51
|
NMR studies on the conformation, stability and dynamics of alamethicin in methanol. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2020; 49:113-124. [PMID: 31912177 DOI: 10.1007/s00249-019-01418-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 10/25/2022]
Abstract
Alamethicin is an antibiotic peptide comprising 20 amino acid residues and functions as an ion channel in biological membranes. Natural alamethicins have a variety of amino acid sequences. Two of them, used as a mixed sample in this study, are: UPUAUAQUVUGLUPVUUQQO and UPUAUUQUVUGLUPVUUQQO, where U and O represent α-aminoisobutyric acid and phenylalaninol, respectively. As indicated, only the amino acid at position six differs, and the two alamethicins are referred to as alamethicin-A6 and -U6, respectively. The conformation and thermal stability of alamethicin-A6 and -U6 in methanol were examined using proton nuclear magnetic resonance (NMR) spectroscopy. Both alamethicins form an α-helix between the 2nd and 11th residues. The N-terminal, 19th and C-terminal residues take a non-helical conformation. The structure between the 12th and 18th residues has not been well determined due to the absence of cross peaks in the two-dimensional NMR data. The α-helices are maintained up to 54 °C at least. In contrast to these similarities, it has been found that the length of the α-helix of alamethicin-U6 is somewhat shorter than that of alamethicin-A6, the intra-molecular hydrogen bonds formed by the amide proton of the seventh residue is much more thermally stable for alamethicin-U6 than for alamethicin-A6, and the C-terminal residue of alamethicin-U6 has higher mobility than that of alamethicin-A6. The mobility of the N- and C-terminal residues is discussed on the basis of a model chain which consists of particles connected by rigid links, and the physiological significance of the mobility is emphasized.
Collapse
|
52
|
Wimley WC, Hristova K. The Mechanism of Membrane Permeabilization by Peptides: Still an Enigma. Aust J Chem 2019; 73:96-103. [PMID: 32341596 DOI: 10.1071/ch19449] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Peptide-induced permeabilization of lipid vesicles has been measured for decades and has provided many insights into the sequence-structure-function relationships of membrane-active peptides. However, researchers in the field have noted that many experiments show transient permeabilization, in which a burst of leakage occurs immediately after peptide addition, followed by a slowdown or cessation of leakage before all contents have been released. This widely observed, but rarely studied, phenomenon is not explained by standard equilibrium pore models that are commonly invoked in both experimental and computational studies. Here we discuss observations of transient permeabilization, and we outline a pathway towards understanding this enigmatic phenomenon.
Collapse
Affiliation(s)
- William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
53
|
Accelerated Molecular Dynamics Applied to the Peptaibol Folding Problem. Int J Mol Sci 2019; 20:ijms20174268. [PMID: 31480404 PMCID: PMC6747184 DOI: 10.3390/ijms20174268] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 01/18/2023] Open
Abstract
The use of enhanced sampling molecular dynamics simulations to facilitate the folding of proteins is a relatively new approach which has quickly gained momentum in recent years. Accelerated molecular dynamics (aMD) can elucidate the dynamic path from the unfolded state to the near-native state, “flattened” by introducing a non-negative boost to the potential. Alamethicin F30/3 (Alm F30/3), chosen in this study, belongs to the class of peptaibols that are 7–20 residue long, non-ribosomally synthesized, amphipathic molecules that show interesting membrane perturbing activity. The recent studies undertaken on the Alm molecules and their transmembrane channels have been reviewed. Three consecutive simulations of ~900 ns each were carried out where N-terminal folding could be observed within the first 100 ns, while C-terminal folding could only be achieved almost after 800 ns. It took ~1 μs to attain the near-native conformation with stronger potential boost which may take several μs worth of classical MD to produce the same results. The Alm F30/3 hexamer channel was also simulated in an E. coli mimicking membrane under an external electric field that correlates with previous experiments. It can be concluded that aMD simulation techniques are suited to elucidate peptaibol structures and to understand their folding dynamics.
Collapse
|
54
|
Salnikov ES, De Zotti M, Bobone S, Mazzuca C, Raya J, Siano AS, Peggion C, Toniolo C, Stella L, Bechinger B. Trichogin GA IV Alignment and Oligomerization in Phospholipid Bilayers. Chembiochem 2019; 20:2141-2150. [PMID: 31125169 DOI: 10.1002/cbic.201900263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 12/21/2022]
Abstract
Trichogin GA IV is a short peptaibol with antimicrobial activity. This uncharged, but amphipathic, sequence is aligned at the membrane interface and undergoes a transition to an aggregated state that inserts more deeply into the membrane, an assembly that predominates at a peptide-to-lipid ratio (P/L) of 1:20. In this work, the natural trichogin sequence was prepared and reconstituted into oriented lipid bilayers. The 15 N NMR chemical shift is indicative of a well-defined alignment of the peptide parallel to the membrane surface at P/Ls of 1:120 and 1:20. When the P/L is increased to 1:8, an additional peptide topology is observed that is indicative of a heterogeneous orientation, with helix alignments ranging from around the magic angle to perfectly in-plane. The topological preference of the trichogin helix for an orientation parallel to the membrane surface was confirmed by attenuated total reflection FTIR spectroscopy. Furthermore, 19 F CODEX experiments were performed on a trichogin sequence with 19 F-Phe at position 10. The CODEX decay is in agreement with a tetrameric complex, in which the 19 F sites are about 9-9.5 Å apart. Thus, a model emerges in which the monomeric peptide aligns along the membrane surface. When the peptide concentration increases, first dimeric and then tetrameric assemblies form, made up from helices oriented predominantly parallel to the membrane surface. The formation of these aggregates correlates with the release of vesicle contents including relatively large molecules.
Collapse
Affiliation(s)
- Evgeniy S Salnikov
- Institut de Chimie, University of Strasbourg, CNRS, UMR 7177, 4, rue Blaise Pascal, 67070, Strasbourg, France
| | - Marta De Zotti
- ICB, Padova Unit, CNR', Department of Chemistry, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Sara Bobone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Claudia Mazzuca
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Jesus Raya
- Institut de Chimie, University of Strasbourg, CNRS, UMR 7177, 4, rue Blaise Pascal, 67070, Strasbourg, France
| | - Alvaro S Siano
- Departamento de Química Organica, Facultad de Bioquímica y Ciencias Biologicas, Universidad Nacional del Litoral, Ciudad Universitaria UNL, Ruta Nacional N° 168, Km 472, Santa Fe, 3000, Argentina
| | - Cristina Peggion
- ICB, Padova Unit, CNR', Department of Chemistry, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Claudio Toniolo
- ICB, Padova Unit, CNR', Department of Chemistry, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Burkhard Bechinger
- Institut de Chimie, University of Strasbourg, CNRS, UMR 7177, 4, rue Blaise Pascal, 67070, Strasbourg, France
| |
Collapse
|
55
|
Marik T, Tyagi C, Balázs D, Urbán P, Szepesi Á, Bakacsy L, Endre G, Rakk D, Szekeres A, Andersson MA, Salonen H, Druzhinina IS, Vágvölgyi C, Kredics L. Structural Diversity and Bioactivities of Peptaibol Compounds From the Longibrachiatum Clade of the Filamentous Fungal Genus Trichoderma. Front Microbiol 2019; 10:1434. [PMID: 31293557 PMCID: PMC6606783 DOI: 10.3389/fmicb.2019.01434] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/06/2019] [Indexed: 01/18/2023] Open
Abstract
This study examined the structural diversity and bioactivity of peptaibol compounds produced by species from the phylogenetically separated Longibrachiatum Clade of the filamentous fungal genus Trichoderma, which contains several biotechnologically, agriculturally and clinically important species. HPLC-ESI-MS investigations of crude extracts from 17 species of the Longibrachiatum Clade (T. aethiopicum, T. andinense, T. capillare, T. citrinoviride, T. effusum, T. flagellatum, T. ghanense, T. konilangbra, T. longibrachiatum, T. novae-zelandiae, T. pinnatum, T. parareesei, T. pseudokoningii, T. reesei, T. saturnisporum, T. sinensis, and T. orientale) revealed several new and recurrent 20-residue peptaibols related to trichobrachins, paracelsins, suzukacillins, saturnisporins, trichoaureocins, trichocellins, longibrachins, hyporientalins, trichokonins, trilongins, metanicins, trichosporins, gliodeliquescins, alamethicins and hypophellins, as well as eight 19-residue sequences from a new subfamily of peptaibols named brevicelsins. Non-ribosomal peptide synthetase genes were mined from the available genome sequences of the Longibrachiatum Clade. Their annotation and product prediction were performed in silico and revealed full agreement in 11 out of 20 positions regarding the amino acids predicted based on the signature sequences and the detected amino acids incorporated. Molecular dynamics simulations were performed for structural characterization of four selected peptaibol sequences: paracelsins B, H and their 19-residue counterparts brevicelsins I and IV. Loss of position R6 in brevicelsins resulted in smaller helical structures with higher atomic fluctuation for every residue than the structures formed by paracelsins. We observed the formation of highly bent, almost hairpin-like, helical structures throughout the trajectory, along with linear conformation. Bioactivity tests were performed on the purified peptaibol extract of T. reesei on clinically and phytopathologically important filamentous fungi, mammalian cells, and Arabidopsis thaliana seedlings. Porcine kidney cells and boar spermatozoa proved to be sensitive to the purified peptaibol extract. Peptaibol concentrations ≥0.3 mg ml-1 deterred the growth of A. thaliana. However, negative effects to plants were not detected at concentrations below 0.1 mg ml-1, which could still inhibit plant pathogenic filamentous fungi, suggesting that those peptaibols reported here may have applications for plant protection.
