suggest conventional OCT may have a role for the diagnosis of BCC in clinically challenging lesions, with our meta-analysis showing a higher sensitivity and higher specificity when compared to visual inspection plus dermoscopy. However, the small number of studies and varying methodological quality means implications to guide practice cannot currently be drawn.Appropriately designed prospective comparative studies are required, given the paucity of data comparing OCT with dermoscopy and other similar diagnostic aids such as reflectance confocal microscopy.
Collapse
Affiliation(s)
| | - Jacqueline Dinnes
- University of BirminghamInstitute of Applied Health ResearchEdgbaston CampusBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Jonathan J Deeks
- University of BirminghamInstitute of Applied Health ResearchEdgbaston CampusBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Naomi Chuchu
- University of BirminghamInstitute of Applied Health ResearchEdgbaston CampusBirminghamUKB15 2TT
| | - Susan E Bayliss
- University of BirminghamInstitute of Applied Health ResearchEdgbaston CampusBirminghamUKB15 2TT
| | - Clare Davenport
- University of BirminghamInstitute of Applied Health ResearchEdgbaston CampusBirminghamUKB15 2TT
| | - Yemisi Takwoingi
- University of BirminghamInstitute of Applied Health ResearchEdgbaston CampusBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Kathie Godfrey
- The University of Nottinghamc/o Cochrane Skin GroupNottinghamUK
| | | | - Rubeta N Matin
- Churchill HospitalDepartment of DermatologyOld RoadHeadingtonOxfordUKOX3 7LE
| | - Hamid Tehrani
- Whiston HospitalDepartment of Plastic and Reconstructive SurgeryWarrington RoadLiverpoolUKL35 5DR
| | - Hywel C Williams
- University of NottinghamCentre of Evidence Based DermatologyQueen's Medical CentreDerby RoadNottinghamUKNG7 2UH
| | | | | |
Collapse
|
94
|
Ferrante di Ruffano L, Dinnes J, Chuchu N, Bayliss SE, Takwoingi Y, Davenport C, Matin RN, O'Sullivan C, Roskell D, Deeks JJ, Williams HC. Exfoliative cytology for diagnosing basal cell carcinoma and other skin cancers in adults. Cochrane Database Syst Rev 2018; 12:CD013187. [PMID: 30521689 PMCID: PMC6517175 DOI: 10.1002/14651858.cd013187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Early accurate detection of all skin cancer types is essential to guide appropriate management, reduce morbidity and improve survival. Basal cell carcinoma (BCC) is usually localised to the skin but has potential to infiltrate and damage surrounding tissue, while cutaneous squamous cell carcinoma (cSCC) and melanoma have a much higher potential to metastasise and ultimately lead to death. Exfoliative cytology is a non-invasive test that uses the Tzanck smear technique to identify disease by examining the structure of cells obtained from scraped samples. This simple procedure is a less invasive diagnostic test than a skin biopsy, and for BCC it has the potential to provide an immediate diagnosis that avoids an additional clinic visit to receive skin biopsy results. This may benefit patients scheduled for either Mohs micrographic surgery or non-surgical treatments such as radiotherapy. A cytology scrape can never give the same information as a skin biopsy, however, so it is important to better understand in which skin cancer situations it may be helpful. OBJECTIVES To determine the diagnostic accuracy of exfoliative cytology for detecting basal cell carcinoma (BCC) in adults, and to compare its accuracy with that of standard diagnostic practice (visual inspection with or without dermoscopy). Secondary objectives were: to determine the diagnostic accuracy of exfoliative cytology for detecting cSCC, invasive melanoma and atypical intraepidermal melanocytic variants, and any other skin cancer; and for each of these secondary conditions to compare the accuracy of exfoliative cytology with visual inspection with or without dermoscopy in direct test comparisons; and to determine the effect of observer experience. SEARCH METHODS We undertook a comprehensive search of the following databases from inception up to August 2016: Cochrane Central Register of Controlled Trials; MEDLINE; Embase; CINAHL; CPCI; Zetoc; Science Citation Index; US National Institutes of Health Ongoing Trials Register; NIHR Clinical Research Network Portfolio Database; and the World Health Organization International Clinical Trials Registry Platform. We also studied the reference lists of published systematic review articles. SELECTION CRITERIA Studies evaluating exfoliative cytology in adults with lesions suspicious for BCC, cSCC or melanoma, compared with a reference standard of histological confirmation. DATA COLLECTION AND ANALYSIS Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on QUADAS-2). Where possible we estimated summary sensitivities and specificities using the bivariate hierarchical model. MAIN RESULTS We synthesised the results of nine studies contributing a total of 1655 lesions to our analysis, including 1120 BCCs (14 datasets), 41 cSCCs (amongst 401 lesions in 2 datasets), and 10 melanomas (amongst 200 lesions in 1 dataset). Three of these datasets (one each for BCC, melanoma and any malignant condition) were derived from one study that also performed a direct comparison with dermoscopy. Studies were of moderate to poor quality, providing inadequate descriptions of participant selection, thresholds used to make cytological and histological diagnoses, and blinding. Reporting of participants' prior referral pathways was particularly poor, as were descriptions of the cytodiagnostic criteria used to make diagnoses. No studies evaluated the use of exfoliative cytology as a primary diagnostic test for detecting BCC or other skin cancers in lesions suspicious for skin cancer. Pooled data from seven studies using standard cytomorphological criteria (but various stain methods) to detect BCC in participants with a high clinical suspicion of BCC estimated the sensitivity and specificity of exfoliative cytology as 97.5% (95% CI 94.5% to 98.9%) and 90.1% (95% CI 81.1% to 95.1%). respectively. When applied to a hypothetical population of 1000 clinically suspected BCC lesions with a median observed BCC prevalence of 86%, exfoliative cytology would miss 21 BCCs and would lead to 14 false positive diagnoses of BCC. No false positive cases were histologically confirmed to be melanoma. Insufficient data are available to make summary statements regarding the accuracy of exfoliative cytology to detect melanoma or cSCC, or its accuracy compared to dermoscopy. AUTHORS' CONCLUSIONS The utility of exfoliative cytology for the primary diagnosis of skin cancer is unknown, as all included studies focused on the use of this technique for confirming strongly suspected clinical diagnoses. For the confirmation of BCC in lesions with a high clinical suspicion, there is evidence of high sensitivity and specificity. Since decisions to treat low-risk BCCs are unlikely in practice to require diagnostic confirmation given that clinical suspicion is already high, exfoliative cytology might be most useful for cases of BCC where the treatments being contemplated require a tissue diagnosis (e.g. radiotherapy). The small number of included studies, poor reporting and varying methodological quality prevent us from drawing strong conclusions to guide clinical practice. Despite insufficient data on the use of cytology for cSCC or melanoma, it is unlikely that cytology would be useful in these scenarios since preservation of the architecture of the whole lesion that would be available from a biopsy provides crucial diagnostic information. Given the paucity of good quality data, appropriately designed prospective comparative studies may be required to evaluate both the diagnostic value of exfoliative cytology by comparison to dermoscopy, and its confirmatory value in adequately reported populations with a high probability of BCC scheduled for further treatment requiring a tissue diagnosis.
