51
|
Zhang L, Yang LL, Wan SC, Yang QC, Xiao Y, Deng H, Sun ZJ. Three-Dimensional Covalent Organic Frameworks with Cross-Linked Pores for Efficient Cancer Immunotherapy. NANO LETTERS 2021; 21:7979-7988. [PMID: 34525805 DOI: 10.1021/acs.nanolett.1c02050] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We report the design and synthesis of a series of three-dimensional (3D) covalent organic frameworks (COFs) as immunogenic cell death (ICD) inducers for cancer immunotherapy. Three triple-topic amine building blocks, inactive to inducing ICD, were used to construct three COFs, COF-607, COF-608, and COF-609, with outstanding ICD eliciting efficiency. Mechanism studies revealed that after linking these ICD inert monomers into the COF backbone, the optical properties of these COFs could be systematically tuned to achieve excellent reactive oxygen species (ROS) production performance. This combined with 3D cross-linked pores, mimicking lung structure, favor the exchange and diffusion of oxygen and ROS, leading to excellent inducing ICD efficacy. One member, COF-609, is capable of triggering abscopal and long-lasting immune memory effects in a mouse model of breast cancer with >95% mice survival after being treated with COF-609+αCD47 for 110 days.
Collapse
|
52
|
Chen W, Zhao J, Hou M, Yang M, Yi C. Gadolinium-porphyrin based polymer nanotheranostics for fluorescence/magnetic resonance imaging guided photodynamic therapy. NANOSCALE 2021; 13:16197-16206. [PMID: 34545903 DOI: 10.1039/d1nr04489c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanotheranostics for fluorescence/magnetic resonance (FL/MR) dual-modal imaging guided photodynamic therapy (PDT) are highly desirable in precision and personalized medicine. In this study, a facile non-covalent electrostatic interaction induced self-assembly strategy is developed to effectively encapsulate gadolinium porphyrin (Gd-TCPP) into homogeneous supramolecular nanoparticles (referred to as Gd-PNPs). Gd-PNPs exhibit the following advantages: (1) excellent FL imaging property, high longitudinal relaxivity (16.157 mM-1 s-1), and good singlet oxygen (1O2) production property; (2) excellent long-term colloidal stability, dispersity and biocompatibility; and (3) enhanced in vivo FL/MR imaging guided tumor growth inhibition efficiency for CT 26 tumor-bearing mice. This study provides a new strategy to design and synthesize metalloporphyrin-based nanotheranostics for imaging-guided cancer therapy with enhanced theranostic properties.
Collapse
Affiliation(s)
- Wandi Chen
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Junkai Zhao
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Mengfei Hou
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Changqing Yi
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China.
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, P. R. China
| |
Collapse
|
53
|
Domb AJ, Sharifzadeh G, Nahum V, Hosseinkhani H. Safety Evaluation of Nanotechnology Products. Pharmaceutics 2021; 13:pharmaceutics13101615. [PMID: 34683908 PMCID: PMC8539492 DOI: 10.3390/pharmaceutics13101615] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/11/2023] Open
Abstract
Nanomaterials are now being used in a wide variety of biomedical applications. Medical and health-related issues, however, have raised major concerns, in view of the potential risks of these materials against tissue, cells, and/or organs and these are still poorly understood. These particles are able to interact with the body in countless ways, and they can cause unexpected and hazardous toxicities, especially at cellular levels. Therefore, undertaking in vitro and in vivo experiments is vital to establish their toxicity with natural tissues. In this review, we discuss the underlying mechanisms of nanotoxicity and provide an overview on in vitro characterizations and cytotoxicity assays, as well as in vivo studies that emphasize blood circulation and the in vivo fate of nanomaterials. Our focus is on understanding the role that the physicochemical properties of nanomaterials play in determining their toxicity.
Collapse
Affiliation(s)
- Abraham J. Domb
- The Centers for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
- Correspondence: (A.J.D.); (H.H.)
| | - Ghorbanali Sharifzadeh
- Department of Polymer Engineering, School of Chemical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Victoria Nahum
- The Centers for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| | - Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10029, USA
- Correspondence: (A.J.D.); (H.H.)
| |
Collapse
|
54
|
Ma X, Lee C, Zhang T, Cai J, Wang H, Jiang F, Wu Z, Xie J, Jiang G, Li Z. Image-guided selection of Gd@C-dots as sensitizers to improve radiotherapy of non-small cell lung cancer. J Nanobiotechnology 2021; 19:284. [PMID: 34551763 PMCID: PMC8456633 DOI: 10.1186/s12951-021-01018-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/29/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Recently, gadolinium-intercalated carbon dots (Gd@C-dots) have demonstrated potential advantages over traditional high-Z nanoparticles (HZNPs) as radiosensitizers due to their high stability, minimal metal leakage, and remarkable efficacy. RESULTS In this work, two Gd@C-dots formulations were fabricated which bore carboxylic acid (CA-Gd@C-dots) or amino group (pPD-Gd@C-dots), respectively, on the carbon shell. While it is critical to develop innovative nanomateirals for cancer therapy, determining their tumor accumulation and retention is equally important. Therefore, in vivo positron emission tomography (PET) was performed, which found that 64Cu-labeled pPD-Gd@C-dots demonstrated significantly improved tumor retention (up to 48 h post injection) compared with CA-Gd@C-dots. Indeed, cell uptake of 64Cu-pPD-Gd@C-dots reached close to 60% of total dose compared with ~ 5% of 64Cu-CA-Gd@C-dots. pPD-Gd@C-dots was therefore further evaluated as a new radiosensitizer for non-small cell lung cancer treatment. While single dose radiation plus intratumorally injected pPD-Gd@C-dots did lead to improved tumor suppression, the inhibition effect was further improved with two doses of radiation. The persistent retention of pPD-Gd@C-dots in tumor region eliminates the need of reinjecting radiosensitizer for the second radiation. CONCLUSIONS PET offers a simple and straightforward way to study nanoparticle retention in vivo, and the selected pPD-Gd@C-dots hold great potential as an effective radiosensitizer.
Collapse
Affiliation(s)
- Xiaofen Ma
- Department of Nuclear Medicine, Guangdong Second Provincial General Hospital, 466 Xingang Middle Road, Haizhu District, Guangdong Province, 510317, Guangzhou City, People's Republic of China
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Chaebin Lee
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA, 30602, USA
| | - Tao Zhang
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Jinghua Cai
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Hui Wang
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Fangchao Jiang
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA, 30602, USA
| | - Zhanhong Wu
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Jin Xie
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA, 30602, USA.
| | - Guihua Jiang
- Department of Nuclear Medicine, Guangdong Second Provincial General Hospital, 466 Xingang Middle Road, Haizhu District, Guangdong Province, 510317, Guangzhou City, People's Republic of China.
| | - Zibo Li
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
55
|
Sattari S, Adeli M, Beyranvand S, Nemati M. Functionalized Graphene Platforms for Anticancer Drug Delivery. Int J Nanomedicine 2021; 16:5955-5980. [PMID: 34511900 PMCID: PMC8416335 DOI: 10.2147/ijn.s249712] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022] Open
Abstract
Two-dimensional nanomaterials are emerging as promising candidates for a wide range of biomedical applications including tissue engineering, biosensing, pathogen incapacitation, wound healing, and gene and drug delivery. Graphene, due to its high surface area, photothermal property, high loading capacity, and efficient cellular uptake, is at the forefront of these materials and plays a key role in this multidisciplinary research field. Poor water dispersibility and low functionality of graphene, however, hamper its hybridization into new nanostructures for future nanomedicine. Functionalization of graphene, either by covalent or non-covalent methods, is the most useful strategy to improve its dispersion in water and functionality as well as processability into new materials and devices. In this review, recent advances in functionalization of graphene derivatives by different (macro)molecules for future biomedical applications are reported and explained. In particular, hydrophilic functionalization of graphene and graphene oxide (GO) to improve their water dispersibility and physicochemical properties is discussed. We have focused on the anticancer drug delivery of polyfunctional graphene sheets.
Collapse
Affiliation(s)
- Shabnam Sattari
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Mohsen Adeli
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Siamak Beyranvand
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Mohammad Nemati
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| |
Collapse
|
56
|
Theranostic Applications of Nanoparticle-Mediated Photoactivated Therapies. JOURNAL OF NANOTHERANOSTICS 2021. [DOI: 10.3390/jnt2030009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nanoparticle-mediated light-activated therapies, such as photodynamic therapy and photothermal therapy, are earnestly being viewed as efficient interventional strategies against several cancer types. Theranostics is a key hallmark of cancer nanomedicine since it allows diagnosis and therapy of both primary and metastatic cancer using a single nanoprobe. Advanced in vivo diagnostic imaging using theranostic nanoparticles not only provides precise information about the location of tumor/s but also outlines the narrow time window corresponding to the maximum tumor-specific drug accumulation. Such information plays a critical role in guiding light-activated therapies with high spatio-temporal accuracy. Furthermore, theranostics facilitates monitoring the progression of therapy in real time. Herein, we provide a general review of the application of theranostic nanoparticles for in vivo image-guided light-activated therapy in cancer. The imaging modalities considered here include fluorescence imaging, photoacoustic imaging, thermal imaging, magnetic resonance imaging, X-ray computed tomography, positron emission tomography, and single-photon emission computed tomography. The review concludes with a brief discussion about the broad scope of theranostic light-activated nanomedicine.