Collapse
Affiliation(s)
- Tamás Marik
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Chetna Tyagi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Dóra Balázs
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Péter Urbán
- Department of General and Environmental Microbiology, Faculty of Sciences, and Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Ágnes Szepesi
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László Bakacsy
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Endre
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Dávid Rakk
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | | | - Heidi Salonen
- Department of Civil Engineering, Aalto University, Espoo, Finland
| | - Irina S. Druzhinina
- Research Area Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
- Jiangsu Provincial Key Laboratory of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
56
|
Baranova AA, Rogozhin EA, Georgieva ML, Bilanenko EN, Kul’ko AB, Yakushev AV, Alferova VA, Sadykova VS. Antimicrobial Peptides Produced by Alkaliphilic Fungi Emericellopsis alkalina: Biosynthesis and Biological Activity Against Pathogenic Multidrug-Resistant Fungi. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819020030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
57
|
Abstract
Membrane permeabilizing peptides (MPPs) are as ubiquitous as the lipid bilayer membranes they act upon. Produced by all forms of life, most membrane permeabilizing peptides are used offensively or defensively against the membranes of other organisms. Just as nature has found many uses for them, translational scientists have worked for decades to design or optimize membrane permeabilizing peptides for applications in the laboratory and in the clinic ranging from antibacterial and antiviral therapy and prophylaxis to anticancer therapeutics and drug delivery. Here, we review the field of membrane permeabilizing peptides. We discuss the diversity of their sources and structures, the systems and methods used to measure their activities, and the behaviors that are observed. We discuss the fact that "mechanism" is not a discrete or a static entity for an MPP but rather the result of a heterogeneous and dynamic ensemble of structural states that vary in response to many different experimental conditions. This has led to an almost complete lack of discrete three-dimensional active structures among the thousands of known MPPs and a lack of useful or predictive sequence-structure-function relationship rules. Ultimately, we discuss how it may be more useful to think of membrane permeabilizing peptides mechanisms as broad regions of a mechanistic landscape rather than discrete molecular processes.
Collapse
Affiliation(s)
- Shantanu Guha
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Jenisha Ghimire
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Eric Wu
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - William C Wimley
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| |
Collapse
|
58
|
Abbasi F, Su Z, Alvarez-Malmagro J, Leitch JJ, Lipkowski J. Effects of Amiloride, an Ion Channel Blocker, on Alamethicin Pore Formation in Negatively Charged, Gold-Supported, Phospholipid Bilayers: A Molecular View. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5060-5068. [PMID: 30888178 DOI: 10.1021/acs.langmuir.9b00187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The effects of amiloride on the structure and conductivity of alamethicin ion pore formation within negatively charged, gold-supported, 1,2-dimyristoyl- sn-glycero-3-phosphocholine/Egg-PG membranes were investigated with the help of electrochemical impedance spectroscopy (EIS), photon polarization modulation-infrared reflection spectroscopy (PM-IRRAS), and atomic force microscopy (AFM). The EIS results indicate that ion conductivity across negatively charged phospholipid bilayers containing alamethicin decreases by an order of magnitude when amiloride is introduced to the system. Despite the reduction in ion conductivity, the PM-IRRAS data shows that amiloride does not inhibit ion channel formation by alamethicin peptides. High-resolution AFM images revealed that amiloride enlarges and distorts the shape of alamethicin ion pores when introduced to the system, indicating that it is inserting itself into the mouth of the alamethicin pores. This effect is driven by electrostatic interactions between positively charged amiloride molecules and the negative charge on the membrane.
Collapse
Affiliation(s)
- Fatemeh Abbasi
- Department of Chemistry , University of Guelph , Guelph , Ontario , Canada N1G 2W1
| | - ZhangFei Su
- Department of Chemistry , University of Guelph , Guelph , Ontario , Canada N1G 2W1
| | | | - J Jay Leitch
- Department of Chemistry , University of Guelph , Guelph , Ontario , Canada N1G 2W1
| | - Jacek Lipkowski
- Department of Chemistry , University of Guelph , Guelph , Ontario , Canada N1G 2W1
| |
Collapse
|
59
|
Tyagi C, Marik T, Szekeres A, Vágvölgyi C, Kredics L, Ötvös F. Tripleurin XIIc: Peptide Folding Dynamics in Aqueous and Hydrophobic Environment Mimic Using Accelerated Molecular Dynamics. Molecules 2019; 24:E358. [PMID: 30669493 PMCID: PMC6359335 DOI: 10.3390/molecules24020358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 01/11/2023] Open
Abstract
Peptaibols are a special class of fungal peptides with an acetylated N-terminus and a C-terminal 1,2-amino alcohol along with non-standard amino acid residues. New peptaibols named tripleurins were recently identified from a strain of the filamentous fungal species Trichoderma pleuroti, which is known to cause green mould disease on cultivated oyster mushrooms. To understand the mode of action of these peptaibols, the three-dimensional structure of tripleurin (TPN) XIIc, an 18-mer peptide, was elucidated using an enhanced sampling method, accelerated MD, in water and chloroform solvents. Non-standard residues were parameterized by the Restrained Electrostatic Potential (RESP) charge fitting method. The dihedral distribution indicated towards a right-handed helical formation for TPN XIIc in both solvents. Dihedral angle based principal component analysis revealed a propensity for a slightly bent, helical folded conformation in water solvent, while two distinct conformations were revealed in chloroform: One that folds into highly bent helical structure that resembles a beta-hairpin and another with an almost straight peptide backbone appearing as a rare energy barrier crossing event. The hinge-like movement of the terminals was also observed and is speculated to be functionally relevant. The convergence and efficient sampling is addressed using Cartesian PCA and Kullback-Leibler divergence methods.
Collapse
Affiliation(s)
- Chetna Tyagi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Tamás Marik
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Ferenc Ötvös
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary.
| |
Collapse
|
60
|
Galgóczy L, Marx F. Do Antimicrobial Proteins Contribute to Overcoming the Hidden Antifungal Crisis at the Dawn of a Post-Antibiotic Era? Microorganisms 2019; 7:16. [PMID: 30641886 PMCID: PMC6352135 DOI: 10.3390/microorganisms7010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/14/2022] Open
Abstract
The incidence of fungal infections has been grossly underestimated in the past decades as a consequence of poor identification techniques and a lack of regular epidemiologic surveys in low- and middle-income countries [...].
Collapse
Affiliation(s)
- László Galgóczy
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary.
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Florentine Marx
- Biocenter, Division of Molecular Biology, Medical University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| |
Collapse
|
61
|
Aisenbrey C, Marquette A, Bechinger B. The Mechanisms of Action of Cationic Antimicrobial Peptides Refined by Novel Concepts from Biophysical Investigations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1117:33-64. [PMID: 30980352 DOI: 10.1007/978-981-13-3588-4_4] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Even 30 years after the discovery of magainins, biophysical and structural investigations on how these peptides interact with membranes can still bear surprises and add new interesting detail to how these peptides exert their antimicrobial action. Early on, using oriented solid-state NMR spectroscopy, it was found that the amphipathic helices formed by magainins are active when being oriented parallel to the membrane surface. More recent investigations indicate that this in-planar alignment is also found when PGLa and magainin in combination exert synergistic pore-forming activities, where studies on the mechanism of synergistic interaction are ongoing. In a related manner, the investigation of dimeric antimicrobial peptide sequences has become an interesting topic of research which bears promise to refine our views how antimicrobial action occurs. The molecular shape concept has been introduced to explain the effects of lipids and peptides on membrane morphology, locally and globally, and in particular of cationic amphipathic helices that partition into the membrane interface. This concept has been extended in this review to include more recent ideas on soft membranes that can adapt to external stimuli including membrane-disruptive molecules. In this manner, the lipids can change their shape in the presence of low peptide concentrations, thereby maintaining the bilayer properties. At higher peptide concentrations, phase transitions occur which lead to the formation of pores and membrane lytic processes. In the context of the molecular shape concept, the properties of lipopeptides, including surfactins, are shortly presented, and comparisons with the hydrophobic alamethicin sequence are made.
Collapse
Affiliation(s)
| | - Arnaud Marquette
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, Strasbourg, France
| | - Burkhard Bechinger
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, Strasbourg, France. .,Faculté de chimie, Institut le Bel, Strasbourg, France.
| |
Collapse
|
62
|
Das S, Ben Haj Salah K, Djibo M, Inguimbert N. Peptaibols as a model for the insertions of chemical modifications. Arch Biochem Biophys 2018; 658:16-30. [DOI: 10.1016/j.abb.2018.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/05/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
|
63
|
Al-Huniti MH, Rivera-Chávez J, Colón KL, Stanley JL, Burdette JE, Pearce CJ, Oberlies NH, Croatt MP. Development and Utilization of a Palladium-Catalyzed Dehydration of Primary Amides To Form Nitriles. Org Lett 2018; 20:6046-6050. [PMID: 30221526 PMCID: PMC6179452 DOI: 10.1021/acs.orglett.8b02422] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
A palladium(II) catalyst,
in the presence of Selectfluor, enables
the efficient and chemoselective transformation of primary amides
into nitriles. The amides can be attached to aromatic rings, heteroaromatic
rings, or aliphatic side chains, and the reactions tolerate steric
bulk and electronic modification. Dehydration of a peptaibol containing
three glutamine groups afforded structure–activity relationships
for each glutamine residue. Thus, this dehydration can act similarly
to an alanine scan for glutamines via synthetic mutation.
