51
|
Wang L, Zhang T, Xing Y, Wang Z, Xie X, Zhang J, Cai K. Interfacially responsive electron transfer and matter conversion by polydopamine-mediated nanoplatforms for advancing disease theranostics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1805. [PMID: 35474610 DOI: 10.1002/wnan.1805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Polydopamine (PDA) is an artificial melanin polymer that has been spotlighted due to its extraordinary optoelectronic characteristics and advance theranosctic applications in biomaterial fields. Moreover, interactions on the nano-bio interface interplay whereby substances exchange in response to endogenous or exogenous stimuli, and electron transfer driven by light, energy-level transitions, or electric field greatly affect the functional performance of PDA-modified nanoparticles. The full utilization of potential in PDA's interfacial activities, optoelectrical properties and related responsiveness is therefore an attractive means to construct advanced nanostructures for regulating biological processes and metabolic pathways. Herein, we strive to summarize recent advances in the construction of functional PDA-based nanomaterials with state-of-the-art architectures prepared for modulation of photoelectric sensing and redox reversibility, as well as manipulation of photo-activated therapeutics. Meanwhile, contributions of interfacial electron transfer and matter conversion are highlighted by discussing the structure-property-function relationships and the biological effects in their featured applications including disease theranostics, antibacterial activities, tissue repair, and combined therapy. Finally, the current challenges and future perspectives in this emerging research field will also be outlined. Recent advances on polydopamine-based nanotherapeutics with an emphasis on their interfacial activities, optoelectrical properties and related responsiveness are reviewed for providing insightful guidance to the rational design of integrated theranostic nanoplatforms with high performance in the biomedical fields. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Tingting Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yuxin Xing
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Zhenqiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xiyue Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
52
|
Cheng C, Yang H, Huang Y, Wang J, Gu M, Liu Y, Wang N, Wang J, Hu S, Deng R. A smart DNAzyme/graphene oxide nanosystem for fluorescent sensing of uranyl ion with high sensitivity and selectivity. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
53
|
Zhang T, Zhou M, Xiao D, Liu Z, Jiang Y, Feng M, Lin Y, Cai X. Myelosuppression Alleviation and Hematopoietic Regeneration by Tetrahedral-Framework Nucleic-Acid Nanostructures Functionalized with Osteogenic Growth Peptide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202058. [PMID: 35882625 PMCID: PMC9507378 DOI: 10.1002/advs.202202058] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/12/2022] [Indexed: 02/06/2023]
Abstract
As major complications of chemoradiotherapy, myelosuppression and hematopoietic-system damage severely affect immunologic function and can delay or even terminate treatment for cancer patients. Although several specific cytokines have been used for hematopoiesis recovery, their effect is limited, and they may increase the risk of tumor recurrence. In this study, osteogenic growth peptide functionalized tetrahedral framework nucleic-acid nanostructures (OGP-tFNAs) are prepared; they combine the positive hematopoiesis stimulating effect of OGP and the drug carrying function of tFNAs. The potential of OGP-tFNAs for hematopoietic stimulation and microenvironment regulation is investigated. It is shown that OGP-tFNAs can protect bone marrow stromal cells from 5-fluorouracil (5-FU)-induced DNA damage and apoptosis. OGP-tFNAs pretreatment activates the extracellularly regulated protein kinase signal and downregulates apoptosis-related proteins. OGP-tFNAs also alleviate the chemotherapy-induced inhibition of hematopoiesis-related cytokine expression, which is crucial for hematopoiesis reconstitution. In conclusion, OGP-tFNAs can protect hematopoietic cells and their microenvironment from chemotherapy-induced injuries and myelosuppression, while promoting hematopoiesis regeneration.
Collapse
Affiliation(s)
- Tianxu Zhang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Mi Zhou
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Dexuan Xiao
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Yueying Jiang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Maogeng Feng
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatology Hospital of Southwest Medical UniversityLuzhou646000P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| |
Collapse
|
54
|
Zhang L, Chu M, Ji C, Tan J, Yuan Q. Preparation, applications, and challenges of functional DNA nanomaterials. NANO RESEARCH 2022; 16:3895-3912. [PMID: 36065175 PMCID: PMC9430014 DOI: 10.1007/s12274-022-4793-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
As a carrier of genetic information, DNA is a versatile module for fabricating nanostructures and nanodevices. Functional molecules could be integrated into DNA by precise base complementary pairing, greatly expanding the functions of DNA nanomaterials. These functions endow DNA nanomaterials with great potential in the application of biomedical field. In recent years, functional DNA nanomaterials have been rapidly investigated and perfected. There have been reviews that classified DNA nanomaterials from the perspective of functions, while this review primarily focuses on the preparation methods of functional DNA nanomaterials. This review comprehensively introduces the preparation methods of DNA nanomaterials with functions such as molecular recognition, nanozyme catalysis, drug delivery, and biomedical material templates. Then, the latest application progress of functional DNA nanomaterials is systematically reviewed. Finally, current challenges and future prospects for functional DNA nanomaterials are discussed.
Collapse
Affiliation(s)
- Lei Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Mengge Chu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| |
Collapse
|
55
|
Chen Z, Yue Z, Wang R, Yang K, Li S. Nanomaterials: A powerful tool for tumor immunotherapy. Front Immunol 2022; 13:979469. [PMID: 36072591 PMCID: PMC9441741 DOI: 10.3389/fimmu.2022.979469] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer represents the leading global driver of death and is recognized as a critical obstacle to increasing life expectancy. In recent years, with the development of precision medicine, significant progress has been made in cancer treatment. Among them, various therapies developed with the help of the immune system have succeeded in clinical treatment, recognizing and killing cancer cells by stimulating or enhancing the body’s intrinsic immune system. However, low response rates and serious adverse effects, among others, have limited the use of immunotherapy. It also poses problems such as drug resistance and hyper-progression. Fortunately, thanks to the rapid development of nanotechnology, engineered multifunctional nanomaterials and biomaterials have brought breakthroughs in cancer immunotherapy. Unlike conventional cancer immunotherapy, nanomaterials can be rationally designed to trigger specific tumor-killing effects. Simultaneously, improved infiltration of immune cells into metastatic lesions enhances the efficiency of antigen submission and induces a sustained immune reaction. Such a strategy directly reverses the immunological condition of the primary tumor, arrests metastasis and inhibits tumor recurrence through postoperative immunotherapy. This paper discusses several types of nanoscale biomaterials for cancer immunotherapy, and they activate the immune system through material-specific advantages to provide novel therapeutic strategies. In summary, this article will review the latest advances in tumor immunotherapy based on self-assembled, mesoporous, cell membrane modified, metallic, and hydrogel nanomaterials to explore diverse tumor therapies.