Collapse
|
57
|
Qin R, Feng Y, Ding D, Chen L, Li S, Deng H, Chen S, Han Z, Sun W, Chen H. Fe-Coordinated Carbon Nanozyme Dots as Peroxidase-Like Nanozymes and Magnetic Resonance Imaging Contrast Agents. ACS APPLIED BIO MATERIALS 2021; 4:5520-5528. [PMID: 35006720 DOI: 10.1021/acsabm.1c00336] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The catalytic activities of currently developed peroxidase-mimic nanozymes are generally limited. Therefore, further efforts are still needed to improve the catalytic performance of peroxidase nanozymes. Herein, we synthesized Fe-coordinated carbon nanozyme dots (Fe-CDs) that can serve as both efficient peroxidase nanozymes and T2-magnetic resonance imaging (MRI) contrast agents. The intrinsic peroxidase-like activity of the Fe-CDs was explored by catalytic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) with hydrogen peroxide (H2O2). The product showed better performance over natural horseradish peroxidase (HRP) and other mimetic peroxidases. Quantification of glucose and ascorbic acid detection showed that this nanozyme could be used to detect a minimum limit as low as 5 μM glucose. Moreover, the colorimetric detection technique was used to detect serum glucose in mice, and the detection result was comparable with autobiochemistry analyzer results using a glucose assay kit. Furthermore, the Fe-CDs showed good magnetism properties and provided promising MR imaging of tumors with excellent biocompatibility.
Collapse
Affiliation(s)
- Ruixue Qin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yushuo Feng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Dandan Ding
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Lei Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shi Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Huaping Deng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shileng Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhenxin Han
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wenjing Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hongmin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
58
|
Xie J, Liang C, Luo S, Pan Z, Lai Y, He J, Chen H, Ren Q, Huang H, Zhang Q, Zhang P. Water-Soluble Iridic-Porphyrin Complex for Non-invasive Sonodynamic and Sono-oxidation Therapy of Deep Tumors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27934-27944. [PMID: 34101408 DOI: 10.1021/acsami.1c06381] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Due to conventional photodynamic therapy encountering serious problems of phototoxicity and low tissue-penetrating depth of light, other dynamic therapy-based therapeutic methods such as sonodynamic therapy (SDT) are expected to be developed. To improve the therapeutic response to SDT, more effective sonosensitizers are imperative. In this study, a novel water-soluble iridium(III)-porphyrin sonosensitizer (IrTMPPS) was synthesized and used for SDT. IrTMPPS generated ample singlet oxygen (1O2) under US irradiation and especially showed distinguished US-activatable abilities at more than 10 cm deep-tissue depths. Interestingly, under US irradiation, IrTMPPS sonocatalytically oxidized intracellular NADH, which would enhance SDT efficiency by breaking the redox balance in the tumor. Moreover, IrTMPPS displayed great sonocytotoxicity toward various cancer cells, and in vivo experiments demonstrated efficient tumor inhibition and anti-metastasis to the lungs in the presence of IrTMPPS and US irradiation. This report gives a novel idea of metal-based sonosensitizers for sonotherapy by fully taking advantage of non-invasiveness, water solubility, and deep tumor therapy.
Collapse
Affiliation(s)
- Jiaen Xie
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Chao Liang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Shuangling Luo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zhihao Pan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Yidan Lai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Jiaqi He
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, P. R. China
| | - Haijie Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qizhi Ren
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai 200240, P. R. China
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
59
|
Wang S, Tian R, Zhang X, Cheng G, Yu P, Chang J, Chen X. Beyond Photo: Xdynamic Therapies in Fighting Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007488. [PMID: 33987898 DOI: 10.1002/adma.202007488] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Indexed: 05/14/2023]
Abstract
Reactive oxygen species (ROS)-related therapeutic approaches are developed as a promising modality for cancer treatment because the aberrant increase of intracellular ROS level can cause cell death due to nonspecific oxidation damage to key cellular biomolecules. However, the most widely considered strategy, photodynamic therapy (PDT), suffers from critical limitations such as limited tissue-penetration depth, high oxygen dependence, and phototoxicity. Non-photo-induced ROS generation strategies, which are defined as Xdynamic therapies (X = sono, radio, microwave, chemo, thermo, and electro), show good potential to overcome the drawbacks of PDT. Herein, recent advances in the development of Xdynamic therapies, including the design of systems, the working mechanisms, and examples of cancer therapy application, are introduced. Furthermore, the approaches to enhance treatment efficiency of Xdynamic therapy are highlighted. Finally, the perspectives and challenges of these strategies are also discussed.
Collapse
Affiliation(s)
- Sheng Wang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xu Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Guohui Cheng
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Peng Yu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology and Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Departments of Chemical and Biomolecular Engineering, and, Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
60
|
Lee C, Liu X, Zhang W, Duncan MA, Jiang F, Kim C, Yan X, Teng Y, Wang H, Jiang W, Li Z, Xie J. Ultrasmall Gd@Cdots as a radiosensitizing agent for non-small cell lung cancer. NANOSCALE 2021; 13:9252-9263. [PMID: 33982686 PMCID: PMC8552194 DOI: 10.1039/d0nr08166c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
High-Z nanoparticles (HZNPs) afford high cross-section for high energy radiation and have attracted wide attention as a novel type of radiosensitizer. However, conventional HZNPs are often associated with issues such as heavy metal toxicity, suboptimal pharmacokinetics, and low cellular uptake. Herein, we explore gadolinium-intercalated carbon dots (Gd@Cdots) as a dose-modifying agent for radiotherapy. Gd@Cdots are synthesized through a hydrothermal reaction with an ultrasmall size (∼3 nm) and a high Gd content. Gd@Cdots can significantly increase hydroxyl radical production under X-ray irradiation; this is attributed to not only the photoelectric effects of Gd, but also the surface catalytic effects of carbon. Because carbon is biologically and chemically inert, Gd@Cdots show low Gd leakage and minimal toxicity. In vitro studies confirm that Gd@Cdots can efficiently enhance radiation-induced cellular damage, causing elevated double strand breaks, lipid peroxidation, and mitochondrial depolarization. When tested in mice bearing non-small cell lung cancer H1299 tumors, intravenously injected Gd@Cdots plus radiation leads to improved tumor suppression and animal survival relative to radiation alone while causing no detectable toxicity. Our studies suggest a great potential of Gd@Cdots as a safe and efficient radiosensitizer.
Collapse
Affiliation(s)
- Chaebin Lee
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
IR780, a small molecule with a strong optical property and excellent photoconversion efficiency following near infrared (NIR) irradiation, has attracted increasing attention in the field of cancer treatment and imaging. This review is focused on different IR780-based nanoplatforms and the application of IR780-based nanomaterials for cancer bioimaging and therapy. Thus, this review summarizes the overall aspects of IR780-based nanomaterials that positively impact cancer biomedical applications.
Collapse
Affiliation(s)
- Long Wang
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China. and Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chengcheng Niu
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China. and Department of Ultrasound Diagnosis and Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
62
|
Guo X, Liu Y, Dong W, Hu Q, Li Y, Shuang S, Dong C, Cai L, Gong X. Azithromycin detection in cells and tablets by N,S co-doped carbon quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119506. [PMID: 33561684 DOI: 10.1016/j.saa.2021.119506] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/24/2020] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Azithromycin (AZM)1 is one of the most widely used antibiotics. AZM abuse is easy to cause great harm to human body, so developing a rapid and sensitive method to detect AZM is of great importance. Herein, 3-aminothiophenol as only reaction precursor, nitrogen and sulfur co-doped carbon quantum dots (N,S-CQDs)2 were fabricated by one-step hydrothermal carbonization method. All characteristics demonstrate that N,S-CQDs possess good water solubility, high fluorescence stability and low cytotoxicity. Without being disturbed by amino acids and drugs, the most interesting finding is that AZM can efficiently quench the fluorescence of N,S-CQDs by a synergistic effect of electrostatic interaction and static quenching. A fluorescent probe for the detection of AZM was constructed with high selectivity and good sensitivity, achieving two linear ranges of 2.5-32.3 μM and 37.2-110 μM and a limit of detection of 0.76 µM. The proposed fluorescent method was used for the detection of AZM in cells with fulfilling results. More importantly, the fluorescent probe was successfully used to the detection of AZM in tablets and human urine with recovery rate and relative standard deviations of 98.2-104.8% and 0.04-3.46%, respectively, which was confirmed by the standard method of HPLC-UV. This finding illustrates the usefulness and feasibility of N,S-CQDs as an effective fluorescent probe for the detection of AZM in tablets and human urine, which is helpful for supervising and guiding pharmacy.
Collapse
Affiliation(s)
- Xueqing Guo
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Yang Liu
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Wenjuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Qin Hu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225001, PR China
| | - Yong Li
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Lishuai Cai
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Xiaojuan Gong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
63
|
Zheng X, Wu W, Zheng Y, Ding Y, Xiang Y, Liu B, Tong A. Organic Nanoparticles with Persistent Luminescence for In Vivo Afterglow Imaging-Guided Photodynamic Therapy. Chemistry 2021; 27:6911-6916. [PMID: 33556210 DOI: 10.1002/chem.202100406] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 01/10/2023]
Abstract
Optical imaging-guided photodynamic therapy (PDT), with precise localization and non-invasive treatment of tumors, is an emerging technique with great potential for cancer therapy. However, impaired by tissue auto-fluorescence that causes low signal-to-background ratio (SBR), most fluorescence imaging systems show poor sensitivity to tumors in vivo. In this study, we synthesized organic nanoparticles (ONPs) with persistent luminescence and good biocompatibility for afterglow imaging-guided PDT. The ONPs displayed near-infrared light emission with half-life time at minute level, which offered high SBR and good tissue penetration for in vivo afterglow tumor imaging. Taking advantage of their abundant singlet oxygen generation by NIR laser irradiation guided to the tumor sites, the ONPs also enabled imaging-guided PDT for efficient suppression of tumor growth in mice with minimal damage to major organs.