Collapse
Affiliation(s)
- Mohammed H Al-Huniti
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , 435 Sullivan Science Building , Greensboro , North Carolina 27402 , United States
| | - José Rivera-Chávez
- Institute of Chemistry, Universidad Nacional Autónoma de México , Circuito Exterior s/n , Coyacán , Mexico City 04510 , Mexico
| | - Katsuya L Colón
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , 435 Sullivan Science Building , Greensboro , North Carolina 27402 , United States
| | - Jarrod L Stanley
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , 435 Sullivan Science Building , Greensboro , North Carolina 27402 , United States
| | - Joanna E Burdette
- Department of Medicinal Chemistry and Pharmacognosy , University of Illinois at Chicago , 900 A. Ashland Avenue , Chicago , Illinois 60607 , United States
| | - Cedric J Pearce
- Mycosynthetix, Inc. , Suite 103, 505 Meadowlands Drive , Hillsborough , North Carolina 27278 , United States
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , 435 Sullivan Science Building , Greensboro , North Carolina 27402 , United States
| | - Mitchell P Croatt
- Department of Chemistry and Biochemistry , University of North Carolina at Greensboro , 435 Sullivan Science Building , Greensboro , North Carolina 27402 , United States
| |
Collapse
|
64
|
Castagnoli E, Marik T, Mikkola R, Kredics L, Andersson M, Salonen H, Kurnitski J. IndoorTrichodermastrains emitting peptaibols in guttation droplets. J Appl Microbiol 2018; 125:1408-1422. [DOI: 10.1111/jam.13920] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/29/2018] [Accepted: 05/09/2018] [Indexed: 01/25/2023]
Affiliation(s)
- E. Castagnoli
- Department of Civil Engineering; Aalto University; Espoo Finland
| | - T. Marik
- Department of Microbiology; Faculty of Science and Informatics; University of Szeged; Szeged Hungary
| | - R. Mikkola
- Department of Civil Engineering; Aalto University; Espoo Finland
| | - L. Kredics
- Department of Microbiology; Faculty of Science and Informatics; University of Szeged; Szeged Hungary
| | - M.A. Andersson
- Department of Civil Engineering; Aalto University; Espoo Finland
- Department of Food and Environmental Science; Helsinki University; Helsinki Finland
| | - H. Salonen
- Department of Civil Engineering; Aalto University; Espoo Finland
| | - J. Kurnitski
- Department of Civil Engineering; Aalto University; Espoo Finland
- Department of Civil Engineering and Architecture; Tallinn University of Technology; Tallinn Estonia
| |
Collapse
|
65
|
Dotson BR, Soltan D, Schmidt J, Areskoug M, Rabe K, Swart C, Widell S, Rasmusson AG. The antibiotic peptaibol alamethicin from Trichoderma permeabilises Arabidopsis root apical meristem and epidermis but is antagonised by cellulase-induced resistance to alamethicin. BMC PLANT BIOLOGY 2018; 18:165. [PMID: 30097019 PMCID: PMC6086028 DOI: 10.1186/s12870-018-1370-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 07/25/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Trichoderma fungi live in the soil rhizosphere and are beneficial for plant growth and pathogen resistance. Several species and strains are currently used worldwide in co-cultivation with crops as a biocontrol alternative to chemical pesticides even though little is known about the exact mechanisms of the beneficial interaction. We earlier found alamethicin, a peptide antibiotic secreted by Trichoderma, to efficiently permeabilise cultured tobacco cells. However, pre-treatment with Trichoderma cellulase made the cells resistant to subsequent alamethicin, suggesting a potential mechanism for plant tolerance to Trichoderma, needed for mutualistic symbiosis. RESULTS We here investigated intact sterile-grown Arabidopsis thaliana seedlings germinated in water or growth medium. These could be permeabilised by alamethicin but not if pretreated with cellulase. By following the fluorescence from the membrane-impermeable DNA-binding probe propidium iodide, we found alamethicin to mainly permeabilise root tips, especially the apical meristem and epidermis cells, but not the root cap and basal meristem cells nor cortex cells. Alamethicin permeabilisation and cellulase-induced resistance were confirmed by developing a quantitative in situ assay based on NADP-isocitrate dehydrogenase accessibility. The combined assays also showed that hyperosmotic treatment after the cellulase pretreatment abolished the induced cellulase resistance. CONCLUSION We here conclude the presence of cell-specific alamethicin permeabilisation, and cellulase-induced resistance to it, in root tip apical meristem and epidermis of the model organism A. thaliana. We suggest that contact between the plasma membrane and the cell wall is needed for the resistance to remain. Our results indicate a potential mode for the plant to avoid negative effects of alamethicin on plant growth and localises the point of potential damage and response. The results also open up for identification of plant genetic components essential for beneficial effects from Trichoderma on plants.
Collapse
Affiliation(s)
- Bradley R. Dotson
- Department of Biology, Lund University, Sölvegatan 35B, 223 62 Lund, Sweden
| | - Dia Soltan
- Department of Biology, Lund University, Sölvegatan 35B, 223 62 Lund, Sweden
- Present Address: Botany Department, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - John Schmidt
- Department of Biology, Lund University, Sölvegatan 35B, 223 62 Lund, Sweden
- Present Address: MariboHilleshög AB, Säbyholmsvägen 24, 261 91 Landskrona, Sweden
| | - Mariam Areskoug
- Department of Biology, Lund University, Sölvegatan 35B, 223 62 Lund, Sweden
| | - Kenny Rabe
- Department of Biology, Lund University, Sölvegatan 35B, 223 62 Lund, Sweden
- Present Address: Institute of Natural Materials Technology, Technische Universität Dresden, Bergstraße 120, 01069 Dresden, Germany
| | - Corné Swart
- Department of Biology, Lund University, Sölvegatan 35B, 223 62 Lund, Sweden
- Present Address: Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Susanne Widell
- Department of Biology, Lund University, Sölvegatan 35B, 223 62 Lund, Sweden
| | - Allan G. Rasmusson
- Department of Biology, Lund University, Sölvegatan 35B, 223 62 Lund, Sweden
| |
Collapse
|
66
|
Su Z, Shodiev M, Jay Leitch J, Abbasi F, Lipkowski J. In situ electrochemical and PM-IRRAS studies of alamethicin ion channel formation in model phospholipid bilayers. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.10.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
67
|
Marquette A, Bechinger B. Biophysical Investigations Elucidating the Mechanisms of Action of Antimicrobial Peptides and Their Synergism. Biomolecules 2018; 8:E18. [PMID: 29670065 PMCID: PMC6023007 DOI: 10.3390/biom8020018] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 01/30/2023] Open
Abstract
Biophysical and structural investigations are presented with a focus on the membrane lipid interactions of cationic linear antibiotic peptides such as magainin, PGLa, LL37, and melittin. Observations made with these peptides are distinct as seen from data obtained with the hydrophobic peptide alamethicin. The cationic amphipathic peptides predominantly adopt membrane alignments parallel to the bilayer surface; thus the distribution of polar and non-polar side chains of the amphipathic helices mirror the environmental changes at the membrane interface. Such a membrane partitioning of an amphipathic helix has been shown to cause considerable disruptions in the lipid packing arrangements, transient openings at low peptide concentration, and membrane disintegration at higher peptide-to-lipid ratios. The manifold supramolecular arrangements adopted by lipids and peptides are represented by the 'soft membranes adapt and respond, also transiently' (SMART) model. Whereas molecular dynamics simulations provide atomistic views on lipid membranes in the presence of antimicrobial peptides, the biophysical investigations reveal interesting details on a molecular and supramolecular level, and recent microscopic imaging experiments delineate interesting sequences of events when bacterial cells are exposed to such peptides. Finally, biophysical studies that aim to reveal the mechanisms of synergistic interactions of magainin 2 and PGLa are presented, including unpublished isothermal titration calorimetry (ITC), circular dichroism (CD) and dynamic light scattering (DLS) measurements that suggest that the peptides are involved in liposome agglutination by mediating intermembrane interactions. A number of structural events are presented in schematic models that relate to the antimicrobial and synergistic mechanism of amphipathic peptides when they are aligned parallel to the membrane surface.
Collapse
Affiliation(s)
- Arnaud Marquette
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4, rue Blaise Pascal, 67070 Strasbourg, France.
| | - Burkhard Bechinger
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4, rue Blaise Pascal, 67070 Strasbourg, France.
| |
Collapse
|
68
|
Antimicrobial peptides: biochemical determinants of activity and biophysical techniques of elucidating their functionality. World J Microbiol Biotechnol 2018; 34:62. [PMID: 29651655 DOI: 10.1007/s11274-018-2444-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/05/2018] [Indexed: 10/17/2022]
Abstract
Antimicrobial peptides (AMPs) have been established over millennia as powerful components of the innate immune system of many organisms. Due to their broad spectrum of activity and the development of host resistance against them being unlikely, AMPs are strong candidates for controlling drug-resistant pathogenic microbial pathogens. AMPs cause cell death through several independent or cooperative mechanisms involving membrane lysis, non-lytic activity, and/or intracellular mechanisms. Biochemical determinants such as peptide length, primary sequence, charge, secondary structure, hydrophobicity, amphipathicity and host cell membrane composition together influence the biological activities of peptides. A number of biophysical techniques have been used in recent years to study the mechanisms of action of AMPs. This work appraises the molecular parameters that determine the biocidal activity of AMPs and overviews their mechanisms of actions and the diverse biochemical, biophysical and microscopy techniques utilised to elucidate these.