Collapse
Affiliation(s)
- Ziyin Chen
- Clinical Medicine, Harbin Medical University, Harbin, China
| | - Ziqi Yue
- Department of Forensic Medicine, Harbin Medical University, Harbin, China
| | - Ronghua Wang
- Department of Outpatient, Dongying People’s Hospital, Dongying, China
| | - Kaiqi Yang
- Clinical Medicine, Harbin Medical University, Harbin, China
| | - Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
- *Correspondence: Shenglong Li, ;
| |
Collapse
|
56
|
Liu W, Fan Z, Li L, Li M. DNA-Based Nanoprobes for Simultaneous Detection of Telomerase and Correlated Biomolecules. Chembiochem 2022; 23:e202200307. [PMID: 35927933 DOI: 10.1002/cbic.202200307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/02/2022] [Indexed: 11/12/2022]
Abstract
Telomerase (TE), a ribonucleoprotein reverse transcriptase, is enzymatically activated in most tumor cells and is responsible for promoting tumor progression and malignancy by enabling replicative immortality of cancer cells. TE has become an important hallmark for cancer diagnosis and a potential therapy target. Therefore, accurate and in site detection of TE activity, especially the simultaneous imaging of TE activity and its correlated biomolecules, is highly essential to medical diagnostics and therapeutics. DNA-based nanoprobes, with their effective cell penetration capability and programmability, are the most advantageous for detection of intracellular TE activity. This concept article introduces the recent strategies for in situ sensing and imaging of TE activity, with a focus on simultaneous detection of TE and related biomolecules, and provides challenges and perspectives for the development of new strategies for such correlated imaging.
Collapse
Affiliation(s)
- Wenjing Liu
- Capital Medical University, Beijing Chest Hospital, CHINA
| | - Zetan Fan
- National Center for Nanoscience and Technology, cas key lab, CHINA
| | - Lele Li
- National Center for Nanoscience and Technology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, 11 ZhongGuanCun BeiYiTiao, Haidian District, 100190, Beijing, CHINA
| | - Mengyuan Li
- University of Science and Technology Beijing, Chemistry, CHINA
| |
Collapse
|
57
|
Tu T, Huan S, Ke G, Zhang X. Functional Xeno Nucleic Acids for Biomedical Application. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-021-2186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
58
|
Yao C, Ou J, Tang J, Yang D. DNA Supramolecular Assembly on Micro/Nanointerfaces for Bioanalysis. Acc Chem Res 2022; 55:2043-2054. [PMID: 35839123 DOI: 10.1021/acs.accounts.2c00170] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ConspectusFacing increasing demand for precision medicine, materials chemistry systems for bioanalysis with accurate molecular design, controllable structure, and adjustable biological activity are required. As a genetic biomacromolecule, deoxyribonucleic acid (DNA) is created via precise, efficient, and mild processes in life systems and can in turn precisely regulate life activities. From the perspective of materials chemistry, DNA possesses the characteristics of sequence programmability and can be endowed with customized functions by the rational design of sequences. In recent years, DNA has been considered to be a potential biomaterial for analysis and has been applied in the fields of bioseparation, biosensing, and detection imaging. To further improve the precision of bioanalysis, the supramolecular assembly of DNA on micro/nanointerfaces is an effective strategy to concentrate functional DNA modules, and thus the functions of DNA molecules for bioanalysis can be enriched and enhanced. Moreover, the new modes of DNA supramolecular assembly on micro/nanointerfaces enable the integration of DNA with the introduced components, breaking the restriction of limited functions of DNA materials and achieving more precise regulation and manipulation in bioanalysis. In this Account, we summarize our recent work on DNA supramolecular assembly on micro/nanointerfaces for bioanalysis from two main aspects. In the first part, we describe DNA supramolecular assembly on the interfaces of microscale living cells. The synthesis strategy of DNA is based on rolling-circle amplification (RCA), which generates ultralong DNA strands according to circular DNA templates. The templates can be designed with complementary sequences of functional modules such as aptamers, which allow DNA to specifically bind with cellular interfaces and achieve efficient cell separation. In the second part, we describe DNA supramolecular assembly on the interfaces of nanoscale particles. DNA sequences are designed with functional modules such as targeting, drug loading, and gene expression and then are assembled on interfaces of particles including upconversion nanoparticles (UCNPs), gold nanoparticles (AuNPs), and magnetic nanoparticle (MNPs). The integration of DNA with these functional particles achieves cell manipulation, targeted tumor imaging, and cellular regulation. The processes of interfacial assembly are well controlled, and the functions of the obtained bioanalytical materials can be flexibly regulated. We envision that the work on DNA supramolecular assembly on micro/nanointerfaces will be a typical paradigm for the construction of more bioanalytical materials, which we hope will facilitate the development of precision medicine.
Collapse
Affiliation(s)
- Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Junhan Ou
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Jianpu Tang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
59
|
Tu T, Huan S, Ke G, Zhang X. Functional Xeno Nucleic Acids for Biomedical Application. Chem Res Chin Univ 2022:1-7. [PMID: 35814030 PMCID: PMC9253239 DOI: 10.1007/s40242-022-2186-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/26/2022] [Indexed: 11/26/2022]
Abstract
Functional nucleic acids(FNAs) refer to a type of oligonucleotides with functions over the traditional genetic roles of nucleic acids, which have been widely applied in screening, sensing and imaging fields. However, the potential application of FNAs in biomedical field is still restricted by the unsatisfactory stability, biocompatibility, biodistribution and immunity of natural nucleic acids(DNA/RNA). Xeno nucleic acids(XNAs) are a kind of nucleic acid analogues with chemically modified sugar groups that possess improved biological properties, including improved biological stability, increased binding affinity, reduced immune responses, and enhanced cell penetration or tissue specificity. In the last two decades, scientists have made great progress in the research of functional xeno nucleic acids, which makes it an emerging attractive biomedical application material. In this review, we summarized the design of functional xeno nucleic acids and their applications in the biomedical field.
Collapse
Affiliation(s)
- Tingting Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Shuangyan Huan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| | - Xiaobing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
| |
Collapse
|
60
|
Hou S, Hasnat M, Chen Z, Liu Y, Faran Ashraf Baig MM, Liu F, Chen Z. Application Perspectives of Nanomedicine in Cancer Treatment. Front Pharmacol 2022; 13:909526. [PMID: 35860027 PMCID: PMC9291274 DOI: 10.3389/fphar.2022.909526] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is a disease that seriously threatens human health. Based on the improvement of traditional treatment methods and the development of new treatment modes, the pattern of cancer treatment is constantly being optimized. Nanomedicine plays an important role in these evolving tumor treatment modalities. In this article, we outline the applications of nanomedicine in three important tumor-related fields: chemotherapy, gene therapy, and immunotherapy. According to the current common problems, such as poor targeting of first-line chemotherapy drugs, easy destruction of nucleic acid drugs, and common immune-related adverse events in immunotherapy, we discuss how nanomedicine can be combined with these treatment modalities, provide typical examples, and summarize the advantages brought by the application of nanomedicine.
