51
|
Arshad Y, Asghar M, Yar M, Bibi T, Ayub K. Transition Metal Doped Boron Nitride Nanocages as High Performance Nonlinear Optical Materials: A DFT Study. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02546-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
52
|
Liu C, Ma Y, Xie Y, Zou J, Wu H, Peng S, Qian W, He D, Zhang X, Li BW, Nan CW. Enhanced Electromagnetic Shielding and Thermal Management Properties in MXene/Aramid Nanofiber Films Fabricated by Intermittent Filtration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4516-4526. [PMID: 36637395 DOI: 10.1021/acsami.2c20101] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
High-efficiency electromagnetic interference (EMI) shielding and heat dissipation synergy materials with flexible, robust, and environmental stability are urgently demanded in next-generation integration electronic devices. In this work, we report the lamellar MXene/Aramid nanofiber (ANF) composite films, which establish a nacre-like structure for EMI shielding and heat dissipation by using the intermittent filtration strategy. The MXene/ANF composite film filled with 50 wt % MXene demonstrates enhanced mechanical properties with a strength of 230.5 MPa, an elongation at break of 6.2%, and a toughness of 11.8 MJ·m3 (50 wt % MXene). These remarkable properties are attributed to the hydrogen bonding and highly oriented structure. Furthermore, due to the formation of the MXene conductive network, the MXene/ANF composite film shows an outstanding conductivity of 624.6 S/cm, an EMI shielding effectiveness (EMI SE) of 44.0 dB, and a superior specific SE value (SSE/t) of 18847.6 dB·cm2/g, which is better than the vacuum filtration film. Moreover, the MXene/ANF composite film also shows a great thermal conductivity of 0.43 W/m·K. The multifunctional MXene/ANF composite films with high-performance EMI shielding, heat dissipation, and joule heating show great potential in the field of aerospace, military, microelectronics, microcircuit, and smart wearable electronics.
Collapse
Affiliation(s)
- Chenxu Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan430070, China
| | - Yanan Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan430070, China
| | - Yimei Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan430070, China
| | - Junjie Zou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan430070, China
| | - Han Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan430070, China
| | - Shaohui Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan430070, China
| | - Wei Qian
- Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan430070, China
| | - Daping He
- Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan430070, China
| | - Xin Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan430070, China
| | - Bao-Wen Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan430070, China
| | - Ce-Wen Nan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing100084, China
| |
Collapse
|
53
|
Xiao Y, Zou G, Huo J, Sun T, Feng B, Liu L. Locally Thinned, Core-Shell Nanowire-Integrated Multi-gate MoS 2 Transistors for Active Control of Extendable Logic. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1563-1573. [PMID: 36560862 DOI: 10.1021/acsami.2c17788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Field-effect transistor (FET) devices with multi-gate coupled structures usually exhibit special electrical properties and are suitable for fabricating multifunctional devices. Among them, the 1D nanowire gate configuration has become a promising gate design to tailor 2D FET performances. However, due to possible short circuiting induced by nanowire contact and the high requirement for precision manipulation, the integration of multi-nanowires as gates in a single 2D electronic system remains a grand challenge. Herein, local laser--thinned multiple core-shell SiC@SiO2 nanowires are successfully integrated into MoS2 transistors as multi-gates for active control of extendable logic applications. Nanowire gates (NGs) locally enhance the carrier transportation, and the use of multiple NGs can achieve designed band structures to tune the performance of the device. For core-shell structures, a semiconducting core is used to introduce a gate bias, and the insulating shell provides protection against short circuiting between NGs, facilitating nanowire assembly. Furthermore, a global control gate is introduced to co-tune the overall electrical characteristics, while active control of logic devices and extendable inputs are achieved based on this model. This work proposes a novel nanowire multi-gate configuration, which provides possibilities for localized, precise control of band structures and the fabrication of highly integrated, multifunctional, and controllable nano-devices.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China
| | - Guisheng Zou
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China
| | - Jinpeng Huo
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China
| | - Tianming Sun
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
| | - Bin Feng
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China
| | - Lei Liu
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
54
|
Zhan Y, Zheng X, Nan B, Lu M, Shi J, Wu K. Flexible MXene/aramid nanofiber nanocomposite film with high thermal conductivity and flame retardancy. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
55
|
Choi WJ, Lee SY, Park SJ. Effect of Ambient Plasma Treatments on Thermal Conductivity and Fracture Toughness of Boron Nitride Nanosheets/Epoxy Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:nano13010138. [PMID: 36616048 PMCID: PMC9823992 DOI: 10.3390/nano13010138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 05/27/2023]
Abstract
With the rapid growth in the miniaturization and integration of modern electronics, the dissipation of heat that would otherwise degrade the device efficiency and lifetime is a continuing challenge. In this respect, boron nitride nanosheets (BNNS) are of significant attraction as fillers for high thermal conductivity nanocomposites due to their high thermal stability, electrical insulation, and relatively high coefficient of thermal conductivity. Herein, the ambient plasma treatment of BNNS (PBNNS) for various treatment times is described for use as a reinforcement in epoxy nanocomposites. The PBNNS-loaded epoxy nanocomposites are successfully manufactured in order to investigate the thermal conductivity and fracture toughness. The results indicate that the PBNNS/epoxy nanocomposites subjected to 7 min plasma treatment exhibit the highest thermal conductivity and fracture toughness, with enhancements of 44 and 110%, respectively, compared to the neat nanocomposites. With these enhancements, the increases in surface free energy and wettability of the PBNNS/epoxy nanocomposites are shown to be attributable to the enhanced interfacial adhesion between the filler and matrix. It is demonstrated that the ambient plasma treatments enable the development of highly dispersed conductive networks in the PBNNS epoxy system.
Collapse
Affiliation(s)
| | - Seul-Yi Lee
- Correspondence: (S.-Y.L.); (S.-J.P.); Tel.: +82-32-876-7234 (S.-J.P.)
| | - Soo-Jin Park
- Correspondence: (S.-Y.L.); (S.-J.P.); Tel.: +82-32-876-7234 (S.-J.P.)
| |
Collapse
|
56
|
Zhu Z, Xu X, Yao Y, Guo C, Chen J, Zhang Y, Wu K. Liquid Metal-Assisted High-Efficiency Exfoliation of Boron Nitride for Electrically Insulating Heat-Spreader Film. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54256-54265. [PMID: 36414259 DOI: 10.1021/acsami.2c17237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Boron nitride nanosheets (BNNSs) are regarded as promising two-dimensional materials in thermally conductive yet electrically insulating applications. Attributed to the strong interlayer "lip-lip" interactions in bulk hexagonal boron nitride (h-BN), high-efficiency exfoliation and scalable fabrication of BNNSs via the top-down strategies remain formidable challenges. Herein, an interesting observation is manifested that gallium-based liquid metal (LM) forming robust coordination interactions with h-BN helps reduce the lip-lip interlayer interactions and thus facilitates successful exfoliation under intense shearing force. For example, employing the ball-milling technique, the BNNS yield can increase to 41.21% with the assistance of LM at only 2 h milling time. Its exfoliation efficiency (yield/time) reaches as high as 26.72%/h, more than 2-fold that of other previously reported methods, including sonication and other ball-milling methods. Moreover, the exfoliated BNNSs are still found to be highly electrically insulating with a band gap of 4.65 eV, showing prospective potential in thermally conductive yet electrical insulating applications. As a proof of concept, a microwave-transparent heat spreader (cellulose nanofiber/BNNSs) is fabricated and verified for applications in high-frequency thermal-management fields.
Collapse
Affiliation(s)
- Zheng Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P. R. China
| | - Xuran Xu
- College of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Yihang Yao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P. R. China
| | - Cong Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P. R. China
| | - Jingyu Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P. R. China
| | - Yongzheng Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P. R. China
- College of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing210094, P. R. China
| | - Kai Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, P. R. China
| |
Collapse
|
57
|
Huang T, Zhang X, Wang T, Zhang H, Li Y, Bao H, Chen M, Wu L. Self-Modifying Nanointerface Driving Ultrahigh Bidirectional Thermal Conductivity Boron Nitride-Based Composite Flexible Films. NANO-MICRO LETTERS 2022; 15:2. [PMID: 36441263 PMCID: PMC9705632 DOI: 10.1007/s40820-022-00972-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
While boron nitride (BN) is widely recognized as the most promising thermally conductive filler for rapidly developing high-power electronic devices due to its excellent thermal conductivity and dielectric properties, a great challenge is the poor vertical thermal conductivity when embedded in composites owing to the poor interfacial interaction causing severe phonon scattering. Here, we report a novel surface modification strategy called the "self-modified nanointerface" using BN nanocrystals (BNNCs) to efficiently link the interface between BN and the polymer matrix. Combining with ice-press assembly method, an only 25 wt% BN-embedded composite film can not only possess an in-plane thermal conductivity of 20.3 W m-1 K-1 but also, more importantly, achieve a through-plane thermal conductivity as high as 21.3 W m-1 K-1, which is more than twice the reported maximum due to the ideal phonon spectrum matching between BNNCs and BN fillers, the strong interaction between the self-modified fillers and polymer matrix, as well as ladder-structured BN skeleton. The excellent thermal conductivity has been verified by theoretical calculations and the heat dissipation of a CPU. This study provides an innovative design principle to tailor composite interfaces and opens up a new path to develop high-performance composites.