Collapse
|
69
|
Abbasi F, Leitch JJ, Su Z, Szymanski G, Lipkowski J. Direct visualization of alamethicin ion pores formed in a floating phospholipid membrane supported on a gold electrode surface. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
70
|
Forbrig E, Staffa JK, Salewski J, Mroginski MA, Hildebrandt P, Kozuch J. Monitoring the Orientational Changes of Alamethicin during Incorporation into Bilayer Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2373-2385. [PMID: 29353482 DOI: 10.1021/acs.langmuir.7b04265] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Antimicrobial peptides (AMPs) are the first line of defense after contact of an infectious invader, for example, bacterium or virus, with a host and an integral part of the innate immune system of humans. Their broad spectrum of biological functions ranges from cell membrane disruption over facilitation of chemotaxis to interaction with membrane-bound or intracellular receptors, thus providing novel strategies to overcome bacterial resistances. Especially, the clarification of the mechanisms and dynamics of AMP incorporation into bacterial membranes is of high interest, and different mechanistic models are still under discussion. In this work, we studied the incorporation of the peptaibol alamethicin (ALM) into tethered bilayer lipid membranes on electrodes in combination with surface-enhanced infrared absorption (SEIRA) spectroscopy. This approach allows monitoring the spontaneous and potential-induced ion channel formation of ALM in situ. The complex incorporation kinetics revealed a multistep mechanism that points to peptide-peptide interactions prior to penetrating the membrane and adopting the transmembrane configuration. On the basis of the anisotropy of the backbone amide I and II infrared absorptions determined by density functional theory calculations, we employed a mathematical model to evaluate ALM reorientations monitored by SEIRA spectroscopy. Accordingly, ALM was found to adopt inclination angles of ca. 69°-78° and 21° in its interfacially adsorbed and transmembrane incorporated states, respectively. These orientations can be stabilized efficiently by the dipolar interaction with lipid head groups or by the application of a potential gradient. The presented potential-controlled mechanistic study suggests an N-terminal integration of ALM into membranes as monomers or parallel oligomers to form ion channels composed of parallel-oriented helices, whereas antiparallel oligomers are barred from intrusion.
Collapse
Affiliation(s)
- Enrico Forbrig
- Technische Universität Berlin, Institut für Chemie , Sekr. PC14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Jana K Staffa
- Technische Universität Berlin, Institut für Chemie , Sekr. PC14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Johannes Salewski
- Technische Universität Berlin, Institut für Chemie , Sekr. PC14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Maria Andrea Mroginski
- Technische Universität Berlin, Institut für Chemie , Sekr. PC14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie , Sekr. PC14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Jacek Kozuch
- Technische Universität Berlin, Institut für Chemie , Sekr. PC14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
71
|
Adam C, Peters AD, Lizio MG, Whitehead GFS, Diemer V, Cooper JA, Cockroft SL, Clayden J, Webb SJ. The Role of Terminal Functionality in the Membrane and Antibacterial Activity of Peptaibol-Mimetic Aib Foldamers. Chemistry 2018; 24:2249-2256. [PMID: 29210477 DOI: 10.1002/chem.201705299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Indexed: 01/04/2023]
Abstract
Peptaibols are peptide antibiotics that typically feature an N-terminal acetyl cap, a C-terminal aminoalcohol, and a high proportion of α-aminoisobutyric acid (Aib) residues. To establish how each feature might affect the membrane-activity of peptaibols, biomimetic Aib foldamers with different lengths and terminal groups were synthesised. Vesicle assays showed that long foldamers (eleven Aib residues) with hydrophobic termini had the highest ionophoric activity. C-terminal acids or primary amides inhibited activity, while replacement of an N-terminal acetyl with an azide group made little difference. Crystallography showed that N3 Aib11 CH2 OTIPS folded into a 310 helix 2.91 nm long, which is close to the bilayer hydrophobic width. Planar bilayer conductance assays showed discrete ion channels only for N-acetylated foldamers. However long foldamers with hydrophobic termini had the highest antibacterial activity, indicating that ionophoric activity in vesicles was a better indicator of antibacterial activity than the observation of discrete ion channels.
Collapse
Affiliation(s)
- Catherine Adam
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Anna D Peters
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester, M1 7DN, UK
| | - M Giovanna Lizio
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester, M1 7DN, UK
| | - George F S Whitehead
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Vincent Diemer
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester, M1 7DN, UK
| | - James A Cooper
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Scott L Cockroft
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Simon J Webb
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.,Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester, M1 7DN, UK
| |
Collapse
|
72
|
Sekiya Y, Sakashita S, Shimizu K, Usui K, Kawano R. Channel current analysis estimates the pore-formation and the penetration of transmembrane peptides. Analyst 2018; 143:3540-3543. [DOI: 10.1039/c8an00243f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We measured the current signal of the transmembrane model peptides using the barrel-stave, toroidal pore, and penetration models in order to establish a precise assignment of the channel signals.
Collapse
Affiliation(s)
- Yusuke Sekiya
- Department of Biotechnology and Life Science
- Tokyo University of Agriculture and Technology
- Tokyo 184-8588
- Japan
| | - Shungo Sakashita
- FIRST (Faculty of Frontiers of Innovative Research in Science and Technology)
- Konan University
- Kobe 650-0047
- Japan
| | - Keisuke Shimizu
- Department of Biotechnology and Life Science
- Tokyo University of Agriculture and Technology
- Tokyo 184-8588
- Japan
| | - Kenji Usui
- FIRST (Faculty of Frontiers of Innovative Research in Science and Technology)
- Konan University
- Kobe 650-0047
- Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science
- Tokyo University of Agriculture and Technology
- Tokyo 184-8588
- Japan
| |
Collapse
|
73
|
Du L, Risinger AL, Mitchell CA, You J, Stamps BW, Pan N, King JB, Bopassa JC, Judge SIV, Yang Z, Stevenson BS, Cichewicz RH. Unique amalgamation of primary and secondary structural elements transform peptaibols into potent bioactive cell-penetrating peptides. Proc Natl Acad Sci U S A 2017; 114:E8957-E8966. [PMID: 29073092 PMCID: PMC5664515 DOI: 10.1073/pnas.1707565114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mass-spectrometry-based metabolomics and molecular phylogeny data were used to identify a metabolically prolific strain of Tolypocladium that was obtained from a deep-water Great Lakes sediment sample. An investigation of the isolate's secondary metabolome resulted in the purification of a 22-mer peptaibol, gichigamin A (1). This peptidic natural product exhibited an amino acid sequence including several β-alanines that occurred in a repeating ααβ motif, causing the compound to adopt a unique right-handed 311 helical structure. The unusual secondary structure of 1 was confirmed by spectroscopic approaches including solution NMR, electronic circular dichroism (ECD), and single-crystal X-ray diffraction analyses. Artificial and cell-based membrane permeability assays provided evidence that the unusual combination of structural features in gichigamins conferred on them an ability to penetrate the outer membranes of mammalian cells. Compound 1 exhibited potent in vitro cytotoxicity (GI50 0.55 ± 0.04 µM) and in vivo antitumor effects in a MIA PaCa-2 xenograft mouse model. While the primary mechanism of cytotoxicity for 1 was consistent with ion leakage, we found that it was also able to directly depolarize mitochondria. Semisynthetic modification of 1 provided several analogs, including a C-terminus-linked coumarin derivative (22) that exhibited appreciably increased potency (GI50 5.4 ± 0.1 nM), but lacked ion leakage capabilities associated with a majority of naturally occurring peptaibols such as alamethicin. Compound 22 was found to enter intact cells and induced cell death in a process that was preceded by mitochondrial depolarization.