Collapse
Affiliation(s)
- Shanshan Hou
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Muhammad Hasnat
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ziwei Chen
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Yinong Liu
- Hospital Laboratory of Nangjing Lishui People’s Hospital, Nangjing, China
| | - Mirza Muhammad Faran Ashraf Baig
- Laboratory of Biomedical Engineering for Novel Bio-functional, and Pharmaceutical Nanomaterials, Prince Philip Dental Hospital, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Fuhe Liu
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
- *Correspondence: Zelong Chen, ; Fuhe Liu,
| | - Zelong Chen
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Province Engineering Research Center of Artificial Intelligence and Internet of Things Wise Medical, Zhengzhou, China
- *Correspondence: Zelong Chen, ; Fuhe Liu,
| |
Collapse
|
61
|
Jouha J, Li F, Su WT, Fan C, Yang D, Xiong H. Editorial: Engineering Nucleic Acids-Based Functional Nanomaterials, Nanodrugs, and Biosensors. Front Bioeng Biotechnol 2022; 10:915229. [PMID: 35782517 PMCID: PMC9245380 DOI: 10.3389/fbioe.2022.915229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jabrane Jouha
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Fengli Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Wen-Ta Su
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
- *Correspondence: Wen-Ta Su, ; Chenguang Fan, ; Dayong Yang, ; Hai Xiong,
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, United States
- *Correspondence: Wen-Ta Su, ; Chenguang Fan, ; Dayong Yang, ; Hai Xiong,
| | - Dayong Yang
- Key Laboratory of Systems Bioengineering (MOE), Frontiers Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- *Correspondence: Wen-Ta Su, ; Chenguang Fan, ; Dayong Yang, ; Hai Xiong,
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- *Correspondence: Wen-Ta Su, ; Chenguang Fan, ; Dayong Yang, ; Hai Xiong,
| |
Collapse
|
62
|
Zhang J, Lan T, Lu Y. Overcoming Major Barriers to Developing Successful Sensors for Practical Applications Using Functional Nucleic Acids. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:151-171. [PMID: 35216531 PMCID: PMC9197978 DOI: 10.1146/annurev-anchem-061020-104216] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
For many years, numerous efforts have been focused on the development of sensitive, selective, and practical sensors for environmental monitoring, food safety, and medical diagnostic applications. However, the transition from innovative research to commercial success is relatively sparse. In this review, we identify four scientific barriers and one technical barrier to developing successful sensors for practical applications, including the lack of general methods to (a) generate receptors for a wide range of targets, (b) improve sensor selectivity to overcome interferences, (c) transduce the selective binding to different optical, electrochemical, and other signals, and (d) tune dynamic range to match thresholds of detection required for different targets; and the costly development of a new device. We then summarize solutions to overcome these barriers using sensors based on functional nucleic acids that include DNAzymes, aptamers, and aptazymes and how these sensors are coupled to widely available measurement devices to expand their capabilities and lower the barrier for their practical applications in the field and point-of-care settings.
Collapse
Affiliation(s)
- JingJing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China;
| | - Tian Lan
- GlucoSentient, Inc., Champaign, Illinois, USA
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, Austin, Texas, USA;
| |
Collapse
|
63
|
Cheng Z, Wei J, Gu L, Zou L, Wang T, Chen L, Li Y, Yang Y, Li P. DNAzyme-based biosensors for mercury (Ⅱ) detection: Rational construction, advances and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128606. [PMID: 35278952 DOI: 10.1016/j.jhazmat.2022.128606] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Mercury contamination is one of the most severe issues in society due to its threats to public health and the ecological system. However, traditional methods for mercury ion detection are still limited by their time-consuming procedures, requirement of expensive instruments, and low selectivity. In recent decades, tremendous progress has been made in the development of functional nucleic acid-based, especially DNAzyme sensors for mercury (Ⅱ) (Hg2+) determination, including RNA-cleaving DNAzymes and G-quadruplex-based DNAzymes in particular. Researchers have heavily studied the construction of Hg2+ sensors, mainly originating from in vitro selection-derived DNAzymes, by incorporating T-Hg2+-T recognition moieties in existing DNAzyme scaffolds, and interfacing Hg2+-sensitive sequences with nanomaterials. In the last case, the employment of materials (as quenchers, signal transducers and DNA immobilizers) enriches the application scenarios of current Hg2+-DNAzymes, due to a combination of their functions. We summarize a broad range of sensing approaches, including optical, electrochemical, and other sensing methods, and compare their features. This review elaborates on the rational design strategies for engineering DNAzymes to selectively sense Hg2+, critically discusses their properties in different application scenarios, and summarizes recent advances in this field. Additionally, current progress, challenges and future perspectives are also discussed. This minireview provides deeper insights into the chemistry of these functional nucleic acids when working with Hg2+, explains the design ideas of DNAzyme-sensors in each platform, and reveals potential opportunities in developing more advanced DNAzyme sensors for the highly selective and sensitive recognition of Hg2+. ENVIRONMENTAL IMPLICATION: Mercury is one of the most toxic metallic contaminants due to its high toxicity, non-biodegradability, and serious human health risks when accumulated in the body. In the recent decade, intensive studies have focused on exploring mercury sensors by combining DNAzymes with various sensing methods, paving a promising avenue to gain ultra-high sensitivity and selectivity. However, so far, no review has introduced the recent advances on DNAzyme-based sensors for mercury detection in a critical way. In this review, we comprehensively summarized the studies on DNAzyme-based sensors for mercury detection using various sensing techniques including optical, electrochemical and other sensing methods.
Collapse
Affiliation(s)
- Zehua Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Liqiang Gu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Liang Zou
- School of Medicine, Chengdu University, Chengdu 610106, China
| | - Ting Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ling Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yuqing Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China; Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
64
|
Xiong Y, Li W, Wen Q, Xu D, Ren J, Lin Q. Aptamer-engineered nanomaterials to aid in mycotoxin determination. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
65
|
|
66
|
Beck KM, Nielsen P. Double-Headed 2'-Deoxynucleotides That Hybridize to DNA and RNA Targets via Normal and Reverse Watson-Crick Base Pairs. J Org Chem 2022; 87:5113-5124. [PMID: 35363467 DOI: 10.1021/acs.joc.1c03063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Through the use of modified nucleotides, synthetic nucleic acids have found several fields of application within biotechnology and in the pharmaceutical industry. We have previously introduced nucleotides with an additional functional nucleobase linked to C2' of arabinonucleotides (BX). These double-headed nucleotides fit neatly into DNA·DNA duplexes, where they can replace the corresponding natural dinucleotides and thus condense the molecular information. Here, we introduce a 2'-deoxy version of the BX design with inversion of the C2' stereochemistry (dSBX) with the aim of obtaining improved RNA recognition. Specifically, dSBX analogues with cytosine or isocytosine attached to C2' of 2'-deoxyuridine (dSUC and dSUiC) were synthesized and evaluated in duplexes. Whereas the dSBX design did not outperform the BX design in terms of mimicking dinucleotides in nucleic acid duplexes, it was able to engage in reverse Watson-Crick pairing using its 2'-base. This was evident from the ability of the dSUC cytosine to form stable mis-matching base pairs with opposite cytosines identified as hemiprotonated C·C+ pairs. Furthermore, specific base-pairing with guanine was only observed for the isocytosine-bearing dSUiC monomer. Very stable duplexes were obtained with dSUC/iC monomers in each strand indicating that fully modified double-headed nucleic acid sequences could be based on the dSBX design.
Collapse
Affiliation(s)
- Kasper M Beck
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Poul Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
67
|
Xia X, Yang H, Cao J, Zhang J, He Q, Deng R. Isothermal nucleic acid amplification for food safety analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
68
|
Wang J, Wang Z, Huang PJJ, Bai F, Liu J. Adsorption of DNA Oligonucleotides by Self-Assembled Metalloporphyrin Nanomaterials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3553-3560. [PMID: 35258306 DOI: 10.1021/acs.langmuir.2c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Porphyrin assemblies have controllable morphology, high biocompatibility, and good optical properties and were widely used in biomedical diagnosis and treatment. With the development of DNA biotechnology, combining DNA with porphyrin assemblies can broaden the biological applications of porphyrins. Porphyrin assemblies can serve as nanocarriers for DNA, although the fundamental interactions between them are not well understood. In this work, zinc meso-tetra(4-pyridyl)porphyrin (ZnTPyP) assemblies were prepared in the presence of various surfactants and at different pH values, yielding a variety of aggregation forms. Among them, the hexagonal stacking form exposes more pyridine substituents, and the hydrogen bonding force between the substituents and the DNA bases allows the DNA to be quickly adsorbed on the surface of the assemblies. The effects of DNA sequence and length were systematically tested. In particular, the adsorption of duplex DNA was less efficient compared to the adsorption of single-stranded DNA. This fundamental study is useful for the further combination of DNA and porphyrin assemblies to prepare new functional hybrid nanomaterials.