Collapse
Affiliation(s)
- Xiaokun Zheng
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| | - Wenbo Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yue Zheng
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| | - Yiwen Ding
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| | - Yu Xiang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Aijun Tong
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
64
|
Ding H, Wang D, Sadat A, Li Z, Hu X, Xu M, de Morais PC, Ge B, Sun S, Ge J, Chen Y, Qian Y, Shen C, Shi X, Huang X, Zhang RQ, Bi H. Single-Atom Gadolinium Anchored on Graphene Quantum Dots as a Magnetic Resonance Signal Amplifier. ACS APPLIED BIO MATERIALS 2021; 4:2798-2809. [PMID: 35014319 DOI: 10.1021/acsabm.1c00030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A single-atom metal doped on carbonaceous nanomaterials has attracted increasing attention due to its potential applications as high-performance catalysts. However, few studies focus on the applications of such nanomaterials as nanotheranostics for simultaneous bioimaging and cancer therapy. Herein, it is pioneeringly demonstrated that the single-atom Gd anchored onto graphene quantum dots (SAGd-GQDs), with dendrite-like morphology, was successfully prepared. More importantly, the as-fabricated SAGd-GQDs exhibits a robustly enhanced longitudinal relaxivity (r1 = 86.08 mM-1 s-1) at a low Gd3+ concentration of 2 μmol kg-1, which is 25 times higher than the commercial Gd-DTPA (r1 = 3.44 mM-1 s-1). In vitro and in vivo studies suggest that the obtained SAGd-GQDs is a highly potent and contrast agent to obtain high-definition MRI, thereby opening up more opportunities for future precise clinical theranostics.
Collapse
Affiliation(s)
- Haizhen Ding
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, P. R. China
| | - Dong Wang
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, P. R. China
| | - Anwar Sadat
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, P. R. China
| | - Zhenzhen Li
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, P. R. China
| | - Xiaolong Hu
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, P. R. China
| | - Mingsheng Xu
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, P. R. China
| | - Paulo C de Morais
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, P. R. China.,Catholic University of Brasília, Brasília, Distrito Federal 70790-160, Brazil.,University of Brasília, Brasília, Distrito Federal 70910-900, Brazil
| | - Binghui Ge
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Song Sun
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, P. R. China
| | - Jiechao Ge
- Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yan Chen
- School of Life Sciences, Anhui University, Hefei 230601, P. R. China
| | - Yinfeng Qian
- Department of Radiology, First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Chengliang Shen
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, P. R. China
| | - Xianyang Shi
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, P. R. China
| | - Xin Huang
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Ren-Quan Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Hong Bi
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
65
|
Chen Q, Sun S, Lin H, Li Z, Wu A, Liu X, Wu FG, Zhang W. Supra-Carbon Dots Formed by Fe 3+-Driven Assembly for Enhanced Tumor-Specific Photo-Mediated and Chemodynamic Synergistic Therapy. ACS APPLIED BIO MATERIALS 2021; 4:2759-2768. [PMID: 35014315 DOI: 10.1021/acsabm.0c01663] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We herein report a facile method to fabricate a multifunctional cancer theranostic nanoplatform via Fe3+-driven assembly of photosensitizer (chlorine e6, Ce6)-decorated red emissive carbon dots (Ce6-RCDs). The as-prepared Supra-CDs (i.e., CD clusters; also termed as Fe-Ce6-RCDs) are found to not only retain the intrinsic photosensitization, fluorescence (FL), and photothermal properties of the Ce6-RCDs component but also be endowed with the chemodynamic therapy (CDT) function by the introduced Fe3+ via the Fenton reaction that can specifically occur in tumor sites. The suitable size (∼36 nm) of the Supra-CDs enables enhanced tumor accumulation, thus achieving significantly improved FL imaging-guided anticancer performance by combining photodynamic, photothermal, and chemodynamic therapeutic modalities. More interestingly, the multi-subcellular structure (including nucleolus and cytoplasm)-targeting capacity of the Supra-CDs further enhances their therapeutic outcomes. This work not only develops a Fe3+-mediated self-assembly approach to construct a multifunctional cancer theranostic nanoplatform but also emphasizes the ion-interference role of the Fe3+-mediated CDT in anticancer nanomedicines.
Collapse
Affiliation(s)
- Qiao Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.,Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China.,College of Bioinformation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Shan Sun
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
| | - Hengwei Lin
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China.,International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhongjun Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo 315201, China
| | - Xiaohong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.,College of Bioinformation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
66
|
Wei F, Cui X, Wang Z, Dong C, Li J, Han X. Recoverable peroxidase-like Fe 3O 4@MoS 2-Ag nanozyme with enhanced antibacterial ability. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021. [PMID: 33052192 DOI: 10.1016/j.cej.2020.127245] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Antibacterial agents with enzyme-like properties and bacteria-binding ability have provided an alternative method to efficiently disinfect drug-resistance microorganism. Herein, a Fe3O4@MoS2-Ag nanozyme with defect-rich rough surface was constructed by a simple hydrothermal method and in-situ photodeposition of Ag nanoparticles. The nanozyme exhibited good antibacterial performance against E. coli (~69.4%) by the generated ROS and released Ag+, while the nanozyme could further achieve an excellent synergistic disinfection (~100%) by combining with the near-infrared photothermal property of Fe3O4@MoS2-Ag. The antibacterial mechanism study showed that the antibacterial process was determined by the collaborative work of peroxidase-like activity, photothermal effect and leakage of Ag+. The defect-rich rough surface of MoS2 layers facilitated the capture of bacteria, which enhanced the accurate and rapid attack of •OH and Ag+ to the membrane of E. coli with the assistance of local hyperthermia. This method showed broad-spectrum antibacterial performance against Gram-negative bacteria, Gram-positive bacteria, drug-resistant bacteria and fungal bacteria. Meanwhile, the magnetism of Fe3O4 was used to recycle the nanozyme. This work showed great potential of engineered nanozymes for efficient disinfection treatment.
Collapse
Affiliation(s)
- Feng Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xinyu Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Changchang Dong
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jiadong Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
67
|
Lv R, Wang Y, Lin B, Peng X, Liu J, Lü WD, Tian J. Targeted Luminescent Probes for Precise Upconversion/NIR II Luminescence Diagnosis of Lung Adenocarcinoma. Anal Chem 2021; 93:4984-4992. [PMID: 33705098 DOI: 10.1021/acs.analchem.1c00374] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this research, the antibody of the searched hub genes has been proposed to combine with a rare-earth composite for an upconversion luminescence (UCL) and downconversion (DCL) NIR-II imaging strategy for the diagnosis of lung adenocarcinoma (LUAD). Weighted gene co-expression network analysis is used to search the most relevant hub genes, and the required top genes that contribute to tumorigenesis (negative: CLEC3B, MFAP4, PECAM1, and FHL1; positive: CCNB2, CDCA5, HMMR, and TOP2A) are identified and validated by survival analysis and transcriptional and translational results. Meanwhile, fluorescence imaging probes (NaYF4:Yb,Er,Eu@NaYF4:Nd, denoted as NYF:Eu NPs) with multimodal optical imaging properties of downconversion and upconversion luminescence in the visible region and luminescence in the near infrared II region are designed with various uniform sizes and enhanced penetration and sensitivity. Finally, when the NYF:Eu NP probe is combined with antibodies of these chosen positive hub genes (such as, TOP2A and CCNB2), the in vitro and in vivo animal experiments (flow cytometry, cell counting kit-8 assay using A549 cells, and in vivo immunohistochemistry IHC microscopy images of LUAD from patient cases) indicate that the designed nanoprobes can be excellently used as a targeted optical probe for future accurate diagnosis and surgery navigation of LUAD in contrast with other cancer cells and normal cells. This strategy of antibodies combined with optical probes provides a dual-modal luminescence imaging method for precise medicine.
Collapse
Affiliation(s)
- Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China
| | - Yanxing Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China
| | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China
| | - Xiangrong Peng
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China
| | - Jun Liu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, China
| | - Wei-Dong Lü
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging of Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
68
|
Chen Y, Gao M, Zhang L, Ha E, Hu X, Zou R, Yan L, Hu J. Tumor Microenvironment Responsive Biodegradable Fe-Doped MoO x Nanowires for Magnetic Resonance Imaging Guided Photothermal-Enhanced Chemodynamic Synergistic Antitumor Therapy. Adv Healthc Mater 2021; 10:e2001665. [PMID: 33326189 DOI: 10.1002/adhm.202001665] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Rational design of nanosystems that target tumor microenvironment have attracted widespread attention. However, it is still a great challenge to make a multifunctional nanoplatform that actively and selectively interacts with tumor microenvironment, without causing toxicity to surrounding normal tissues. Herein, the biodegradable Fe-doped MoOx (FMO) nanowires are designed as an anti-tumor nanoreagent that possesses great photothermal conversion ability (48.5%) and magnetic properties for T1 weighted magnetic resonance imaging (MRI). Also, FMO can be used as a chemodynamic therapy (CDT) reagent to effectively catalyze the decomposition of H2 O2 and produce hydroxyl radical (·OH). At the same time, the consumption of glutathione will also enhance the CDT effect. More importantly, FMO presents pH-dependent degradation behavior: rapid degradation at physiological pH, but relatively stable at acidic pH. In vivo anti-tumor experiment demonstrates that the FMO is able to effectively inhibit the tumor growth with minimal side effects. Generally speaking, these results indicate that the FMO has huge potential for MRI image-guided cancer therapy and promotes the clinical translation of nanodrugs.