Collapse
Affiliation(s)
- Taoqing Huang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, People's Republic of China
| | - Xinyu Zhang
- Department of Physics, University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Tian Wang
- Department of Chemistry, Fudan University, Shanghai, 200433, People's Republic of China
| | - Honggang Zhang
- Department of Physics, University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yongwei Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, People's Republic of China
| | - Hua Bao
- Department of Physics, University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Min Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Limin Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
58
|
Zhao N, Li J, Wang W, Gao W, Bai H. Isotropically Ultrahigh Thermal Conductive Polymer Composites by Assembling Anisotropic Boron Nitride Nanosheets into a Biaxially Oriented Network. ACS NANO 2022; 16:18959-18967. [PMID: 36342787 DOI: 10.1021/acsnano.2c07862] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The demand for thermally conductive but electrically insulating materials has increased greatly in advanced electronic packaging. To this end, polymer-based composites filled with boron nitride (BN) nanosheets have been intensively studied as thermal interface material (TIM). However, it remains a great challenge to achieve isotropically ultrahigh thermal conductivity in BN/polymer composites due to the inherent thermal property anisotropy of BN nanosheets and/or the insufficient construction of the 3D thermal conductive network. Herein, we present a high-performance BN/polymer composite with a biaxially oriented thermal conductive network by a dendritic ice template. The composite exhibits both ultrahigh in-plane (∼39.0 W m-1 K-1) and through-plane thermal conductivity (∼11.5 W m-1 K-1) at 80 vol % BN loading, largely exceeding those of reported BN/polymer composites. In addition, our composite as a TIM shows higher cooling efficiency than that of commercial TIM with up to 15 °C reduction of the chip temperature and retains good thermal stability even after 1000 heating/cooling cycles. Our strategy represents an effective approach for developing advanced thermal interface materials, which are greatly demanded for advanced electronics and emerging areas like wearable electronics.
Collapse
Affiliation(s)
- Nifang Zhao
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jintao Li
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wanjie Wang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Weiwei Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hao Bai
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
59
|
Guo C, He L, Yao Y, Lin W, Zhang Y, Zhang Q, Wu K, Fu Q. Bifunctional Liquid Metals Allow Electrical Insulating Phase Change Materials to Dual-Mode Thermal Manage the Li-Ion Batteries. NANO-MICRO LETTERS 2022; 14:202. [PMID: 36214908 PMCID: PMC9551009 DOI: 10.1007/s40820-022-00947-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/17/2022] [Indexed: 06/01/2023]
Abstract
Phase change materials (PCMs) are expected to achieve dual-mode thermal management for heating and cooling Li-ion batteries (LIBs) according to real-time thermal conditions, guaranteeing the reliable operation of LIBs in both cold and hot environments. Herein, we report a liquid metal (LM) modified polyethylene glycol/LM/boron nitride PCM, capable of dual-mode thermal managing the LIBs through photothermal effect and passive thermal conduction. Its geometrical conformation and thermal pathways fabricated through ice-template strategy are conformable to the LIB's structure and heat-conduction characteristic. Typically, soft and deformable LMs are modified on the boron nitride surface, serving as thermal bridges to reduce the contact thermal resistance among adjacent fillers to realize high thermal conductivity of 8.8 and 7.6 W m-1 K-1 in the vertical and in-plane directions, respectively. In addition, LM with excellent photothermal performance provides the PCM with efficient battery heating capability if employing a controllable lighting system. As a proof-of-concept, this PCM is manifested to heat battery to an appropriate temperature range in a cold environment and lower the working temperature of the LIBs by more than 10 °C at high charging/discharging rate, opening opportunities for LIBs with durable working performance and evitable risk of thermal runaway.
Collapse
Affiliation(s)
- Cong Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Lu He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yihang Yao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Weizhi Lin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yongzheng Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
- Department of Polymer Science and Engineering, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Qin Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Kai Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
60
|
Wu H, Hu Z, Geng Q, Chen Z, Song Y, Chu J, Ning X, Dong S, Yuan D. Facile preparation of CuMOF-modified multifunctional nanofiber membrane for high-efficient filtration/separation in complex environments. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
61
|
Lu Z, Li N, Geng B, Ma Q, Ning D, E S. Solvent effects on the mechanical properties of aramid nanofibers film. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
62
|
Chen Y, Zhang H, Chen J, Guo Y, Jiang P, Gao F, Bao H, Huang X. Thermally Conductive but Electrically Insulating Polybenzazole Nanofiber/Boron Nitride Nanosheets Nanocomposite Paper for Heat Dissipation of 5G Base Stations and Transformers. ACS NANO 2022; 16:14323-14333. [PMID: 35984221 DOI: 10.1021/acsnano.2c04534] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rapid development of 5G equipment and high-power density electronic devices calls for high thermal conductivity materials for heat dissipation. Dielectric polymer composites are highly promising as the electrical insulation, mechanical property, thermal stability, and even fire retardance are also of great importance for electrical and electronic applications. However, the current thermal conductivity enhancement of dielectric polymer composites is usually at the cost of lowering the mechanical and electrical insulating properties. In this work, we report the facile preparation of highly thermally conductive and electrically insulating poly(p-phenylene benzobisoxazole) nanofiber (PBONF) composites by incorporating a low weight fraction of functionalized boron nitride nanosheets (BNNSs). With strong electrostatic interaction, the BNNSs are encapsulated by PBONFs, and the constructed robust interconnected network makes the nanocomposites exhibit a nacre-like structure. Accordingly, the nanocomposite paper has a high in-plane thermal conductivity of 21.34 W m-1 K-1 at a low loading of 10 wt % BNNSs and exhibits an ultrahigh strength of 206 MPa. Additionally, the nanocomposite paper exhibits superior electrical insulation properties up to higher than 350 °C and excellent fire retardance. The strong heat dissipation capability of the nanocomposite paper was demonstrated in 5G base stations and control transformers, showing wide potential applications in high power density electrical equipment and electronic devices.
Collapse
Affiliation(s)
- Yu Chen
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Department of Polymer Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Honggang Zhang
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Chen
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Department of Polymer Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiting Guo
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Pingkai Jiang
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Department of Polymer Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng Gao
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hua Bao
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xingyi Huang
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Department of Polymer Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
63
|
Valuable aramid/cellulose nanofibers derived from recycled resources for reinforcing carbon fiber/phenolic composites. Carbohydr Polym 2022; 292:119712. [PMID: 35725188 DOI: 10.1016/j.carbpol.2022.119712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/19/2022] [Accepted: 06/03/2022] [Indexed: 12/24/2022]
Abstract
The scale-up preparation of aramid nanofiber (ANF) and cellulose nanofiber (CNF), still faces serious challenges such as extreme production cost and lengthy preparation cycle. Herein, a feasible top-down strategy was proposed to achieve the efficient reclamation of waste resources, further realizing the large-scale production of high value-added nanofibers. The ANF/CNF as nanoscale building blocks and their reinforcement effects on the mechanical performances of carbon fiber/phenolic composites were investigated. Related strength and modulus of ANF/CNF-enhanced composites in the tensile, bending, shear and nano indentation tests, increased by 118.1% (tensile strength), 141.2% (tensile modulus), 142.2% (flexural strength), 354.4% (flexural modulus), 38.8% (shear strength) and 94.4% (elastic modulus), respectively. Our work offers a valuable reference in the fabrication of low-cost ANF/CNF derived from waste resources, which would facilitate the wide application of nanofibers in fabricating high-performance advanced functional materials.
Collapse
|
64
|
He H, Peng W, Liu J, Chan XY, Liu S, Lu L, Le Ferrand H. Microstructured BN Composites with Internally Designed High Thermal Conductivity Paths for 3D Electronic Packaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205120. [PMID: 35945676 DOI: 10.1002/adma.202205120] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Miniaturized and high-power-density 3D electronic devices pose new challenges on thermal management. Indeed, prompt heat dissipation in electrically insulating packaging is currently limited by the thermal conductivity achieved by thermal interface materials (TIMs) and by their capability to direct the heat toward heat sinks. Here, high thermal conductivity boron nitride (BN)-based composites that are able to conduct heat intentionally toward specific areas by locally orienting magnetically functionalized BN microplatelets are created using magnetically assisted slip casting. The obtained thermal conductivity along the direction of alignment is unusually high, up to 12.1 W m-1 K-1 , thanks to the high concentration of 62.6 vol% of BN in the composite, the low concentration in polymeric binder, and the high degree of alignment. The BN composites have a low density of 1.3 g cm-3 , a high stiffness of 442.3 MPa, and are electrically insulating. Uniquely, the approach is demonstrated with proof-of-concept composites having locally graded orientations of BN microplatelets to direct the heat away from two vertically stacked heat sources. Rationally designing the microstructure of TIMs to direct heat strategically provides a promising solution for efficient thermal management in 3D integrated electronics.
Collapse
Affiliation(s)
- Hongying He
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Weixiang Peng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Junbo Liu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xin Ying Chan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shike Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Li Lu
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
- National University of Singapore (Chongqing) Research Institute, Chongqing, 401123, China
| | - Hortense Le Ferrand
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
65
|
Hu J, Liang C, Li J, Lin C, Liang Y, Dong D. Ultrastrong and Hydrophobic Sandwich-Structured MXene-Based Composite Films for High-Efficiency Electromagnetic Interference Shielding. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33817-33828. [PMID: 35850587 DOI: 10.1021/acsami.2c07741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electromagnetic interference (EMI) shielding materials are highly necessary to solve the problem of electromagnetic radiation. Transition-metal carbide/nitride (MXene) materials offer great potential for the construction of high-performance EMI shields because of their high electrical conductivity and versatile surface chemistry. However, MXene generally suffers from poor mechanical and oxidation-resistant properties, which hinders its practical applications. Herein, flexible, strong, and hydrophobic sandwich-structured composite films (H-S-MXene), consisting of a conductive MXene layer and supporting aramid nanofiber layer, were fabricated using step-by-step vacuum-assisted filtration and dip coating. Given the unique sandwich structure, hydrogen bonding interactions, and covalent cross-linking of the MXene sheets, the H-S-MXene composite films demonstrated simultaneously excellent EMI shielding and mechanical properties. The EMI shielding effectiveness of the H-S-MXene composite film with 20 wt % MXene content reached 46.1 dB at thickness of 23.2 ± 0.5 μm, and the tensile strength of the film reached 302.1 MPa, which outperformed other reported EMI shielding materials. The excellent mechanical flexibility and hydrophobicity of the H-S-MXene composite films ensured a stable EMI shielding performance, which could withstand cycled bending, torsion, and exposure to aqueous environments. These impressive features made the H-S-MXene composite films promising candidates for electronic devices and aerospace. This study provides important guidance for the rational design of stable MXene-based composites with advanced properties.