Collapse
Affiliation(s)
- Jinghan Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario N2L 3G1, Canada
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Zhen Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario N2L 3G1, Canada
| | - Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario N2L 3G1, Canada
| | - Feng Bai
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
69
|
Chen X, Chen K, Du Z, Chu H, Zhu L, He X, Xu W. Fusion of binary split allosteric aptasensor for the ultra-sensitive and super-rapid detection of malachite green. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127976. [PMID: 34883379 DOI: 10.1016/j.jhazmat.2021.127976] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 05/27/2023]
Abstract
The complicated labeling procedure and high cost of split aptasensors have hitherto limited their application in the detection of hazardous substances. Herein we report the first examples of label-free aptasensors based on the fusion of a binary split G-quadruplex and malachite green (MG) aptamer, transducing recognition events into fluorescent signals through the allosteric regulation of the aptamer to achieve selective and sensitive detection. Specifically, RNA MGA was successfully converted into DNA MGA with comparable affinity and improved stability, thereby overcoming the limitations of poor stability and high expense. We subsequently split the DNA MGA and attached them to a G-rich DNA sequence at the 5' and 3' ends, to construct the binary split allosteric aptasensor. The performance of the binary split aptasensor for MG detection was significantly improved based on proposed allosteric regulation strategy, and the reconfiguration capability of the aptamers upon binding with targets was proven, providing the binary split aptasensor with superior sensitivity and selectivity. This sensing method has a wide dynamic detection range of 5 nmol·L-1 to 500 μmol·L-1, with a low limit of detection (LOD) of 4.17 nmol·L-1, and achieves the ultra-sensitive and super-rapid detection of MG. This newly proposed aptasensor is equipped with the advantages of being label-free, time saving and economical. More importantly, this successful construction of a fused aptasensor expands the principles of split aptasensor design and provides a universal platform for the detection of environmental contaminants.
Collapse
Affiliation(s)
- Xu Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Keren Chen
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zaihui Du
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Huashuo Chu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Xiaoyun He
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
70
|
Wang J, Zhu L, Li T, Li X, Huang K, Xu W. Multiple functionalities of functional nucleic acids for developing high-performance lateral flow assays. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
71
|
Zhan S, Jiang J, Zeng Z, Wang Y, Cui H. DNA-templated coinage metal nanostructures and their applications in bioanalysis and biomedicine. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
72
|
Mosley RJ, Hart J, Davis KL, Wower J, Byrne ME. Tailored Nucleic Acid Architectures at Gold Surfaces for Controlled Therapeutic Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1698-1704. [PMID: 35073106 DOI: 10.1021/acs.langmuir.1c02718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nucleic acids are versatile materials capable of forming smart nanocarriers with highly controllable therapeutic delivery. DNA-gated release is a mechanism by which DNA oligonucleotides physically block the release of encapsulated drugs from porous nanoparticles. We extend this mechanism to be used with drugs bound to the surface of DNA-capped gold nanoparticles (AuNPs). We investigated DNA monolayers of different thicknesses and hybridization states to determine how DNA surface architecture can affect the release of a template drug bound to the gold surface. DNA layers are investigated on the planar gold surface via quartz crystal microbalance with dissipation and on AuNPs via dynamic light scattering. The resultant layer architectures were studied for their effect on the release rate of drugs. We observed that varying DNA architectures on AuNPs result in different release rates of the drug. The rate of drug release can be slowed using either folded or randomly coiled DNA sequences, which act as a physical barrier to diffusion. DNA monolayers with upright orientation release drugs more quickly. When the longer single-stranded DNA is used, the drug release is slowed even further. However, even upright DNA layers provide a barrier to drug diffusion at longer sequence lengths. We hypothesize that it is the architecture of the DNA layer, influenced by the folded or upright orientation of individual DNA molecules, that affects the free diffusion of the drug away from the AuNP surface. This mechanism may improve the biological availability of many surface-bound drugs on solid, DNA-capped nanoparticles.
Collapse
Affiliation(s)
- Robert J Mosley
- Biomimetic and Biohybrid Materials, Biomedical Devices, and Drug Delivery Laboratories, Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Julia Hart
- Biomimetic and Biohybrid Materials, Biomedical Devices, and Drug Delivery Laboratories, Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Kadie L Davis
- Biomimetic and Biohybrid Materials, Biomedical Devices, and Drug Delivery Laboratories, Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Jacek Wower
- RNA Biochemistry Laboratories, Department of Animal Sciences, Auburn University, Auburn, Alabama 36849, United States
| | - Mark E Byrne
- Biomimetic and Biohybrid Materials, Biomedical Devices, and Drug Delivery Laboratories, Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
- Department of Chemical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
73
|
Zhao P, Li B, Li Y, Chen L, Wang H, Ye L. DNA-Templated ultrasmall bismuth sulfide nanoparticles for photoacoustic imaging of myocardial infarction. J Colloid Interface Sci 2022; 615:475-484. [PMID: 35150955 DOI: 10.1016/j.jcis.2022.01.194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
Abstract
Photoacoustic imaging (PAI) has shown great clinical potential in diagnosing various diseases due to its noninvasive, cost-effective, and real-time imaging properties but is limited by the lack of contrast agents with high sensitivity for deep tissue imaging. Here, DNA-templated ultrasmall bismuth sulfide (Bi2S3) nanoparticles (NPs) were reported as a photoacoustic (PA) probe for imaging myocardial infarction. We present a simple synthesis strategy of ultrasmall NPs via self-assembly of single-stranded DNA (ssDNA)/metal ion complexes. The in vivo imaging results showed a dramatically enhanced PA signal in the region of myocardial infarction after intravenous injection of DNA-Bi2S3 NPs in the myocardial ischaemia/reperfusion (I/R) mouse model. Further near infrared fluorescence imaging indicated that Bi2S3 NPs mainly accumulated in the infarcted area, leading to enhancement of PA signals. Moreover, such hybrid NPs possess a well-defined nanostructure, superior photobleaching resistance, excellent water dispersibility and negligible acute toxicity. These results not only demonstrate that ultrasmall DNA-Bi2S3 NPs are a potent PA probe for imaging the infarcted region but also provide a new avenue for preparing ultrasmall-sized PA probes by using ssDNA as a template.