Collapse
Affiliation(s)
- Yusheng Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Mengluan Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Lingjian Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Enna Ha
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen 518118 P. R. China
| | - Xin Hu
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen 518118 P. R. China
| | - Rujia Zou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Li Yan
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen 518118 P. R. China
| | - Junqing Hu
- College of Health Science and Environmental Engineering Shenzhen Technology University Shenzhen 518118 P. R. China
| |
Collapse
|
69
|
Sun Z, Luo M, Li J, Wang A, Sun X, Wu Q, Li K, Ma Y, Yang C, Li X. Folic Acid Functionalized Chlorin e6-Superparamagnetic Iron Oxide Nanocarriers as a Theranostic Agent for MRI-Guided Photodynamic Therapy. J Biomed Nanotechnol 2021; 17:205-215. [DOI: 10.1166/jbn.2021.3021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Imaging-guided cancer theranostic is a promising strategy for cancer diagnostic and therapeutic. Photodynamic therapy (PDT), as an approved treatment modality, is limited by the poor solubility and dispersion of photosensitizers (PS) in biological fluids. Herein, it is demonstrated
that superparamagnetic iron oxide (SPIO)-based nanoparticles (SCFs), prepared by conjugated with Chlorin e6 (Ce6) and modified with folic acid (FA) on the surface, can be used as versatile drug delivery vehicles for effective PDT. The nanoparticles are great carriers for photosensitizer Ce6
with an extremely high loading efficiency. In vitro fluorescence imaging and in vivo magnetic resonance imaging (MRI) results indicated that SCFs selectively accumulated in tumor cells. Under near-infrared laser irradiation, SCFs were confirmed to be capable of inducing low cell
viability of RM-1 cells In vitro and displaying efficient tumor ablation with negligible side effects in tumor-bearing mice models.
Collapse
Affiliation(s)
- Zhenbo Sun
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
| | - Mingfang Luo
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
| | - Jia Li
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
| | - Ailing Wang
- Department of Clinical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264003, P. R. China
| | - Xucheng Sun
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
| | - Qiong Wu
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
| | - Kaiyue Li
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
| | - Ying Ma
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
| | - Caixia Yang
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
| | - Xianglin Li
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
| |
Collapse
|
70
|
Lee BH, Hasan MT, Lichthardt D, Gonzalez-Rodriguez R, Naumov AV. Manganese-nitrogen and gadolinium-nitrogen Co-doped graphene quantum dots as bimodal magnetic resonance and fluorescence imaging nanoprobes. NANOTECHNOLOGY 2021; 32:095103. [PMID: 33126228 DOI: 10.1088/1361-6528/abc642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Graphene quantum dots (GQDs) are unique derivatives of graphene that show promise in multiple biomedical applications as biosensors, bioimaging agents, and drug/gene delivery vehicles. Their ease in functionalization, biocompatibility, and intrinsic fluorescence enable those modalities. However, GQDs lack deep tissue magnetic resonance imaging (MRI) capabilities desirable for diagnostics. Considering that the drawbacks of MRI contrast agent toxicity are still poorly addressed, we develop novel Mn2+ or Gd3+ doped nitrogen-containing graphene quantum dots (NGQDs) to equip the GQDs with MRI capabilities and at the same time render contrast agents biocompatible. Water-soluble biocompatible Mn-NGQDs and Gd-NGQDs synthesized via single-step microwave-assisted scalable hydrothermal reaction enable dual MRI and fluorescence modalities. These quasi-spherical 3.9-6.6 nm average-sized structures possess highly crystalline graphitic lattice structure with 0.24 and 0.53 atomic % for Mn2+ and Gd3+ doping. This structure ensures high in vitro biocompatibility of up to 1.3 mg ml-1 and 1.5 mg ml-1 for Mn-NGQDs and Gd-NGQDs, respectively, and effective internalization in HEK-293 cells traced by intrinsic NGQD fluorescence. As MRI contrast agents with considerably low Gd and Mn content, Mn-NGQDs exhibit substantial transverse/longitudinal relaxivity (r 2/r 1) ratios of 11.190, showing potential as dual-mode longitudinal or transverse relaxation time (T 1 or T 2) contrast agents, while Gd-NGQDs possess r 2/r 1 of 1.148 with high r 1 of 9.546 mM-1 s-1 compared to commercial contrast agents, suggesting their potential as T1 contrast agents. Compared to other nanoplatforms, these novel Mn2+ and Gd3+ doped NGQDs not only provide scalable biocompatible alternatives as T1/T2 and T1 contrast agents but also enable in vitro intrinsic fluorescence imaging.
Collapse
Affiliation(s)
- Bong Han Lee
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, Texas 76129, United States of America
| | - Md Tanvir Hasan
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, Texas 76129, United States of America
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, United States of America
| | - Denise Lichthardt
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, Texas 76129, United States of America
- Friedrich-Alexander University Erlangen-Nürnberg, Schlossplatz 4, 91054 Erlangen, Germany
| | - Roberto Gonzalez-Rodriguez
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, Texas 76129, United States of America
- Department of Physics, University of North Texas, 210 Avenue A, Denton, TX 76201, United States of America
| | - Anton V Naumov
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, Texas 76129, United States of America
| |
Collapse
|
71
|
Sun S, Zhao L, Wu D, Zhang H, Lian H, Zhao X, Wu A, Zeng L. Manganese-Doped Carbon Dots with Redshifted Orange Emission for Enhanced Fluorescence and Magnetic Resonance Imaging. ACS APPLIED BIO MATERIALS 2021; 4:1969-1975. [DOI: 10.1021/acsabm.0c01597] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Sijia Sun
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Lining Zhao
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Di Wu
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Hongxin Zhang
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Haichen Lian
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Xiaolong Zhao
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Leyong Zeng
- College of Chemistry and Environmental Science, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
72
|
Zhou C, Zhang L, Sun T, Zhang Y, Liu Y, Gong M, Xu Z, Du M, Liu Y, Liu G, Zhang D. Activatable NIR-II Plasmonic Nanotheranostics for Efficient Photoacoustic Imaging and Photothermal Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006532. [PMID: 33283355 DOI: 10.1002/adma.202006532] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Indexed: 05/18/2023]
Abstract
Precise manipulation of optical properties through the structure-evolution of plasmonic nanoparticles is of great interest in biomedical fields including bioimaging and phototherapy. However, previous success has been limited to fixed assembled structures or visible-NIR-I absorption. Here, an activatable NIR-II plasmonic theranostics system based on silica-encapsulated self-assembled gold nanochains (AuNCs@SiO2 ) for accurate tumor diagnosis and effective treatment is reported. This transformable chain structure breaks through the traditional molecular imaging window, whose absorption can be redshifted from the visible to the NIR-II region owing to the fusion between adjacent gold nanoparticles in the restricted local space of AuNCs@SiO2 triggered by the high H2 O2 level in the tumor microenvironment (TME), leading to the generation of a new string-like structure with strong NIR-II absorption, which is further confirmed by finite-difference-time-domain (FDTD) simulation. With the TME-activated characteristics, AuNCs@SiO2 exhibits excellent properties for photoacoustic imaging and a high photothermal conversion efficiency of 82.2% at 1064 nm leading to severe cell death and remarkable tumor growth inhibition in vivo. These prominent intelligent TME-responsive features of AuNCs@SiO2 may open up a new avenue to explore optical regulated nano-platform for intelligent, accurate, and noninvasive theranostics in NIR-II window.
Collapse
Affiliation(s)
- Chunyu Zhou
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
| | - Liang Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
| | - Tao Sun
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Yiding Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, P. R. China
| | - Mingfu Gong
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
| | - Zhongsheng Xu
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
| | - Mengmeng Du
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
| | - Yun Liu
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Dong Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
| |
Collapse
|
73
|
Sun M, Yang D, Sun Q, Jia T, Kuang Y, Gai S, He F, Zhang F, Yang P. A porous material excited by near-infrared light for photo/chemodynamic and photothermal dual-mode combination therapy. J Mater Chem B 2020; 8:10559-10576. [PMID: 32939520 DOI: 10.1039/d0tb01794a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Photodynamic therapy (PDT) and photothermal therapy (PTT) are well-developed light therapy methods for cancer; however, both have a few areas that need improvement. A sustained PDT effect depends on the sustained generation of reactive oxygen species (ROS); therefore, adjusting the type of photosensitizer or the reaction mechanism to prolong the duration of the oxidation-reduction reaction is a possible solution for the continuation of the PDT effect. Further, if PTT could be combined with other treatments, it would bring about a more satisfactory therapeutic effect. To increase the treatment effect of the above two therapeutic methods, a collaborative treatment model of photo/chemodynamic therapy (PCDT) and PTT is needed and is the focus of this study. On the one hand, PCDT is a therapy that integrates PDT with Fenton-like reactions, and Fenton-like reactions can help PDT to produce more ROS by making better use of H2O2 in the tumor microenvironment. On the other hand, the PTT effect can also promote PCDT effects to some extent because rising temperature can elevate the redox reaction rate. Therefore, a copper oxide semiconductor photosensitizer was selected in this research to realize the abovementioned therapeutic purposes and experimental concepts. A porous silica carrier can facilitate the uniform attachment of the copper oxide photosensitizer to the SiO2 surface to form a relatively uniform nanostructure, and the nanoporous structure can increase the performance of the whole material to a certain extent. Based on these perspectives, SiO2@CuO nanotube (NT), an agent of both Fenton-like photosensitization and photothermal reagent, is synthesized by the hydrothermal co-precipitation template approach to shrink the tumor through the combined effect of PCDT and PTT. In this system, copper ions can participate in the Fenton-like reactions and make better use of H2O2 to generate more ROS. Herein, 808 nm light was chosen for irradiation because of its suitable excitation ability, applicable penetration and low intrinsic damage. The experimental results show that SiO2@CuO NT is a promising agent that combines PCDT and PTT for cancer treatment. This work provides guidance for the synthesis of Fenton-like photosensitizers for the PCDT effect.