Collapse
Affiliation(s)
- Lin Du
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019-5251
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, OK 73019-5251
| | - April L Risinger
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX 78229
- Cancer Therapy & Research Center, University of Texas Health Science Center, San Antonio, TX 78229
| | - Carter A Mitchell
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019-5251
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, OK 73019-5251
| | - Jianlan You
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019-5251
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, OK 73019-5251
| | - Blake W Stamps
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019-5251
| | - Ning Pan
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019-5251
| | - Jarrod B King
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019-5251
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, OK 73019-5251
| | - Jean C Bopassa
- Department of Physiology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229
| | - Susan I V Judge
- Department of Biochemistry, High Throughput Screening Facility, Center for Innovative Drug Discovery, University of Texas Health Science Center, San Antonio, TX 78229
- CytoBioscience Incorporated, San Antonio, TX 78229
| | - Zhibo Yang
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019-5251
| | - Bradley S Stevenson
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019-5251
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019-5251
| | - Robert H Cichewicz
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019-5251;
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, OK 73019-5251
| |
Collapse
|
74
|
Castro TG, Micaêlo NM, Melle-Franco M. Modeling the secondary structures of the peptaibols antiamoebin I and zervamicin II modified with D-amino acids and proline analogues. J Mol Model 2017; 23:313. [DOI: 10.1007/s00894-017-3479-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/19/2017] [Indexed: 11/29/2022]
|
75
|
Rivera-Chávez J, Raja HA, Graf TN, Gallagher JM, Metri P, Xue D, Pearce CJ, Oberlies NH. Prealamethicin F50 and related peptaibols from Trichoderma arundinaceum: Validation of their authenticity via in situ chemical analysis. RSC Adv 2017; 7:45733-45751. [PMID: 29379602 PMCID: PMC5786278 DOI: 10.1039/c7ra09602j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the field of natural products chemistry, a common question pertains to the authenticity of an isolated compound, i.e. are the interesting side chains biosynthesized naturally or an artefact of the isolation/purification processes? The droplet-liquid microjunction-surface sampling probe (droplet-LMJ-SSP) coupled to a hyphenated system (UPLC-UV-HRESIMS) empowers the analysis of natural product sources in situ, providing data on the biosynthetic timing and spatial distribution of secondary metabolites. In this study the droplet-LMJ-SSP was utilized to validate the authenticity of two new peptaibols (2 and 3) as biosynthesized secondary metabolites, even though both them had structural features that could be perceived as artefacts. Compounds 2 and 3 were isolated from the scaled up fermentation of Trichoderma arundinaceum (strain MSX70741), along with a new member of the trichobrevin BIII complex (1), and four known compounds (4-7). The structures of the isolates were established using a set of spectroscopic and spectrometric methods, and their absolute configurations were determined by Marfey's analysis. The cytotoxic activity of compounds 1, 3, 4 and 6 was evaluated against a panel of cancer cell lines, where cytotoxic activity in the single digit μM range was observed.
Collapse
Affiliation(s)
- José Rivera-Chávez
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Tyler N Graf
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Jacklyn M Gallagher
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Prashant Metri
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Ding Xue
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | | | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| |
Collapse
|
76
|
Structural Behavior of the Peptaibol Harzianin HK VI in a DMPC Bilayer: Insights from MD Simulations. Biophys J 2017. [PMID: 28636916 DOI: 10.1016/j.bpj.2017.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Microsecond molecular dynamics simulations of harzianin HK VI (HZ) interacting with a dimyristoylphosphatidylcholine bilayer were performed at the condition of low peptide-to-lipid ratio. Two orientations of HZ molecule in the bilayer were found and characterized. In the orientation perpendicular to the bilayer surface, HZ induces a local thinning of the bilayer. When inserted into the bilayer parallel to its surface, HZ is located nearly completely within the hydrophobic region of the bilayer. A combination of solid-state NMR and circular dichroism experiments found the latter orientation to be dominant. An extended sampling simulation provided qualitative results and showed the same orientation to be a global minimum of free energy. The secondary structure of HZ was characterized, and it was found to be located in the 310-helical family. The specific challenges of computer simulation of nonpolar peptides are discussed briefly.
Collapse
|
77
|
Howorka S. Building membrane nanopores. NATURE NANOTECHNOLOGY 2017; 12:619-630. [PMID: 28681859 DOI: 10.1038/nnano.2017.99] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 04/19/2017] [Indexed: 05/28/2023]
Abstract
Membrane nanopores-hollow nanoscale barrels that puncture biological or synthetic membranes-have become powerful tools in chemical- and biosensing, and have achieved notable success in portable DNA sequencing. The pores can be self-assembled from a variety of materials, including proteins, peptides, synthetic organic compounds and, more recently, DNA. But which building material is best for which application, and what is the relationship between pore structure and function? In this Review, I critically compare the characteristics of the different building materials, and explore the influence of the building material on pore structure, dynamics and function. I also discuss the future challenges of developing nanopore technology, and consider what the next-generation of nanopore structures could be and where further practical applications might emerge.
Collapse
Affiliation(s)
- Stefan Howorka
- Department of Chemistry, Institute of Structural Molecular Biology, University College London, London WC1H 0AJ, UK
| |
Collapse
|
78
|
Salnikov ES, Raya J, De Zotti M, Zaitseva E, Peggion C, Ballano G, Toniolo C, Raap J, Bechinger B. Alamethicin Supramolecular Organization in Lipid Membranes from 19F Solid-State NMR. Biophys J 2017; 111:2450-2459. [PMID: 27926846 DOI: 10.1016/j.bpj.2016.09.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/10/2016] [Accepted: 09/29/2016] [Indexed: 11/24/2022] Open
Abstract
Alamethicins (ALMs) are antimicrobial peptides of fungal origin. Their sequences are rich in hydrophobic amino acids and strongly interact with lipid membranes, where they cause a well-defined increase in conductivity. Therefore, the peptides are thought to form transmembrane helical bundles in which the more hydrophilic residues line a water-filled pore. Whereas the peptide has been well characterized in terms of secondary structure, membrane topology, and interactions, much fewer data are available regarding the quaternary arrangement of the helices within lipid bilayers. A new, to our knowledge, fluorine-labeled ALM derivative was prepared and characterized when reconstituted into phospholipid bilayers. As a part of these studies, C19F3-labeled compounds were characterized and calibrated for the first time, to our knowledge, for 19F solid-state NMR distance and oligomerization measurements by centerband-only detection of exchange (CODEX) experiments, which opens up a large range of potential labeling schemes. The 19F-19F CODEX solid-state NMR experiments performed with ALM in POPC lipid bilayers and at peptide/lipid ratios of 1:13 are in excellent agreement with molecular-dynamics calculations of dynamic pentameric assemblies. When the peptide/lipid ratio was lowered to 1:30, ALM was found in the dimeric form, indicating that the supramolecular organization is tuned by equilibria that can be shifted by changes in environmental conditions.
Collapse
Affiliation(s)
- Evgeniy S Salnikov
- Institute of Chemistry, University of Strasbourg/CNRS, UMR7177, Strasbourg, France
| | - Jesus Raya
- Institute of Chemistry, University of Strasbourg/CNRS, UMR7177, Strasbourg, France
| | - Marta De Zotti
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, Padova, Italy
| | - Ekaterina Zaitseva
- Department of Membrane Physiology and Technology, Institute of Physiology, University of Freiburg, Freiburg, Germany
| | - Cristina Peggion
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, Padova, Italy
| | - Gema Ballano
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, Padova, Italy
| | - Claudio Toniolo
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, Padova, Italy
| | - Jan Raap
- Leiden Institute of Chemistry, Gorlaeus Laboratories, University of Leiden, Leiden, the Netherlands
| | - Burkhard Bechinger
- Institute of Chemistry, University of Strasbourg/CNRS, UMR7177, Strasbourg, France.
| |
Collapse
|
79
|
Ageitos J, Sánchez-Pérez A, Calo-Mata P, Villa T. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem Pharmacol 2017; 133:117-138. [DOI: 10.1016/j.bcp.2016.09.018] [Citation(s) in RCA: 328] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/19/2016] [Indexed: 01/01/2023]
|
80
|
Marik T, Urbán P, Tyagi C, Szekeres A, Leitgeb B, Vágvölgyi M, Manczinger L, Druzhinina IS, Vágvölgyi C, Kredics L. Diversity Profile and Dynamics of Peptaibols Produced by Green Mould Trichoderma Species in Interactions with Their Hosts Agaricus bisporus and Pleurotus ostreatus. Chem Biodivers 2017; 14. [PMID: 28261948 DOI: 10.1002/cbdv.201700033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/27/2017] [Indexed: 11/06/2022]
Abstract
Certain Trichoderma species are causing serious losses in mushroom production worldwide. Trichoderma aggressivum and Trichoderma pleuroti are among the major causal agents of the green mould diseases affecting Agaricus bisporus and Pleurotus ostreatus, respectively. The genus Trichoderma is well-known for the production of bioactive secondary metabolites, including peptaibols, which are short, linear peptides containing unusual amino acid residues and being synthesised via non-ribosomal peptide synthetases (NRPSs). The aim of this study was to get more insight into the peptaibol production of T. aggressivum and T. pleuroti. HPLC/MS-based methods revealed the production of peptaibols closely related to hypomurocins B by T. aggressivum, while tripleurins representing a new group of 18-residue peptaibols were identified in T. pleuroti. Putative NRPS genes enabling the biosynthesis of the detected peptaibols could be found in the genomes of both Trichoderma species. In vitro experiments revealed that peptaibols are potential growth inhibitors of mushroom mycelia, and that the host mushrooms may have an influence on the peptaibol profiles of green mould agents.
Collapse
Affiliation(s)
- Tamás Marik
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Péter Urbán
- Department of General and Environmental Microbiology, Faculty of Sciences, and Szentágothai Research Center, University of Pécs, Ifjúság útja 6, H-7624, Pécs, Hungary
| | - Chetna Tyagi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Balázs Leitgeb
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Máté Vágvölgyi
- Institute of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720, Szeged, Hungary
| | - László Manczinger
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Irina S Druzhinina
- Research Area Biochemical Technology, Institute of Chemical and Biological Engineering, TU Wien, Getreidemarkt 9/166, A-1060, Vienna, Austria
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| |
Collapse
|
81
|
Abstract
Many antimicrobial peptides function by forming pores in the plasma membrane of the target cells. Intriguingly, some of these peptides are very short, and thus, it is not known how they can span the membrane, or whether other mechanisms of cell disruption are dominant. Here, the conformation and orientation of the 14-residue peptaibol SPF-5506-A4 (SPF) are investigated in lipid environments by atomistic and coarse grained molecular dynamics (MD) simulations, circular dichroism, and nuclear magnetic resonance (NMR) experiments. The MD simulations show that SPF is inserted spontaneously in a transmembrane orientation in both 1,2-dimyristoyl-sn-glycero-3-phosphocholine and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers resulting in thinning of the bilayers near the peptides, which drives the peptide aggregation. Furthermore, the backbone conformation of the peptide in the bilayer bound state is different from that of the NMR model solved in small bicelles. These results demonstrate that mutual adaption between the peptides and the membrane is likely to be important for pore formation.