Collapse
Affiliation(s)
- Peng Zhao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR. China
| | - Bing Li
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR. China
| | - Yingxu Li
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR. China
| | - Leshan Chen
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR. China
| | - Hao Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR. China.
| | - Ling Ye
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR. China
| |
Collapse
|
74
|
Wang Y, Zhen W, Jiang X, Li J. Driving Forces Sorted In Situ Size‐Increasing Strategy for Enhanced Tumor Imaging and Therapy. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202100117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yue Wang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Wenyao Zhen
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Jinghong Li
- Department of Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
75
|
Wang F, Li P, Chu HC, Lo PK. Nucleic Acids and Their Analogues for Biomedical Applications. BIOSENSORS 2022; 12:93. [PMID: 35200353 PMCID: PMC8869748 DOI: 10.3390/bios12020093] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 05/07/2023]
Abstract
Nucleic acids are emerging as powerful and functional biomaterials due to their molecular recognition ability, programmability, and ease of synthesis and chemical modification. Various types of nucleic acids have been used as gene regulation tools or therapeutic agents for the treatment of human diseases with genetic disorders. Nucleic acids can also be used to develop sensing platforms for detecting ions, small molecules, proteins, and cells. Their performance can be improved through integration with other organic or inorganic nanomaterials. To further enhance their biological properties, various chemically modified nucleic acid analogues can be generated by modifying their phosphodiester backbone, sugar moiety, nucleobase, or combined sites. Alternatively, using nucleic acids as building blocks for self-assembly of highly ordered nanostructures would enhance their biological stability and cellular uptake efficiency. In this review, we will focus on the development and biomedical applications of structural and functional natural nucleic acids, as well as the chemically modified nucleic acid analogues over the past ten years. The recent progress in the development of functional nanomaterials based on self-assembled DNA-based platforms for gene regulation, biosensing, drug delivery, and therapy will also be presented. We will then summarize with a discussion on the advanced development of nucleic acid research, highlight some of the challenges faced and propose suggestions for further improvement.
Collapse
Affiliation(s)
- Fei Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; (F.W.); (P.L.); (H.C.C.)
| | - Pan Li
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; (F.W.); (P.L.); (H.C.C.)
| | - Hoi Ching Chu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; (F.W.); (P.L.); (H.C.C.)
| | - Pik Kwan Lo
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; (F.W.); (P.L.); (H.C.C.)
- Key Laboratory of Biochip Technology, Biotech and Health Care, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
76
|
Zheng Y, Zhang L, Zhao J, Li L, Wang M, Gao P, Wang Q, Zhang X, Wang W. Advances in aptamers against Aβ and applications in Aβ detection and regulation for Alzheimer's disease. Theranostics 2022; 12:2095-2114. [PMID: 35265201 PMCID: PMC8899576 DOI: 10.7150/thno.69465] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/11/2022] [Indexed: 11/05/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disease, causing profound social and economic implications. Early diagnosis and treatment of AD have faced great challenges due to the slow and hidden onset. β-amyloid (Aβ) protein has been considered an important biomarker and therapeutic target for AD. Therefore, non-invasive, simple, rapid and real-time detection methods for AD biomarkers are particularly favored. With the development of Aβ aptamers, the specific recognition between aptamers and Aβ plays a significant role in AD theranostics. On the one hand, aptamers are applied to construct biosensors for Aβ detection, which provides possibilities for early diagnosis of AD. On the other hand, aptamers are used for regulating Aβ aggregation process, which provides potential strategies for AD treatment. Many excellent reviews have summarized aptamers for neurodegenerative diseases or biosensors using specific recognition probes for Aβ detection applications in AD. In this review, we highlight the crucial role of the design, classification and applications of aptamers on Aβ detection as well as inhibition of Aβ aggregation for AD.
Collapse
Affiliation(s)
- Yan Zheng
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Limin Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jinge Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Lingyun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Minxuan Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Peifeng Gao
- Analysis & Testing Center, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Xiaoling Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electro-photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
77
|
Chen X, He X, Gao R, Lan X, Zhu L, Chen K, Hu Y, Huang K, Xu W. Aptamer-Functionalized Binary-Drug Delivery System for Synergetic Obesity Therapy. ACS NANO 2022; 16:1036-1050. [PMID: 34967620 DOI: 10.1021/acsnano.1c08690] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The targeted delivery of phytochemicals that promote energy expenditure for obesity therapy remains a challenge. This study assembled a functionalized adipo-8 aptamer loaded with allicin using isothermal rolling-circle techniques to form a synergistic adipocyte-targeted binary-drug delivery system for treating obesity. The functionalized adipo-8 aptamer efficiently protected allicin from adsorption, showing significant potential to encapsulate, transport, and release molecular cargos into white adipose tissue. Introducing the negatively charged allicin, a phytochemical able to induce adipose tissue browning, reduced the diameters of DNA-nanoflower from 770 to 380 nm and increased cellular uptake efficiency up to 118.7%. The intracellular distribution observed via confocal microscopy confirmed the successful receptor recognition mediated by aptamers in the DNA-nanoflower-allicin (NFA) framework as well as its excellent stability to escape from lysosomes. In vivo results demonstrated that subcutaneous administration of NFA effectively promoted adipocyte browning and systematic energy expenditure with minimal side effects. Furthermore, the G-quadruplex in the mitochondrial uncoupling protein-1 promoter was found to be an interactive allicin target for regulating thermogenesis to combat obesity.
Collapse
Affiliation(s)
- Xu Chen
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruxin Gao
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xinyue Lan
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Keren Chen
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanzhou Hu
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
78
|
Wu Z, Xiao M, Lai W, Sun Y, Li L, Hu Z, Pei H. Nucleic Acid-Based Cell Surface Engineering Strategies and Their Applications. ACS APPLIED BIO MATERIALS 2022; 5:1901-1915. [DOI: 10.1021/acsabm.1c01126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhongdong Wu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yueyang Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zongqian Hu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
79
|
Li J, Zhang Y, Zhu L, Chen K, Li X, Xu W. Smart Nucleic Acid Hydrogels with High Stimuli-Responsiveness in Biomedical Fields. Int J Mol Sci 2022; 23:1068. [PMID: 35162990 PMCID: PMC8835224 DOI: 10.3390/ijms23031068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 02/01/2023] Open
Abstract
Due to their hydrophilic, biocompatible and adjustability properties, hydrogels have received a lot of attention. The introduction of nucleic acids has made hydrogels highly stimuli-responsiveness and they have become a new generation of intelligent biomaterials. In this review, the development and utilization of smart nucleic acid hydrogels (NAHs) with a high stimulation responsiveness were elaborated systematically. We discussed NAHs with a high stimuli-responsiveness, including pure NAHs and hybrid NAHs. In particular, four stimulation factors of NAHs were described in details, including pH, ions, small molecular substances, and temperature. The research progress of nucleic acid hydrogels in biomedical applications in recent years is comprehensively discussed. Finally, the opportunities and challenges facing the future development of nucleic acid hydrogels are also discussed.
Collapse
Affiliation(s)
- Jie Li
- Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
| | - Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
| | - Keren Chen
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
| | - Xiangyang Li
- Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing 100191, China
| |
Collapse
|
80
|
Yang X, Yang Z. Simple and Rapid Detection of Ibuprofen─A Typical Pharmaceuticals and Personal Care Products─by a Liquid Crystal Aptasensor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:282-288. [PMID: 34955019 DOI: 10.1021/acs.langmuir.1c02480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This work established a liquid crystal (LC) aptasensor for simple and rapid detection of ibuprofen, a typical pharmaceuticals and personal care products (PPCPs) pollutant. A negatively charged DNA aptamer specific for ibuprofen and a positively charged amphiphilic surfactant, hexadecyltrimethylammonium bromide (CTAB), were incubated with the sample and then directly added onto the LC interface. In the presence of ibuprofen, the specific binding of ibuprofen with the DNA aptamer will release CTAB, which then adsorbed at the LC-aqueous interface and induced the orientational change of LCs to homeotropic orientation with a dark optical signal output. While in the absence of ibuprofen, the DNA aptamer binds with CTAB through hydrophobic and electrostatic interactions, LCs remained in the planar orientation with a bright optical signal output. This LC aptasensor also has good specificity for ibuprofen and can even detect ibuprofen drug in tap water. Moreover, the response time of the LC aptasensor is fast in minutes. Additionally, this LC aptasensor benefits in monitoring the water quality and inspires the exploration of a general platform for PPCPs detection.