Collapse
Affiliation(s)
- Mingdi Sun
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Albumin-constrained large-scale synthesis of renal clearable ferrous sulfide quantum dots for T1-Weighted MR imaging and phototheranostics of tumors. Biomaterials 2020; 255:120186. [DOI: 10.1016/j.biomaterials.2020.120186] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 11/24/2022]
|
75
|
Zhu J, Xiao T, Zhang J, Che H, Shi Y, Shi X, van Hest JCM. Surface-Charge-Switchable Nanoclusters for Magnetic Resonance Imaging-Guided and Glutathione Depletion-Enhanced Photodynamic Therapy. ACS NANO 2020; 14:11225-11237. [PMID: 32809803 PMCID: PMC7513467 DOI: 10.1021/acsnano.0c03080] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Photodynamic therapy (PDT) is an effective noninvasive therapeutic method that employs photosensitizers (PSs) converting oxygen to highly cytotoxic singlet oxygen (1O2) under light irradiation. The conventional PDT efficacy is, however, compromised by the nonspecific delivery of PSs to tumor tissue, the hypoxic tumor microenvironment, and the reduction of generated 1O2 by the intracellular antioxidant glutathione (GSH). Herein, an intelligent multifunctional synergistic nanoplatform (CMGCC) for T1-weighted magnetic resonance (MR) imaging-guided enhanced PDT is presented, which consists of nanoparticles composed of catalase (CAT) and manganese dioxide (MnO2) that are integrated within chlorin-e6-modified glycol chitosan (GC) polymeric micelles. In this system, (1) GC polymers with pH-sensitive surface charge switchability from neutral to positive could improve the PS accumulation within the tumor region, (2) CAT could effectively reoxygenate the hypoxic tumor via catalyzing endogenous hydrogen peroxide to O2, and (3) MnO2 could consume the intracellular GSH while simultaneously producing Mn2+ as a contrast agent for T1-weighted MR imaging. The CMGCC particles possess uniform size distribution, well-defined structure, favorable enzyme activity, and superior 1O2 generation ability. Both in vitro and in vivo experiments demonstrate that the CMGCC exhibit significantly enhanced PDT efficacy toward HeLa cells and subcutaneous HeLa tumors. Our study thereby demonstrates this to be a promising synergistic theranostic nanoplatform with highly efficient PDT performance for cancer therapy.
Collapse
Affiliation(s)
- Jianzhi Zhu
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- State
Key Laboratory for Modification of Chemical Fibers and Polymer Materials,
International Joint Laboratory for Advanced Fiber and Low-dimension
Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Tingting Xiao
- State
Key Laboratory for Modification of Chemical Fibers and Polymer Materials,
International Joint Laboratory for Advanced Fiber and Low-dimension
Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Jiulong Zhang
- Department
of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, People’s Republic
of China
| | - Hailong Che
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Yuxin Shi
- Department
of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, People’s Republic
of China
| | - Xiangyang Shi
- State
Key Laboratory for Modification of Chemical Fibers and Polymer Materials,
International Joint Laboratory for Advanced Fiber and Low-dimension
Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People’s Republic of China
| | - Jan C. M. van Hest
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
76
|
Li Y, Li B, Wang X, Meng Y, Bai L, Zheng Y. Safe and efficient magnetic resonance imaging of acute myocardial infarction with gadolinium-doped carbon dots. Nanomedicine (Lond) 2020; 15:2385-2398. [PMID: 32914700 DOI: 10.2217/nnm-2020-0160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: The magneto-fluorescent gadolinium-doped carbon dots (Gd-CDs) were developed as a cardiac MR imaging contrast agent to detect the infarcted myocardium on a myocardial ischemia/reperfusion (I/R) mice model. Materials & methods: The chemophysical features, cardiac MR imaging effect, biodistribution and biocompatibility of Gd-CDs were studied. Results: The ultrasmall size and good aqueous dispersibility endows Gd-CDs with high longitudinal relaxivity, intense fluorescence, excellent physiological stability and superior biocompatibility. More importantly, Gd-CDs preferentially target the infarcts as determined by the confocal microscopy and MR imaging on the I/R mice at the acute stage of myocardial infarction. Conclusion: Gd-CDs manifest great potential for development as an MR imaging contrast agent to facilitate accurate visualization and image-guided therapy of acute myocardial infarction.
Collapse
Affiliation(s)
- Yingxu Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Bing Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Xuechun Wang
- Department of Chemistry & Biology, School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Yan Meng
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Lu Bai
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Yuanyuan Zheng
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| |
Collapse
|
77
|
Zeng Y, Li H, Li Z, Luo Q, Zhu H, Gu Z, Zhang H, Gong Q, Luo K. Engineered gadolinium-based nanomaterials as cancer imaging agents. APPLIED MATERIALS TODAY 2020; 20:100686. [DOI: 10.1016/j.apmt.2020.100686] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
78
|
Zhao Y, Chen BQ, Kankala RK, Wang SB, Chen AZ. Recent Advances in Combination of Copper Chalcogenide-Based Photothermal and Reactive Oxygen Species-Related Therapies. ACS Biomater Sci Eng 2020; 6:4799-4815. [DOI: 10.1021/acsbiomaterials.0c00830] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yi Zhao
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Biao-Qi Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, P. R. China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, P. R. China
| | - Shi-Bin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, P. R. China
| | - Ai-Zheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology, Xiamen 361021, P. R. China
| |
Collapse
|
79
|
Xu C, Hu W, Zhang N, Qi Y, Nie JJ, Zhao N, Yu B, Xu FJ. Genetically multimodal therapy mediated by one polysaccharides-based supramolecular nanosystem. Biomaterials 2020; 248:120031. [DOI: 10.1016/j.biomaterials.2020.120031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022]
|
80
|
Chung YJ, Kim J, Park CB. Photonic Carbon Dots as an Emerging Nanoagent for Biomedical and Healthcare Applications. ACS NANO 2020; 14:6470-6497. [PMID: 32441509 DOI: 10.1021/acsnano.0c02114] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As a class of carbon-based nanomaterials, carbon dots (CDs) have attracted enormous attention because of their tunable optical and physicochemical properties, such as absorptivity and photoluminescence from ultraviolet to near-infrared, high photostability, biocompatibility, and aqueous dispersity. These characteristics make CDs a promising alternative photonic nanoagent to conventional fluorophores in disease diagnosis, treatment, and healthcare managements. This review describes the fundamental photophysical properties of CDs and highlights their recent applications to bioimaging, photomedicine (e.g., photodynamic/photothermal therapies), biosensors, and healthcare devices. We discuss current challenges and future prospects of photonic CDs to give an insight into developing vibrant fields of CD-based biomedicine and healthcare.
Collapse
Affiliation(s)
- You Jung Chung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 34141, Republic of Korea
| | - Jinhyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 34141, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 34141, Republic of Korea
| |
Collapse
|
81
|
Luo Q, Ding H, Hu X, Xu J, Sadat A, Xu M, Primo FL, Tedesco AC, Zhang H, Bi H. Sn 4+ complexation with sulfonated-carbon dots in pursuit of enhanced fluorescence and singlet oxygen quantum yield. Dalton Trans 2020; 49:6950-6956. [PMID: 32352111 DOI: 10.1039/d0dt01187h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Here we report a novel strategy to crosslink the surface of sulfonated-carbon dots (S-CDs) by complexing SnCl4 with sulfonate groups (-SO3-) on the CDs in aqueous solution. The S-CDs show an average photoluminescence (PL) quantum yield of 21% and a mean diameter of 3.8 nm. After being complexed with Sn4+, the as-obtained Sn@S-CDs present a reduced size of 1.8 nm and a higher PL quantum yield of 32%. More interestingly, the Sn@S-CDs show an enhanced singlet oxygen (1O2) quantum yield as high as 37% compared to that of the S-CDs (27%). In the HepG2 cell line as a model, the Sn@S-CDs exhibit a remarkable cell imaging effect and in vitro PDT efficiency. Therefore, our study proposes a simple but effective cross-linking strategy to synthesize CDs incorporated with metal ions, for the purpose of achieving an enhanced fluorescence intensity and a higher 1O2 quantum yield.
Collapse
Affiliation(s)
- Qinghua Luo
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Rosenkrans ZT, Sun T, Jiang D, Chen W, Barnhart TE, Zhang Z, Ferreira CA, Wang X, Engle JW, Huang P, Cai W. Selenium-Doped Carbon Quantum Dots Act as Broad-Spectrum Antioxidants for Acute Kidney Injury Management. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000420. [PMID: 32596126 PMCID: PMC7312409 DOI: 10.1002/advs.202000420] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/06/2020] [Indexed: 05/06/2023]
Abstract
The manifestation of acute kidney injury (AKI) is associated with poor patient outcomes, with treatment options limited to hydration or renal replacement therapies. The onset of AKI is often associated with a surfeit of reactive oxygen species. Here, it is shown that selenium-doped carbon quantum dots (SeCQDs) have broad-spectrum antioxidant properties and prominent renal accumulation in both healthy and AKI mice. Due to these properties, SeCQDs treat or prevent two clinically relevant cases of AKI induced in murine models by either rhabdomyolysis or cisplatin using only 1 or 50 µg per mouse, respectively. The attenuation of AKI in both models is confirmed by blood serum measurements, kidney tissue staining, and relevant biomarkers. The therapeutic efficacy of SeCQDs exceeds amifostine, a drug approved by the Food and Drug Administration that also acts by scavenging free radicals. The findings indicate that SeCQDs show great potential as a treatment option for AKI and possibly other ROS-related diseases.