Collapse
Affiliation(s)
| | - Jacqueline Dinnes
- University of BirminghamInstitute of Applied Health ResearchEdgbaston CampusBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Naomi Chuchu
- University of BirminghamInstitute of Applied Health ResearchEdgbaston CampusBirminghamUKB15 2TT
| | - Susan E Bayliss
- University of BirminghamInstitute of Applied Health ResearchEdgbaston CampusBirminghamUKB15 2TT
| | - Yemisi Takwoingi
- University of BirminghamInstitute of Applied Health ResearchEdgbaston CampusBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Clare Davenport
- University of BirminghamInstitute of Applied Health ResearchEdgbaston CampusBirminghamUKB15 2TT
| | - Rubeta N Matin
- Churchill HospitalDepartment of DermatologyOld RoadHeadingtonOxfordUKOX3 7LE
| | | | - Derek Roskell
- Oxford University Hospitals NHS TrustDepartment of Cellular PathologyJohn Radcliffe HospitalHeadingtonOxfordUKOX3 9DU
| | - Jonathan J Deeks
- University of BirminghamInstitute of Applied Health ResearchEdgbaston CampusBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Hywel C Williams
- University of NottinghamCentre of Evidence Based DermatologyQueen's Medical CentreDerby RoadNottinghamUKNG7 2UH
| | | | | |
Collapse
|
95
|
Dinnes J, Deeks JJ, Grainge MJ, Chuchu N, Ferrante di Ruffano L, Matin RN, Thomson DR, Wong KY, Aldridge RB, Abbott R, Fawzy M, Bayliss SE, Takwoingi Y, Davenport C, Godfrey K, Walter FM, Williams HC. Visual inspection for diagnosing cutaneous melanoma in adults. Cochrane Database Syst Rev 2018; 12:CD013194. [PMID: 30521684 PMCID: PMC6492463 DOI: 10.1002/14651858.cd013194] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Melanoma has one of the fastest rising incidence rates of any cancer. It accounts for a small percentage of skin cancer cases but is responsible for the majority of skin cancer deaths. History-taking and visual inspection of a suspicious lesion by a clinician is usually the first in a series of 'tests' to diagnose skin cancer. Establishing the accuracy of visual inspection alone is critical to understating the potential contribution of additional tests to assist in the diagnosis of melanoma. OBJECTIVES To determine the diagnostic accuracy of visual inspection for the detection of cutaneous invasive melanoma and atypical intraepidermal melanocytic variants in adults with limited prior testing and in those referred for further evaluation of a suspicious lesion. Studies were separated according to whether the diagnosis was recorded face-to-face (in-person) or based on remote (image-based) assessment. SEARCH METHODS We undertook a comprehensive search of the following databases from inception up to August 2016: CENTRAL; CINAHL; CPCI; Zetoc; Science Citation Index; US National Institutes of Health Ongoing Trials Register; NIHR Clinical Research Network Portfolio Database; and the World Health Organization International Clinical Trials Registry Platform. We studied reference lists and published systematic review articles. SELECTION CRITERIA Test accuracy studies of any design that evaluated visual inspection in adults with lesions suspicious for melanoma, compared with a reference standard of either histological confirmation or clinical follow-up. We excluded studies reporting data for 'clinical diagnosis' where dermoscopy may or may not have been used. DATA COLLECTION AND ANALYSIS Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on QUADAS-2). We contacted authors of included studies where information related to the target condition or diagnostic threshold were missing. We estimated summary sensitivities and specificities per algorithm and threshold using the bivariate hierarchical model. We investigated the impact of: in-person test interpretation; use of a purposely developed algorithm to assist diagnosis; and observer expertise. MAIN RESULTS We included 49 publications reporting on a total of 51 study cohorts with 34,351 lesions (including 2499 cases), providing 134 datasets for visual inspection. Across almost all study quality domains, the majority of study reports provided insufficient information to allow us to judge the risk of bias, while in three of four domains that we assessed we scored concerns regarding applicability of study findings as 'high'. Selective participant recruitment, lack of detail regarding the threshold for deciding on a positive test result, and lack of detail on observer expertise were particularly problematic.Attempts to analyse studies by degree of prior testing were hampered by a lack of relevant information and by the restricted inclusion of lesions selected for biopsy or excision. Accuracy was generally much higher for in-person diagnosis compared to image-based evaluations (relative diagnostic odds ratio of 8.54, 95% CI 2.89 to 25.3, P < 0.001). Meta-analysis of in-person evaluations that could be clearly placed on the clinical pathway showed a general trade-off between sensitivity and specificity, with the highest sensitivity (92.4%, 95% CI 26.2% to 99.8%) and lowest specificity (79.7%, 95% CI 73.7% to 84.7%) observed in participants with limited prior testing (n = 3 datasets). Summary sensitivities were lower for those referred for specialist assessment but with much higher specificities (e.g. sensitivity 76.7%, 95% CI 61.7% to 87.1%) and specificity 95.7%, 95% CI 89.7% to 98.3%) for lesions selected for excision, n = 8 datasets). These differences may be related to differences in the spectrum of included lesions, differences in the definition of a positive test result, or to variations in observer expertise. We did not find clear evidence that accuracy is improved by the use of any algorithm to assist diagnosis in all settings. Attempts to examine the effect of observer expertise in melanoma diagnosis were hindered due to poor reporting. AUTHORS' CONCLUSIONS Visual inspection is a fundamental component of the assessment of a suspicious skin lesion; however, the evidence suggests that melanomas will be missed if visual inspection is used on its own. The evidence to support its accuracy in the range of settings in which it is used is flawed and very poorly reported. Although published algorithms do not appear to improve accuracy, there is insufficient evidence to suggest that the 'no algorithm' approach should be preferred in all settings. Despite the volume of research evaluating visual inspection, further prospective evaluation of the potential added value of using established algorithms according to the prior testing or diagnostic difficulty of lesions may be warranted.