Collapse
Affiliation(s)
- Xiuxiu Yang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhongqiang Yang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
81
|
Lu C, Zhou S, Gao F, Lin J, Liu J, Zheng J. DNA-Mediated Growth of Noble Metal Nanomaterials for Biosensing Applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
82
|
Qi S, Duan N, Khan IM, Dong X, Zhang Y, Wu S, Wang Z. Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment. Biotechnol Adv 2022; 55:107902. [DOI: 10.1016/j.biotechadv.2021.107902] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023]
|
83
|
Beck KM, Pham RL, Nanim RA, Laustsen A, Nielsen P. Double‐Headed Nucleotides with Increased Base‐Pairing Affinity and Specificity. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kasper M. Beck
- Department of Physics, Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Robert L. Pham
- Department of Physics, Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Rita A. Nanim
- Department of Physics, Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Anders Laustsen
- Department of Physics, Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Poul Nielsen
- Department of Physics, Chemistry and Pharmacy University of Southern Denmark Campusvej 55 5230 Odense M Denmark
| |
Collapse
|
84
|
Chen K, Zhang Y, Zhu L, Chu H, Huang K, Shao X, Asakiya C, Huang K, Xu W. Insights into nucleic acid-based self-assembling nanocarriers for targeted drug delivery and controlled drug release. J Control Release 2021; 341:869-891. [PMID: 34952045 DOI: 10.1016/j.jconrel.2021.12.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
Over the past few decades, rapid advances of nucleic acid nanotechnology always drive the development of nanoassemblies with programmable design, powerful functionality, excellent biocompatibility and outstanding biosafety. Nowadays, nucleic acid-based self-assembling nanocarriers (NASNs) play an increasingly greater role in the research and development in biomedical studies, particularly in drug delivery, release and targeting. In this review, NASNs are systematically summarized the strategies cooperated with their broad applications in drug delivery. We first discuss the self-assembling methods of nanocarriers comprised of DNA, RNA and composite materials, and summarize various categories of targeting media, including aptamers, small molecule ligands and proteins. Furthermore, drug release strategies by smart-responding multiple kinds of stimuli are explained, and various applications of NASNs in drug delivery are discussed, including protein drugs, nucleic acid drugs, small molecule drugs and nanodrugs. Lastly, we propose limitations and potential of NASNs in the future development, and expect that NASNs enable facilitate the development of new-generation drug vectors to assist in solving the growing demands on disease diagnosis and therapy or other biomedicine-related applications in the real world.
Collapse
Affiliation(s)
- Keren Chen
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China
| | - Yangzi Zhang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China
| | - Longjiao Zhu
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China
| | - Huashuo Chu
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China
| | - Kunlun Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China
| | - Xiangli Shao
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China
| | - Charles Asakiya
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China
| | - Kunlun Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China.
| | - Wentao Xu
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, No. 17, Qinghua East Road, Beijing 100083, China.
| |
Collapse
|
85
|
A sandwich-based evanescent wave fluorescent biosensor for simple, real-time exosome detection †. Biosens Bioelectron 2021; 200:113902. [PMID: 34954570 DOI: 10.1016/j.bios.2021.113902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/14/2022]
Abstract
Exosomes are regarded as a promising biomarker for the noninvasive diagnosis and treatment of diseases. The value of exosomes for medical research has promoted the search for a fast, efficient, and sensitive detection method. This study reported a sandwich-based evanescent wave fluorescent biosensor (S-EWFB) for exosome detection. A two-step strategy was implemented to take advantages of the simple binding of fluorescent probes with exosomes via the hydrophobic interaction between the cholesteryl and phospholipid bilayer membrane, as well as real-time detection on an evanescent wave liquid-solid interface based on CD63 aptamer-specific capture to form an exosome@fluorescence probe/aptamer sandwich structure. The one-to-many connection between exosomes and signal molecules and the aptamer-modified evanescent wave optical fiber detection platform reduced the detection limit of exosomes to 7.66 particles/mL, with a linear range of 47.5-4.75 × 106 particles/mL. The entire detection process was simple, rapid, and real-time and lasted about 1 h while requiring no separation and purification. Additionally, this platform showed excellent surface regeneration capability and exhibited good performance during the analysis of tumor and non-tumor-derived exosomes.
Collapse
|
86
|
|
87
|
Jouha J, Xiong H. DNAzyme-Functionalized Nanomaterials: Recent Preparation, Current Applications, and Future Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2105439. [PMID: 34802181 DOI: 10.1002/smll.202105439] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/14/2021] [Indexed: 06/13/2023]
Abstract
DNAzyme-nanomaterial bioconjugates are a popular hybrid and have received major attention for diverse biomedical applications, such as bioimaging, biosensor development, cancer therapy, and drug delivery. Therefore, significant efforts are made to develop different strategies for the preparation of inorganic and organic nanoparticles (NPs) with specific morphologies and properties. DNAzymes functionalized with metal-organic frameworks (MOFs), gold nanoparticles (AuNPs), graphene oxide (GO), and molybdenum disulfide (MoS2 ) are introduced and summarized in detail in this review. Moreover, the focus is on representative examples of applications of DNAzyme-nanomaterials over recent years, especially in bioimaging, biosensing, phototherapy, and stimulation response delivery in living systems, with their several advantages and drawbacks. Finally, the perspective regarding the future directions of research addressing these challenges is also discussed and highlighted.
Collapse
Affiliation(s)
- Jabrane Jouha
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
88
|
Zhang X, Xu J, Yan C, Yao L, Shang H, Chen W. A Short- and Long-Range Fluorescence Resonance Energy Transfer-Cofunctionalized Fluorescence Quenching Collapsar Probe Regulates Amplified and Accelerated Detection of Salmonella. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14294-14301. [PMID: 34797054 DOI: 10.1021/acs.jafc.1c05780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Accurate and rapid quantification of foodborne pathogens is of great significance for food safety and human health. In this work, we have successfully constructed a fluorescence quenching collapsar probe (FQCP) on the basis of a conventional aptamer-encoded molecular beacon (AEMB) and applied it for the detection of Salmonella. In structure, the FQCP is assembled by AEMBs in fours via specific streptavidin and biotin binding. Such a simple format makes the FQCP cofunctionalized with short- and long-range fluorescence resonance energy transfer (FRET) effects, thereby leading to a significantly suppressed inherent background fluorescence that is much lower than that of the conventional AEMB. Moreover, the FQCP exhibits superior biostability because of the blocking of its 3' terminal. The reaction kinetics of the FQCP for Salmonella recognition is obviously improved since the probe designed with four binding sites increases the probability to react with Salmonella. As a result, the FQCP-based sensing platform can rapidly output the target detection signal within 30 min associated with a greatly improved signal-to-noise ratio up to 32.4. The system was also demonstrated with a well antimatrix effect for ultrasensitive detection of Salmonella from tap water, milk, red bull, green tea, orange juice, and Coca-Cola. Our study provides insights into the facile tailoring of functional nucleic acids for amplified and mix-to-answer detection of foodborne pathogens, which could become a powerful analytical tool for straightforward sensing of pathogens in the fields of food safety analysis, clinical diagnostics, and environmental monitoring.