Collapse
Affiliation(s)
- Zachary T. Rosenkrans
- Department of Pharmaceutical SciencesUniversity of Wisconsin‐MadisonMadisonWI53705USA
| | - Tuanwei Sun
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWI53705USA
| | - Dawei Jiang
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWI53705USA
| | - Weiyu Chen
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWI53705USA
| | - Todd E. Barnhart
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWI53705USA
| | - Ziyi Zhang
- Department of Materials Science and EngineeringUniversity of Wisconsin‐MadisonMadisonWI53705USA
| | - Carolina A. Ferreira
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWI53705USA
| | - Xudong Wang
- Department of Materials Science and EngineeringUniversity of Wisconsin‐MadisonMadisonWI53705USA
| | - Jonathan W. Engle
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWI53705USA
| | - Peng Huang
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary TheranosticsSchool of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| | - Weibo Cai
- Department of Pharmaceutical SciencesUniversity of Wisconsin‐MadisonMadisonWI53705USA
- Departments of Radiology and Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWI53705USA
| |
Collapse
|
83
|
Sun W, Luo L, Feng Y, Qiu Y, Shi C, Meng S, Chen X, Chen H. Gadolinium-Rose Bengal Coordination Polymer Nanodots for MR-/Fluorescence-Image-Guided Radiation and Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000377. [PMID: 32363649 DOI: 10.1002/adma.202000377] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 05/24/2023]
Abstract
Combination therapy based on nanomedicine has gained momentum in oncology in recent years, offering superior safety and efficacy over monotherapies. It is critical to design theranostics that are composed of imaging and therapeutic agents already approved. Herein, gadolinium (Gd)-rose bengal coordination polymer nanodots (GRDs) are reported. The GRDs exhibit a unique absorption property and 7.7-fold luminescence enhancement, as well as a 1.9-fold increase in singlet oxygen generation efficiency over free rose bengal. Meanwhile, GRDs exhibit a twofold increase in r1 relaxivity over gadopentetic acid (Gd-DTPA) and have better X-ray absorption ability than rose bengal alone. These excellent properties of the GRDs are verified both in vitro and in vivo. The combination of photodynamic therapy (PDT) and radiation therapy (RT) more significantly inhibits tumor growth than monotherapies (i.e., PDT or RT). This work offers a new route to designing and synthesizing Gd-based nanotheranostics for image-guided cancer therapy.
Collapse
Affiliation(s)
- Wenjing Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Li Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yushuo Feng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yuwei Qiu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Changrong Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Shanshan Meng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Hongmin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
84
|
Zhang Y, Wang B, Zhao R, Zhang Q, Kong X. Multifunctional nanoparticles as photosensitizer delivery carriers for enhanced photodynamic cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111099. [PMID: 32600703 DOI: 10.1016/j.msec.2020.111099] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/06/2019] [Accepted: 05/15/2020] [Indexed: 12/31/2022]
Abstract
Photodynamic therapy (PDT) is an emerging cancer treatment combining light, oxygen, and a photosensitizer (PS) to produce highly cytotoxic reactive oxygen species that cause cancer cell death. However, most PSs are hydrophobic molecules that have poor water solubility and cannot target tumor tissues, causing damage to normal tissues and cells during PDT. Thus, there is a substantial demand for the development of nanocarrier systems to achieve targeted delivery of PSs into tumor tissues and cells. This review summarizes the research progress in PS delivery systems for PDT treatment of tumors and focuses on the recent design and development of multifunctional nanoparticles as PS delivery carriers for enhanced PDT. These multifunctional nanoparticles possess unique properties, including tunable particle size, changeable shape, stimuli-responsive PS activation, controlled PS release, and hierarchical targeting capability. These properties can increase tumor accumulation, penetration, and cellular internalization of nanoparticles to achieve PS activation and/or release in cancer cells for enhanced PDT. Finally, recent developments in multifunctional nanoparticles for tumor-targeted PS delivery and their future prospects in PDT are discussed.
Collapse
Affiliation(s)
- Yonghe Zhang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Beilei Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ruibo Zhao
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Quan Zhang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Xiangdong Kong
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
85
|
Affiliation(s)
- Xiahui Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN) National Institute of Biomedical Imaging and Bioengineering (NIBIB) National Institutes of Health (NIH) Bethesda Maryland 20892 USA
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| |
Collapse
|
86
|
Lin X, Song J, Chen X, Yang H. Ultrasound-Activated Sensitizers and Applications. Angew Chem Int Ed Engl 2020; 59:14212-14233. [PMID: 31267634 DOI: 10.1002/anie.201906823] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/28/2019] [Indexed: 12/11/2022]
Abstract
Modalities for photo-triggered anticancer therapy are usually limited by their low penetrative depth. Sonotheranostics especially sonodynamic therapy (SDT), which is different from photodynamic therapy (PDT) by the use of highly penetrating acoustic waves to activate a class of sound-responsive materials called sonosensitizers, has gained significant interest in recent years. The effect of SDT is closely related to the structural and physicochemical properties of the sonosensitizers, which has led to the development of new sound-activated materials as sonosensitizers for various biomedical applications. This Review provides a summary and discussion of the types of novel sonosensitizers developed in the last few years and outlines their specific designs and the potential challenges. The applications of sonosensitizers with various functions such as for imaging and drug delivery as well as in combination with other treatment modalities would provide new strategies for disease therapy.
Collapse
Affiliation(s)
- Xiahui Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
87
|
Montaseri H, Kruger CA, Abrahamse H. Recent Advances in Porphyrin-Based Inorganic Nanoparticles for Cancer Treatment. Int J Mol Sci 2020; 21:E3358. [PMID: 32397477 PMCID: PMC7247422 DOI: 10.3390/ijms21093358] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
The application of porphyrins and their derivatives have been investigated extensively over the past years for phototherapy cancer treatment. Phototherapeutic Porphyrins have the ability to generate high levels of reactive oxygen with a low dark toxicity and these properties have made them robust photosensitizing agents. In recent years, Porphyrins have been combined with various nanomaterials in order to improve their bio-distribution. These combinations allow for nanoparticles to enhance photodynamic therapy (PDT) cancer treatment and adding additional nanotheranostics (photothermal therapy-PTT) as well as enhance photodiagnosis (PDD) to the reaction. This review examines various porphyrin-based inorganic nanoparticles developed for phototherapy nanotheranostic cancer treatment over the last three years (2017 to 2020). Furthermore, current challenges in the development and future perspectives of porphyrin-based nanomedicines for cancer treatment are also highlighted.
Collapse
Affiliation(s)
| | | | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa; (H.M.); (C.A.K.)
| |
Collapse
|
88
|
Ge X, Fu Q, Su L, Li Z, Zhang W, Chen T, Yang H, Song J. Light-activated gold nanorod vesicles with NIR-II fluorescence and photoacoustic imaging performances for cancer theranostics. Theranostics 2020; 10:4809-4821. [PMID: 32308751 PMCID: PMC7163452 DOI: 10.7150/thno.44376] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
Fluorescence (FL) and photoacoustic (PA) imaging in the second near infrared window (NIR-II FL and NIR-II PA) hold great promise for biomedical applications because of their non-invasive nature and excellent spatial resolution properties. Methods: We develop a NIR-II PA and NIR-II FL dual-mode imaging gold nanorod vesicles (AuNR Ves) by self-assembly of amphiphilic AuNR coated with light responsive polyprodrug of Ru-complex and PEG, and NIR-II cyanine dye (IR 1061). The AuNR Ves showed strong ligh absorption property and PA imaging performance in the NIR-II windows. Moreover, the NIR-II fluorescence signal of IR 1061 loaded in the AuNR Ve is quenched. Results: The AuNR Ves can release photosensitizer Ru-complex and IR 1061 sequentially triggered by NIR light irradiation, leading to a corresponding NIR-II PA signal decrease and NIR-II FL signal recovery. Meanwhile, Ru-complex can not only serve as a chemotherapeutic drug but also generate singlet oxygen (1O2) under NIR light irradiation. The release of Ru-complex and photodynamic therapy are guided by the responsive variation of NIR-II PA and NIR-II FL signals. Conclusions: The AuNR Ve possessing not only precisely control 1O2/drug release but also the intrinsic ability to monitor therapy process offers a new strategy for the development of smart theranostic nanoplatform.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jibin Song
- MOE key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
89
|
Ling S, Yang X, Li C, Zhang Y, Yang H, Chen G, Wang Q. Tumor Microenvironment‐Activated NIR‐II Nanotheranostic System for Precise Diagnosis and Treatment of Peritoneal Metastasis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sisi Ling
- School of Nano-Tech and Nano-BionicsUniversity of Science and Technology of China Hefei 230026 P. R. China
- CAS Key Laboratory of Nano-Bio InterfaceSuzhou Key Laboratory of Functional Molecular Imaging TechnologyDivision of Nanobiomedicine andi-LabSuzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of Sciences Suzhou 215123 China
| | - Xiaohu Yang
- School of Nano-Tech and Nano-BionicsUniversity of Science and Technology of China Hefei 230026 P. R. China
- CAS Key Laboratory of Nano-Bio InterfaceSuzhou Key Laboratory of Functional Molecular Imaging TechnologyDivision of Nanobiomedicine andi-LabSuzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of Sciences Suzhou 215123 China
| | - Chunyan Li
- School of Nano-Tech and Nano-BionicsUniversity of Science and Technology of China Hefei 230026 P. R. China
- CAS Key Laboratory of Nano-Bio InterfaceSuzhou Key Laboratory of Functional Molecular Imaging TechnologyDivision of Nanobiomedicine andi-LabSuzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of Sciences Suzhou 215123 China
| | - Yejun Zhang
- School of Nano-Tech and Nano-BionicsUniversity of Science and Technology of China Hefei 230026 P. R. China
- CAS Key Laboratory of Nano-Bio InterfaceSuzhou Key Laboratory of Functional Molecular Imaging TechnologyDivision of Nanobiomedicine andi-LabSuzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of Sciences Suzhou 215123 China
| | - Hongchao Yang
- School of Nano-Tech and Nano-BionicsUniversity of Science and Technology of China Hefei 230026 P. R. China
- CAS Key Laboratory of Nano-Bio InterfaceSuzhou Key Laboratory of Functional Molecular Imaging TechnologyDivision of Nanobiomedicine andi-LabSuzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of Sciences Suzhou 215123 China