Collapse
Affiliation(s)
- Jacqueline Dinnes
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Jonathan J Deeks
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Matthew J Grainge
- School of MedicineDivision of Epidemiology and Public HealthUniversity of NottinghamNottinghamUKNG7 2UH
| | - Naomi Chuchu
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | | | - Rubeta N Matin
- Churchill HospitalDepartment of DermatologyOld RoadHeadingtonOxfordUKOX3 7LE
| | | | - Kai Yuen Wong
- Oxford University Hospitals NHS Foundation TrustDepartment of Plastic and Reconstructive SurgeryOxfordUK
| | - Roger Benjamin Aldridge
- NHS Lothian/University of EdinburghDepartment of Plastic Surgery25/6 India StreetEdinburghUKEH3 6HE
| | - Rachel Abbott
- University Hospital of WalesWelsh Institute of DermatologyHeath ParkCardiffUKCF14 4XW
| | - Monica Fawzy
- Norfolk and Norwich University Hospital NHS TrustDepartment of Plastic and Reconstructive SurgeryColney LaneNorwichUKNR4 7UY
| | - Susan E Bayliss
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Yemisi Takwoingi
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Clare Davenport
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Kathie Godfrey
- The University of Nottinghamc/o Cochrane Skin GroupNottinghamUK
| | - Fiona M Walter
- University of CambridgePublic Health & Primary CareStrangeways Research Laboratory, Worts CausewayCambridgeUKCB1 8RN
| | - Hywel C Williams
- University of NottinghamCentre of Evidence Based DermatologyQueen's Medical CentreDerby RoadNottinghamUKNG7 2UH
| | | | | |
Collapse
|
96
|
Ferrante di Ruffano L, Takwoingi Y, Dinnes J, Chuchu N, Bayliss SE, Davenport C, Matin RN, Godfrey K, O'Sullivan C, Gulati A, Chan SA, Durack A, O'Connell S, Gardiner MD, Bamber J, Deeks JJ, Williams HC. Computer-assisted diagnosis techniques (dermoscopy and spectroscopy-based) for diagnosing skin cancer in adults. Cochrane Database Syst Rev 2018; 12:CD013186. [PMID: 30521691 PMCID: PMC6517147 DOI: 10.1002/14651858.cd013186] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Early accurate detection of all skin cancer types is essential to guide appropriate management and to improve morbidity and survival. Melanoma and cutaneous squamous cell carcinoma (cSCC) are high-risk skin cancers which have the potential to metastasise and ultimately lead to death, whereas basal cell carcinoma (BCC) is usually localised with potential to infiltrate and damage surrounding tissue. Anxiety around missing early curable cases needs to be balanced against inappropriate referral and unnecessary excision of benign lesions. Computer-assisted diagnosis (CAD) systems use artificial intelligence to analyse lesion data and arrive at a diagnosis of skin cancer. When used in unreferred settings ('primary care'), CAD may assist general practitioners (GPs) or other clinicians to more appropriately triage high-risk lesions to secondary care. Used alongside clinical and dermoscopic suspicion of malignancy, CAD may reduce unnecessary excisions without missing melanoma cases. OBJECTIVES To determine the accuracy of CAD systems for diagnosing cutaneous invasive melanoma and atypical intraepidermal melanocytic variants, BCC or cSCC in adults, and to compare its accuracy with that of dermoscopy. SEARCH METHODS We undertook a comprehensive search of the following databases from inception up to August 2016: Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE; Embase; CINAHL; CPCI; Zetoc; Science Citation Index; US National Institutes of Health Ongoing Trials Register; NIHR Clinical Research Network Portfolio Database; and the World Health Organization International Clinical Trials Registry Platform. We studied reference lists and published systematic review articles. SELECTION CRITERIA Studies of any design that evaluated CAD alone, or in comparison with dermoscopy, in adults with lesions suspicious for melanoma or BCC or cSCC, and compared with a reference standard of either histological confirmation or clinical follow-up. DATA COLLECTION AND ANALYSIS Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on QUADAS-2). We contacted authors of included studies where information related to the target condition or diagnostic threshold were missing. We estimated summary sensitivities and specificities separately by type of CAD system, using the bivariate hierarchical model. We compared CAD with dermoscopy using (a) all available CAD data (indirect comparisons), and (b) studies providing paired data for both tests (direct comparisons). We tested the contribution of human decision-making to the accuracy of CAD diagnoses in a sensitivity analysis by removing studies that gave CAD results to clinicians to guide diagnostic decision-making. MAIN RESULTS We included 42 studies, 24 evaluating digital dermoscopy-based CAD systems (Derm-CAD) in 23 study cohorts with 9602 lesions (1220 melanomas, at least 83 BCCs, 9 cSCCs), providing 32 datasets for Derm-CAD and seven for dermoscopy. Eighteen studies evaluated spectroscopy-based CAD (Spectro-CAD) in 16 study cohorts with 6336 lesions (934 melanomas, 163 BCC, 49 cSCCs), providing 32 datasets for Spectro-CAD and six for dermoscopy. These consisted of 15 studies using multispectral imaging (MSI), two studies using electrical impedance spectroscopy (EIS) and one study using diffuse-reflectance spectroscopy. Studies were incompletely reported and at unclear to high risk of bias across all domains. Included studies inadequately address the review question, due to an abundance of low-quality studies, poor reporting, and recruitment of highly selected groups of participants.Across all CAD systems, we found considerable variation in the hardware and software technologies used, the types of classification algorithm employed, methods used to train the algorithms, and which lesion morphological features were extracted and analysed across all CAD systems, and even between studies evaluating CAD systems. Meta-analysis found CAD systems had high sensitivity for correct identification of cutaneous invasive melanoma and atypical intraepidermal melanocytic variants in highly selected populations, but with low and very variable specificity, particularly for Spectro-CAD systems. Pooled data from 22 studies estimated the sensitivity of Derm-CAD for the detection of melanoma as 90.1% (95% confidence interval (CI) 84.0% to 94.0%) and specificity as 74.3% (95% CI 63.6% to 82.7%). Pooled data from eight studies estimated the sensitivity of multispectral imaging CAD (MSI-CAD) as 92.9% (95% CI 83.7% to 97.1%) and specificity as 43.6% (95% CI 24.8% to 64.5%). When applied to a hypothetical population of 1000 lesions at the mean observed melanoma prevalence of 20%, Derm-CAD would miss 20 melanomas and would lead to 206 false-positive results for melanoma. MSI-CAD would miss 14 melanomas and would lead to 451 false diagnoses for melanoma. Preliminary findings suggest CAD systems are at least as sensitive as assessment of dermoscopic images for the diagnosis of invasive melanoma and atypical intraepidermal melanocytic variants. We are unable to make summary statements about the use of CAD in unreferred populations, or its accuracy in detecting keratinocyte cancers, or its use in any setting as a diagnostic aid, because of the paucity of studies. AUTHORS' CONCLUSIONS In highly selected patient populations all CAD types demonstrate high sensitivity, and could prove useful as a back-up for specialist diagnosis to assist in minimising the risk of missing melanomas. However, the evidence base is currently too poor to understand whether CAD system outputs translate to different clinical decision-making in practice. Insufficient data are available on the use of CAD in community settings, or for the detection of keratinocyte cancers. The evidence base for individual systems is too limited to draw conclusions on which might be preferred for practice. Prospective comparative studies are required that evaluate the use of already evaluated CAD systems as diagnostic aids, by comparison to face-to-face dermoscopy, and in participant populations that are representative of those in which the test would be used in practice.