Collapse
|
82
|
Horváth J, Násztor Z, Bartha F, Bogár F, Leitgeb B. Characterizing the structural and folding properties of long-sequence hypomurocin B peptides and their analogs. Biopolymers 2017; 106:645-57. [PMID: 27161099 DOI: 10.1002/bip.22870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/13/2016] [Accepted: 05/04/2016] [Indexed: 11/12/2022]
Abstract
We studied the folding processes of long-sequence hypomurocin (HM) peptides and their analogs by means of molecular dynamics methods, focusing on the formation of various helical structures and intramolecular H-bonds. The evolution of different helical conformations, such as the 310 -, α-, and left-handed α-helices, was examined, taking into account the entire sequence and each amino acid of peptides. The results indicated that the HM peptides and their analogs possessed a propensity to adopt helical conformations, and they showed a preference for the 310 -helical structure over the α-helical one. The evolution of a variety of the intramolecular H-bonds, including local and non-local interactions, was also investigated. The results pointed out that on the one hand, the appearance of local, helix-stabilizing H-bonds correlated with the presence of helical conformations, and on the other hand, the non-local H-bonds did not affect significantly the formation of helical structures. Additionally, comparing the structural and folding features of HM peptides and their analogs, our study led to the observation that the L-D isomerism of isovaline amino acid induced effects on the folding processes of these long-sequence peptaibol molecules. Accordingly, the HM peptides and their analogs could be characterized by typical structural and folding properties. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 645-657, 2016.
Collapse
Affiliation(s)
- János Horváth
- Hungarian Academy of Sciences, Institute of Biophysics, Biological Research Centre, Temesvári Krt. 62, Szeged, H-6726, Hungary
| | - Zoltán Násztor
- Hungarian Academy of Sciences, Institute of Biophysics, Biological Research Centre, Temesvári Krt. 62, Szeged, H-6726, Hungary
| | - Ferenc Bartha
- Faculty of Medicine, Department of Medical Chemistry, University of Szeged, Dóm Tér 8, Szeged, H-6720, Hungary
| | - Ferenc Bogár
- MTA-SZTE Supramolecular and Nanostructured Materials Research Group of Hungarian Academy of Sciences, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
| | - Balázs Leitgeb
- Hungarian Academy of Sciences, Institute of Biophysics, Biological Research Centre, Temesvári Krt. 62, Szeged, H-6726, Hungary. .,Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Közép Fasor 52, Szeged, H-6726, Hungary.
| |
Collapse
|
83
|
Bortolus M, Dalzini A, Maniero AL, Panighel G, Siano A, Toniolo C, De Zotti M, Formaggio F. Insights into peptide-membrane interactions of newly synthesized, nitroxide-containing analogs of the peptaibiotic trichogin GAIV using EPR. Biopolymers 2017; 108. [DOI: 10.1002/bip.22913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/21/2016] [Accepted: 06/29/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Marco Bortolus
- Department of Chemistry; University of Padova; Padova 35131 Italy
| | - Annalisa Dalzini
- Department of Chemistry; University of Padova; Padova 35131 Italy
| | | | - Giacomo Panighel
- Department of Chemistry; University of Padova; Padova 35131 Italy
| | - Alvaro Siano
- Department of Chemistry; University of Padova; Padova 35131 Italy
- Departamento de Química Orgánica; Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL); 3000 Santa Fe Argentina
| | - Claudio Toniolo
- Department of Chemistry; University of Padova; Padova 35131 Italy
- Institute of Biomolecular Chemistry, Padova Unit, CNR; Padova 35131 Italy
| | - Marta De Zotti
- Department of Chemistry; University of Padova; Padova 35131 Italy
| | - Fernando Formaggio
- Department of Chemistry; University of Padova; Padova 35131 Italy
- Institute of Biomolecular Chemistry, Padova Unit, CNR; Padova 35131 Italy
| |
Collapse
|
84
|
Afanasyeva EF, Syryamina VN, Dzuba SA. Communication: Alamethicin can capture lipid-like molecules in the membrane. J Chem Phys 2017; 146:011103. [DOI: 10.1063/1.4973703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Ekaterina F. Afanasyeva
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia and Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Victoria N. Syryamina
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia and Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sergei A. Dzuba
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia and Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
85
|
Vollmer M, Klingebiel M, Rohn S, Maul R. Alamethicin for using in bioavailability studies? - Re-evaluation of its effect. Toxicol In Vitro 2016; 39:111-118. [PMID: 27940284 DOI: 10.1016/j.tiv.2016.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/25/2016] [Accepted: 11/29/2016] [Indexed: 11/24/2022]
Abstract
A major pathway for the elimination of drugs is the biliary and renal excretion following the formation of more hydrophilic secondary metabolites such as glucuronides. For in vitro investigations of the phase II metabolism, hepatic microsomes are commonly used in the combination with the pore-forming peptide alamethicin, also to give estimates for the in vivo situation. Thus, alamethicin may represent a neglected parameter in the characterization of microsomal in vitro assays. In the present study, the influence of varying alamethicin concentrations on glucuronide formation of selected phenolic compounds was investigated systematically. A correlation between the alamethicin impact and the lipophilicity of the investigated substrates was analyzed as well. Lipophilicity was determined by the logarithm of the octanol-water partition coefficient. For every substrate, a distinct alamethicin concentration could be detected leading to a maximal glucuronidation activity. Further increase of the alamethicin application led to negative effects. The differences between the maximum depletion rates with and without alamethicin addition varied between 2.7% and 18.2% depending on the substrate. A dependence on the lipophilicity could not be confirmed. Calculation of the apparent intrinsic clearance led to a more than 2-fold increase using the most effective alamethicin concentration compared to the alamethicin free control.
Collapse
Affiliation(s)
- Maren Vollmer
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany.
| | - Mirko Klingebiel
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany.
| | - Sascha Rohn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany.
| | - Ronald Maul
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany.
| |
Collapse
|
86
|
Siow A, Hung KY, Harris PWR, Brimble MA. Solid-Phase Synthesis of the Peptaibol Alamethicin U-22324 by Using a Double-Linker Strategy. European J Org Chem 2016. [DOI: 10.1002/ejoc.201601102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Andrew Siow
- School of Biological Sciences; The University of Auckland; 3A Symonds St 1142 Auckland New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; School of Biological Sciences; The University of Auckland; 1142 Auckland New Zealand
| | - Kuo-yuan Hung
- School of Biological Sciences; The University of Auckland; 3A Symonds St 1142 Auckland New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; School of Biological Sciences; The University of Auckland; 1142 Auckland New Zealand
| | - Paul W. R. Harris
- School of Biological Sciences; The University of Auckland; 3A Symonds St 1142 Auckland New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; School of Biological Sciences; The University of Auckland; 1142 Auckland New Zealand
| | - Margaret A. Brimble
- School of Biological Sciences; The University of Auckland; 3A Symonds St 1142 Auckland New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; School of Biological Sciences; The University of Auckland; 1142 Auckland New Zealand
| |
Collapse
|
87
|
Malanovic N, Lohner K. Antimicrobial Peptides Targeting Gram-Positive Bacteria. Pharmaceuticals (Basel) 2016; 9:E59. [PMID: 27657092 PMCID: PMC5039512 DOI: 10.3390/ph9030059] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 01/01/2023] Open
Abstract
Antimicrobial peptides (AMPs) have remarkably different structures as well as biological activity profiles, whereupon most of these peptides are supposed to kill bacteria via membrane damage. In order to understand their molecular mechanism and target cell specificity for Gram-positive bacteria, it is essential to consider the architecture of their cell envelopes. Before AMPs can interact with the cytoplasmic membrane of Gram-positive bacteria, they have to traverse the cell wall composed of wall- and lipoteichoic acids and peptidoglycan. While interaction of AMPs with peptidoglycan might rather facilitate penetration, interaction with anionic teichoic acids may act as either a trap for AMPs or a ladder for a route to the cytoplasmic membrane. Interaction with the cytoplasmic membrane frequently leads to lipid segregation affecting membrane domain organization, which affects membrane permeability, inhibits cell division processes or leads to delocalization of essential peripheral membrane proteins. Further, precursors of cell wall components, especially the highly conserved lipid II, are directly targeted by AMPs. Thereby, the peptides do not inhibit peptidoglycan synthesis via binding to proteins like common antibiotics, but form a complex with the precursor molecule, which in addition can promote pore formation and membrane disruption. Thus, the multifaceted mode of actions will make AMPs superior to antibiotics that act only on one specific target.
Collapse
Affiliation(s)
- Nermina Malanovic
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Austria.
| | - Karl Lohner
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Austria.