| | - Guangcun Chen
- School of Nano-Tech and Nano-BionicsUniversity of Science and Technology of China Hefei 230026 P. R. China
- CAS Key Laboratory of Nano-Bio InterfaceSuzhou Key Laboratory of Functional Molecular Imaging TechnologyDivision of Nanobiomedicine andi-LabSuzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of Sciences Suzhou 215123 China
| | - Qiangbin Wang
- School of Nano-Tech and Nano-BionicsUniversity of Science and Technology of China Hefei 230026 P. R. China
- CAS Key Laboratory of Nano-Bio InterfaceSuzhou Key Laboratory of Functional Molecular Imaging TechnologyDivision of Nanobiomedicine andi-LabSuzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of Sciences Suzhou 215123 China
- College of Materials Sciences and Opto-Electronic TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
90
|
Ling S, Yang X, Li C, Zhang Y, Yang H, Chen G, Wang Q. Tumor Microenvironment‐Activated NIR‐II Nanotheranostic System for Precise Diagnosis and Treatment of Peritoneal Metastasis. Angew Chem Int Ed Engl 2020; 59:7219-7223. [DOI: 10.1002/anie.202000947] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Sisi Ling
- School of Nano-Tech and Nano-Bionics University of Science and Technology of China Hefei 230026 P. R. China
- CAS Key Laboratory of Nano-Bio Interface Suzhou Key Laboratory of Functional Molecular Imaging Technology Division of Nanobiomedicine andi-Lab Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 China
| | - Xiaohu Yang
- School of Nano-Tech and Nano-Bionics University of Science and Technology of China Hefei 230026 P. R. China
- CAS Key Laboratory of Nano-Bio Interface Suzhou Key Laboratory of Functional Molecular Imaging Technology Division of Nanobiomedicine andi-Lab Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 China
| | - Chunyan Li
- School of Nano-Tech and Nano-Bionics University of Science and Technology of China Hefei 230026 P. R. China
- CAS Key Laboratory of Nano-Bio Interface Suzhou Key Laboratory of Functional Molecular Imaging Technology Division of Nanobiomedicine andi-Lab Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 China
| | - Yejun Zhang
- School of Nano-Tech and Nano-Bionics University of Science and Technology of China Hefei 230026 P. R. China
- CAS Key Laboratory of Nano-Bio Interface Suzhou Key Laboratory of Functional Molecular Imaging Technology Division of Nanobiomedicine andi-Lab Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 China
| | - Hongchao Yang
- School of Nano-Tech and Nano-Bionics University of Science and Technology of China Hefei 230026 P. R. China
- CAS Key Laboratory of Nano-Bio Interface Suzhou Key Laboratory of Functional Molecular Imaging Technology Division of Nanobiomedicine andi-Lab Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 China
| | - Guangcun Chen
- School of Nano-Tech and Nano-Bionics University of Science and Technology of China Hefei 230026 P. R. China
- CAS Key Laboratory of Nano-Bio Interface Suzhou Key Laboratory of Functional Molecular Imaging Technology Division of Nanobiomedicine andi-Lab Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 China
| | - Qiangbin Wang
- School of Nano-Tech and Nano-Bionics University of Science and Technology of China Hefei 230026 P. R. China
- CAS Key Laboratory of Nano-Bio Interface Suzhou Key Laboratory of Functional Molecular Imaging Technology Division of Nanobiomedicine andi-Lab Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Suzhou 215123 China
- College of Materials Sciences and Opto-Electronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
91
|
Liu Y, Jing J, Jia F, Su S, Tian Y, Gao N, Yang C, Zhang R, Wang W, Zhang X. Tumor Microenvironment-Responsive Theranostic Nanoplatform for in Situ Self-Boosting Combined Phototherapy through Intracellular Reassembly. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6966-6977. [PMID: 31965785 DOI: 10.1021/acsami.9b22097] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Through rational design, in vivo supramolecular construction of nanodrugs could precisely proceed in the lesion areas, which may apparently improve the theranostic performance of nanomaterials. Herein, a tumor microenvironment-responsive theranostic nanoplatform (Ce6-GA@MnO2-HA-PEG) has been constructed to achieve in vivo supramolecular construction and enhance the therapeutic efficacy of combined phototherapy through intracellular reassembly. Under the tumor microenvironment, such nanoplatform could undergo the process of decomposition-reassembly and form in situ photothermal assemblies. The generation of assemblies would endow this nanoplatform with the capacity of photothermal therapy. Meanwhile, this nanoplatform could alleviate hypoxia and improve the therapeutic efficacy of photodynamic therapy. The results of in vitro and in vivo experiments reveal that tumors can be ablated efficiently by the designed nanoplatform under laser irradiation. In addition, fluorescence imaging and magnetic resonance imaging can be activated by the decomposition of MnO2 to realize tumor imaging in vivo. Therefore, this multifunctional nanoplatform exhibits the capacity for boosting dual-modal imaging-guided combined phototherapy through intracellular reassembly, which may propose a new thought in cancer theranostics.
Collapse
Affiliation(s)
- Yazhou Liu
- State Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - Jing Jing
- State Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - Fei Jia
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , P. R. China
| | - Sa Su
- State Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - Yong Tian
- State Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - Na Gao
- State Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - Chunlei Yang
- State Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - Rubo Zhang
- State Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - Weizhi Wang
- State Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry , Beijing Institute of Technology , Beijing 100081 , P. R. China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , Beijing 100190 , P. R. China
| | - Xiaoling Zhang
- State Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry , Beijing Institute of Technology , Beijing 100081 , P. R. China
| |
Collapse
|
92
|
Li L, Yang Z, Fan W, He L, Cui C, Zou J, Tang W, Jacobson O, Wang Z, Niu G, Hu S, Chen X. In Situ Polymerized Hollow Mesoporous Organosilica Biocatalysis Nanoreactor for Enhancing ROS-Mediated Anticancer Therapy. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1907716. [PMID: 33041745 PMCID: PMC7546450 DOI: 10.1002/adfm.201907716] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Indexed: 05/18/2023]
Abstract
The combination of reactive oxygen species (ROS)-involved photodynamic therapy (PDT) and chemodynamic therapy (CDT) holds great promise for enhancing ROS-mediated cancer treatment. Herein, we reported an in situ polymerized hollow mesoporous organosilica nanoparticle (HMON) biocatalysis nanoreactor to integrate the synergistic effect of PDT/CDT for enhancing ROS-mediated pancreatic ductal adenocarcinoma treatment. HPPH photosensitizer was hybridized within the framework of HMON via an "in situ framework growth" approach. Then, the hollow cavity of HMONs was exploited as a nanoreactor for "in situ polymerization" to synthesize the polymer containing thiol groups, thereby enabling the immobilization of ultrasmall gold nanoparticles, which behave like glucose oxidase-like nanozyme, converting glucose into H2O2 to provide self-supplied H2O2 for CDT. Meanwhile, Cu2+-tannic acid complexes were further deposited on the surface of HMONs (HMON-Au@Cu-TA) to initiate Fenton-like reaction to covert the self-supplied H2O2 into •OH, a highly toxic ROS. Finally, collagenase (Col), which can degrade the collagen I fiber in the extracellular matrix (ECM), was loaded into HMON-Au@Cu-TA to enhance the penetration of HMONs and O2 infiltration for enhanced PDT. This study provides a good paradigm for enhancing ROS-mediated anti-tumor efficacy. Meanwhile, this research offers a new method to broaden the application of silica based nanotheranostics.
Collapse
Affiliation(s)
- Ling Li
- Department of PET Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,Central South University, Changsha 410008, China
| | - Zhen Yang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Liangcan He
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Cao Cui
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, China
| | - Jianhua Zou
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Wei Tang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Shuo Hu
- Department of PET Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,Central South University, Changsha 410008, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| |
Collapse
|
93
|
Gao D, Guo X, Zhang X, Chen S, Wang Y, Chen T, Huang G, Gao Y, Tian Z, Yang Z. Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Mater Today Bio 2020; 5:100035. [PMID: 32211603 PMCID: PMC7083767 DOI: 10.1016/j.mtbio.2019.100035] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/20/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer, as one of the most life-threatening diseases, shows a high fatality rate around the world. When improving the therapeutic efficacy of conventional cancer treatments, researchers also conduct extensive studies into alternative therapeutic approaches, which are safe, valid, and economical. Phototherapies, including photodynamic therapy (PDT) and photothermal therapy (PTT), are tumor-ablative and function-reserving oncologic interventions, showing strong potential in clinical cancer treatment. During phototherapies, the non-toxic phototherapeutic agents can be activated upon light irradiation to induce cell death without causing much damage to normal tissues. Besides, with the rapid development of nanotechnology in the past decades, phototheranostic nanomedicine also has attracted tremendous interests aiming to continuously refine their performance. Herein, we reviewed the recent progress of phototheranostic nanomedicine for improved cancer therapy. After a brief introduction of the therapeutic principles and related phototherapeutic agents for PDT and PTT, the existing works on developing of phototheranostic nanomedicine by mainly focusing on their categories and applications, particularly on phototherapy-synergized cancer immunotherapy, are comprehensively reviewed. More importantly, a brief conclusion and future challenges of phototheranostic nanomedicine from our point of view are delivered in the last part of this article.
Collapse
Affiliation(s)
- D. Gao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - X. Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - X. Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - S. Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Y. Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - T. Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - G. Huang
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Y. Gao
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Number 7 Weiwu Road, Zhengzhou, 450003, China
| | - Z. Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Z. Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
94
|
Hu R, Su J, Wang Q, Chen M, Jiao Y, Chen L, Dong B, Fu F, Dong Y. Carbon-based dot nanoclusters with enhanced roles of defect states in the fluorescence and singlet oxygen generation. NEW J CHEM 2020. [DOI: 10.1039/d0nj02421j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Carbon-based dot nanoclusters for red emission and high yield singlet oxygen generation are reported for the first time.