Collapse
Affiliation(s)
- Xinlei Zhang
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jianguo Xu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chao Yan
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Anhui Province Institute of Product Quality Supervision & Inspection, Hefei 230051, P.R. China
| | - Li Yao
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Huijie Shang
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wei Chen
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
89
|
De Fazio AF, Misatziou D, Baker YR, Muskens OL, Brown T, Kanaras AG. Chemically modified nucleic acids and DNA intercalators as tools for nanoparticle assembly. Chem Soc Rev 2021; 50:13410-13440. [PMID: 34792047 PMCID: PMC8628606 DOI: 10.1039/d1cs00632k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 12/26/2022]
Abstract
The self-assembly of inorganic nanoparticles to larger structures is of great research interest as it allows the fabrication of novel materials with collective properties correlated to the nanoparticles' individual characteristics. Recently developed methods for controlling nanoparticle organisation have enabled the fabrication of a range of new materials. Amongst these, the assembly of nanoparticles using DNA has attracted significant attention due to the highly selective recognition between complementary DNA strands, DNA nanostructure versatility, and ease of DNA chemical modification. In this review we discuss the application of various chemical DNA modifications and molecular intercalators as tools for the manipulation of DNA-nanoparticle structures. In detail, we discuss how DNA modifications and small molecule intercalators have been employed in the chemical and photochemical DNA ligation in nanostructures; DNA rotaxanes and catenanes associated with reconfigurable nanoparticle assemblies; and DNA backbone modifications including locked nucleic acids, peptide nucleic acids and borane nucleic acids, which affect the stability of nanostructures in complex environments. We conclude by highlighting the importance of maximising the synergy between the communities of DNA chemistry and nanoparticle self-assembly with the aim to enrich the library of tools available for the manipulation of nanostructures.
Collapse
Affiliation(s)
- Angela F De Fazio
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Doxi Misatziou
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Ysobel R Baker
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Otto L Muskens
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Tom Brown
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Antonios G Kanaras
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
90
|
Yu X, Zhang S, Guo W, Li B, Yang Y, Xie B, Li K, Zhang L. Recent Advances on Functional Nucleic-Acid Biosensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:7109. [PMID: 34770415 PMCID: PMC8587875 DOI: 10.3390/s21217109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/17/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023]
Abstract
In the past few decades, biosensors have been gradually developed for the rapid detection and monitoring of human diseases. Recently, functional nucleic-acid (FNA) biosensors have attracted the attention of scholars due to a series of advantages such as high stability and strong specificity, as well as the significant progress they have made in terms of biomedical applications. However, there are few reports that systematically and comprehensively summarize its working principles, classification and application. In this review, we primarily introduce functional modes of biosensors that combine functional nucleic acids with different signal output modes. In addition, the mechanisms of action of several media of the FNA biosensor are introduced. Finally, the practical application and existing problems of FNA sensors are discussed, and the future development directions and application prospects of functional nucleic acid sensors are prospected.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.); (S.Z.); (W.G.); (B.L.); (Y.Y.); (B.X.); (K.L.)
| |
Collapse
|
91
|
|
92
|
Zhao D, Chang D, Zhang Q, Chang Y, Liu B, Sun C, Li Z, Dong C, Liu M, Li Y. Rapid and Specific Imaging of Extracellular Signaling Molecule Adenosine Triphosphate with a Self-Phosphorylating DNAzyme. J Am Chem Soc 2021; 143:15084-15090. [PMID: 34415153 DOI: 10.1021/jacs.1c04925] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adenosine 5'-triphosphate (ATP) is a central extracellular signaling agent involved in various physiological and pathological processes. However, precise measurements of the temporal and spatial components of ATP dynamics are lacking due primarily to the limitations of available methods for ATP detection. Here, we report on the first effort to design a self-phosphorylating DNAzyme (SPDz) sensor for fluorescence imaging of ATP. In response to ATP, SPDz sensors exhibit subsecond response kinetics, extremely high specificity, and micromolar affinities. In particular, we demonstrate cell-surface-anchored SPDz sensors for fluorescence imaging of both stress-induced endogenous ATP release in astrocytes and mechanical stimulation-evoked ATP release at the single-cell level. We also validated their utility for visualizing the rapid dynamic properties of ATP signaling upon electrical stimulation in astrocytes. Thus, SPDz sensors are robust tools for monitoring ATP signaling underlying diverse cellular processes.
Collapse
Affiliation(s)
- Dan Zhao
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - Dingran Chang
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S4K1, Canada
| | - Qiang Zhang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - Bo Liu
- School of Biomedical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Changsen Sun
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China
| | - Zhonping Li
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S4K1, Canada
| |
Collapse
|
93
|
Zhou WJ, Li H, Zhang KK, Wang F, Chu X, Jiang JH. Genetically Encoded Sensor Enables Endogenous RNA Imaging with Conformation-Switching Induced Fluorogenic Proteins. J Am Chem Soc 2021; 143:14394-14401. [PMID: 34431301 DOI: 10.1021/jacs.1c07719] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Genetically encoded molecular tools are crucial for live cell RNA imaging, and few are available for endogenous RNA imaging. We develop a new genetically encoded sensor using conformation switching RNA induced fluorogenic proteins that enable multicolor and signal-amplified imaging of endogenous RNAs. The sensor system is designed with an RNA sensing module and a degron-fused fluorescent protein reporter. Target RNA induces conformation switching of the RNA sensing module to form RNA aptamers that stabilize the degron-fused protein for fluorogenic imaging. This sensor is demonstrated for high-contrast imaging of survivin mRNA abundance and dynamics in live cells. Moreover, the sensor system is extended to a multicolor palette by screening fluorogenic proteins of distinct colors, and engineered into a signal amplifier using the split fluorescent protein design. The sensor is further exploited for imaging lncRNA MALAT-1 and its translocation dynamics during mitosis. Our sensor system can afford a valuable platform for RNA imaging in biomedical research and clinical theranostics.
Collapse
Affiliation(s)
- Wen-Jing Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Hua Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ke-Ke Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Fenglin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xia Chu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
94
|
Yang M, Wang Z, Ding T, Tang J, Xie X, Xing Y, Wang L, Zhang J, Cai K. Interfacial Engineering of Hybrid Polydopamine/Polypyrrole Nanosheets with Narrow Band Gaps for Fluorescence Sensing of MicroRNA. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42183-42194. [PMID: 34435770 DOI: 10.1021/acsami.1c11301] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoquencher-based biosensors have emerged as powerful tools for the detection of tumor markers, where challenges in efficiently docking the π-electron interaction interface toward nucleic acid probes containing π-electron-rich units of bases and fluorescent dyes still remain. Herein, we present hybrid polydopamine/polypyrrole nanosheets (PDA-PPy-NS) with π electron coupling and ultranarrow band gap (0.29 eV) by interfacial engineering of polymer hybrids at the nanoscale. PDA-PPy-NS were first prepared through oxidant-induced polymerization of pyrrole on PDA nanosheets. By utilizing fluorescent-dye-labeled single-stranded DNA as a probe, the hybrid nanoquencher showed ultrahigh fluorescence quenching ability, i.e., a Cy5-ssDNA/nanoquencher mass ratio of 36.9 under the complete quenching condition, which is comparable to that of graphene oxide. It was demonstrated that the energy level coupling of nanosheets and nucleic acid dye (Cy5) was the key factor contributing to the efficient photoinduced electron transfer (PET). Subsequently, the nanoquencher/DNA probe was proved to possess superior sensitivity and selectivity for efficient and reliable detection of miRNA-21 with a detection limit of 23.1 pM. Our work proves that the π-electron-rich biosensor interface can significantly enhance the PET efficiency, providing a theoretical basis for developing novel high-performance sensors.