Collapse
Affiliation(s)
- Jiana Hu
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Caiyun Liang
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jiadong Li
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Chuanwei Lin
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Yongjiu Liang
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Dewen Dong
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
66
|
Wang Y, Wei X, Cai H, Zhang B, Chen Y, Li M, Qin Y, Li L, Kong X, Gong P, Chen H, Ruan X, Jiao C, Cai T, Zhou W, Wang Z, Nishimura K, Lin CT, Jiang N, Yu J. Enhanced thermal transportation across an electrostatic self-assembly of black phosphorene and boron nitride nanosheets in flexible composite films. NANOSCALE 2022; 14:9743-9753. [PMID: 35765953 DOI: 10.1039/d2nr02421g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For effective heat dissipation in portable electronics, there is a great demand for lightweight and flexible films with superior thermal transport properties. Despite extensive efforts, enhancing the intrinsic low thermal conductivity of polymers while simultaneously maintaining their flexibility is difficult to achieve due to the dilemma of quarrying appropriate filler loading. Herein, a cellulose nanofiber-based film with high in-plane thermal conductivity up to 72.53 W m-1 K-1 was obtained by harnessing the advantage of functionalized boron nitride nanosheets (f-BNNS) and black phosphorene (BP) via the vacuum filtration process. Besides, our unique design based on the electrostatic coupling of black phosphorene and functionalized boron nitride nanosheets significantly reduced the interfacial thermal resistance of the composite films. This work offers new insights into establishing a facile, yet efficient approach to preparing high thermal conductive heat spreaders.
Collapse
Affiliation(s)
- Yandong Wang
- School of Chemistry and Chemical Engineering, Xi'an University of Science & Technology, Xi'an 710054, China.
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Xianzhe Wei
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Huiwu Cai
- School of Chemistry and Chemical Engineering, Xi'an University of Science & Technology, Xi'an 710054, China.
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Science & Technology, Xi'an 710054, China.
| | - Yapeng Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Maohua Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Yue Qin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Linhong Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangdong Kong
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Ping Gong
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanyi Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Xinxin Ruan
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Chengcheng Jiao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Tao Cai
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Wenying Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Science & Technology, Xi'an 710054, China.
| | - Zhongwei Wang
- Shandong University of Science and Technology, College of Materials Science and Engineering, Qingdao 266590, China.
| | - Kazuhito Nishimura
- Advanced Nano-processing Engineering Lab, Mechanical Engineering, Kogakuin University, Tokyo, 192-0015, Japan
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Jiang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhong Yu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
67
|
Zhang M, Jiang S, Li M, Wang N, Liu L, Liu L, Ge A. Superior stable, hydrophobic and multifunctional nanocellulose hybrid aerogel via rapid UV induced in-situ polymerization. Carbohydr Polym 2022; 288:119370. [DOI: 10.1016/j.carbpol.2022.119370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/27/2022]
|
68
|
Hu F, Zeng J, Li J, Wang B, Cheng Z, Wang T, Chen K. Mechanically Strong Electrically Insulated Nanopapers with High UV Resistance Derived from Aramid Nanofibers and Cellulose Nanofibrils. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14640-14653. [PMID: 35290013 DOI: 10.1021/acsami.2c01597] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aramid nanofibers (ANFs) have great potential for civil and military applications due to their remarkable mechanical modulus, excellent chemical reliability, and superior thermostability. Unfortunately, the weak combination of neighboring ANFs limits the mechanical properties of ANF-based materials owing to their inherent rigidity and chemical inertness. Herein, high-performance nanopapers are fabricated by introducing a tiny amount of cellulose nanofibrils (CNFs) to serve as reinforcing blocks via vacuum filtration. As a result of the formation of nanosized building blocks and hydrogen-bonding interaction of CNFs, the resultant ANF/CNF nanopaper yields a record-high tensile strength (406.43 ± 16.93 MPa) and toughness (86.13 ± 5.22 MJ m-3), which are 1.8 and 4.3 times higher than those of the pure ANF nanopaper, respectively. When normalized by weight, the specific tensile strength of the nanopaper is as high as 307.90 MPa·g-1·cm3, which is even significantly superior to that of titanium alloys (257 MPa·g-1·cm3). The ANF/CNF nanopaper also possesses excellent dielectric strength (53.42 kV mm-1), superior UV-shielding performance (≥99.999% absorption for ultraviolet radiation), and a favorable thermostability (Tonset = 530 °C). This study proposes a new design strategy for developing ultrathin ANF-based nanopapers combined with high reliability and thermostability for application in high-end electrical insulation fields, such as 5G communication, wearable electronics, and artificial intelligence.
Collapse
Affiliation(s)
- Fugang Hu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| | - Jinsong Zeng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| | - Bin Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| | - Zheng Cheng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tianguang Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| | - Kefu Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
- Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
69
|
Zhang T, Huang Y, Sun Y, Tang P, Hu C. Improved mechanical, thermal properties and ideal dielectric properties of polyimide composite films by incorporation of boron nitride nanosheets and aramid nanofibers. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Environment‐friendly Energy Materials and School of Materials Science and Engineering Southwest University of Science and Technology Mianyang China
| | - Yawen Huang
- State Key Laboratory of Environment‐friendly Energy Materials and School of Materials Science and Engineering Southwest University of Science and Technology Mianyang China
| | - Yi Sun
- State Key Laboratory of Environment‐friendly Energy Materials and School of Materials Science and Engineering Southwest University of Science and Technology Mianyang China
| | - Pingping Tang
- State Key Laboratory of Environment‐friendly Energy Materials and School of Materials Science and Engineering Southwest University of Science and Technology Mianyang China
| | - Chengyao Hu
- State Key Laboratory of Environment‐friendly Energy Materials and School of Materials Science and Engineering Southwest University of Science and Technology Mianyang China
| |
Collapse
|
70
|
Polymer/Graphene Nanocomposite Membranes: Status and Emerging Prospects. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6030076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Graphene is a unique nanocarbon nanomaterial, frequently explored with polymeric matrices for technical purposes. An indispensable application of polymer/graphene nanocomposites has been observed for membrane technology. This review highlights the design, properties, and promising features of the polymer/graphene nanomaterials and nanocomposite membranes for the pervasion and purification of toxins, pollutants, microbials, and other desired contents. The morphology, pore size, pore structure, water flux, permeation, salt rejection, and other membrane properties are examined. Graphene oxide, an important modified form of graphene, is also utilized in nanocomposite membranes. Moreover, polymer/graphene nanofibers are employed to develop high-performance membranes for methodological purposes. The adaptability of polymer/graphene nanocomposites is observed for water management and purification technologies.
Collapse
|
71
|
Jin L, Wang P, Cao W, Song N, Ding P. Isolated Solid Wall-Assisted Thermal Conductive Performance of Three-Dimensional Anisotropic MXene/Graphene Polymeric Composites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1747-1756. [PMID: 34949092 DOI: 10.1021/acsami.1c20267] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The introduction of three-dimensional (3D) continuous conformations in polymer materials is a convincing proposal for acquiring the desirable multifunction to fulfill the urgent demands of highly integrated electronic devices. However, the limited functional design of the filled aligned network remains challenging. Herein, directional self-assembly 3D MXene/graphene aerogels are fabricated as conductive networks for polyethylene glycol (PEG) matrix. Based on the uniaxial and biaxial ice template method, the temperature gradient affects the aligned arrangement of the 3D microstructure. The biaxial PEG/MXene/GR composites exhibit an enhanced through-plane thermal conductivity of 1.64 W m-1 K-1 at 10.6 vol % content, which is 522% higher than that of pure PEG. The influence of the biaxial self-assembly strategy compared with that of the uniaxial one on the thermal conductivity reaches the highest 333% when the weight ratio equals 1:1. Meanwhile, the same difference also occurs in the electromagnetic shielding interference (EMI) property. The advanced EMI-shielding effectiveness of the biaxial PM1G1 composites reaches ∼36 dB at the 2.5 mm thickness. This research provides valuable guidance for designing high-performance applications of anisotropic thermal management and EMI shielding in 5G telecommunications and mobile electronic devices.
Collapse
Affiliation(s)
- Liyuan Jin
- Research Center of Nanoscience and Nanotechnology, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Pei Wang
- Research Center of Nanoscience and Nanotechnology, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Wenjing Cao
- Research Center of Nanoscience and Nanotechnology, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Na Song
- Research Center of Nanoscience and Nanotechnology, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Peng Ding
- Research Center of Nanoscience and Nanotechnology, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| |
Collapse
|
72
|
Chen X, Fan K, Liu Y, Li Y, Liu X, Feng W, Wang X. Recent Advances in Fluorinated Graphene from Synthesis to Applications: Critical Review on Functional Chemistry and Structure Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101665. [PMID: 34658081 DOI: 10.1002/adma.202101665] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/27/2021] [Indexed: 05/11/2023]
Abstract
Fluorinated graphene (FG), as an emerging member of the graphene derivatives family, has attracted wide attention on account of its excellent performances and underlying applications. The introduction of a fluorine atom, with the strongest electronegativity (3.98), greatly changes the electron distribution of graphene, resulting in a series of unique variations in optical, electronic, magnetic, interfacial properties and so on. Herein, recent advances in the study of FG from synthesis to applications are introduced, and the relationship between its structure and properties is summarized in detail. Especially, the functional chemistry of FG has been thoroughly analyzed in recent years, which has opened a universal route for the functionalization and even multifunctionalization of FG toward various graphene derivatives, which further broadens its applications. Moreover, from a particular angle, the structure engineering of FG such as the distribution pattern of fluorine atoms and the regulation of interlayer structure when advanced nanotechnology gets involved is summarized. Notably, the elaborated structure engineering of FG is the key factor to optimize the corresponding properties for potential applications, and is also an up-to-date research hotspot and future development direction. Finally, perspectives and prospects for the problems and challenges in the study of FG are put forward.