Collapse
Key Words
- adult
- humans
- electric impedance
- algorithms
- carcinoma, basal cell
- carcinoma, basal cell/diagnosis
- carcinoma, basal cell/diagnostic imaging
- carcinoma, basal cell/pathology
- carcinoma, squamous cell
- carcinoma, squamous cell/diagnosis
- carcinoma, squamous cell/diagnostic imaging
- carcinoma, squamous cell/pathology
- clinical decision‐making
- dermoscopy
- dermoscopy/methods
- dermoscopy/standards
- diagnosis, computer‐assisted
- diagnosis, computer‐assisted/methods
- diagnosis, computer‐assisted/standards
- false positive reactions
- melanoma
- melanoma/diagnosis
- melanoma/diagnostic imaging
- melanoma/pathology
- sensitivity and specificity
- skin neoplasms
- skin neoplasms/diagnosis
- skin neoplasms/diagnostic imaging
- skin neoplasms/pathology
Collapse
Affiliation(s)
| | - Yemisi Takwoingi
- University of BirminghamInstitute of Applied Health ResearchEdgbaston CampusBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Jacqueline Dinnes
- University of BirminghamInstitute of Applied Health ResearchEdgbaston CampusBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Naomi Chuchu
- University of BirminghamInstitute of Applied Health ResearchEdgbaston CampusBirminghamUKB15 2TT
| | - Susan E Bayliss
- University of BirminghamInstitute of Applied Health ResearchEdgbaston CampusBirminghamUKB15 2TT
| | - Clare Davenport
- University of BirminghamInstitute of Applied Health ResearchEdgbaston CampusBirminghamUKB15 2TT
| | - Rubeta N Matin
- Churchill HospitalDepartment of DermatologyOld RoadHeadingtonOxfordUKOX3 7LE
| | - Kathie Godfrey
- The University of Nottinghamc/o Cochrane Skin GroupNottinghamUK
| | | | - Abha Gulati
- Barts Health NHS TrustDepartment of DermatologyWhitechapelLondonUKE11BB
| | - Sue Ann Chan
- City HospitalBirmingham Skin CentreDudley RdBirminghamUKB18 7QH
| | - Alana Durack
- Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation TrustDermatologyHills RoadCambridgeUKCB2 0QQ
| | - Susan O'Connell
- Cardiff and Vale University Health BoardCEDAR Healthcare Technology Research CentreCardiff Medicentre, University Hospital of Wales, Heath Park CampusCardiffWalesUKCF144UJ
| | | | - Jeffrey Bamber
- Institute of Cancer Research and The Royal Marsden NHS Foundation TrustJoint Department of Physics15 Cotswold RoadSuttonUKSM2 5NG
| | - Jonathan J Deeks
- University of BirminghamInstitute of Applied Health ResearchEdgbaston CampusBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Hywel C Williams
- University of NottinghamCentre of Evidence Based DermatologyQueen's Medical CentreDerby RoadNottinghamUKNG7 2UH
| | | | | |
Collapse
|
97
|
Dinnes J, Bamber J, Chuchu N, Bayliss SE, Takwoingi Y, Davenport C, Godfrey K, O'Sullivan C, Matin RN, Deeks JJ, Williams HC. High-frequency ultrasound for diagnosing skin cancer in adults. Cochrane Database Syst Rev 2018; 12:CD013188. [PMID: 30521683 PMCID: PMC6516989 DOI: 10.1002/14651858.cd013188] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Early, accurate detection of all skin cancer types is essential to guide appropriate management and to improve morbidity and survival. Melanoma and squamous cell carcinoma (SCC) are high-risk skin cancers with the potential to metastasise and ultimately lead to death, whereas basal cell carcinoma (BCC) is usually localised, with potential to infiltrate and damage surrounding tissue. Anxiety around missing early curable cases needs to be balanced against inappropriate referral and unnecessary excision of benign lesions. Ultrasound is a non-invasive imaging technique that relies on the measurement of sound wave reflections from the tissues of the body. At lower frequencies, the deeper structures of the body such as the internal organs can be visualised, while high-frequency ultrasound (HFUS) with transducer frequencies of 20 MHz or more has a much lower depth of tissue penetration but produces a higher resolution image of tissues and structures closer to the skin surface. Used in conjunction with clinical and/or dermoscopic examination of suspected skin cancer, HFUS may offer additional diagnostic information compared to other technologies. OBJECTIVES To assess the diagnostic accuracy of HFUS to assist in the diagnosis of a) cutaneous invasive melanoma and atypical intraepidermal melanocytic variants, b) cutaneous squamous cell carcinoma (cSCC), and c) basal cell carcinoma (BCC) in adults. SEARCH METHODS We undertook a comprehensive search of the following databases from inception up to August 2016: Cochrane Central Register of Controlled Trials; MEDLINE; Embase; CINAHL; CPCI; Zetoc; Science Citation Index; US National Institutes of Health Ongoing Trials Register; NIHR Clinical Research Network Portfolio Database; and the World Health Organization International Clinical Trials Registry Platform. We studied reference lists as well as published systematic review articles. SELECTION CRITERIA Studies evaluating HFUS (20 MHz or more) in adults with lesions suspicious for melanoma, cSCC or BCC versus a reference standard of histological confirmation or clinical follow-up. DATA COLLECTION AND ANALYSIS Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on QUADAS-2). Due to scarcity of data and the poor quality of studies, we did not undertake a meta-analysis for this review. For illustrative purposes, we plot estimates of sensitivity and specificity on coupled forest plots. MAIN RESULTS We included six studies, providing 29 datasets: 20 for diagnosis of melanoma (1125 lesions and 242 melanomas) and 9 for diagnosis of BCC (993 lesions and 119 BCCs). We did not identify any data relating to the diagnosis of cSCC.Studies were generally poorly reported, limiting judgements of methodological quality. Half the studies did not set out to establish test accuracy, and all should be considered preliminary evaluations of the potential usefulness of HFUS. There were particularly high concerns for applicability of findings due to selective study populations and data-driven thresholds for test positivity. Studies reporting qualitative assessments of HFUS images excluded up to 22% of lesions (including some melanomas) due to lack of visualisation in the test.Derived sensitivities for qualitative HFUS