Collapse
Affiliation(s)
- Rongjing Hu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- College of Chemistry, Fuzhou University
- Fuzhou
- China
| | - Juanxia Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- College of Chemistry, Fuzhou University
- Fuzhou
- China
| | - Qian Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- College of Chemistry, Fuzhou University
- Fuzhou
- China
| | - Mingming Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- College of Chemistry, Fuzhou University
- Fuzhou
- China
| | - Yajie Jiao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- College of Chemistry, Fuzhou University
- Fuzhou
- China
| | - Lichan Chen
- College of Chemical Engineering
- Huaqiao University
- Xiamen
- China
| | - Binhua Dong
- Fujian Provincial Maternity and Children's Hospital
- Affiliated Hospital of Fujian Medical University
- Fuzhou
- China
| | - Fengfu Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- College of Chemistry, Fuzhou University
- Fuzhou
- China
| | - Yongqiang Dong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- College of Chemistry, Fuzhou University
- Fuzhou
- China
| |
Collapse
|
95
|
Li Z, Wang D, Xu M, Wang J, Hu X, Anwar S, Tedesco AC, Morais PC, Bi H. Fluorine-containing graphene quantum dots with a high singlet oxygen generation applied for photodynamic therapy. J Mater Chem B 2020; 8:2598-2606. [DOI: 10.1039/c9tb02529d] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compared with graphene quantum dots (GQDs), fluorine-containing GQDs (F-GQDs) present higher 1O2 generation under light irradiation and thus cause obvious toxicity to HepG2 cells. F-GQDs can be used as a photosensitizer for photodynamic therapy.
Collapse
Affiliation(s)
- Zhenzhen Li
- School of Chemistry and Chemical Engineering
- Anhui Key Laboratory of Modern Biomanufacturing
- Anhui University
- Hefei 230601
- China
| | - Dong Wang
- School of Chemistry and Chemical Engineering
- Anhui Key Laboratory of Modern Biomanufacturing
- Anhui University
- Hefei 230601
- China
| | - Mingsheng Xu
- School of Chemistry and Chemical Engineering
- Anhui Key Laboratory of Modern Biomanufacturing
- Anhui University
- Hefei 230601
- China
| | - Jingmin Wang
- School of Life Sciences
- Anhui University
- Hefei 230601
- P. R. China
| | - Xiaolong Hu
- School of Chemistry and Chemical Engineering
- Anhui Key Laboratory of Modern Biomanufacturing
- Anhui University
- Hefei 230601
- China
| | - Sadat Anwar
- School of Chemistry and Chemical Engineering
- Anhui Key Laboratory of Modern Biomanufacturing
- Anhui University
- Hefei 230601
- China
| | - Antonio Claudio Tedesco
- School of Chemistry and Chemical Engineering
- Anhui Key Laboratory of Modern Biomanufacturing
- Anhui University
- Hefei 230601
- China
| | - Paulo Cesar Morais
- Genomic Sciences and Biotechnology
- Catholic University of Brasília
- Brasília
- Brazil
- Institute of Physics
| | - Hong Bi
- School of Chemistry and Chemical Engineering
- Anhui Key Laboratory of Modern Biomanufacturing
- Anhui University
- Hefei 230601
- China
| |
Collapse
|
96
|
Zhao J, Sun S, Li X, Zhang W, Gou S. Enhancing Photodynamic Therapy Efficacy of Upconversion-Based Nanoparticles Conjugated with a Long-Lived Triplet Excited State Iridium(III)-Naphthalimide Complex: Toward Highly Enhanced Hypoxia-Inducible Factor-1. ACS APPLIED BIO MATERIALS 2019; 3:252-262. [DOI: 10.1021/acsabm.9b00774] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Shuchen Sun
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiaoyan Li
- The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjing Zhang
- The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
97
|
Qian M, Chen L, Du Y, Jiang H, Huo T, Yang Y, Guo W, Wang Y, Huang R. Biodegradable Mesoporous Silica Achieved via Carbon Nanodots-Incorporated Framework Swelling for Debris-Mediated Photothermal Synergistic Immunotherapy. NANO LETTERS 2019; 19:8409-8417. [PMID: 31682447 DOI: 10.1021/acs.nanolett.9b02448] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Incorporating carbon nanodots (CDs) into mesoporous silica framework for extensive biomedicine, especially for the desirable cancer immunotherapy, is considered to be an unexplored challenge. Herein, a hydrogen bond/electrostatic-assisted co-assembly strategy was smartly exploited to uniformly incorporate polymer-coated CDs into ordered framework of mesoporous silica nanoparticles (CD@MSNs). The obtained CD@MSN was not only biodegradable via the framework-incorporated CD-induced swelling but also capable of gathering dispersive CDs with enhanced photothermal effect and elevated targeting accumulation, which therefore can achieve photothermal imaging-guided photothermal therapy (PTT) in vitro and in vivo. Interestingly, benefiting from the biodegraded debris, it was found that CD@MSN-mediated PTT can synergistically achieve immune-mediated inhibition of tumor metastasis via stimulating the proliferation and activation of natural killer cells and macrophages with simultaneously up-regulating the secretion of corresponding cytokines (IFN-γ and Granzyme B). This work proposed an unusual synthesis of biodegradable mesoporous silica and provided an innovative insight into the biodegradable nanoparticles-associated anticancer immunity.
Collapse
Affiliation(s)
- Min Qian
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education , Fudan University , Shanghai 201203 , China
| | - Leilei Chen
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , China
| | - Yilin Du
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education , Fudan University , Shanghai 201203 , China
| | - Huiling Jiang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education , Fudan University , Shanghai 201203 , China
| | - Taotao Huo
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education , Fudan University , Shanghai 201203 , China
| | - Yafeng Yang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education , Fudan University , Shanghai 201203 , China
| | - Wei Guo
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education , Fudan University , Shanghai 201203 , China
| | - Yi Wang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , China
| | - Rongqin Huang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education , Fudan University , Shanghai 201203 , China
| |
Collapse
|
98
|
Xia C, Zhu S, Feng T, Yang M, Yang B. Evolution and Synthesis of Carbon Dots: From Carbon Dots to Carbonized Polymer Dots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901316. [PMID: 31832313 PMCID: PMC6891914 DOI: 10.1002/advs.201901316] [Citation(s) in RCA: 542] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/01/2019] [Indexed: 05/02/2023]
Abstract
Despite the various synthesis methods to obtain carbon dots (CDs), the bottom-up methods are still the most widely administrated route to afford large-scale and low-cost synthesis. However, as CDs are developed with increasing reports involved in producing many CDs, the structure and property features have changed enormously compared with the first generation of CDs, raising classification concerns. To this end, a new classification of CDs, named carbonized polymer dots (CPDs), is summarized according to the analysis of structure and property features. Here, CPDs are revealed as an emerging class of CDs with distinctive polymer/carbon hybrid structures and properties. Furthermore, deep insights into the effects of synthesis on the structure/property features of CDs are provided. Herein, the synthesis methods of CDs are also summarized in detail, and the effects of synthesis conditions of the bottom-up methods in terms of the structures and properties of CPDs are discussed and analyzed comprehensively. Insights into formation process and nucleation mechanism of CPDs are also offered. Finally, a perspective of the future development of CDs is proposed with critical insights into facilitating their potential in various application fields.
Collapse
Affiliation(s)
- Chunlei Xia
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Shoujun Zhu
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of Health35 Convent DrBethesda20892MDUSA
| | - Tanglue Feng
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Mingxi Yang
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
- State Key Laboratory of Applied OpticsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchun130033P. R. China
| |
Collapse
|
99
|
Synthesis and Relaxometric Characterization of New Poly[
N
,
N
‐bis(3‐aminopropyl)glycine] (PAPGly) Dendrons Gd‐Based Contrast Agents and Their
in Vivo
Study by Using the Dynamic Contrast‐Enhanced MRI Technique at Low Field (1 T). Chem Biodivers 2019; 16:e1900322. [DOI: 10.1002/cbdv.201900322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022]
|
100
|
Feng Y, Ding D, Sun W, Qiu Y, Luo L, Shi T, Meng S, Chen X, Chen H. Magnetic Manganese Oxide Sweetgum-Ball Nanospheres with Large Mesopores Regulate Tumor Microenvironments for Enhanced Tumor Nanotheranostics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37461-37470. [PMID: 31577423 DOI: 10.1021/acsami.9b11843] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
An important objective of cancer nanomedicine is to improve the delivery efficacy of functional agents to solid tumors for effective cancer imaging and therapy. Stimulus-responsive nanoplatforms can target and regulate the tumor microenvironment (TME) for the optimization of cancer theranostics. Here, we developed magnetic manganese oxide sweetgum-ball nanospheres (MMOSs) with large mesopores as tools for improved cancer theranostics. MMOSs contain magnetic iron oxide nanoparticles and mesoporous manganese oxide (MnO2) nanosheets, which are assembled into gumball-like structures on magnetic iron oxides. The large mesopores of MMOSs are suited for cargo loading with chlorin e6 (Ce6) and doxorubicin (DOX), thus producing so-called CD@MMOSs. The core of magnetic iron oxides could achieve magnetic targeting of tumors under a magnetic field (0.25 mT), and the targeted CD@MMOSs may decompose under TME conditions, thereby releasing loaded cargo molecules and reacting with endogenous hydrogen peroxide (H2O2) to generate oxygen (O2) and manganese (II) ions (Mn2+). Investigation in vivo in tumor-bearing mice models showed that the CD@MMOS nanoplatforms achieved TME-responsive cargo release, which might be applied in chemotherapy and photodynamic therapy. A remarkable in vivo synergy of diagnostic and therapeutic functionalities was achieved by the decomposition of CD@MMOSs and coadministration with chemo-photodynamic therapy of tumors using the magnetic targeting mechanism. Thus, the result of this study demonstrates the feasibility of smart nanotheranostics to achieve tumor-specific enhanced combination therapy.
Collapse
Affiliation(s)
- Yushuo Feng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Dandan Ding
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Wenjing Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Yuwei Qiu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Li Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Tianhang Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Shanshan Meng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Hongmin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| |
Collapse
|