Collapse
Affiliation(s)
- Xinyu Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kun Fan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yu Li
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, P. R. China
| | - Xiangyang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, P. R. China
| | - Xu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
73
|
Gao Y, Bao D, Zhang M, Cui Y, Xu F, Shen X, Zhu Y, Wang H. Millefeuille-Inspired Thermal Interface Materials based on Double Self-Assembly Technique for Efficient Microelectronic Cooling and Electromagnetic Interference Shielding. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105567. [PMID: 34842337 DOI: 10.1002/smll.202105567] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Owing to the increasing power density of miniaturized and high-frequency electronic devices, flexible thermal interface materials (TIMs) with the electromagnetic interference (EMI) shielding property are in urgent demand to maintain the system performance and reliability. Recently, carbon-based TIMs receive considerable attention due to the ultrahigh intrinsic thermal conductivity (TC). However, the large-scale production of such TIMs is restricted by some technical difficulties, such as production-induced defects of graphite sheets, poor microstructure architecture within the matrix, and nonnegligible interfacial thermal resistance result from the strong phono scattering. In this work, inspired by the structure and production process of millefeuille cakes, a unique double self-assembly strategy for fabricating ultrahigh thermal conductive TIMs with superior EMI shielding performance is demonstrated. The percolating and oriented multilayered microstructure enables the TIM to exhibit an ultrahigh in-plane TC of 233.67 W m-1 K-1 together with an outstanding EMI shielding effectiveness of 79.0 dB (at 12.4 GHz). In the TIM evaluation system, a nearly 45 °C decrease is obtained by this TIM when compared to the commercial material. The obtained TIM achieves the desired balance between thermal conduction and EMI shielding performance, indicating broad prospects in the fields of military applications and next-generation thermal management systems.
Collapse
Affiliation(s)
- Yueyang Gao
- State Key Laboratory of Chemical Engineering, Collaborative Innovation Centre of Chemical Science and Engineering, Department of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Di Bao
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Minghang Zhang
- State Key Laboratory of Chemical Engineering, Collaborative Innovation Centre of Chemical Science and Engineering, Department of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Yexiang Cui
- State Key Laboratory of Chemical Engineering, Collaborative Innovation Centre of Chemical Science and Engineering, Department of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Fei Xu
- State Key Laboratory of Chemical Engineering, Collaborative Innovation Centre of Chemical Science and Engineering, Department of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xiaosong Shen
- Tianjin Key Lab Composite & Functional Materials, Department of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yanji Zhu
- Tianjin Key Lab Composite & Functional Materials, Department of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Huaiyuan Wang
- State Key Laboratory of Chemical Engineering, Collaborative Innovation Centre of Chemical Science and Engineering, Department of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
74
|
Wang L, Xiao W, Zhang Z, Xu B, Liang J, Cao X, Zhao S, Cui J, Gao A, Zhang G, Yan Y. Facile preparation of high-performance and multifunctional PVC-based nanocomposites with segregated structure achieved by volume repulsion and toughening effects of ABS. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
75
|
Lei C, Xie Z, Wu K, Fu Q. Controlled Vertically Aligned Structures in Polymer Composites: Natural Inspiration, Structural Processing, and Functional Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103495. [PMID: 34590751 DOI: 10.1002/adma.202103495] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/08/2021] [Indexed: 05/23/2023]
Abstract
Vertically aligned structures, which are a series of characteristic conformations with thickness-direction alignment, interconnection, or assembly of filler in polymeric composite materials that can provide remarkable structural performance and advanced anisotropic functions, have attracted considerable attention in recent years. The past two decades have witnessed extensive development with regard to universal fabrication methods, subtle control of morphological features, improvement of functional properties, and superior applications of vertically aligned structures in various fields. However, a systematic review remains to be attempted. The various configurations of vertical structures inspired from biological samples in nature, such as vertically aligned structures with honeycomb, reed, annual ring, radial, and lamellar configurations are summarized here. Additionally, relevant processing methods, which include the transformation of oriented direction, external-field inducement, template method, and 3D printing method, are discussed in detail. The diverse applications in mechanical, thermal, electric, dielectric, electromagnetic, water treatment, and energy fields are also highlighted by providing representative examples. Finally, future opportunities and prospects are listed to identify current issues and potential research directions. It is expected that perspectives on the vertically aligned structures presented here will contribute to the research on advanced multifunctional composites.
Collapse
Affiliation(s)
- Chuxin Lei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zilong Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kai Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
76
|
E S, Ma Q, Huang J, Ning D, Lu Z. Polyvinyl alcohol-mediated splitting of Kevlar fibers and superior mechanical performances of the subsequently assembled nanopapers. NANOSCALE 2021; 13:18201-18209. [PMID: 34708855 DOI: 10.1039/d1nr05362k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, a composite of aramid nanofibers (ANFs) and polyvinyl alcohol (PVA) was prepared by PVA-assisted splitting of macro Kevlar fibers, which assures the uniform wrapping of PVA chains on the surface of ANFs, thus leading to an enhanced interfacial bonding strength between ANFs and PVA. The morphological characterizations manifest the enhanced diameters of the ANFs after PVA wrapping. The subsequently assembled ANFs/PVA paper shows a strength of 283.25 MPa and a toughness of 32.41 MJ m-3, which are increased by 57% and 152% compared to the pure ANF paper, respectively. The superior mechanical properties are attributed to the strong interfacial bonding strength, enhanced hydrogen bonding interactions, the densification of the materials, and curved fracture paths. Meanwhile, the ANFs/PVA paper also shows robust UV shielding and visible transparency properties, as well as excellent environmental stabilities, especially at high and low temperatures.
Collapse
Affiliation(s)
- Songfeng E
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Qin Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Jizhen Huang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Doudou Ning
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Zhaoqing Lu
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
| |
Collapse
|
77
|
An L, Gu R, Zhong B, Wang J, Zhang J, Yu Y. Quasi-Isotropically Thermal Conductive, Highly Transparent, Insulating and Super-Flexible Polymer Films Achieved by Cross Linked 2D Hexagonal Boron Nitride Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101409. [PMID: 34636142 DOI: 10.1002/smll.202101409] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Polymer-based thermal management materials (TIMs) show great potentials as TIMs due to their excellent properties, such as high insulation, easy processing, and good flexibility. However, the limited thermal conductivity seriously hinders their practical applications in high heat generation devices. Herein, highly transparent, insulating, and super-flexible cellulose reinforced polyvinyl alcohol/nylon12 modified hexagonal boron nitride nanosheet (PVA/(CNC/PA-BNNS)) films with quasi-isotropic thermal conductivity are successfully fabricated through a vacuum filtration and subsequent self-assembly process. A special structure composed of horizontal stacked hexagonal boron nitride nanosheets (h-BNNSs) connected by their warping edges in longitudinal direction, which is strengthened by cellulose nanocrystals, is formed in PVA matrix during self-assembly process. This special structure makes the PVA/(CNC/PA-BNNS) films show excellent thermal conductivity with an in-plane thermal conductivity of 14.21 W m-1 K-1 and a through-plane thermal conductivity of 7.29 W m-1 K-1 . Additionally, the thermal conductive anisotropic constants of the as-obtained PVA/(CNC/PA-BNNS) films are in the range of 1 to 4 when the h-BNNS contents change from 0 to 60 wt%, exhibiting quasi-isotropic thermal conductivity. More importantly, the PVA/(CNC/PA-BNNS) films exhibit excellent transparency, super flexibility, outstanding mechanical strength, and electric insulation, making them very promising as TIMs for highly efficient heat dissipation of diverse electronic devices.
Collapse
Affiliation(s)
- Lulu An
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Rong Gu
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bo Zhong
- School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai, 264209, P. R. China
| | - Jilin Wang
- School of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Junyan Zhang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuanlie Yu
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
78
|
Meziani MJ, Sheriff K, Parajuli P, Priego P, Bhattacharya S, Rao AM, Quimby JL, Qiao R, Wang P, Hwu SJ, Wang Z, Sun YP. Advances in Studies of Boron Nitride Nanosheets and Nanocomposites for Thermal Transport and Related Applications. Chemphyschem 2021; 23:e202100645. [PMID: 34626067 DOI: 10.1002/cphc.202100645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Indexed: 01/10/2023]
Abstract
Hexagonal boron nitride (h-BN) and exfoliated nanosheets (BNNs) not only resemble their carbon counterparts graphite and graphene nanosheets in structural configurations and many excellent materials characteristics, especially the ultra-high thermal conductivity, but also offer other unique properties such as being electrically insulating and extreme chemical stability and oxidation resistance even at elevated temperatures. In fact, BNNs as a special class of 2-D nanomaterials have been widely pursued for technological applications that are beyond the reach of their carbon counterparts. Highlighted in this article are significant recent advances in the development of more effective and efficient exfoliation techniques for high-quality BNNs, the understanding of their characteristic properties, and the use of BNNs in polymeric nanocomposites for thermally conductive yet electrically insulating materials and systems. Major challenges and opportunities for further advances in the relevant research field are also discussed.