- BioTechMed Graz, Humboldtstrasse 50/III, 8010 Graz, Austria.
| |
Collapse
|
88
|
Savoie JD, Otis F, Bürck J, Ulrich AS, Voyer N. Crown ether helical peptides are preferentially inserted in lipid bilayers as a transmembrane ion channels. Biopolymers 2016; 104:427-33. [PMID: 25753314 DOI: 10.1002/bip.22633] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/18/2015] [Accepted: 02/23/2015] [Indexed: 11/08/2022]
Abstract
Oriented circular dichroism was used to study the alignment crown ether-modified peptides. The influence of different N- and C-functionalities was assessed using at variable peptide:lipid ratios from 1:20 to 1:200. Neither the functionalities nor the concentration had any major effect on the orientation. The alignment of the 21-mer peptides was also examined with lipid membranes of different bilayer thickness. The use of synchrotron radiation as light source allowed the study of peptide:lipid molar ratios from 1:20 to 1:1000. For all conditions studied, the peptides were found to be predominantly incorporated as a transmembrane helix into the membrane, especially at low peptide concentration, but started to aggregate on the membrane surface at higher peptide:lipid ratios. The structural information on the preferred trans-bilayer alignment of the crown ether functional groups explains their ion conductivity and is useful for the further development of membrane-active nanochemotherapeutics.
Collapse
Affiliation(s)
- Jean-Daniel Savoie
- Faculté des Sciences et de Génie, Département de chimie and PROTEO, Université Laval, Québec, QC, G1V 0A6, Canada.,Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021, Karlsruhe, Germany
| | - François Otis
- Faculté des Sciences et de Génie, Département de chimie and PROTEO, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021, Karlsruhe, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021, Karlsruhe, Germany
| | - Normand Voyer
- Faculté des Sciences et de Génie, Département de chimie and PROTEO, Université Laval, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
89
|
Gopalakrishnan R, Frolov AI, Knerr L, Drury WJ, Valeur E. Therapeutic Potential of Foldamers: From Chemical Biology Tools To Drug Candidates? J Med Chem 2016; 59:9599-9621. [PMID: 27362955 DOI: 10.1021/acs.jmedchem.6b00376] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decade, foldamers have progressively emerged as useful architectures to mimic secondary structures of proteins. Peptidic foldamers, consisting of various amino acid based backbones, have been the most studied from a therapeutic perspective, while polyaromatic foldamers have barely evolved from their nascency and remain perplexing for medicinal chemists due to their poor drug-like nature. Despite these limitations, this compound class may still offer opportunities to study challenging targets or provide chemical biology tools. The potential of foldamer drug candidates reaching the clinic is still a stretch. Nevertheless, advances in the field have demonstrated their potential for the discovery of next generation therapeutics. In this perspective, the current knowledge of foldamers is reviewed in a drug discovery context. Recent advances in the early phases of drug discovery including hit finding, target validation, and optimization and molecular modeling are discussed. In addition, challenges and focus areas are debated and gaps highlighted.
Collapse
Affiliation(s)
- Ranganath Gopalakrishnan
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Department of Chemical Biology, Max Planck Institute of Molecular Physiology , Dortmund 44202, Germany
| | - Andrey I Frolov
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Laurent Knerr
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - William J Drury
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Eric Valeur
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca , Pepparedsleden 1, Mölndal, 431 83, Sweden
| |
Collapse
|
90
|
Dong P, Zhou Y, He W, Hua D. A strategy for enhanced antibacterial activity against Staphylococcus aureus by the assembly of alamethicin with a thermo-sensitive polymeric carrier. Chem Commun (Camb) 2016; 52:896-9. [PMID: 26579549 DOI: 10.1039/c5cc07054f] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We demonstrate here a strategy for enhanced antibacterial activity against microbial strains by the assembly of antimicrobial peptides with a temperature-responsive polymeric carrier. The assembly complex was less toxic to human cells and more stable to enzymatic cleavage. This work may provide a promising drug delivery system for antimicrobial peptides.
Collapse
Affiliation(s)
- Ping Dong
- School for Radiological and Interdisciplinary Sciences (RAD-X) & College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Yuan Zhou
- School for Radiological and Interdisciplinary Sciences (RAD-X) & College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Weiwei He
- School for Radiological and Interdisciplinary Sciences (RAD-X) & College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China. and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Daoben Hua
- School for Radiological and Interdisciplinary Sciences (RAD-X) & College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China. and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| |
Collapse
|
91
|
Zeilinger S, Gruber S, Bansal R, Mukherjee PK. Secondary metabolism in Trichoderma – Chemistry meets genomics. FUNGAL BIOL REV 2016. [DOI: 10.1016/j.fbr.2016.05.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
92
|
Madsen JLH, Hjørringgaard CU, Vad BS, Otzen D, Skrydstrup T. Incorporation of β-Silicon-β3-Amino Acids in the Antimicrobial Peptide Alamethicin Provides a 20-Fold Increase in Membrane Permeabilization. Chemistry 2016; 22:8358-67. [DOI: 10.1002/chem.201600445] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Julie L. H. Madsen
- Department of Chemistry and; Interdisciplinary Nanoscience Center; Center for Insoluble Protein Structures; Aarhus University; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Claudia U. Hjørringgaard
- Department of Chemistry and; Interdisciplinary Nanoscience Center; Center for Insoluble Protein Structures; Aarhus University; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Brian S. Vad
- Department of Molecular Biology and Genetics and; Interdisciplinary Nanoscience Center; Center for Insoluble Protein Structures; Aarhus University; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Daniel Otzen
- Department of Molecular Biology and Genetics and; Interdisciplinary Nanoscience Center; Center for Insoluble Protein Structures; Aarhus University; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Troels Skrydstrup
- Department of Chemistry and; Interdisciplinary Nanoscience Center; Center for Insoluble Protein Structures; Aarhus University; Gustav Wieds Vej 14 8000 Aarhus C Denmark
| |
Collapse
|
93
|
Shi WL, Chen XL, Wang LX, Gong ZT, Li S, Li CL, Xie BB, Zhang W, Shi M, Li C, Zhang YZ, Song XY. Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by Trichoderma spp. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2191-205. [PMID: 26850879 PMCID: PMC4809282 DOI: 10.1093/jxb/erw023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Trichoderma spp. are well known biocontrol agents that produce a variety of antibiotics. Peptaibols are a class of linear peptide antibiotics mainly produced by Trichoderma Alamethicin, the most studied peptaibol, is reported as toxic to plants at certain concentrations, while the mechanisms involved are unclear. We illustrated the toxic mechanisms of peptaibols by studying the growth-inhibitory effect of Trichokonin VI (TK VI), a peptaibol from Trichoderma longibrachiatum SMF2, on Arabidopsis primary roots. TK VI inhibited root growth by suppressing cell division and cell elongation, and disrupting root stem cell niche maintenance. TK VI increased auxin content and disrupted auxin response gradients in root tips. Further, we screened the Arabidopsis TK VI-resistant mutant tkr1. tkr1 harbors a point mutation in GORK, which encodes gated outwardly rectifying K(+)channel proteins. This mutation alleviated TK VI-induced suppression of K(+)efflux in roots, thereby stabilizing the auxin gradient. The tkr1 mutant also resisted the phytotoxicity of alamethicin. Our results indicate that GORK channels play a key role in peptaibol-plant interaction and that there is an inter-relationship between GORK channels and maintenance of auxin homeostasis. The cellular and molecular insight into the peptaibol-induced inhibition of plant root growth advances our understanding of Trichoderma-plant interactions.
Collapse
Affiliation(s)
- Wei-Ling Shi
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research, Shandong University, Jinan 250100, China State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research, Shandong University, Jinan 250100, China
| | - Li-Xia Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research, Shandong University, Jinan 250100, China
| | - Zhi-Ting Gong
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research, Shandong University, Jinan 250100, China
| | - Shuyu Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chun-Long Li
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, China
| | - Bin-Bin Xie
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research, Shandong University, Jinan 250100, China
| | - Wei Zhang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, China
| | - Mei Shi
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research, Shandong University, Jinan 250100, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research, Shandong University, Jinan 250100, China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research, Shandong University, Jinan 250100, China
| |
Collapse
|
94
|
Barns KJ, Weisshaar JC. Single-cell, time-resolved study of the effects of the antimicrobial peptide alamethicin on Bacillus subtilis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:725-32. [PMID: 26777771 DOI: 10.1016/j.bbamem.2016.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 12/14/2022]
Abstract
Alamethicin is a well-studied antimicrobial peptide (AMP) that kills Gram-positive bacteria. It forms narrow, barrel-stave pores in planar lipid bilayers. We present a detailed, time-resolved microscopy study of the sequence of events during the attack of alamethicin on individual, live Bacillus subtilis cells expressing GFP in the cytoplasm. At the minimum inhibitory concentration (MIC), the first observed symptom is the halting of growth, as judged by the plateau in measured cell length vs time. The data strongly suggest that this growth-halting event occurs prior to membrane permeabilization. Gradual degradation of the proton-motive force, inferred from a decrease in pH-dependent GFP fluorescence intensity, evidently begins minutes later and continues over about 5 min. There follows an abrupt permeabilization of the cytoplasmic membrane to the DNA stain Sytox Orange and concomitant loss of small osmolytes, causing observable cell shrinkage, presumably due to decreased turgor pressure. This permeabilization of the cytoplasmic membrane occurs uniformly across the entire membrane, not locally, on a timescale of 5s or less. GFP gradually leaks out of the cell envelope, evidently impeded by the shrunken peptidoglycan layer. Disruption of the cell envelope by alamethicin occurs in stages, with larger and larger species permeating the envelope as time evolves over tens of minutes. Some of the observed symptoms are consistent with the formation of barrel-stave pores, but the data do not rule out "chaotic pore" or "carpet" mechanisms. We contrast the effects of alamethicin and the human cathelicidin LL-37 on B. subtilis.