Collapse
Affiliation(s)
- Mengnan Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Zhenqiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Tao Ding
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Jia Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Xiyue Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Yuxin Xing
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Lu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China
| |
Collapse
|
95
|
Khalaf MM, Abd El-Lateef HM, Mohamed IM, Zaki ME, Toghan A. Facile synthesis of gold-nanoparticles by different capping agents and their anticancer performance against liver cancer cells. COLLOID AND INTERFACE SCIENCE COMMUNICATIONS 2021; 44:100482. [DOI: 10.1016/j.colcom.2021.100482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
96
|
Li N, Chen L, Zeng C, Yang H, He S, Wei Q. Comparative Toxicity, Biodistribution and Excretion of Ultra-Small Gold Nanoclusters with Different Emission Wavelengths. J Biomed Nanotechnol 2021; 17:1778-1787. [PMID: 34688322 DOI: 10.1166/jbn.2021.3149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The exponentially increased use of gold nanoclusters in diagnosis and treatment has raised serious concern about their potential threat to living organisms. However, the mechanisms of toxicity of gold nanoclusters in vitro and in vivo remain poorly understood. In this work, comparative toxicity studies, including biodistribution and excretion, were carried out with mildly and chemically synthesized ultra-small L-histidine-protected and bovine serum albumin (BSA)-protected gold nanoclusters in an all-aqueous process. These nanoclusters did not induce a remarkable impact on cell viability, even at relatively high concentrations (100 μg/mL). The haemolytic assay demonstrated that the gold nanoclusters could not destroy blood cell at 600 μg/mL. After intravenous injection with mice, the biocompatibility, biodistribution, and excretion were determined. Quantitative analysis results showed that accumulation varied in the liver, spleen, kidney, and lung, though primarily in the liver and spleen. They were excreted in urine and faeces, but mainly excreted through urine. In our study, no obvious abnormalities were found in body weight, behavioral changes, blood and serum biochemical indicators, and histopathology. These findings suggested that both gold nanoclusters showed similar effects in vivo and were safe and biocompatible, laying the foundation for safe biomedical application in the future.
Collapse
Affiliation(s)
- Na Li
- Guangxi Key Laboratory of Agricultural Resources Chemistry & Biotechnology, College of Chemistry & Food Science, Yulin Normal University, Yulin, 537000, PR China
| | - Lina Chen
- Guangxi Key Laboratory of Agricultural Resources Chemistry & Biotechnology, College of Chemistry & Food Science, Yulin Normal University, Yulin, 537000, PR China
| | - Chujie Zeng
- Guangxi Key Laboratory of Agricultural Resources Chemistry & Biotechnology, College of Chemistry & Food Science, Yulin Normal University, Yulin, 537000, PR China
| | - Huanggen Yang
- Guangxi Key Laboratory of Agricultural Resources Chemistry & Biotechnology, College of Chemistry & Food Science, Yulin Normal University, Yulin, 537000, PR China
| | - Silian He
- Guangxi Key Laboratory of Agricultural Resources Chemistry & Biotechnology, College of Chemistry & Food Science, Yulin Normal University, Yulin, 537000, PR China
| | - Qingmin Wei
- Guangxi Key Laboratory of Agricultural Resources Chemistry & Biotechnology, College of Chemistry & Food Science, Yulin Normal University, Yulin, 537000, PR China
| |
Collapse
|
97
|
Mou L, Hong H, Xu X, Xia Y, Jiang X. Digital Hybridization Human Papillomavirus Assay with Attomolar Sensitivity without Amplification. ACS NANO 2021; 15:13077-13084. [PMID: 34324808 DOI: 10.1021/acsnano.1c02311] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Detection of nucleic acid without amplification can avoid problems associated with thermal cycling such as labor-intensiveness and aerosol pollution. Here we develop a droplet-based digital microfluidic hybridization assay for nucleic acid detection with attomolar sensitivity. This assay provides a clinically useful sensitivity for detecting human papillomavirus (HPV) without amplification. The sensitivity is accomplished using femtoliter-sized droplet microfluidics for concentrating enzyme-catalyzed fluorescent products into a detectable signal and magnetic beads for accelerating reaction time. Meanwhile, using magnetic beads and droplet microfluidic chips, we can improve the sampling efficiency over conventional methods. We characterized the sensitivity, selectivity, detection range, stability, and accuracy of our assay. Our assay is 50-fold more sensitive than the traditional hybrid capture assay. The assay without amplification avoids problems of complex handling procedures and aerosol pollution. The direct and sensitive detection of nucleic acid using a droplet microfluidic system provides an early disease diagnosis tool.
Collapse
Affiliation(s)
- Lei Mou
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong 510150, P. R. China
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Honghai Hong
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong 510150, P. R. China
| | - Xiaojian Xu
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Yong Xia
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong 510150, P. R. China
| | - Xingyu Jiang
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong 510150, P. R. China
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
98
|
Zhu R, Feng H, Li Q, Su L, Fu Q, Li J, Song J, Yang H. Asymmetric Core–Shell Gold Nanoparticles and Controllable Assemblies for SERS Ratiometric Detection of MicroRNA. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rong Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Hongjuan Feng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Qingqing Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 P. R. China
| |
Collapse
|
99
|
Yu Q, Ren K, You M. Genetically encoded RNA nanodevices for cellular imaging and regulation. NANOSCALE 2021; 13:7988-8003. [PMID: 33885099 PMCID: PMC8122502 DOI: 10.1039/d0nr08301a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nucleic acid-based nanodevices have been widely used in the fields of biosensing and nanomedicine. Traditionally, the majority of these nanodevices were first constructed in vitro using synthetic DNA or RNA oligonucleotides and then delivered into cells. Nowadays, the emergence of genetically encoded RNA nanodevices has provided a promising alternative approach for intracellular analysis and regulation. These genetically encoded RNA-based nanodevices can be directly transcribed and continuously produced inside living cells. A variety of highly precise and programmable nanodevices have been constructed in this way during the last decade. In this review, we will summarize the recent advances in the design and function of these artificial genetically encoded RNA nanodevices. In particular, we will focus on their applications in regulating cellular gene expression, imaging, logic operation, structural biology, and optogenetics. We believe these versatile RNA-based nanodevices will be broadly used in the near future to probe and program cells and other biological systems.
Collapse
Affiliation(s)
- Qikun Yu
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Kewei Ren
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
100
|
Zhu R, Feng H, Li Q, Su L, Fu Q, Li J, Song J, Yang H. Asymmetric Core–Shell Gold Nanoparticles and Controllable Assemblies for SERS Ratiometric Detection of MicroRNA. Angew Chem Int Ed Engl 2021; 60:12560-12568. [DOI: 10.1002/anie.202102893] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/20/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Rong Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Hongjuan Feng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Qingqing Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 P. R. China
| |
Collapse
|