Collapse
Affiliation(s)
- Mohammed J Meziani
- Department of Chemistry, Clemson University, Clemson, South Carolina, 29634, USA.,Department of Natural Sciences, Northwest Missouri State University, Maryville, Missouri, 64468, USA
| | - Kirkland Sheriff
- Department of Chemistry, Clemson University, Clemson, South Carolina, 29634, USA
| | - Prakash Parajuli
- Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, Clemson, South Carolina, 29634, USA
| | - Paul Priego
- Department of Chemistry, Clemson University, Clemson, South Carolina, 29634, USA
| | - Sriparna Bhattacharya
- Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, Clemson, South Carolina, 29634, USA
| | - Apparao M Rao
- Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University, Clemson, South Carolina, 29634, USA
| | - Jesse L Quimby
- Department of Chemistry, Clemson University, Clemson, South Carolina, 29634, USA
| | - Rui Qiao
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061, USA
| | - Ping Wang
- Department of Chemistry, Clemson University, Clemson, South Carolina, 29634, USA
| | - Shiou-Jyh Hwu
- Department of Chemistry, Clemson University, Clemson, South Carolina, 29634, USA
| | - Zhengdong Wang
- Department of Chemistry, Clemson University, Clemson, South Carolina, 29634, USA
| | - Ya-Ping Sun
- Department of Chemistry, Clemson University, Clemson, South Carolina, 29634, USA
| |
Collapse
|
79
|
Bioinspired Dielectric Film with Superior Mechanical Properties and Ultrahigh Electric Breakdown Strength Made from Aramid Nanofibers and Alumina Nanoplates. Polymers (Basel) 2021; 13:polym13183093. [PMID: 34577994 PMCID: PMC8468874 DOI: 10.3390/polym13183093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/26/2022] Open
Abstract
Materials with excellent thermal stability, mechanical, and insulating properties are highly desirable for electrical equipment with high voltage and high power. However, simultaneously integrating these performance portfolios into a single material remains a great challenge. Here, we describe a new strategy to prepare composite film by combining one-dimensional (1D) rigid aramid nanofiber (ANF) with 2D alumina (Al2O3) nanoplates using the carboxylated chitosan acting as hydrogen bonding donors as well as soft interlocking agent. A biomimetic nacreous ‘brick-and-mortar’ structure with a 3D hydrogen bonding network is constructed in the obtained ANF/chitosan/Al2O3 composite films, which provides the composite films with exceptional mechanical and dielectric properties. The ANF/chitosan/Al2O3 composite film exhibits an ultrahigh electric breakdown strength of 320.1 kV/mm at 15 wt % Al2O3 loading, which is 50.6% higher than that of the neat ANF film. Meanwhile, a large elongation at break of 17.22% is achieved for the composite film, integrated with high tensile strength (~233 MPa), low dielectric loss (<0.02), and remarkable thermal stability. These findings shed new light on the fabrication of multifunctional insulating materials and broaden their practical applications in the field of advanced electrics and electrical devices.
Collapse
|
80
|
Fan Y, Li Z, Wei J. Application of Aramid Nanofibers in Nanocomposites: A Brief Review. Polymers (Basel) 2021; 13:3071. [PMID: 34577972 PMCID: PMC8466914 DOI: 10.3390/polym13183071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/28/2021] [Accepted: 09/06/2021] [Indexed: 01/04/2023] Open
Abstract
The diameter of fibers is a critical factor in determining their final applications. When the diameter of aramid fibers changes from microns to nanoscale, its range of applications will be greatly extended. In this short review, the preparation of aramid nanofibers (ANFs) with diameters from ten nanometers to more than one hundred nanometers is introduced. Due to their excellent mechanical properties and their chemical and thermal stability, ANFs have been widely used as novel nanomaterials and composited with other materials, mainly for use in reinforced composites, energy storage, filtration and adsorption, biomedicine and electromagnetic fields. In this short review, the application of ANFs and their composites during the last 10 years is concisely summarized and a brief perspective on ANFs and their composites is also presented.
Collapse
Affiliation(s)
- Yangyang Fan
- School of Stomatology, Nanchang University, Nanchang 330006, China;
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Zhihua Li
- School of Stomatology, Nanchang University, Nanchang 330006, China;
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
| | - Junchao Wei
- School of Stomatology, Nanchang University, Nanchang 330006, China;
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- College of Chemistry, Nanchang University, Nanchang 330031, China
| |
Collapse
|
81
|
Xie C, Guo ZX, Qiu T, Tuo X. Construction of Aramid Engineering Materials via Polymerization-Induced para-Aramid Nanofiber Hydrogel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101280. [PMID: 34176178 DOI: 10.1002/adma.202101280] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/20/2021] [Indexed: 06/13/2023]
Abstract
The processing of poly(p-phenylene terephthalamide) (PPTA) has long been a great challenge. This work reports a simple "monomers-nanofibers-macroscopic product" (MNM) hierarchical self-assembly approach to build 3D all-PPTA engineering materials. This approach mainly includes the preparation of polymerization-induced aramid nanofibers (PANFs) from monomers and the fabrication of all-PPTA materials from PANF hydrogel. Various 3D architectures, including simple solid bulks and sophisticated honeycombs (HCs), are obtained after the dehydration and shrinking of the PANF hydrogel. The tensile strength and compressive yield strength of PANF bulk are more than 62 and 90 MPa, respectively, which are comparable to typical engineering plastics. The compressive strength of PANF HC with a density of 360 kg m-3 is more than 24 MPa. The thermal stability of PANF bulk and PANF HC are as good as that of Kevlar fiber and almost no decomposition occurred before 500 °C in a nitrogen atmosphere. Furthermore, the MNM process is performed under mild conditions, without high temperature, high pressure, or corrosive solvent. The MNM process is a novel strategy for the processing of all aromatic polyamide materials with complex structures and high performances and would be another development since the breakthrough of liquid crystal spinning technology of PPTA.
Collapse
Affiliation(s)
- Chunjie Xie
- Key Laboratory of Advanced Materials, Ministry of Education, Department of Chemical Engineering, Tsinghua University, No. 1, Tsinghua Garden, Haidian District, Beijing, 100084, P. R. China
| | - Zhao-Xia Guo
- Key Laboratory of Advanced Materials, Ministry of Education, Department of Chemical Engineering, Tsinghua University, No. 1, Tsinghua Garden, Haidian District, Beijing, 100084, P. R. China
| | - Teng Qiu
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, No. 15, North Third Ring Road, Chaoyang District, Beijing, 100029, P. R. China
| | - Xinlin Tuo
- Key Laboratory of Advanced Materials, Ministry of Education, Department of Chemical Engineering, Tsinghua University, No. 1, Tsinghua Garden, Haidian District, Beijing, 100084, P. R. China
| |
Collapse
|
82
|
Hu D, Liu H, Ding Y, Ma W. Synergetic integration of thermal conductivity and flame resistance in nacre-like nanocellulose composites. Carbohydr Polym 2021; 264:118058. [PMID: 33910753 DOI: 10.1016/j.carbpol.2021.118058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 01/29/2023]
Abstract
Highly thermally conductive and flame resistant nanocellulose-based composites can synchronously achieve efficient thermal dissipation and low fire hazards of electronic devices, which shows great promise in next-generation green and flexible electronics. However, it has long been intractable to optimize the high thermal conductivity (TC) and flame resistance simultaneously. Herein, synergetic integration of high TC and flame resistance in nacre-like nanocellulose composites has been successfully achieved by the vacuum-assisted filtration of cellulose nanofibers (CNFs) and functionalized boron nitride nanosheets (BNNS-p-APP). Benefiting from the highly oriented hierarchical microstructure, strong hydrogen-bonding interaction, and successful immobilization of ammonium polyphosphate (APP), the as-obtained CNFs/BNNS-p-APP composite film achieves a high in-plane TC of 9.1 W m-1 K-1 and outstanding flame resistance. Meantime, this eco-friendly nanocellulose-based composite also exhibits remarkable flexibility, folding endurance, and mechanical robustness, robustness, which may open up a new opportunity for the thermal management of flexible electronics.
Collapse
Affiliation(s)
- Dechao Hu
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, PR China; South China Institute of Collaborative Innovation, Dongguan, 523808, PR China
| | - Huaqing Liu
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, PR China
| | - Yong Ding
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, PR China
| | - Wenshi Ma
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, PR China; South China Institute of Collaborative Innovation, Dongguan, 523808, PR China.
| |
Collapse
|
83
|
Yang G, Zhang X, Pan D, Zhang W, Shang Y, Su F, Ji Y, Liu C, Shen C. Highly Thermal Conductive Poly(vinyl alcohol) Composites with Oriented Hybrid Networks: Silver Nanowire Bridged Boron Nitride Nanoplatelets. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32286-32294. [PMID: 34185492 DOI: 10.1021/acsami.1c08408] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
With the increasing demand for thermal management materials in the highly integrated electronics area, building efficient heat-transfer networks to obtain advanced thermally conductive composites is of great significance. In the present work, highly thermally conductive poly(vinyl alcohol) (PVA)/boron nitride nanoplatelets@silver nanowires (BNNS@AgNW) composites were fabricated via the combination of the electrospinning and the spraying technique, followed by a hot-pressing method. BNNS are oriented along the in-plane direction, while AgNWs with a high aspect ratio can help to construct a thermal conductive network effectively by bridging BNNS in the composites. The PVA/BNNS@AgNW composites showed high in-plane thermal conductivity (TC) of 10.9 W/(m·K) at 33 wt % total fillers addition. Meanwhile, the composite shows excellent thermal dispassion capability when it is taken as a thermal interface material of a working light-emitting diode (LED) chip, which is certified by capturing the surface temperature of the LED chip. In addition, the out-of-plane electrical conductivity of the composites is below 10-12 S/cm. The composites with outstanding thermal conductive and electrical insulating properties hold promise for application in electrical packaging and thermal management.
Collapse
Affiliation(s)
- Gui Yang
- National Engineering Research Center for Advanced Polymer Processing Technology, The Key Laboratory of Material Processing and Mold of Ministry of Education, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, P. R. China
| | - Xiaodong Zhang
- National Engineering Research Center for Advanced Polymer Processing Technology, The Key Laboratory of Material Processing and Mold of Ministry of Education, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, P. R. China
| | - Duo Pan
- National Engineering Research Center for Advanced Polymer Processing Technology, The Key Laboratory of Material Processing and Mold of Ministry of Education, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, P. R. China
| | - Wei Zhang
- National Engineering Research Center for Advanced Polymer Processing Technology, The Key Laboratory of Material Processing and Mold of Ministry of Education, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, P. R. China
| | - Ying Shang
- National Engineering Research Center for Advanced Polymer Processing Technology, The Key Laboratory of Material Processing and Mold of Ministry of Education, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, P. R. China
| | - Fengmei Su
- National Engineering Research Center for Advanced Polymer Processing Technology, The Key Laboratory of Material Processing and Mold of Ministry of Education, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, P. R. China
| | - Youxin Ji
- National Engineering Research Center for Advanced Polymer Processing Technology, The Key Laboratory of Material Processing and Mold of Ministry of Education, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, P. R. China
| | - Chuntai Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, The Key Laboratory of Material Processing and Mold of Ministry of Education, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, P. R. China
| | - Changyu Shen
- National Engineering Research Center for Advanced Polymer Processing Technology, The Key Laboratory of Material Processing and Mold of Ministry of Education, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, P. R. China
| |
Collapse
|
84
|
Zhang Y, Lei C, Wu K, Fu Q. Fully Organic Bulk Polymer with Metallic Thermal Conductivity and Tunable Thermal Pathways. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004821. [PMID: 34029006 PMCID: PMC8292902 DOI: 10.1002/advs.202004821] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/04/2021] [Indexed: 05/16/2023]
Abstract
Electrically insulating polymers are indispensable for electronic and energy applications, but their poor thermal conduction has increasingly become a bottleneck for high-performance devices. Highly drawn low-dimensional polymeric fibers and thin films can exhibit metallic conductivity. Extending this to bulk materials required by real world applications is prohibitive due to the additional interfacial thermal conduction barriers. It is demonstrated that highly aligned ultrahigh molecular weight polyethylene microfibers can be incorporated into a silicone matrix to yield a fully organic bulk polymer composite with a continuous vertical phonon pathway. This leads to a perpendicular thermal conductivity of 38.27 W m-1 K-1 , at par with metals and two orders of magnitude higher than other bulk organic polymers. Taking further advantage of the mechanical flexibility of the microfibers, the processing method offers the freedom to tailor heat transfer pathways in a macroscopic 3D space. The material/process opens up opportunities for efficient thermal management in high-performance devices.