characteristics were at least 83% (95% CI 75% to 90%) for the detection of melanoma; the combination of three features (lesions appearing hypoechoic, homogenous and well defined) demonstrating 100% sensitivity in two studies (lower limits of the 95% CIs were 94% and 82%), with variable corresponding specificities of 33% (95% CI 20% to 48%) and 73% (95% CI 57% to 85%), respectively. Quantitative measurement of HFUS outputs in two studies enabled decision thresholds to be set to achieve 100% sensitivity; specificities were 93% (95% CI 77% to 99%) and 65% (95% CI 51% to 76%). It was not possible to make summary statements regarding HFUS accuracy for the diagnosis of BCC due to highly variable sensitivities and specificities. AUTHORS' CONCLUSIONS Insufficient data are available on the potential value of HFUS in the diagnosis of melanoma or BCC. Given the between-study heterogeneity, unclear to low methodological quality and limited volume of evidence, we cannot draw any implications for practice. The main value of the preliminary studies included may be in providing guidance on the possible components of new diagnostic rules for diagnosis of melanoma or BCC using HFUS that will require future evaluation. A prospective evaluation of HFUS added to visual inspection and dermoscopy alone in a standard healthcare setting, with a clearly defined and representative population of participants, would be required for a full and proper evaluation of accuracy.
Collapse
Affiliation(s)
- Jacqueline Dinnes
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Jeffrey Bamber
- Institute of Cancer Research and The Royal Marsden NHS Foundation TrustJoint Department of Physics15 Cotswold RoadSuttonUKSM2 5NG
| | - Naomi Chuchu
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Susan E Bayliss
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Yemisi Takwoingi
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Clare Davenport
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Kathie Godfrey
- The University of Nottinghamc/o Cochrane Skin GroupNottinghamUK
| | | | - Rubeta N Matin
- Churchill HospitalDepartment of DermatologyOld RoadHeadingtonOxfordUKOX3 7LE
| | - Jonathan J Deeks
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Hywel C Williams
- University of NottinghamCentre of Evidence Based DermatologyQueen's Medical CentreDerby RoadNottinghamUKNG7 2UH
| | | | | |
Collapse
|
98
|
Chuchu N, Dinnes J, Takwoingi Y, Matin RN, Bayliss SE, Davenport C, Moreau JF, Bassett O, Godfrey K, O'Sullivan C, Walter FM, Motley R, Deeks JJ, Williams HC. Teledermatology for diagnosing skin cancer in adults. Cochrane Database Syst Rev 2018; 12:CD013193. [PMID: 30521686 PMCID: PMC6517019 DOI: 10.1002/14651858.cd013193] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Early accurate detection of all skin cancer types is essential to guide appropriate management and to improve morbidity and survival. Melanoma and squamous cell carcinoma (SCC) are high-risk skin cancers which have the potential to metastasise and ultimately lead to death, whereas basal cell carcinoma (BCC) is usually localised with potential to infiltrate and damage surrounding tissue. Anxiety around missing early curable cases needs to be balanced against inappropriate referral and unnecessary excision of benign lesions. Teledermatology provides a way for generalist clinicians to access the opinion of a specialist dermatologist for skin lesions that they consider to be suspicious without referring the patients through the normal referral pathway. Teledermatology consultations can be 'store-and-forward' with electronic digital images of a lesion sent to a dermatologist for review at a later time, or can be live and interactive consultations using videoconferencing to connect the patient, referrer and dermatologist in real time. OBJECTIVES To determine the diagnostic accuracy of teledermatology for the detection of any skin cancer (melanoma, BCC or cutaneous squamous cell carcinoma (cSCC)) in adults, and to compare its accuracy with that of in-person diagnosis. SEARCH METHODS We undertook a comprehensive search of the following databases from inception up to August 2016: Cochrane Central Register of Controlled Trials, MEDLINE, Embase, CINAHL, CPCI, Zetoc, Science Citation Index, US National Institutes of Health Ongoing Trials Register, NIHR Clinical Research Network Portfolio Database and the World Health Organization International Clinical Trials Registry Platform. We studied reference lists and published systematic review articles. SELECTION CRITERIA Studies evaluating skin cancer diagnosis for teledermatology alone, or in comparison with face-to-face diagnosis by a specialist clinician, compared with a reference standard of histological confirmation or clinical follow-up and expert opinion. We also included studies evaluating the referral accuracy of teledermatology compared with a reference standard of face-to-face diagnosis by a specialist clinician. DATA COLLECTION AND ANALYSIS Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on QUADAS-2). We contacted authors of included studies where there were information related to the target condition of any skin cancer missing. Data permitting, we estimated summary sensitivities and specificities using the bivariate hierarchical model. Due to the scarcity of data, we undertook no covariate investigations for this review. For illustrative purposes, we plotted estimates of sensitivity and specificity on coupled forest plots for diagnostic threshold and target condition under consideration. MAIN RESULTS The review included 22 studies reporting diagnostic accuracy data for 4057 lesions and 879 malignant cases (16 studies) and referral accuracy data for reported data for 1449 lesions and 270 'positive' cases as determined by the reference standard face-to-face decision (six studies). Methodological quality was variable with poor reporting hindering assessment. The overall risk of bias was high or unclear for participant selection, reference standard, and participant flow and timing in at least half of all studies; the majority were at low risk of bias for the index test. The applicability of study findings were of high or unclear