Collapse
Affiliation(s)
- Kenneth J Barns
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - James C Weisshaar
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA; Molecular Biophysics Program, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
95
|
Bortolus M, Dalzini A, Formaggio F, Toniolo C, Gobbo M, Maniero AL. An EPR study of ampullosporin A, a medium-length peptaibiotic, in bicelles and vesicles. Phys Chem Chem Phys 2016; 18:749-60. [DOI: 10.1039/c5cp04136h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
EPR/CD spectroscopies reveal that the peptaibol ampullosporin A changes the orientation and conformation depending on its concentration and bilayer thickness.
Collapse
Affiliation(s)
- Marco Bortolus
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
- Dipartimento di Scienza dei Materiali
| | - Annalisa Dalzini
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Fernando Formaggio
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Claudio Toniolo
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Marina Gobbo
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Anna Lisa Maniero
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| |
Collapse
|
96
|
Násztor Z, Horváth J, Leitgeb B. Studying the structural and folding features of long-sequence trichobrachin peptides. Chem Biodivers 2015; 12:1365-77. [PMID: 26363881 DOI: 10.1002/cbdv.201400280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Indexed: 11/09/2022]
Abstract
In this theoretical study, the folding processes of long-sequence trichobrachin peptides (i.e., TB IIb peptides) were investigated by molecular dynamics methods. The formation of various helical structures (i.e., 310 -, α-, and left-handed α-helices) was studied with regard to the entire sequence of peptides, as well as to each amino acid. The results pointed out that TB IIb molecules showed a propensity to form helical conformations, and they could be characterized by 310 -helical structure rather than by α-helical structure. The formation of local (i.e., i←i+3 and i←i+4) as well as of non-local (i.e., i←i+n, where n>4; and all i→i+n) H-bonds was also examined. The results revealed that the occurrence of local, helix-stabilizing H-bonds was in agreement with the appearance of helical conformations, and the non-local H-bonds did not produce relevant effects on the evolution of helical structures. Based on the data obtained by our structural investigation, differences were observed between the TB IIb peptides, according to the type of amino acid located in the 17th position of their sequences. In summary, the folding processes were explored for TB IIb molecules, and our theoretical study led to the conclusion that these long-sequence peptaibols showed characteristic structural and folding features.
Collapse
Affiliation(s)
- Zoltán Násztor
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, HU-6726 Szeged, (phone: +36-62-599726; fax: +36-62-433133).,Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, HU-6720 Szeged
| | - János Horváth
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, HU-6726 Szeged, (phone: +36-62-599726; fax: +36-62-433133)
| | - Balázs Leitgeb
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, HU-6726 Szeged, (phone: +36-62-599726; fax: +36-62-433133). .,Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, HU-6726 Szeged.
| |
Collapse
|
97
|
Stach M, Weidkamp AJ, Yang SH, Hung KY, Furkert DP, Harris PWR, Smaill JB, Patterson AV, Brimble MA. Improved Strategy for the Synthesis of the Anticancer Agent Culicinin D. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
98
|
Nagao T, Mishima D, Javkhlantugs N, Wang J, Ishioka D, Yokota K, Norisada K, Kawamura I, Ueda K, Naito A. Structure and orientation of antibiotic peptide alamethicin in phospholipid bilayers as revealed by chemical shift oscillation analysis of solid state nuclear magnetic resonance and molecular dynamics simulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2789-98. [PMID: 26248014 DOI: 10.1016/j.bbamem.2015.07.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/01/2015] [Accepted: 07/31/2015] [Indexed: 11/26/2022]
Abstract
The structure, topology and orientation of membrane-bound antibiotic alamethicin were studied using solid state nuclear magnetic resonance (NMR) spectroscopy. (13)C chemical shift interaction was observed in [1-(13)C]-labeled alamethicin. The isotropic chemical shift values indicated that alamethicin forms a helical structure in the entire region. The chemical shift anisotropy of the carbonyl carbon of isotopically labeled alamethicin was also analyzed with the assumption that alamethicin molecules rotate rapidly about the bilayer normal of the phospholipid bilayers. It is considered that the adjacent peptide planes form an angle of 100° or 120° when it forms α-helix or 310-helix, respectively. These properties lead to an oscillation of the chemical shift anisotropy with respect to the phase angle of the peptide plane. Anisotropic data were acquired for the 4 and 7 sites of the N- and C-termini, respectively. The results indicated that the helical axes for the N- and C-termini were tilted 17° and 32° to the bilayer normal, respectively. The chemical shift oscillation curves indicate that the N- and C-termini form the α-helix and 310-helix, respectively. The C-terminal 310-helix of alamethicin in the bilayer was experimentally observed and the unique bending structure of alamethicin was further confirmed by measuring the internuclear distances of [1-(13)C] and [(15)N] doubly-labeled alamethicin. Molecular dynamics simulation of alamethicin embedded into dimyristoyl phophatidylcholine (DMPC) bilayers indicates that the helical axes for α-helical N- and 310-helical C-termini are tilted 12° and 32° to the bilayer normal, respectively, which is in good agreement with the solid state NMR results.
Collapse
Affiliation(s)
- Takashi Nagao
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5 Hodogaya-ku, Yokohama 240-8501, Japan
| | - Daisuke Mishima
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5 Hodogaya-ku, Yokohama 240-8501, Japan
| | - Namsrai Javkhlantugs
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5 Hodogaya-ku, Yokohama 240-8501, Japan; Center for Nanoscience and Nanotechnology, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - Jun Wang
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5 Hodogaya-ku, Yokohama 240-8501, Japan
| | - Daisuke Ishioka
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5 Hodogaya-ku, Yokohama 240-8501, Japan
| | - Kiyonobu Yokota
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5 Hodogaya-ku, Yokohama 240-8501, Japan
| | - Kazushi Norisada
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5 Hodogaya-ku, Yokohama 240-8501, Japan
| | - Izuru Kawamura
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5 Hodogaya-ku, Yokohama 240-8501, Japan
| | - Kazuyoshi Ueda
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5 Hodogaya-ku, Yokohama 240-8501, Japan
| | - Akira Naito
- Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5 Hodogaya-ku, Yokohama 240-8501, Japan.
| |
Collapse
|
99
|
De Zotti M, Ballano G, Jost M, Salnikov ES, Bechinger B, Oancea S, Crisma M, Toniolo C, Formaggio F. Solution synthesis, conformational analysis, and antimicrobial activity of three alamethicin F50/5 analogs bearing a trifluoroacetyl label. Chem Biodivers 2015; 11:1163-91. [PMID: 25146762 DOI: 10.1002/cbdv.201300394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Indexed: 11/07/2022]
Abstract
We prepared, by solution-phase methods, and fully characterized three analogs of the membrane-active peptaibiotic alamethicin F50/5, bearing a single trifluoroacetyl (Tfa) label at the N-terminus, at position 9 (central region) or at position 19 (C-terminus), and with the three Gln at positions 7, 18, and 19 replaced by Glu(OMe) residues. To add the Tfa label at position 9 or 19, a γ-trifluoroacetylated α,γ-diaminobutyric acid (Dab) residue was incorporated as a replacement for the original Val(9) or Glu(OMe)(19) amino acid. We performed a detailed conformational analysis of the three analogs (using FT-IR absorption, CD, 2D-NMR, and X-ray diffraction), which clearly showed that Tfa labeling does not introduce any dramatic backbone modification in the predominantly α-helical structure of the parent peptaibiotic. The results of an initial solid-state (19)F-NMR study on one of the analogs favor the conclusion that the Tfa group is a very promising reporter for the analysis of peptaibioticmembrane interactions. Finally, we found that the antimicrobial activities of the three newly synthesized analogs depend on the position of the Tfa label in the peptide sequence.
Collapse
Affiliation(s)
- Marta De Zotti
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, I-35131 Padova.
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Iftemi S, De Zotti M, Formaggio F, Toniolo C, Stella L, Luchian T. Electrophysiology investigation of Trichogin GA IV activity in planar lipid membranes reveals ion channels of well-defined size. Chem Biodivers 2015; 11:1069-77. [PMID: 25044592 DOI: 10.1002/cbdv.201300334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Indexed: 11/07/2022]
Abstract
Trichogin GA IV, an antimicrobial peptaibol, exerts its function by augmenting membrane permeability, but the molecular aspects of its pore-forming mechanism are still debated. Several lines of evidence indicate a 'barrel-stave' channel structure, similar to that of alamethicin, but the length of a trichogin helix is too short to span a normal bilayer. Herein, we present electrophysiology measurements in planar bilayers, showing that trichogin does form channels of a well-defined size (R=4.2⋅10(9) Ω; corresponding at least to a trimeric aggregate) that span the membrane and allow ion diffusion, but do not exhibit voltage-dependent rectification, unlike those of alamethicin.
Collapse
Affiliation(s)
- Sorana Iftemi
- Department of Physics, Laboratory of Molecular Biophysics and Medical Physics, Alexandru I. Cuza University, 11, Blvd. Carol I, RO-700506 Iasi (phone: +40-232-201191)
| | | | | | | | | | | |
Collapse
|