Collapse
Affiliation(s)
- Yongzheng Zhang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of EducationDepartment of Polymer Science and EngineeringSchool of Chemical EngineeringNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Chuxin Lei
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Kai Wu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of EducationDepartment of Polymer Science and EngineeringSchool of Chemical EngineeringNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Qiang Fu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| |
Collapse
|
85
|
Xie C, Liu S, Zhang Q, Ma H, Yang S, Guo ZX, Qiu T, Tuo X. Macroscopic-Scale Preparation of Aramid Nanofiber Aerogel by Modified Freezing-Drying Method. ACS NANO 2021; 15:10000-10009. [PMID: 34086437 DOI: 10.1021/acsnano.1c01551] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aerogel has been widely known as a low-density and highly porous material and is closely connected with the complex processing methods, such as freeze-drying or supercritical drying. In this work, using the polymerization-induced aramid nanofiber (PANF) as a building block, we put forward a modified freezing-drying method for the high-efficiency preparation of all-para-aromatic-amide aerogels. In the preparation process, PANF hydrogel is first frozen at -18 °C and then dried at 20-150 °C for the formation of PANF aerogel. The PANF framework formed during the freezing process is crucial for the formation of the PANF aerogel. Moreover, the space-occupying effect of ice crystals is also helpful for the formation of the macroscopic pore structure in the aerogel. Aerogels with large size or well-controlled shape could be successfully obtained by this method. Through the variation of PANF concentration in the hydrogel and drying temperature, aerogels with different densities (20-185 mg/cm3) could be achieved, and the lowest density is reached at 150 °C, with the PANF concentration of 0.7%. The low-density PANF aerogels show high specific compressive strengths and low thermal conductivities, which are comparable to those resulting from the freeze-drying or supercritical drying method. Furthermore, the shrinkage phenomenon in the drying process could be skillfully utilized for the preparation of PANF aerogel-coated objects. The PANF aerogels could be applied as a thermal insulating material or shock absorption material in practical applications.
Collapse
Affiliation(s)
- Chunjie Xie
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, No.1, Tsinghua Garden, Haidian District, Beijing 100084, P.R. China
| | - Siyuan Liu
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, No.1, Tsinghua Garden, Haidian District, Beijing 100084, P.R. China
| | - Qinguan Zhang
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, No.1, Tsinghua Garden, Haidian District, Beijing 100084, P.R. China
| | - Huanxiao Ma
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, No.1, Tsinghua Garden, Haidian District, Beijing 100084, P.R. China
| | - Shixuan Yang
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, No.1, Tsinghua Garden, Haidian District, Beijing 100084, P.R. China
| | - Zhao-Xia Guo
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, No.1, Tsinghua Garden, Haidian District, Beijing 100084, P.R. China
| | - Teng Qiu
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, No.15, North Third Ring Road, Chaoyang District, Beijing 100029, P.R. China
| | - Xinlin Tuo
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, No.1, Tsinghua Garden, Haidian District, Beijing 100084, P.R. China
| |
Collapse
|
86
|
Zhao LH, Liao Y, Jia LC, Wang Z, Huang XL, Ning WJ, Zhang ZX, Ren JW. Ultra-Robust Thermoconductive Films Made from Aramid Nanofiber and Boron Nitride Nanosheet for Thermal Management Application. Polymers (Basel) 2021; 13:2028. [PMID: 34206158 PMCID: PMC8271841 DOI: 10.3390/polym13132028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/01/2023] Open
Abstract
The development of highly thermally conductive composites with excellent electrical insulation has attracted extensive attention, which is of great significance to solve the increasingly severe heat concentration issue of electronic equipment. Herein, we report a new strategy to prepare boron nitride nanosheets (BNNSs) via an ion-assisted liquid-phase exfoliation method. Then, silver nanoparticle (AgNP) modified BNNS (BNNS@Ag) was obtained by in situ reduction properties. The exfoliation yield of BNNS was approximately 50% via the ion-assisted liquid-phase exfoliation method. Subsequently, aramid nanofiber (ANF)/BNNS@Ag composites were prepared by vacuum filtration. Owing to the "brick-and-mortar" structure formed inside the composite and the adhesion of AgNP, the interfacial thermal resistance was effectively reduced. Therefore, the in-plane thermal conductivity of ANF/BNNS@Ag composites was as high as 11.51 W m-1 K-1, which was 233.27% higher than that of pure ANF (3.45 W m-1 K-1). The addition of BNNS@Ag maintained tensile properties (tensile strength of 129.14 MPa). Moreover, the ANF/BNNS@Ag films also had good dielectric properties and the dielectric constant was below 2.5 (103 Hz). Hence, the ANF/BNNS@Ag composite shows excellent thermal management performance, and the electrical insulation and mechanical properties of the matrix are retained, indicating its potential application prospects in high pressure and high temperature application environments.
Collapse
Affiliation(s)
- Li-Hua Zhao
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China; (L.-H.Z.); (Y.L.); (L.-C.J.); (Z.W.); (X.-L.H.); (W.-J.N.)
| | - Yun Liao
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China; (L.-H.Z.); (Y.L.); (L.-C.J.); (Z.W.); (X.-L.H.); (W.-J.N.)
| | - Li-Chuan Jia
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China; (L.-H.Z.); (Y.L.); (L.-C.J.); (Z.W.); (X.-L.H.); (W.-J.N.)
| | - Zhong Wang
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China; (L.-H.Z.); (Y.L.); (L.-C.J.); (Z.W.); (X.-L.H.); (W.-J.N.)
| | - Xiao-Long Huang
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China; (L.-H.Z.); (Y.L.); (L.-C.J.); (Z.W.); (X.-L.H.); (W.-J.N.)
| | - Wen-Jun Ning
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China; (L.-H.Z.); (Y.L.); (L.-C.J.); (Z.W.); (X.-L.H.); (W.-J.N.)
| | - Zong-Xi Zhang
- State Grid Sichuan Electric Power Research Institute, State Grid of China, Chengdu 610041, China;
| | - Jun-Wen Ren
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China; (L.-H.Z.); (Y.L.); (L.-C.J.); (Z.W.); (X.-L.H.); (W.-J.N.)
| |
Collapse
|
87
|
Mirizzi L, Carnevale M, D’Arienzo M, Milanese C, Di Credico B, Mostoni S, Scotti R. Tailoring the Thermal Conductivity of Rubber Nanocomposites by Inorganic Systems: Opportunities and Challenges for Their Application in Tires Formulation. Molecules 2021; 26:molecules26123555. [PMID: 34200899 PMCID: PMC8230438 DOI: 10.3390/molecules26123555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 11/20/2022] Open
Abstract
The development of effective thermally conductive rubber nanocomposites for heat management represents a tricky point for several modern technologies, ranging from electronic devices to the tire industry. Since rubber materials generally exhibit poor thermal transfer, the addition of high loadings of different carbon-based or inorganic thermally conductive fillers is mandatory to achieve satisfactory heat dissipation performance. However, this dramatically alters the mechanical behavior of the final materials, representing a real limitation to their application. Moreover, upon fillers’ incorporation into the polymer matrix, interfacial thermal resistance arises due to differences between the phonon spectra and scattering at the hybrid interface between the phases. Thus, a suitable filler functionalization is required to avoid discontinuities in the thermal transfer. In this challenging scenario, the present review aims at summarizing the most recent efforts to improve the thermal conductivity of rubber nanocomposites by exploiting, in particular, inorganic and hybrid filler systems, focusing on those that may guarantee a viable transfer of lab-scale formulations to technological applicable solutions. The intrinsic relationship among the filler’s loading, structure, morphology, and interfacial features and the heat transfer in the rubber matrix will be explored in depth, with the ambition of providing some methodological tools for a more profitable design of thermally conductive rubber nanocomposites, especially those for the formulation of tires.
Collapse
Affiliation(s)
- Lorenzo Mirizzi
- Department of Materials Science, University of Milano-Bicocca, INSTM, Via R. Cozzi 55, 20125 Milano, Italy; (L.M.); (M.C.); (B.D.C.); (S.M.); (R.S.)
| | - Mattia Carnevale
- Department of Materials Science, University of Milano-Bicocca, INSTM, Via R. Cozzi 55, 20125 Milano, Italy; (L.M.); (M.C.); (B.D.C.); (S.M.); (R.S.)
| | - Massimiliano D’Arienzo
- Department of Materials Science, University of Milano-Bicocca, INSTM, Via R. Cozzi 55, 20125 Milano, Italy; (L.M.); (M.C.); (B.D.C.); (S.M.); (R.S.)