concern for most studies in all domains assessed due to the recruitment of participants from secondary care settings or specialist clinics rather than from primary or community-based settings in which teledermatology is more likely to be used and due to the acquisition of lesion images by dermatologists or in specialist imaging units rather than by primary care clinicians.Seven studies provided data for the primary target condition of any skin cancer (1588 lesions and 638 malignancies). For the correct diagnosis of lesions as malignant using photographic images, summary sensitivity was 94.9% (95% confidence interval (CI) 90.1% to 97.4%) and summary specificity was 84.3% (95% CI 48.5% to 96.8%) (from four studies). Individual study estimates using dermoscopic images or a combination of photographic and dermoscopic images generally suggested similarly high sensitivities with highly variable specificities. Limited comparative data suggested similar diagnostic accuracy between teledermatology assessment and in-person diagnosis by a dermatologist; however, data were too scarce to draw firm conclusions. For the detection of invasive melanoma or atypical intraepidermal melanocytic variants both sensitivities and specificities were more variable. Sensitivities ranged from 59% (95% CI 42% to 74%) to 100% (95% CI 48% to 100%) and specificities from 30% (95% CI 22% to 40%) to 100% (95% CI 93% to 100%), with reported diagnostic thresholds including the correct diagnosis of melanoma, classification of lesions as 'atypical' or 'typical, and the decision to refer or to excise a lesion.Referral accuracy data comparing teledermatology against a face-to-face reference standard suggested good agreement for lesions considered to require some positive action by face-to-face assessment (sensitivities of over 90%). For lesions considered of less concern when assessed face-to-face (e.g. for lesions not recommended for excision or referral), agreement was more variable with teledermatology specificities ranging from 57% (95% CI 39% to 73%) to 100% (95% CI 86% to 100%), suggesting that remote assessment is more likely recommend excision, referral or follow-up compared to in-person decisions. AUTHORS' CONCLUSIONS Studies were generally small and heterogeneous and methodological quality was difficult to judge due to poor reporting. Bearing in mind concerns regarding the applicability of study participants and of lesion image acquisition in specialist settings, our results suggest that teledermatology can correctly identify the majority of malignant lesions. Using a more widely defined threshold to identify 'possibly' malignant cases or lesions that should be considered for excision is likely to appropriately triage those lesions requiring face-to-face assessment by a specialist. Despite the increasing use of teledermatology on an international level, the evidence base to support its ability to accurately diagnose lesions and to triage lesions from primary to secondary care is lacking and further prospective and pragmatic evaluation is needed.
Collapse
Affiliation(s)
- Naomi Chuchu
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Jacqueline Dinnes
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Yemisi Takwoingi
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Rubeta N Matin
- Churchill HospitalDepartment of DermatologyOld RoadHeadingtonOxfordUKOX3 7LE
| | - Susan E Bayliss
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Clare Davenport
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Jacqueline F Moreau
- University of Pittsburgh Medical CenterInternal MedicineDepartment of Medicine, Office of EducationUPMC Montefiore Hospital, N715PittsburghUSAPA, 15213
| | - Oliver Bassett
- Addenbrooke's HospitalPlastic SurgeryHills RoadCambridgeUKCB2 0QQ
| | - Kathie Godfrey
- The University of Nottinghamc/o Cochrane Skin GroupNottinghamUK
| | | | - Fiona M Walter
- University of CambridgePublic Health & Primary CareStrangeways Research Laboratory, Worts CausewayCambridgeUKCB1 8RN
| | - Richard Motley
- University Hospital of WalesWelsh Institute of DermatologyHeath ParkCardiffUKCF14 4XW
| | - Jonathan J Deeks
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Hywel C Williams
- University of NottinghamCentre of Evidence Based DermatologyQueen's Medical CentreDerby RoadNottinghamUKNG7 2UH
| | | | | |
Collapse
|
99
|
Dinnes J, Deeks JJ, Chuchu N, Ferrante di Ruffano L, Matin RN, Thomson DR, Wong KY, Aldridge RB, Abbott R, Fawzy M, Bayliss SE, Grainge MJ, Takwoingi Y, Davenport C, Godfrey K, Walter FM, Williams HC. Dermoscopy, with and without visual inspection, for diagnosing melanoma in adults. Cochrane Database Syst Rev 2018; 12:CD011902. [PMID: 30521682 PMCID: PMC6517096 DOI: 10.1002/14651858.cd011902.pub2] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Melanoma has one of the fastest rising incidence rates of any cancer. It accounts for a small percentage of skin cancer cases but is responsible for the majority of skin cancer deaths. Although history-taking and visual inspection of a suspicious lesion by a clinician are usually the first in a series of 'tests' to diagnose skin cancer, dermoscopy has become an important tool to assist diagnosis by specialist clinicians and is increasingly used in primary care settings. Dermoscopy is a magnification technique using visible light that allows more detailed examination of the skin compared to examination by the naked eye alone. Establishing the additive value of dermoscopy over and above visual inspection alone across a range of observers and settings is critical to understanding its contribution for the diagnosis of melanoma and to future understanding of the potential role of the growing number of other high-resolution image analysis techniques. OBJECTIVES To determine the diagnostic accuracy of dermoscopy alone, or when added to visual inspection of a skin lesion, for the detection of cutaneous invasive melanoma and atypical intraepidermal melanocytic variants in adults. We separated studies according to whether the diagnosis was recorded face-to-face (in-person), or based on remote (image-based), assessment. SEARCH METHODS We undertook a comprehensive search of the following databases from inception up to August 2016: CENTRAL; MEDLINE; Embase; CINAHL; CPCI; Zetoc; Science Citation Index; US National Institutes of Health Ongoing Trials Register; NIHR Clinical Research Network Portfolio Database; and the World Health Organization International Clinical Trials Registry Platform. We studied reference lists and published systematic review articles. SELECTION CRITERIA Studies of any design that evaluated dermoscopy in adults with lesions suspicious for melanoma, compared with a reference standard of either histological confirmation or clinical follow-up. Data on the accuracy of visual inspection, to allow comparisons of tests, was included only if reported in the included studies of dermoscopy. DATA COLLECTION AND ANALYSIS Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on QUADAS-2). We contacted authors of included studies where information related to the target condition or diagnostic threshold were missing. We estimated accuracy using hierarchical summary receiver operating characteristic (SROC),methods. Analysis of studies allowing direct comparison between tests was undertaken. To facilitate interpretation of results, we computed values of sensitivity at the point on the SROC curve with 80% fixed specificity and values of specificity with 80% fixed sensitivity. We investigated the impact of in-person test interpretation; use of a purposely developed algorithm to assist diagnosis; observer expertise; and dermoscopy training. MAIN RESULTS We included a total of 104 study publications reporting on 103 study cohorts with 42,788 lesions (including 5700 cases), providing 354 datasets for dermoscopy. The risk of bias was mainly low for the index test and reference standard domains and mainly high or unclear for participant selection and participant flow. Concerns regarding the applicability of study findings were largely scored as 'high' concern in three of four domains assessed. Selective participant recruitment, lack of reproducibility of diagnostic thresholds and lack of detail on observer expertise were particularly problematic.The accuracy of dermoscopy for the detection of invasive melanoma or atypical intraepidermal melanocytic variants was reported in 86 datasets; 26 for evaluations conducted in person (dermoscopy added to visual inspection), and 60 for image-based evaluations (diagnosis based on interpretation of dermoscopic images). Analyses of studies by prior testing revealed no obvious effect on accuracy; analyses were hampered by the lack of studies in primary care, lack of relevant information and the restricted inclusion of lesions selected for biopsy or excision. Accuracy was higher for in-person diagnosis compared to image-based evaluations (relative diagnostic odds ratio (RDOR) 4.6, 95% confidence interval (CI) 2.4 to 9.0; P < 0.001).We compared accuracy for (a), in-person evaluations of dermoscopy (26 evaluations; 23,169 lesions and 1664 melanomas),versus visual inspection alone (13 evaluations; 6740 lesions and 459 melanomas), and for (b), image-based evaluations of dermoscopy (60 evaluations; 13,475 lesions and 2851 melanomas),versus image-based visual inspection (11 evaluations; 1740 lesions and 305 melanomas). For both comparisons, meta-analysis found dermoscopy to be more accurate than visual inspection alone, with RDORs of (a), 4.7 (95% CI 3.0 to 7.5; P < 0.001), and (b), 5.6 (95% CI 3.7 to 8.5; P < 0.001). For a), the predicted difference in sensitivity at a fixed specificity of 80% was 16% (95% CI 8% to 23%; 92% for dermoscopy + visual inspection versus 76% for visual inspection), and predicted difference in specificity at a fixed sensitivity of 80% was 20% (95% CI 7% to 33%; 95% for dermoscopy + visual inspection versus 75% for visual inspection). For b) the predicted differences in sensitivity was 34% (95% CI 24% to 46%; 81% for dermoscopy versus 47% for visual inspection), at a fixed specificity of 80%, and predicted difference in specificity was 40% (95% CI 27% to 57%; 82% for dermoscopy versus 42% for visual inspection), at a fixed sensitivity of 80%.Using the median prevalence of disease in each set of studies ((a), 12% for in-person and (b), 24% for image-based), for a hypothetical population of 1000 lesions, an increase in sensitivity of (a), 16% (in-person), and (b), 34% (image-based), from using dermoscopy at a fixed specificity of 80% equates to a reduction in the number of melanomas missed of (a), 19 and (b), 81 with (a), 176 and (b), 152 false positive results. An increase in specificity of (a), 20% (in-person), and (b), 40% (image-based), at a fixed sensitivity of 80% equates to a reduction in the number of unnecessary excisions from using dermoscopy of (a), 176 and (b), 304 with (a), 24 and (b), 48 melanomas missed.The use of a named or published algorithm to assist dermoscopy interpretation (as opposed to no reported algorithm or reported use of pattern analysis), had no significant impact on accuracy either for in-person (RDOR 1.4, 95% CI 0.34 to 5.6; P = 0.17), or image-based (RDOR 1.4, 95% CI 0.60 to 3.3; P = 0.22), evaluations. This result was supported by subgroup analysis according to algorithm used. We observed higher accuracy for observers reported as having high experience and for those classed as 'expert consultants' in comparison to those considered to have less experience in dermoscopy, particularly for image-based evaluations. Evidence for the effect of dermoscopy training on test accuracy was very limited but suggested associated improvements in sensitivity. AUTHORS' CONCLUSIONS Despite the observed limitations in the evidence base, dermoscopy is a valuable tool to support the visual inspection of a suspicious skin lesion for the detection of melanoma and atypical intraepidermal melanocytic variants, particularly in referred populations and in the hands of experienced users. Data to support its use in primary care are limited, however, it may assist in triaging suspicious lesions for urgent referral when employed by suitably trained clinicians. Formal algorithms may be of most use for dermoscopy training purposes and for less expert observers, however reliable data comparing approaches using dermoscopy in person are lacking.