- Correspondence: ; Tel.: +39-026-448-5023
| | - Chiara Milanese
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy;
| | - Barbara Di Credico
- Department of Materials Science, University of Milano-Bicocca, INSTM, Via R. Cozzi 55, 20125 Milano, Italy; (L.M.); (M.C.); (B.D.C.); (S.M.); (R.S.)
| | - Silvia Mostoni
- Department of Materials Science, University of Milano-Bicocca, INSTM, Via R. Cozzi 55, 20125 Milano, Italy; (L.M.); (M.C.); (B.D.C.); (S.M.); (R.S.)
| | - Roberto Scotti
- Department of Materials Science, University of Milano-Bicocca, INSTM, Via R. Cozzi 55, 20125 Milano, Italy; (L.M.); (M.C.); (B.D.C.); (S.M.); (R.S.)
| |
Collapse
|
88
|
Huang K, Jiang L, Du Y, Wang J, Zheng X, Jiang X, Sui Y, Che M, Xu Q, Li L, Xin Z, Zhao S. Multifunctional NR/MWCNTs nanocomposites constructed via combining volume exclusion of SiO2 microspheres with interface reinforcement of tannic acid. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
89
|
Yang B, Li W, Zhang M, Wang L, Ding X. Recycling of High-Value-Added Aramid Nanofibers from Waste Aramid Resources via a Feasible and Cost-Effective Approach. ACS NANO 2021; 15:7195-7207. [PMID: 33752335 DOI: 10.1021/acsnano.1c00463] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High-performance aramid fibers are extensively applied in the civil and military fields. A great deal of waste aramid resources originating from the manufacturing process, spare parts, or end of life cycle are wrongly disposed (i.e., landfill, smash, fibrillation), causing a waste of valuable resources as well as severe environmental pollution. Although aramid nanofibers (ANFs) have recently been recently reported as one of the most promising building blocks due to their excellent properties, they suffer from an extremely high production expenditure, thereby greatly hindering their scale-up application. Herein, in this paper, from a resources-saving and cost-reductional perspective, we present a feasible top-down approach to recycle high value-added ANFs with an affordable cost from various waste aramid resources. The results indicate that although the reclaimed ANFs have a molecular weight reduction of 8.1% compared with the recycled aramid fibers, they still exhibit a molecular weight of 43.0 kg·mol-1 that represents the highest value compared to other methods. It is noteworthy that the fabrication cost of ANFs is significantly reduced (∼7 times) due to the reclamation of waste aramid fibers instead of the expensive virgin aramid fibers. The obtained ANFs show impressive tensile strength (149.2 MPa) and toughness (10.43 MJ·m-3), excellent thermal stabilities (Td of 542 °C), and a high specific surface area (65.2 m2·g-1), which endows them to be promising candidates for constructing advanced materials. Compared to the aramid pulp obtained by the traditional recycling method, ANFs show significant advantages in dimensional homogeneity, aspect ratio, dispersibility, film-forming property, and especially the excellent properties of the ANF film. In addition, the scale-up preparation of ANFs from the recycled waste aramid fibers is carried out, demonstrating it is highly economically viable. Therefore, this work provides a highly feasible and cost-effective recycle system to reclaim the waste aramid resources together with significantly reducing the preparation cost of ANFs.
Collapse
Affiliation(s)
- Bin Yang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of papermaking Technology and Specialty paper Development, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an 710021, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Weiwei Li
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of papermaking Technology and Specialty paper Development, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an 710021, China
| | - Meiyun Zhang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of papermaking Technology and Specialty paper Development, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an 710021, China
| | - Lin Wang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of papermaking Technology and Specialty paper Development, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an 710021, China
| | - Xueyao Ding
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of papermaking Technology and Specialty paper Development, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an 710021, China
| |
Collapse
|
90
|
Yan Q, Dai W, Gao J, Tan X, Lv L, Ying J, Lu X, Lu J, Yao Y, Wei Q, Sun R, Yu J, Jiang N, Chen D, Wong CP, Xiang R, Maruyama S, Lin CT. Ultrahigh-Aspect-Ratio Boron Nitride Nanosheets Leading to Superhigh In-Plane Thermal Conductivity of Foldable Heat Spreader. ACS NANO 2021; 15:6489-6498. [PMID: 33734662 DOI: 10.1021/acsnano.0c09229] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The rapid development of integrated circuits and electronic devices creates a strong demand for highly thermally conductive yet electrically insulating composites to efficiently solve "hot spot" problems during device operation. On the basis of these considerations, hexagonal boron nitride nanosheets (BNNS) have been regarded as promising fillers to fabricate polymer matrix composites. However, so far an efficient approach to prepare ultrahigh-aspect-ratio BNNS with large lateral size while maintaining an atomically thin nature is still lacking, seriously restricting further improvement of the thermal conductivity for BNNS/polymer composites. Here, a rapid and high-yield method based on a microfluidization technique is developed to obtain exfoliated BNNS with a record high aspect ratio of ≈1500 and a low degree of defects. A foldable and electrically insulating film made of such a BNNS and poly(vinyl alcohol) (PVA) matrix through filtration exhibits an in-plane thermal conductivity of 67.6 W m-1 K-1 at a BNNS loading of 83 wt %, leading to a record high value of thermal conductivity enhancement (≈35 500). The composite film then acts as a heat spreader for heat dissipation of high-power LED modules and shows superior cooling efficiency compared to commercial flexible copper clad laminate. Our findings provide a practical route to produce electrically insulating polymer composites with high thermal conductivity for thermal management applications in modern electronic devices.
Collapse
Affiliation(s)
- Qingwei Yan
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Wen Dai
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jingyao Gao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xue Tan
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Le Lv
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junfeng Ying
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoxin Lu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen, 518103, P. R. China
| | - Jibao Lu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen, 518103, P. R. China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Yagang Yao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Qiuping Wei
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Rong Sun
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jinhong Yu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Nan Jiang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ding Chen
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Ching-Ping Wong
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rong Xiang
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8656, Japan
| | - Shigeo Maruyama
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8656, Japan
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
91
|
Jiang S, Wei Y, Shi SQ, Dong Y, Xia C, Tian D, Luo J, Li J, Fang Z. Nacre-Inspired Strong and Multifunctional Soy Protein-Based Nanocomposite Materials for Easy Heat-Dissipative Mobile Phone Shell. NANO LETTERS 2021; 21:3254-3261. [PMID: 33739112 DOI: 10.1021/acs.nanolett.1c00542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inspired by the hierarchically ordered "brick and mortar" (BM) architecture of natural nacre, in this study a rational assembly of boron nitride (BN) nanosheets was introduced into a mixture of trimethylolpropane triglycidyl ether (TTE) and soy protein isolate (SPI), and a strong and multifunctional SPI-based nanocomposite film with multinetwork structure was synthesized. At a low BN loading (<0.5%), the resulting multifunctional film was flexible, antiultraviolet, and nearly transparent and also displayed good thermal diffusion ability and exhibited an excellent combination of high tensile strength (36.4 MPa) and thermal conductivity (TC, 2.40 W·m-1·K-1), surpassing the performances of various types of petroleum-based plastics (displayed a tensile strength ranging from 1.9 to 21 MPa and TC ranging from 0.55-2.13 W·m-1·K-1), including nine different types of materials currently utilized for mobile phone shells, suggesting its vast potential in practical applications.
Collapse
Affiliation(s)
- Shuaicheng Jiang
- Jiangsu Key Open Laboratory of Wood Processing and Wood-based Panel Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yanqiang Wei
- Jiangsu Key Open Laboratory of Wood Processing and Wood-based Panel Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Sheldon Q Shi
- Department of Mechanical Engineering, University of North Texas, Denton, Texas 76203, United States
| | - Youming Dong
- Jiangsu Key Open Laboratory of Wood Processing and Wood-based Panel Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Changlei Xia
- Jiangsu Key Open Laboratory of Wood Processing and Wood-based Panel Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Dan Tian
- Jiangsu Key Open Laboratory of Wood Processing and Wood-based Panel Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jing Luo
- Jiangsu Key Open Laboratory of Wood Processing and Wood-based Panel Technology, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jianzhang Li
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China
| | - Zhen Fang
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, Michigan 48824, United States
- Great Lakes Bioenergy Research Center, Michigan State University, 1129 Farm Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
92
|
Li J, Lu Z, Xie F, Huang J, Ning D, Zhang M. Highly compressible, heat-insulating and self-extinguishing cellulose nanofiber/aramid nanofiber nanocomposite foams. Carbohydr Polym 2021; 261:117837. [PMID: 33766337 DOI: 10.1016/j.carbpol.2021.117837] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022]
Abstract
Foam as a kind of burgeoning materials with laminated porous 3D structure was realized multifunctional application in diversified fields. In this work, we aimed to prepare a highly compressible and self-extinguishing multifunctional nanocomposite foam with anisotropic porous 3D structure through a green aqueous freeze-drying method. In order to address the inflammable property and brittleness issue of high-loading cellulose nanofiber foam, aramid nanofiber was incorporated into cellulose nanofiber framework, forming the multicomponent and multilevel honeycomb structure of the nanocomposite foam. Herein, the compression cycle properties of the nanocomposite foam could be significantly improved by adding 50 wt.% aramid nanofiber and at 20% stress recovered by 100 % even if cyclically compressed 200 times. The total heat release of the nanocomposite foam was as low as 2.12 MJ/m2 which also had low thermal conductivity about 28.8 mW/m · K. The ANF improved the flame retardancy of the composite foam.