Collapse
Affiliation(s)
- Jacqueline Dinnes
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Jonathan J Deeks
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Naomi Chuchu
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | | | - Rubeta N Matin
- Churchill HospitalDepartment of DermatologyOld RoadHeadingtonOxfordUKOX3 7LE
| | | | - Kai Yuen Wong
- Oxford University Hospitals NHS Foundation TrustDepartment of Plastic and Reconstructive SurgeryOxfordUK
| | - Roger Benjamin Aldridge
- NHS Lothian/University of EdinburghDepartment of Plastic Surgery25/6 India StreetEdinburghUKEH3 6HE
| | - Rachel Abbott
- University Hospital of WalesWelsh Institute of DermatologyHeath ParkCardiffUKCF14 4XW
| | - Monica Fawzy
- Norfolk and Norwich University Hospital NHS TrustDepartment of Plastic and Reconstructive SurgeryColney LaneNorwichUKNR4 7UY
| | - Susan E Bayliss
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Matthew J Grainge
- School of MedicineDivision of Epidemiology and Public HealthUniversity of NottinghamNottinghamUKNG7 2UH
| | - Yemisi Takwoingi
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Clare Davenport
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Kathie Godfrey
- The University of Nottinghamc/o Cochrane Skin GroupNottinghamUK
| | - Fiona M Walter
- University of CambridgePublic Health & Primary CareStrangeways Research Laboratory, Worts CausewayCambridgeUKCB1 8RN
| | - Hywel C Williams
- University of NottinghamCentre of Evidence Based DermatologyQueen's Medical CentreDerby RoadNottinghamUKNG7 2UH
| | | | | |
Collapse
|
100
|
Chuchu N, Takwoingi Y, Dinnes J, Matin RN, Bassett O, Moreau JF, Bayliss SE, Davenport C, Godfrey K, O'Connell S, Jain A, Walter FM, Deeks JJ, Williams HC. Smartphone applications for triaging adults with skin lesions that are suspicious for melanoma. Cochrane Database Syst Rev 2018; 12:CD013192. [PMID: 30521685 PMCID: PMC6517294 DOI: 10.1002/14651858.cd013192] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Melanoma accounts for a small proportion of all skin cancer cases but is responsible for most skin cancer-related deaths. Early detection and treatment can improve survival. Smartphone applications are readily accessible and potentially offer an instant risk assessment of the likelihood of malignancy so that the right people seek further medical attention from a clinician for more detailed assessment of the lesion. There is, however, a risk that melanomas will be missed and treatment delayed if the application reassures the user that their lesion is low risk. OBJECTIVES To assess the diagnostic accuracy of smartphone applications to rule out cutaneous invasive melanoma and atypical intraepidermal melanocytic variants in adults with concerns about suspicious skin lesions. SEARCH METHODS We undertook a comprehensive search of the following databases from inception to August 2016: Cochrane Central Register of Controlled Trials; MEDLINE; Embase; CINAHL; CPCI; Zetoc; Science Citation Index; US National Institutes of Health Ongoing Trials Register; NIHR Clinical Research Network Portfolio Database; and the World Health Organization International Clinical Trials Registry Platform. We studied reference lists and published systematic review articles. SELECTION CRITERIA Studies of any design evaluating smartphone applications intended for use by individuals in a community setting who have lesions that might be suspicious for melanoma or atypical intraepidermal melanocytic variants versus a reference standard of histological confirmation or clinical follow-up and expert opinion. DATA COLLECTION AND ANALYSIS Two review authors independently extracted all data using a standardised data extraction and quality assessment form (based on QUADAS-2). Due to scarcity of data and poor quality of studies, we did not perform a meta-analysis for this review. For illustrative purposes, we plotted estimates of sensitivity and specificity on coupled forest plots for each application under consideration. MAIN RESULTS This review reports on two cohorts of lesions published in two studies. Both studies were at high risk of bias from selective participant recruitment and high rates of non-evaluable images. Concerns about applicability of findings were high due to inclusion only of lesions already selected for excision in a dermatology clinic setting, and image acquisition by clinicians rather than by smartphone app users.We report data for five mobile phone applications and 332 suspicious skin lesions with 86 melanomas across the two studies. Across the four artificial intelligence-based applications that classified lesion images (photographs) as melanomas (one application) or as high risk or 'problematic' lesions (three applications) using a pre-programmed algorithm, sensitivities ranged from 7% (95% CI 2% to 16%) to 73% (95% CI 52% to 88%) and specificities from 37% (95% CI 29% to 46%) to 94% (95% CI 87% to 97%). The single application using store-and-forward review of lesion images by a dermatologist had a sensitivity of 98% (95% CI 90% to 100%) and specificity of 30% (95% CI 22% to 40%).The number of test failures (lesion images analysed by the applications but classed as 'unevaluable' and excluded by the study authors) ranged from 3 to 31 (or 2% to 18% of lesions analysed). The store-and-forward application had one of the highest rates of test failure (15%). At least one melanoma was classed as unevaluable in three of the four application evaluations. AUTHORS' CONCLUSIONS Smartphone applications using artificial intelligence-based analysis have not yet demonstrated sufficient promise in terms of accuracy, and they are associated with a high likelihood of missing melanomas. Applications based on store-and-forward images could have a potential role in the timely presentation of people with potentially malignant lesions by facilitating active self-management health practices and early engagement of those with suspicious skin lesions; however, they may incur a significant increase in resource and workload. Given the paucity of evidence and low methodological quality of existing studies, it is not possible to draw any implications for practice. Nevertheless, this is a rapidly advancing field, and new and better applications with robust reporting of studies could change these conclusions substantially.
Collapse
Affiliation(s)
- Naomi Chuchu
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Yemisi Takwoingi
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Jacqueline Dinnes
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Rubeta N Matin
- Churchill HospitalDepartment of DermatologyOld RoadHeadingtonOxfordUKOX3 7LE
| | - Oliver Bassett
- Addenbrooke's HospitalPlastic SurgeryHills RoadCambridgeUKCB2 0QQ
| | - Jacqueline F Moreau
- University of Pittsburgh Medical CenterInternal MedicineDepartment of Medicine, Office of EducationUPMC Montefiore Hospital, N715PittsburghUSAPA, 15213
| | - Susan E Bayliss
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Clare Davenport
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
| | - Kathie Godfrey
- The University of Nottinghamc/o Cochrane Skin GroupNottinghamUK
| | - Susan O'Connell
- Cardiff and Vale University Health BoardCEDAR Healthcare Technology Research CentreCardiff Medicentre, University Hospital of Wales, Heath Park CampusCardiffWalesUKCF144UJ
| | - Abhilash Jain
- Imperial College Healthcare NHS trust, St Mary’s HospitalDepartment of Plastic and Reconstructive SurgeryLondonUKW2 1NY
| | - Fiona M Walter
- University of CambridgePublic Health & Primary CareStrangeways Research Laboratory, Worts CausewayCambridgeUKCB1 8RN
| | - Jonathan J Deeks
- University of BirminghamInstitute of Applied Health ResearchBirminghamUKB15 2TT
- University Hospitals Birmingham NHS Foundation Trust and University of BirminghamNIHR Birmingham Biomedical Research CentreBirminghamUK
| | - Hywel C Williams
- University of NottinghamCentre of Evidence Based DermatologyQueen's Medical CentreDerby RoadNottinghamUKNG7 2UH
| | | | | |
Collapse
|