Collapse
Affiliation(s)
- Jiaoyang Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Zhaoqing Lu
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Fan Xie
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Jizhen Huang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Doudou Ning
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Meiyun Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, China
| |
Collapse
|
93
|
Improved dielectric and energy storage properties of polypropylene by adding hybrid fillers and high-speed extrusion. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123348] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
94
|
Lan F, Zhang H, Fan J, Xu Q, Li H, Min Y. Electrospun Polymer Nanofibers with TiO 2@NiCo-LDH as Efficient Polysulfide Barriers for Wide-Temperature-Range Li-S Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2734-2744. [PMID: 33400491 DOI: 10.1021/acsami.0c19909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, we introduce polymer nanofibers of TiO2@NiCo-LDH as interlayers into Li-S batteries. From 0 to 60 °C, the interlayers can deliver high sulfur utilization, an outstanding rate capability, and excellent cycling life. High-temperature excitation makes it easier for the valence band electrons of TiO2 to transition to the conduction band. The electron-hole pairs formed on the surface combine with the ether group of 1,3-dioxolane in the electrolyte, which greatly reduces the decomposition and volatilization rates of the electrolyte, ensuring Li-S batteries with good cycle performance at high temperatures. The capacity can stabilize at 798.6 mAh g-1 after 100 cycles at 60 °C and 1C, and the battery can provide a capacity higher than 323.2 mAh g-1 at 0 °C. Simultaneously, the lithium metal symmetrical battery with a functional separator can be continuously cycled for 1800 and 750 h without a short circuit at the current densities of 0.65 and 1.63 mA cm-2, respectively.
Collapse
Affiliation(s)
- FuYin Lan
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, P. R. China
| | - HaiYan Zhang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, P. R. China
| | - Jinchen Fan
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Hexing Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - YuLin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| |
Collapse
|
95
|
Fu K, Yang J, Cao C, Zhai Q, Qiao W, Qiao J, Gao H, Zhou Z, Ji J, Li M, Liu C, Wang B, Bai W, Duan H, Xue Y, Tang C. Highly Multifunctional and Thermoconductive Performances of Densely Filled Boron Nitride Nanosheets/Epoxy Resin Bulk Composites. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2853-2867. [PMID: 33412856 DOI: 10.1021/acsami.0c19977] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the development of hexagonal boron nitride (h-BN)-based polymeric composites with high thermal conductivity, it is always challenging to achieve a dense filling of h-BN fillers to form a desired high-density thermal transfer network. Here, a series of boron nitride nanosheets (BNNSs)/epoxy resin (EP) bulk composites filled with ultrahigh BNNSs content (65-95 wt %) is successfully constructed through a well-designed mechanical-balling prereaction combined with a general pressure molding method. By means of this method, the highly filled BNNSs fillers are uniformly dispersed and strongly bonded with EP within the composites. As a result, the densely BNNSs-filled composites can exhibit multiple performances. They have excellent mechanical properties, and their maximum compression strength is 30-97 MPa. For a BNNSs/EP composite with filling ultrahigh BNNSs fraction up to 90 wt %, its highly in-plane thermal conductivities (TC) are 6.7 ± 0.1 W m-1 K-1 (at 25 °C) to 8.7 ± 0.2 W m-1 K-1 (200 °C), respectively. In addition, the minimum coefficient of thermal expansion of BNNSs/EP composites is 4.5 ± 1.3 ppm/°C (only ∼4% of that of the neat EP), while their dielectric constants are basically located between 3-4 along with their dielectric loss tangent values exceptionally <0.3 in the ultrahigh frequency range of 12-40 GHz. Additionally, these BNNSs/EP composites exhibit remarkable cycle stability in heat transfer during heating and cooling processes because of their structural robustness. Thus, this type of densely BNNSs-filled BNNSs/EP composite would have great potential for further practical thermal management fields.
Collapse
Affiliation(s)
- Kun Fu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, P.R. China
| | - Jingwen Yang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, P.R. China
| | - Chaochao Cao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, P.R. China
| | - Qinghong Zhai
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, P.R. China
| | - Wei Qiao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, P.R. China
| | - Jiaxiao Qiao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, P.R. China
| | - Hejun Gao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, P.R. China
| | - Zheng Zhou
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, P.R. China
| | - Jiawei Ji
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, P.R. China
| | - Mengyuan Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, P.R. China
| | - Chaoze Liu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, P.R. China
| | - Bozheng Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, P.R. China
| | - Wenjuan Bai
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, P.R. China
| | - Hongliang Duan
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, P.R. China
| | - Yanming Xue
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, P.R. China
| | - Chengchun Tang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, P.R. China
| |
Collapse
|
96
|
He X, Wang Y. Recent Advances in the Rational Design of Thermal Conductive Polymer Composites. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05509] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xuhua He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yuechuan Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
97
|
Xu X, Su Y, Zhang Y, Wu S, Wu K, Fu Q. A Dual-Crosslinked and Anisotropic Regenerated Cellulose/Boron Nitride Nanosheets Film With High Thermal Conductivity, Mechanical Strength, and Toughness. Front Bioeng Biotechnol 2020; 8:602318. [PMID: 33392169 PMCID: PMC7775592 DOI: 10.3389/fbioe.2020.602318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022] Open
Abstract
The highly thermo-conductive but electrically insulating film, with desirable mechanical performances, is extremely demanded for thermal management of portable and wearable electronics. The integration of boron nitride nanosheets (BNNSs) with regenerated cellulose (RC) is a sustainable strategy to satisfy these requirements, while its practical application is still restricted by the brittle fracture and loss of toughness of the composite films especially at the high BNNS addition. Herein, a dual-crosslinked strategy accompanied with uniaxial pre-stretching treatment was introduced to engineer the artificial RC/BNNS film, in which partial chemical bonding interactions enable the effective interfiber slippage and prevent any mechanical fracture, while non-covalent hydrogen bonding interactions serve as the sacrifice bonds to dissipate the stress energy, resulting in a simultaneous high mechanical strength (103.4 MPa) and toughness (10.2 MJ/m3) at the BNNS content of 45 wt%. More importantly, attributed to the highly anisotropic configuration of BNNS, the RC/BNNS composite film also behaves as an extraordinary in-plane thermal conductivity of 15.2 W/m·K. Along with additional favorable water resistance and bending tolerance, this tactfully engineered film ensures promised applications for heat dissipation in powerful electronic devices.
Collapse
Affiliation(s)
- Xuran Xu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Yichuan Su
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory for Soft Chemistry and Functional Materials of the Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Yongzheng Zhang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory for Soft Chemistry and Functional Materials of the Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Shuaining Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Kai Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, China.,Key Laboratory for Soft Chemistry and Functional Materials of the Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China.,Key Laboratory of Advanced Technologies of Materials, Ministry of Education China, Southwest Jiaotong University, Chengdu, China
| | - Qiang Fu
- Key Laboratory for Soft Chemistry and Functional Materials of the Ministry of Education, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
98
|
Liu D, Lei C, Wu K, Fu Q. A Multidirectionally Thermoconductive Phase Change Material Enables High and Durable Electricity via Real-Environment Solar-Thermal-Electric Conversion. ACS NANO 2020; 14:15738-15747. [PMID: 33166456 DOI: 10.1021/acsnano.0c06680] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A solar thermoelectric generator (STEG) that generates electricity from sunlight is expected to be a promising technology for harvesting and conversion of clean solar energy. The integration of a phase-change material (PCM) with the STEG even more enables engines to durably generate power in spite of solar radiation flux. However, its photothermal conversion and output electricity is still limited (<15 W/m2) by the PCM's deficient thermal management performance, i.e., restricted thermal conductivity and nonuniform heat-transfer behavior under concentrated sunlight radiation. In this study, a biomimetic phase-change composite, with centrosymmetric and a multidirectionally aligned boron nitride network embedded in polyethylene glycol, is tailored for the STEG via a radial ice-template assembly and infiltration strategy, which behaves in a highly and multidirectionally thermoconductive way and enables a rapid transfer of heat flux and uniform temperature distribution with respect to even a spot-like heat source. As a consequence, a powerful STEG is tactfully designed via the integration of this high-thermal-management characteristic and maximum collection of solar beams, for durable and real-environment solar-thermal-electric conversion, with its photothermal energy conversion efficiency of up to 85.1% and a high peak power density of 40.28 W/m2.
Collapse
Affiliation(s)
- Dingyao Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Chuxin Lei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Kai Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Department of Polymer Science and Engineering, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
99
|
Zheng S, Zhang H, Fan J, Xu Q, Min Y. Improving Electrochemical Performance and Safety of Lithium-Sulfur Batteries by a "Bulletproof Vest". ACS APPLIED MATERIALS & INTERFACES 2020; 12:51904-51916. [PMID: 33146511 DOI: 10.1021/acsami.0c13130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the field of high-density energy storage, lithium-sulfur (Li-S) batteries have attracted more and more attention because of their high specific capacity and affordable cost. However, their actual implementation is hindered by the dissolution of polysulfides and severe safety concerns caused by flammable electrolytes. Herein, we report the preparation of an interlayer that can effectively suppress polysulfide shuttling and increase the working temperature range. In this work, polyamide nanofibers (ANFs) are used as the substrate material to prepare the Ni(OH)2@ANFs-Ni (NAFN) film that works as the interlayer on the "outside" of the cathode in situ. The experimental results show that Li-S batteries containing NAFN as the interlayer can achieve excellent outstanding stability in a long cycle life. After 800 cycles at 1 C, the capacity remains at 482 mA h/g, with a decay rate of 0.047%. At high temperature (60 °C), after 500 cycles at 1 C, its capacity is 622 mA h/g with a decay rate of 0.079%. Therefore, the flexible design of the NAFN interlayer provides the growth of high-performance Li-S batteries with novel insights. The ultrathin, microporous structure of the interlayer tightly wraps the cathode material, just like the addition of a "bulletproof vest" inside the Li-S batteries. The plentiful amide functional groups of the "bulletproof vest" enable the strong complexation reaction with polysulfides to suppress the polysulfides' shuttling effect and ensure a facile Li+ transfer. At the same time, the nickel hydroxide is able to accelerate the redox kinetics via reaction with polysulfides to produce the intermediate thiosulfate groups. Also, the ANFs as the heat-resistant material ensure the stability of the batteries at high temperatures.
Collapse
Affiliation(s)
- Shuai Zheng
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, P. R. China
| | - HaiYan Zhang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, P. R. China
| | - JinChen Fan
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - QunJie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - YuLin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| |
Collapse
|
100
|
Hu D, Ma W. Nanocellulose as a Sustainable Building Block to Construct Eco-Friendly Thermally Conductive Composites. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dechao Hu
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, P. R. China
| | - Wenshi Ma
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, P. R. China
| |
Collapse
|